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Abstract 

On September 28, 2018, the Mw 7.5 earthquake occurred in Palu, Central Sulawesi, Indonesia. This earthquake 

produced strong tremors, landslides, liquefaction and a tsunami and caused thousands of fatalities and damaged 

houses and infrastructure. We have relocated 386 of the 554 Palu aftershocks by using the double-difference relo-

cation method (hypoDD) from September 28 to November 22, 2018. The aftershock pattern is consistent with the 

crustal deformation in the area and generally shows that the events have a NW–SE trending of ~ 200 km in length 

and ~ 50 km in width. Most of the aftershocks are located to the east of the Palu-Koro Fault Line. Since November 2, 

2018, there have been hundreds of swarm earthquakes in the area of Mamasa, West Sulawesi, which is about 230 km 

south of the city of Palu. Some of these earthquakes were felt, and houses were even damaged. We have relocated 

535 of the 556 swarm earthquakes having a magnitude of M 2 to M 5.4. Our results show that the seismicity pattern 

has a dip that becomes shallower to the west (dipping at a ~ 45° angle) and extends from north to south for a length 

of ~ 50 km. We also conducted a focal mechanism analysis to estimate the type of fault slip for selected events of an 

M > 4.5 magnitude. Most of the solutions of the focal mechanism analysis show a normal fault type. This swarm earth-

quake probably corresponds to the activity of the fault in the local area.
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Introduction
On September 28, 2018, an Mw 7.5 devastating earth-

quake and tsunami affected the city of Palu in Central 

Sulawesi, Indonesia. As of November 22, 2018, the Indo-

nesian Agency for Meteorology, Climatology, and Geo-

physics (BMKG) has recorded 554 aftershocks in this 

area with a significant number of events having a mag-

nitude ≥ 3 with the use of a dense regional seismic net-

work. According to the BMKG catalog, the mainshock 

occurred at 10:02:44 UTC and the epicenter was located 

at 0.18° S; 119.85° E with a depth of 10 km depth (Fig. 1). 

About 12 min after the mainshock, a sequence of after-

shocks continued occurring until the final date that these 

data were downloaded, which was November 23, 2018, 

but even after that aftershocks still occurred. The shake 

map from BMKG and the community reports indicate 

that the earthquake was rated VII to VIII on the Modified 
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Mercalli Intensity (MMI) scale in Palu and the surround-

ing area.

According to the National Disaster Management 

Authority (NDMA) report (http://bnpb.go.id/en), the 

tsunami and liquefaction caused more than 4000 fatali-

ties. The geological map made by Watkinson (2011) 

shows that the city of Palu consists of Holocene sedimen-

tary rock. Pramono et  al. (2017) used the multichannel 

analysis of surface waves (MASW) method to conclude 

that the city of Palu and its surrounding area consist of 

alluvium and soft soil. Thus, the damage caused by the 

earthquake and the liquefaction was massive in the Palu 

area. Gusman et al. (2019) showed that the tsunami was 

caused by a combination of sudden ground and seafloor 

changes due to the earthquake, along with landslides, and 

a high tide at the time of the event.

The earthquake was generated by the strike-slip fault-

ing of the Palu-Koro Fault (Bao et  al. 2019; Socquet 

et al. 2019). The Palu-Koro Fault has a slip rate of about 

42  mm/year, which was estimated by Global Position-

ing System (GPS) and slip rate modeling (Socquet et al. 

2006). Daryono (2016) suggested that this fault includes 

active faults with a slip rate of around 30–40 mm yearly 

and can potentially generate a co-seismic slip. As a result, 

seismic hazard along Palu-Koro Fault segment in the 

vicinity of a highly populated area is also increasing.

Interestingly, a month after the mainshock, a swarm 

earthquake occurred in Mamasa, which is ~ 230  km to 

the south of Palu (Fig. 1). As of November 22, 2018, the 

BMKG has recorded 556 events with a magnitude of 

M > 2. These were located in the area at an average depth 

of 10 km. Unfortunately, some of the earthquakes caused 

damage to several houses and economic loss. However, 

the source of these swarm earthquakes is still unclear: 

whether they occurred due to known activity at currently 

dormant volcanoes or a static triggering as a result of the 

devastating Palu earthquake. Therefore, this study aims 

to relocate the aftershocks of the Palu earthquake and the 

swarm earthquakes to obtain more precise hypocenter 

locations, as well as to conduct a focal mechanism analy-

sis to estimate the fault type in the Mamasa area.

Fig. 1 Map of the study area. The red star depicts the Mw 7.5 mainshock; the green inverted triangles are the BMKG seismic station used in this 

study; blue traces represent the Palu-Koro Fault; and red traces correspond to the other major crustal faults in the region extracted from Irsyam et al. 

(2017). The black boxes show the map regions of Figs. 2, 3, 4, 5, 6, 8 and 9

http://bnpb.go.id/en
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Data and method
The arrival time data used in this study were obtained 

from September 28 to November 22, 2018, at BMKG 

seismic stations in Sulawesi and Borneo (Fig.  1). Dur-

ing this period, there were 554 aftershocks from the Palu 

earthquake and 556 swarm earthquakes from Mamasa, 

constituting 5608 and 2649 P- and S-wave arrival times, 

respectively. The velocity model from IASPEI91 (Kennett 

and Engdahl 1991) was used for the initial hypocenter 

determination of the BMKG catalog, using the Seis-

ComP3 program (GFZ).

We used the HypoDD program (Waldhauser 2001) to 

perform the double-difference method (Waldhauser and 

Ellsworth 2000) for relocating the aftershock hypocent-

ers. The method assumes that if there are two earth-

quakes with a hypocentral distance smaller than the 

distance from the hypocenters to the station, then the 

ray paths of these two earthquakes to the station can be 

assumed to be the same and therefore, propagate through 

the same medium. This method has been successful in 

relocating earthquakes in Indonesia using the BMKG 

network data with some prominent tectonic interpreta-

tions: for example, in Sumatra (Nugraha et  al. 2018a), 

West Java (Supendi et al. 2018a), Sulawesi (Ismullah et al. 

2017; Supendi et  al. 2018b) and Molucca (Utama et  al. 

2015; Nugraha et al. 2018b).

We applied a statistical resampling approach “boot-

strap” method (Efron 1982; Billings 1994; Shearer 1997) 

to assess the reliability of the error estimates. For the final 

hypocenters, we replaced the final residuals with samples 

drawn with replacements from the observed residual dis-

tribution and relocated all events with these bootstrap 

sample data and unit weights to determine the shift in 

location with the resampled data vector. We applied 

Gaussian noise to the data with a standard deviation 

0.1 s. The process was then repeated 1000 times.

For selected events in the Mamasa earthquakes, we 

used the ISOLA package (Sokos and Zahradnik 2008) 

to perform moment tensor inversions from at least four 

BMKG seismic stations (see inverted green triangles in 

Fig. 1). The observed waveforms were preprocessed using 

a high-pass filter with a corner frequency of 0.075 Hz to 

0.15 Hz. For hypocenter relocation and focal mechanism 

determination, we used the 1-D seismic velocity model 

AK135 (Kennett et al. 1995).

Results and discussion
We have relocated 386 aftershocks from the Palu earth-

quake (Fig.  2). We first compared the relocated after-

shocks with the initial locations (Fig.  3). The relocated 

hypocenters were then plotted in the vertical cross sec-

tion and show a northwest–southeast trending (Fig.  3). 

The relocated hypocenters exhibit an improvement in 

clustering both horizontally and vertically, as shown in 

Fig.  3. Relative location errors for the 386 aftershocks 

along the Palu-Koro Fault are shown in Fig.  4. Relative 

horizontal and vertical error ellipses are shown to be at 

the 95% confidence level. Ellipses are computed from the 

major axes of the horizontal and vertical projection of 

the 95% confidence ellipsoids obtained from a bootstrap 

analysis of the final double-difference vector. The distri-

bution of the major and minor axes of the horizontal and 

vertical projections of the ellipsoids for the Palu after-

shocks is shown in Fig. 7a. Average mislocations horizon-

tally and vertically are generally less than 2 km, and the 

maximum dislocation is less than 13 km (Table 1).

The distribution of aftershocks extended from the 

north to the south of the mainshock (Fig. 2). The location 

of the aftershocks is consistent with the crustal deforma-

tion data in the area. The Geospatial Information Author-

ity of Japan (GSI) applied interferometric analysis using 

ALOS-2/PALSAR-2 data to show that crustal deforma-

tion occurred in the part of the island (https ://www.gsi.

go.jp). Based on the vertical cross section in parallel to 

the fault (cross section A), the aftershocks were mostly 

located less than a depth of 20 km, which stay within the 

seismogenic zone, whereas the trend shown by the hypo-

center in the northern part (close to the Mw 7.5 main-

shock) is shallower than in the southern part. Based on 

the distribution of relocated aftershocks, it can be seen 

that the events have a NW–SE trending about ~ 200 km 

in length and ~ 50 km in width.

We have relocated 535 of the 556 swarm earthquakes 

in Mamasa with a magnitude of M 2 to M 5.4 (Fig. 5). The 

events that had previously been held fixed at 10 km could 

now be relocated/resolved (Fig. 5). Our results show that 

the earthquake swarms probably correspond to the activ-

ity of the local fault in the area, indicated by the fact that 

the seismicity pattern has a dip that becomes shallower 

toward the west (dipping at a ~ 45° angle) and extends 

from north to south with a length of ~ 50  km (Fig.  8b). 

Relative location errors for the 535 swarm earthquakes 

in Mamasa are shown in Fig.  6. The distribution of the 

major and minor axes of the horizontal and vertical pro-

jections of these ellipsoids for the events is shown in 

Fig.  7b. The spatial distribution of relative error agrees 

with the relocated seismicity pattern. This confirms that 

the seismic swarm sequence has a dip with a 45° angle. 

Average mislocations horizontally and vertically are less 

than 1.1  km, and the maximum dislocation is less than 

9 km (Table 2).

We also conducted a focal mechanism analysis to esti-

mate the type of fault slip for selected events with a mag-

nitude of M > 4.5 (Fig. 8a). Most of the focal mechanism 

solutions show the normal fault type. We plotted a spa-

tiotemporal distribution of the aftershocks right after 

https://www.gsi.go.jp
https://www.gsi.go.jp
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the Mw 7.5 mainshock and the swarm earthquakes in 

Mamasa (Fig. 9).

As noted from the spatiotemporal distribution of 

the relocated seismicity, the swarm earthquakes in 

the Mamasa area are not related to the devastating 

Palu earthquake. Figure  9 indicates that the Mamasa 

swarm earthquakes occurred approximately 30  days 

after the larger magnitude (M > 3) aftershocks had 

stopped. Furthermore, it seems very unlikely that a 

direct dynamic triggering would respond from such a 

large distance (~ 230 km) (O’Malley et al. 2018) and the 

timing is beyond the timescale of the dynamic stress 

transfer. The evidence of a large earthquake triggering 

other earthquake sequences only occurs at a magnitude 

of M > 8 and is very rare (Johnson et  al. 2015). How-

ever, the static stress triggering may have contributed 

Fig. 2 Map view for relocated events of the Palu aftershocks; red-to-blue circles represent the epicenters of earthquakes as a function of the focal 

depths. Red star illustrates the epicenter of the mainshock, red beach ball diagram denotes the global centroid moment tensor (gCMT) solution, 

blue traces correspond to the Palu-Koro Fault and red traces represent other major crustal faults in the region extracted from Irsyam et al. (2017)
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Fig. 3 Vertical cross section of the aftershocks parallel to the fault before relocation (left panel); after relocation (right panel), 386 events, 

respectively. The red star represents the Mw 7.5 mainshock, and the blue line depicts the Palu-Koro Fault
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to the stress accumulation at the Mamasa earthquake 

sequence. Therefore, a more rigorous study of static 

stress change, incorporating the area of the Mamasa 

earthquake sequence, needs to be performed.

Conclusions
We have conducted hypocenter relocations of the 

aftershocks of the Mw 7.5 earthquake in Palu since the 

September 28, 2018 event. Our results show that the 

aftershocks were located to the east of the Palu-Koro 

Fig. 4 a Map view of relative location errors for the 386 aftershocks along the Palu-Koro Fault Zone; b depth view along latitude; and c depth view 

along longitude. Relative horizontal and vertical error ellipses are shown at the 95% confidence level. Ellipses are computed from the major axes of 

the horizontal and vertical projection of the 95% confidence ellipsoids obtained from a bootstrap analysis of the final double-difference vector

Table 1 Horizontal (DX, DY) and vertical (DZ) deviation shift with Gaussian noise (0.1 s) for the Palu aftershocks

DX [km] DY [km] DZ [km]

Mean Max Mean Max Mean Max

Relocated noise (0.1 s) 1.80 12.43 1.18 8.61 0.61 3.88
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Fig. 5 Map of 535 relocated swarm earthquakes in Mamasa, West Sulawesi; for (left panel) the initial location of the BMKG catalogue; (right panel) 

after relocation using the double-difference method used in this study
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Fig. 6 a Map view of relative location errors for the 535 earthquakes in Mamasa; b depth view along latitude; c depth view along longitude. 

Relative horizontal and vertical error ellipses are shown at the 95% confidence level. Ellipses are computed from the major axes of the horizontal 

and vertical projection of the 95% confidence ellipsoids obtained from a bootstrap analysis of the final double-difference vector

Fig. 7 Histograms of lateral and vertical relative location errors of double-difference solutions for a the Palu aftershocks; b the Mamasa swarm 

earthquakes. Errors are computed from the major axes of the horizontal and vertical projection of the 95% confidence ellipsoids obtained from a 

bootstrap analysis of the final double-difference vector based on 1000 samples with replacement
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Table 2 Horizontal (DX, DY) and vertical (DZ) deviation shift with Gaussian noise (0.1 s) for the Mamasa sequence

DX [km] DY [km] DZ [km]

Mean Max Mean Max Mean Max

Relocated noise (0.1 s) 0.87 8.22 1.03 2.35 0.78 1.77

Fig. 8 a Focal mechanism solution for selected events (M > 4.5) Mamasa swarm earthquakes; b cross section A after relocation; dashed blue line is 

the first-order interpretation of dipping fault, cross section location in Fig. 4
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Fault Line, and these results are consistent with the 

deformation data of the area. The relocated swarm 

earthquakes in Mamasa most likely correspond to the 

activity of the local fault (dipping at a ~ 45° angle) and 

extend from north to south for a length of ~ 50 km.

Supplementary information
Supplementary information accompanies this paper at https ://doi.

org/10.1186/s4056 2-019-0148-9.

Additional file 1. The relocated earthquake catalog for aftershocks of 

the Mw 7.5 Palu earthquake and swarm earthquakes of Mamasa from Sep-

tember 28 to November 22, 2018.

Fig. 9 Map view of spatiotemporal distribution of relocated Palu aftershocks and the Mamasa swarm earthquakes. Colored dots depict the 

sequence number of events (days) relative to the Mw 7.5 Palu earthquake (September 28, 2018, to November 22, 2018)
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