
HYPOELLIPTIC DIFFERENTIAL OPERATORS AND 

NILPOTENT GROUPS 

BY 

L I N D A  P R E I S S  R O T H S C H I L D ( I )  a n d  

Institute for Advanced Study 

University of BTiseonsin 

Madison, Wisc., USA 

E.  M. S T E I N ( z )  

Princeton University 

Princeton, N. J., USA 

Contents 

1. I n t r o d u c t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  248 

PART I.  OPERATORS Olq NILPOTENT LIE GROUPS 

2. Sufficient  condi t ions  for hypoe l l ip t i c i ty  . . . . . . . . . . . . . . . . . . . . .  251 

8. Graded  a n d  free Lie a lgebras  . . . . . . . . . . . . . . . . . . . . . . . . . .  255 

4. H a r m o n i c  analysis  on  iV a n d  the  p roof  of T h eo rem 2 . . . . . . . . . . . . . . .  257 

5. Di la t ions  a n d  h o m o g e n e i t y  on  groups  . . . . . . . . . . . . . . . . . . . . . .  261 

6. Smoo th ly  va ry ing  families of f u n d a m e n t a l  solut ions  . . . . . . . . . . . . . . . .  265 

PART I I .  EXTENSION OF THE NIANIFOLD AND APPROXIMATION BY A FREE GROUP 

7. Li f t ing  of vec to r  f ields to  free groups  . . . . . . . . . . . . . . . . . . . . . .  271 

8. The  m a i n  induc t ion  s tep  . . . . . . . . . . . . . . . . . . . . . . . . . . .  273 

9. P r o o f  of T h e o r e m  4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  277 

10. The  Campbel l -Hmmdorf f  fo rmula  . . . . . . . . . . . . . . . . . . . . . . . .  279 

11. P roofs  of t he  l emmas  of w 8 and  w 9 . . . . . . . . . . . . . . . . . . . . . . .  281 

12. P rope r t i e s  of t h e  m a p  | . . . . . . . . . . . . . . . . . . . . . . . . . . .  284 

PART H I .  0PERATOI~S COI~RESPOI~DING TO FREE VECTOR FIELDS 

13. L ~ inequal i t ies  for  opera tors  of t y p e  2 . . . . . . . . . . . . . . . . . . . . . .  288 

14. Opera tors  of t y p e  2 a n d  vec to r  fields . . . . . . . . . . . . . . . . . . . . . .  292 

15. Pa ramot r i ee s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  296 

16. The  spaces  8~, L~ a n d  A~ . . . . . . . . . . . . . . . . . . . . . . . . . .  298 

PART IV.  APPLICATIONS 

17. Hypoel l ip t ic  opera tors ,  I.  Sum of  squares  of vec to r  fields . . . . . . . . . . . . . .  305 

18. Hypoe l l lp t i c  opera tors ,  I I .  Opera tors  of H S r m a n d e r  t y p e  . . . . . . . . . . . . .  311 

19. E s t i m a t e s  for  []~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315 

(x) Supported in par~ by National Science Foundation grants MPS72-05055 A02 and GP36318, 

respectively. 

16-  762901 Acta mathematica 137. Imprim6 le 20 Janvier 1977 



248 LI~qDA P.  R O T H S C H I L D  AND E.  M, S T E I N  

w 1. Introduction 

We shall deal with a general class of second-order hypoelliptic partial differential 

equations. For this purpose we develop an appropriate class of singular integral operators; 

these will be modeled on convolution operators on certain nilpotent Lie groups. As a 

result we are able to construct parametrices and to obtain sharp regularity results in 

terms of various Sobolev spaces and Lipschitz spaces. 

Background. The first example of the kind of differential operators to be studied here 

came from several complex variables. The operator is the [:]b Laplacian associated with 

the boundary analogue of the ~ complex. I t s  highest order par t  is a quadratic expression 

in certain vector fields, which are the real and imaginary parts of the tangential holomorphie 

vector fields. These vector fields do not span the tangent  space. Kohn  [13] was able to 

show, nevertheless, tha t  under appropriate geometric hypotheses []b is hypoelliptie 

because the missing directions arise as commutators of the complex tangential directions. 

A far-reaching generalization of this basic idea was obtained by  HSrmander  [10]. 

He  considered the operator 

(1.1) X o +  ~ X~, 
t - 1  

Xo, ..., X n are n + 1 smooth real vector fields on a manifold M with the property tha t  the 

commutators  up to a certain order suffice to span the tangent space at  each point. H6r- 

mander proved tha t  the operator (1.1) is then hypoelliptic. Alternative t reatments  of 

(1.1) were later obtained by  Kohn [15] and l~adkevitch [20]. All the arguments given 

were essentially L 2 in character, but  even in this context did not usually give optimal 

estimates. The problem arose, therefore, of constructing an appropriate class of operators 

which could be used to find approximate inverses to (1.1) and in terms of which sharp 

estimates in L v spaces, Lipschitz spaces, etc. could be made. 

The first step in this direction was taken in Folland and Stein [8], where the [Z~ 

Laplacian was studied in terms of operators modeled on convolution operators on the 

I-Ieisenberg group. Parametrices were constructed and various sharp estimates were obtained 

for D~, The intervention of the Heisenberg group (the simplest nilpotent, non-abelian 

Lie group) in this context should not have been surprising. I t  suffices to recall tha t  this 

group is naturally isomorphic with the boundary of the unit ball in (In n > 1, in its un- 

bounded realization. 

Outline o / the  paper. The main objectives of the present paper are (i) to find nilpotent 

groups suitable to the analysis of the operators (1.1) or variants thereof; (ii) to s tudy related 
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questions concerning operators on these groups; (iii) to apply this analysis to the original 

partial differential operators in order to obtain the regularity results described below. 

We sketch first the idea leading to the construction of the suitable nilpotent groups. 

Let  X 1 ... . .  X= be given vector fields on M with the property tha t  the commutators  up 

to length not  exceeding r span the tangent space at  each poin% and consider the following 

examples: 

(a) The Xj  are linearly independent and span the tangent spaCe (i.e. r = 1). The nilpotent 

group is then R ~, and the singular integrals are the standard ones. 

(b) M = R 2 = { ( x ,  y)}, X l=~/~x and X 2 =x(~/~y). Observe tha t  [X1, X2] =~/~y so tha t  

X 1 and [X1, X2] span. Unfortunately, there exist no two-dimensional non-abelian nilpotent 

Lie groups. However, if we add an extra variable, t, and write X1 =~/~x, X2 =~/~t +x(~/~y) 
then Xx, Xz and [X1, X~] span the Lie algebra of the three-dimensional Heisenberg. 

Observe also tha t  once one proves tha t  X2 ' ~2 ~-~2 is hypoelliptic, then the hypoellipticity of 

X~ + X~ follows as an easy consequence. I t  is clear from this example tha t  the dimension 

of the group to be used m a y  be higher than tha t  of the given manifold M. 

(c) Take M to be the boundary of a smooth domain in C I+1, n =2/, and the vector fields 

are the real and imaginary parts  of holomorphic vector fields which are tangent  to M. I f  

the Levi form is everywhere nondegenerate, the Heisenberg group is the appropriate one; this 

is the case studied in [8]. However, if the signature of the Levi form varies, the group tha t  

one might naively associate would vary  from point to point. In  order to deal with this situa- 

tion, as well as the more general situation where this phenomenon occurs in more complicated 

forms, we lift to a larger group for which all possible varying structures occur as quotients. 

This group is the free nilpotent group of step r. (In our specific example above, r=2 . )  

We now leave these examples and return to our general problem. We shall show tha t  

by adding an appropriate number  of new variables we can lift our original vector fields 

to an extended space fl/. The resulting vector fields 1~1 . . . .  ,2~=, and their commutators 

up to length r are now free, i.e. satisfy the minimal number  of relations at  a given point, 

and span the tangent space of ~]I. At the same t ime we prove tha t  at each point the vector 

fields X1 .. . .  , X~ are well approximated by  the left-invariant vector fields Y1 .. . . .  Y~ which 

generate the Lie algebra of the free nilpotent group NF of s~ep r. 

Thus the s tudy of the operator, say 

(1.2) ~ X~ 
1=1 

n ~ 2  is reduced to the analysis of the operator / j ~  r and the latter is linked to ~he left- 

invariant operator ~p=~ Y~ on a (free) nilpotent Lie group. 



250 L I N D A  P .  R O T H S C H I L D  A N D  E .  M.  S T E I N  

The results concerning the addition of variables to vector fields and the approximation 

by  left-invariant vector fields on free groups are obtained as Theorems 4 and 5 respectively 

in Par t  I I .  The proofs of these theorems are intertwined and depend on a complicated 

inductive procedure. We shall not describe the details here, but  suggest tha t  the reader 

look at  the statements of Lemmas 8.2, 8.3, 8.4, and 8.5 for the main ideas of the induction. 

In  the course of the proof of these theorems we exhibit a basic mapping 0 of 7~ • _~ 

to NF. Among other things it generalizes the function ($, ~ ) - ~ - ~ .  (Indeed, in example 

(a) | is essentially given by  this function.) 

In  addition to studying operators of the form (I.1) we shall also consider the operators 

(1.3) s = ~ X~ + ~ Z c,~[Zj, X~] 
1=I ] , k  

where the cj~ are given skew symmetric matrices of smooth functions. We are led to deal 

with this class of operators because the [~b Laplacian can be written as (1.3), modulo 

lower order terms, where the cl, are in fact matrices. (Recall tha t  [Jb acts on (p, q)-forms.) 

Par t  I of this paper  is devoted to the s tudy of operators of the form (1.3) on groups, 

where the X t are left-invariant vector fields and the c m are assumed to be constant. In  

the case where cjk are actually scalars we give sufficient conditions for the hypoellipticity 

of C ill terms of the size of the imaginary par~ of the c m (Theorems 1 and 1'). We also show, 

using the rudiments of Fourier analysis on nilpotent groups, tha t  the conditions are neces- 

sary for a large class of groups. (See Theorem 2.) When the nilpotent groups have a natural  

homogeneous structure (e.g. are graded) then whenever IZ is hypoelliptie it  has a unique 

fundamental  solution which is  homogeneous i n  the appropriate sense. I t  turns out 

(Theorem 3) tha t  this fundamental  solution then depends smoothly on the parameters  

cl,.(1) 

Par t  I I I  is' devoted to the analysis of the analogue of (1.3) in terms of the free vector 

fields. W~ consider 

(1.4) ~ =  i 2~ + �89 5 ct~[iJ, Xk]. 
t=1  t .  k 

We construct a parametr ix  for ~ as follows. For each $ e f t ,  we let k~(. ) be the fundamental  

solution of the operator 12~ = ~ j ~  I~j +�89 Y~] on the free nilpotent group iV r. 

Then the kernel of a parametr ix for (1.4) is (with small modifications) given by  K($, 9) = 

k~(O(~, ~)). 
The parametr ix and the resulting regularity properties can then be studied by  following 

(1) At this stage our work depends on some results of l%ltand [6]. 



HYPOELLIPTIC DIFFERENTIAL OPERATORS AND NILPOTENT GROUPS 251 

the techniques previously used in [8]. I t  might be worthwhile, however, to call to the 

reader's attention some of the features of this analysis which are not straightforward 

adaptations from [8]. First, the properties related to the pseudo-metric which is determined 

by | (see w 12) are more comphcated and a require a different approach to prove. Next, 

the question of differential operators acting on operators such as the parametrix is dealt 

with by a more direct, computational method. (See w 14.) Finally, the problem of bounds 

for classical Lipschitz spaces (Theorem 14, w 16) had not been considered in [8].(1) 

Par t  IV deals with the main applications. The passage from ~ back to M (and from 

(1.4) to (1.3)) is accomplished by a simple technique which amounts to integration in the 

added variables. This leads to the main regularity theorem for solutions of (1.3). An example 

of this result (Theorem 16 in w 17) is as follows. Suppose s =g, and g belongs to the frac- 

tional Sobolev space L~(M), 1 < p  < 0% o: >~ O. Then locally / belongs to L~+(zlr)(M). (Recall 

that  r is the least length required to obtain spanning commutators.) There are also further 

results of this kind for new Sobolev spaces which take into account the special directions 

X 1 .... , X~, and also for the standard Lipsehitz spaces. 

In  w 18 we show how the analysis must be modified to apply to the operators of type 

(1.1). The main difference arises in the choice of an appropriate nilpotent group to be used. 

The group we shall use has generators Y0, Y1 ..... Y~; however, in determining the notion 

of "length" of a commutator, Y0 is given twice the weight that  is given to Y1, Y~ .... , Y~. 

Finally in w 19 we obtain the desired results for the W]b Laplaeian. Thus the estimates Of 

[8] are generalized to the setting where the Levi form need not be non-degenerate and the 

metric is not necessarily one of the special metrics used in [8]. 

I t  is a pleasure to thank G. B. Folland, C. D. Hill, and g. J. Kohn for several useful 

discussions during the preparation of this paper. 

Part I. Operators on nilpotent Lie groups 

w 2. Sufficient conditions for hypoellipticity 

Let  q6 be a (finite-dimensional) real Lie algebra, and G a corresponding connected 

Lie group with exponential map exp (~-~G. Every  Y E(~ acts as a left-invariant vector 

field (hence differential operator) on ~ by the equation 

(Y]) (x) = d/dt(/(x exp tY)) l t= o, 

for x fi G and /E C~(G). (C~ ~ denotes the space of smooth, compactly supported functions.) 

Any polynomial s on (~ is therefore also a differential operator. We shall be concerned 

(1) In this connection see Greiner and Stein [9]. 
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with the problem of giving sufficient conditions on such a second order operator  12 tha t  it 

be hypoelliptie in the following sense. Suppose U is an  open subset of G and u is a distribu- 

t ion on U so tha t  12(u)E C~(U); then it fi)llows tha t  u E C~176 

l%r ~, yJEC~(G) we let ( ~ , ~ ) =  ~.df~dx, where dx is r ight- invariant  Haa r  measure(1) 

on G, and set II l[ w e  observe tha t  (r~0, ~0)= - ( ~ ,  r~0), for any  Y E N  whenever 

q~, yJ E C~(G). I f  c = (cj~) is any  n x n matrix,  we denote by  ]loll the usual no rm of the operator  

act ing on the s tandard  n-dimensional coordinate Hilbert  space. 

THEOREM 1. Suppose Y1, Y~, ..., Yn generate the Lie algebra N. Let 12 be the le/t- 

invariant di//erential operator on G given by 

c =  i 

where (b j~)= b is a real skew-symmetric matrix. Then 12 is hypoelliptic i/ 

HbH < 1. 

This theorem is proved b y  simple adapta t ions  of arguments  of Hhrmander  [10], 

K o h n  [14], [15], and Radkevich  [20]. The a rgument  can be modified so as to  cover the 

general case (i.e. vector  fields on some manifold whose commuta tors  up to  ~ certain length 

span the  tangent  space, and  no t  necessarily those t h a t  arise f rom a finite-dimensional 

Lie algebra). However,  this general case will a n y w a y  be subsumed in our later considerations 

where we will make more precise statements.  

The proof of Theorem 1 m a y  be generalized to take into account  the si tuation tha t  

arises (i) when the matr ix  b is complex, (if) when there are linear relations among the  com- 

muta to rs  [Y j, Yk]- To express the result we need the following addit ional definitions. 

Suppose Q is a ny  real skew-symmetric  matrix.  Then under  conjugation b y  an  orthogonal  

be put  in block diagonal form. Each  block is of the form ( 0 Oj], where matrix,  Q c a n  
\ - 0~  0 ]  

is real. There are n/2 such blocks if n is even and ( n - l ) / 2  if n is odd. I n  the lat ter  case a 

zero appears in the  last diagonal entry.  One should observe tha t  the numbers  +i~s, j = 

1, 2 . . . . .  [n/2], are the e igenvahes  of Q. We define the " t race  norm,"  I[~lll, of e as the 

sum of the  absolute values of the  e igen-vahes  of ~, i.e. ll~lll = 2  2~/12] I~,1. 

The following facts are obvious as soon as Q is pu t  into block-diagonal form. Here 

b and ~ range over real n x n skew-symmetric  matrices. 

(1) The distinction between right- and left-invariant Haar measure will be irrelevant in most of 
what follows since all nilpotent groups are unimodular. 
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(2.]) 

(2.2) 

Itr(bQ) l ~< Ilbll llelll, 

Ilbll= sup Itr(be)l; Ilelll= sup Itr(b~)l. 
IIQIh<l Ilbll<~ 

The generalization of Theorem I is as follows. We consider s = ~ffil Y~ + �89 ~j.~cm[ Y j, Yk] 

where (cjk)=c=a+ib and a and b are real n •  skew-symmetric matrices. Now let S be 

the subspace of all real skew-symmetric matrices s=(sj~) so that  ~j.~sjk[Yj, Yk] =0. We 

let R be the subspace of real skew-symmetric matrices spanned by a and S. Finally, let 

R • denote the orthogonal complement of R with respect to the inner product (dl, d~)= 

- t r  (d 1 d2) , on the real skew-symmetric matrices. 

T~EOREM 1'. Let I==~ Y~ +�89 ~j.kcjk[Yj, Yk]. Then F~ is hypoelliptic i/ 

(2.3) sup Itr(be)l<l.  

QeR ~ 

The proof of Theorem 1' (and hence of Theorem 1) requires two simple lemmas. 

(2.4) L E I ~ A .  Suppose ~j~=i([Yj, Y~]/ , / ) , /or  some/EC~(G). The matrix ~ is real and 

skew symmetric. Moreover, 

(2.5) I1~11, ~<2 ~: II Y, IIF. 
1=1 

Proo/. The fact tha t  ~j~ is real follows immediately from the fact that  (Z/, l) = - (f, ZI), 

for any real left-invariant vector field Z. Skew-symmetry is obvious. Now let d = (dj~) 

be the matrix of any orthogonal transformation, and set Y~=~dj~Y~. Then clearly 

5,11r; lll~=Z,II r,/lP. Moreover, if e;k=i([Y;, Y~]/, 1), a simple computation shows that  

Q'= d~d-L Thus with an appropriate choice of d we can assume that  Q has been reduced to 

block diagonal form. I t  then suffices to prove the inequality corresponding to (2.5) for 

each block and then add these inequalities. Thus we need to show that:  

(2.6) I ( [Y l ,  rd l ,  1) I < II r l / l l  2 + II r J Ip .  

So consider the fact tha t  

((YI +iY~)/, (YI +iY2)I) >~ O. 

This means that II r l ] l l  2 + II YJIP + i { (YJ ,  : rd ) -  ( r j ,  Yd)} >1 o. However 

((r~/, Y I I ) = - ( r ~ Y #  1) and (r~f, r ~ / ) = - ( Y ~ r J , / ) .  

Hence i ( [r l ,  r~]l, II ~< 11 r~lll ~ + II YJIP. A similar result holds with Y~ and Y2 interchanged 

giving (2.6) and proving the lemma. 
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(2.7 7 LEMMA. Write a=a(1)+a (2) with a ( I ) f S •  and a(2) fSN R. I /  b satis]ies 

SUPljelll<l. e ~  ] tr (be) I < 0, then there exists ~, f i r  such that b' = b + Ta (1) satisfies 

(2.87 sup ]tr(b'e)l < 0. 
I1~,11<1 
@eS a- 

Proo]. Identify b with the linear functional b* on the vector space R • given by 

b* (e) = - tr (b e ), ~ f R • Then by the hypothesis, 

Ib*(e)l <Ollelll 

for all 9z f R-L. Since Ilelll + lle +e'lll-< IIe'111 (see (2.2) for any real skew-symmetric matrices 

9, e', the I-Iahn-Banach theorem guarantees the existence of a hnear functional b'* on 

S ' D  R" such that  

(2.9) Ib'*(e)l-<Ollell. anefs• 

and 

(2.10) b'*(9 ) =b*(Q) for e rR•  

Since S" is spanned by R • and a 1, a l e s  • (2.10) implies that  b'* may be identified 

with a skew-symmetric matrix b' = b + ~ a  z for some real y. Then (2.8) is immediate from 

(2.9), proving the lemma. 

To prove the theorem we show first that  we have the inequality 

~: 11 ~',/11~-<< AoI(s 1)1, lfO~(~). 
, f= l  

(2.11) 

Write 

(2.127 (s = ( ( Y ~ ) I ,  t) + �89 ~: b;~([]'-j, Y,~] t, 17 
J , k  

+ j~aj~([Y~, YJL  ])+~-~ J.~ j~L j, 

This formula follows from the definition of E since b '~b+Ta(1)=b+y(a-a<2)) .  Using 

(/r~j f, 1)= -II  YJ ]H ~ we obtain from (2.12) the inequahty 

(2.137 ~llY, llr<l(C.l,t)l+ ~-Itr(b'eTI + ~ Itr(~oTI + I~---I Itr(r 

Note first that  since i([Y s, Yk]l, ]) is real, I m( s  = --�89 tr(ag) and therefore 

I tr(~)l < 21 (~:1,1)1- 
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Furthermore ~ Qjksm=0 whenever ~ sjk[Yj, Y~]-~0. Thus ~ES • and hence 

�89 tr(b'0) ] < 0]]O][x/2 ~< 0 5 ]1 y~/[[2, 

where 0 = sup~es• IIQII~<I ] tr  (b'~) [ < 1, by Lemmas 2.4 and 2.7. Also, since a (~) ES, tr  (a(~)Q) =0. 

Substituting these into (2.13) we obtain 

Zll r,/ll ~< I(c/,/)1 +o Z II r,/ll~+ I1 -~1  I(c/,/)1. 

This proves (2.11) with A~=(1 + l1 - i~ [  )/(1-0). 

Once (2.11) is proved one can follow the known arguments to prove hypoellipticity. 

(See e.g. Kohn [15].) Using Sobolev norms ]] Hs= II ]]~ for functions supported in any 

fixed coordinate patch U of G, one first shows that  (2.11) implies 

(2.14) l] v I1~ Z < c(l(~v, ~)] + II v II~), v e c~(~) ,  

for some s >0. Next one shows that  (2.14) implies the local estimate 

(2.15) II~Oll~ < C{ll~l~l[~+ll~l~llob ~ e 6 ~ ( u )  

for all integer s, and all pairs ~, ~16 C~~ so that  ~'1 = 1 on the support of $. The hypo- 

ellipticity follows from (2.15). We shall not repeat the arguments leading to (2.15) and (2.14) 

since at that  stage there are no new ideas. 

w 3. Graded and free Lie algebras 

In order to formulate a converse to Theorem 1', and also because of the basic role 

they will play in what follows, we shall discuss certain particular classes of Lie algebras. 

Firstly, the Lie algebra (~ is said to be nilpotent of step r, if (~(r+l) = (0), where (~(k) is defined 

inductively (~(1~=(~, (~(k)=[(~(k-l~, (~]. If ( ~ = ~  is nilpotent it is well known that  the 

exponential map exp ~ -~N is a diffeomorphism of ~ onto the corresponding simply 

connected Lie group/V. (See [19].) 

A Lie algebra ~ is said to be graded if it has a direct sum decomposition ~ = ~ = 1  | V s, 

with the property that  [VJ, Vk]c V k+j, if k+?'~<r and [V ~, VJ]=0 if ]c§ Observe 

that  a graded algebra is always nilpotent (and of step r). Graded Lie algebras (and in 

particular the examples below) will be our basic object to study. 

Example 1. A Heisenberg algebra ~ is a two step graded Lie algebra ~ = VI| V 2 

with the property that  dim V2= 1, and such that  if 2* is any non-zero linear functional on 

V 2, the bilinear mapping (X, Y ) ~ * [ X ,  Y] defined on V 1 • V 1 is non-degenerate. 
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Example 2. A stratified algebra (using the terminology of Folland [6]) is any graded 

Lie algebra with the additional property that  V ~ generates the whole Lie algebra. We 

shall also refer to this kind of algebra as a strati/ied algebra o/type I. 

Example 3. Stratified algebra o/type II.  This is the graded Lie algebra ~ = Vz| VP| V r, 

so that  there exists a ]10 E V l, so that  V 1 and Y0 generate the Lie algebra. This is the kind 

of Lie algebra that  must be used in dealing with the general HSrmander-type second order 

hypoelliptic operators, as in w 18 below. 

Example 4. Free algebras ~F. r. For each n and r > 1 this is the algebra having n gene- 

rators and r steps, but  otherwise as few relations among the commutators as possible. 

To define this algebra consider first the (infinite-dimensional) free Lie algebra (~; on n 

generators Y1 .. . .  , Y~. (Cf. Jacobson [11], Chapter V, w 4.) Roughly speaking, (~F is generated 

by { Yj} with the only relations among the commutators being those forced by anticom- 

mutat ivi ty  and the Jacobi identity. For r >~ 1, let ~ .  r = ~F/~F(~+~). Then ~ .  r is nilpotent 

of step r and it has the universal property that  if ~)~ is any other nilpotent Lie algebra of 

step r with n generators, there is a surjeetive homomorphism of ~F.r onto ~ .  

~E, r is graded, ~F, r = ~ - 1  @ V j, with V ~ being spanned by all commutators of the form 

[Y~,[r~.. . .  [r~j_ 1, y~,]] ...]. 

Example 5. Two-step algebra ~2, associated to a graded algebra ~. To every graded Lie 

algebra ~ of step r, r/> 2, we can associate in a canonical way a two-step graded Lie algebra 

~ .  Write ~ = 2  | Vj and take ~2 =~/~j>2 | V( 

Observe that  ~j>e | V j is an ideal, and ~2 is a graded algebra of two steps. 

The converse of Theorem 1' is as follows. 

THEOREM 2. Let ~ = ~ = I  V be a graded Lie algebra o/step r, r >~2. Suppose that V 1 

is spanned by Yz, Y2 ... Y~. Let 

1=1 J,k 

where c =a + ib and a, b are real skew-symmetric matrices. Assume: 

(3.1) sup Itr(bQ)l ~> 1, 
~e-~ • IloIb.~<l 

and 

(3.2) ~ = ~ / ( ~  ajk[Yj, Y~]) 
J,k 

is not a Heisenberg algebra Then 1~ is not hypoeUiptic. 
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Remark. The situation when 9~s is a Heisenberg algebra is more complicated and still 

somewhat obscure. Thus the proof of Theorem 2 shows tha t  ~ is not hypoelliptic when 

supqER• Hqlh411 tr(b~)[ =1  even if 9~ is a Heisenberg algebra. Moreover, if 9~ is itself a 

Heisenberg algebra, it is shown in Folland-Stein [8] and Boutet  de Monvel-Tr~ves [3] tha t  

C may  be hypoelliptic even if supqen• HqIh~i I ]3r b~[ > 1. 

w 4. Harmonic analysis on N and the proof of Theorem 2 

Let ~ be the differential operator defined in Theorem 2. We shall use the representation 

theory of the nilpotent group/V in order to find a function 90 such tha t  s =0,  but 90 ~ C ~176 

Recall tha t  a uni tary representation of a Lie group iV is a continuous homomorphism 

~:iV-~Unit  ~ ,  the uni tary operators on a Hflbert space ~ .  By differentiation one obtains 

a representation dTr of ~ as skew Hermit ian operators on ~4~. The motivation for considering 

unitary representations to investigate the hypoellipticity of s comes from the Plancherel 

formula. Let  N be the set of all uni tary irreducible representations of iV and d# the Plan- 

cherel measure on /~ .  For  ]eC~(/V) and ~ e N  let 7r(/) be the operator SNTe(x)/(x)dx. Then 

/-+~(/) extends to an isomorphism of the square integrable functions on N with the space 

of all ~(/) with inner product SZ tr  (~(/)z(g)*)d/~(xr). (See e.g. Pukanszky [19] for the repre- 

sentation theory of nilpotent Lie groups.) 

This indicates tha t  it might be possible to decompose I: as a direct integral 

f 9 d~(Ij,)d#(z). 

I f  ~1 were hypoelliptic, we might t ry  to invert C by  inverting each operator dTr(i:). An 

obstruction to such an inversion would be a zero eigenveetor of d7~(s Thus we are led to 

look for those ~ for which d~(F~)v=O for some 0~=v ~ ~ .  

Fortunately,  we shall not have to make use of any deep results in representation 

theory; we shall be able to construct explicitly all representations which will be needed. 

In  effect these representations will all factor through the quotient algebra ~ .  

Proo] o] the theorem. We shall prove the theorem first in the case when ~ is a two- 

step graded Lie algebra and ~ aj~[ Y j, Yk] = 0. In  tha t  case ~ = ~ ,  and our assumption is 

tha t  ~ is not a Heisenberg algebra. We can therefore write ~ = VI|  V ~ with [V 1, V 1] = V s. 

(If [ V 1, V ~] is strictly contained in V 2 then Y~ ..... Yn do not generate ~ and then clearly 

E is not  hypoelliptic. Hence there is nothing to prove.) 

There are now two cases: 

(i) d im(V 2) >~2; (ii) d im(V ~) = 1. 
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Since ~ aj~[Yj ,  Yk] =0, R is the linear space of relations in V ~, i.e. if Y1 .. . .  , Y~ form a 

basis of V ~, R={(sjk): ~ s jk[Y j ,  Yk]=0}. Thus the condition (i) implies that  dim (R• 

dim V2~>2. So then by continuity we can choose a QoER • with ~040 so that  tr(bQ0)=0. 

Hence by continuity again we can choose a ~ER" so that  -tr(bQ)=llell =l (sineo 
supQ~R~ IIQII,<I[ tr(b~)l >~ 1). In case (ii) we have little choice since R • is one-dimensionah 

We choose ~, so that  

-tr( b) >111 11  = 1. 

Now each ~=(~r -L defines for us a linear functional ~* on V 2 by the equations 

~*([Y~, Y~])=~r Since ~ e R  • implies ~ ~r162 whenever ~ sr162 Y~]=0, the hnear 

functional is well defined. In  case (ii), hypothesis (3.2) of the theorem assures that  the 

bihnear form ~ defined on V ~ • V ~ by ~(Y, Y') =~*[Y, Y'] is degenerate. With the element 

~ R" chosen as above we proceed with the proof. 

Let  •  2 . . . . .  l, 21<~n, be the non-zero eigenvalues of ~. By an orthogonal 

change of basis we can find {Y~} satisfying, for ] <k  

0 i f ? ' i s e v e n o r k # ] + l  

(4.1) ~*((Y~,  Y ~ ] ) = ~  if } odd, k = ] +  1 
! 

[0 j~>2~+~. 

Now for every 2, 0 <2 < c~ we construct a unitary representation ~ra of N on ~Ha =L2(RZ). 

~r~ is defined by  

~z(exp tY~) / ( t l ,  t 2 . . . .  , tj  . . . . .  t~) = !(tl,  t 2 . . . . .  tk + t ,  ..., tz) i f  ~ = 2 k - l ,  k < l  

gx(exp t Y ~ ) / =  e~t~(~)/, where c(2) is a constant, if ] = 2l + 1 

~,(exp tY~)! = ! if j > 2 / + 1 .  

In  case (i) we shall take c(2)=0 for all 2. We leave the determination of c(2) in case (ii) 

for later. 

Differentiation of the above gives the corresponding representation dz~ on ~ defined 

(4.2) 

on the dense space of smooth functions S. 

8! 

ark 

d~(Y'~)! = i2~t~]  

ic(2) ! 

0 

j = 2 k -  1, k<~l 

j = 2 k ,  k<~l 

j = 2 l +  1 

] > 2 / +  1. 
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I f  j = 2k - 1 then  

d~([r;, r ; + l ] )  = - -  dzx([r~+l,  Y~]) = i2~k. 

d ~  vanishes on all o ther  commuta tors .  F r o m  this one obtains  

(4.3) &z~([Yj, Yk]) = i2s 

F r o m  (4.2) and  (4.3) we obta in  

d ~ z x ( C ) = - ( c ( 2 ) ) ' +  ~= e~kZ~x-5- ek k, -~ /_,(ajk+ib, k)ek? 

We m a k e  the  change of var iables  

~ o t i n g  also t h a t  a E R • so t h a t  t r  (a~)=0,  we obta in  

. ( 0  ~ 31 i2 
k = l  \ ' / ~  1 t ,~ 

For tuna te ly ,  the  eigenfunctions for the  harmonic  oscillator ~2/@~ _ ~  are well known.  

The  Hermi t e  funct ions 

2, 2 d N 2 
D ~Tkl - -  ( o - -  ~lk~ 

259 

sat isfy 

- ( 2 N +  1)HN, N = 0 ,  1,2 . . . . .  
\v~ k l 

Fur the rmore ,  the  collection of products  

Hm.N ...... ~'z = H N , ( ~ ] I )  H N ~ ( ~ 2 )  �9 �9 HNI(~I) 

forms an  or thogonal  basis of L2(RZ), so t h a t  the  eigenvalues of 

i( ] ~ 2 Z~le~ ~ - ~  are --:t ~ I.Z~I(2~V~+I), N~=0,~,2 . . . . .  
k~<z \o,r l  k ] k~<~ 

I n  part icular ,  t ake  N~ =0 ,  all i, and pu t  H =Ho...0, t hen  

~ 2 
Z Z l e , , I  - ~  H=-~I&IH=- Ilell~H. 

Hence f rom (4.4) we have  
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2 
- [[ I1 - ~ tr(bo) - (c()*)) 2 

as the eigenvalue of dx~(s on H, 

Now define 

c(Jt) = ( - -  ~ (tr(b~) - H 0 I11)) 1/2 . 

The previous discussion insured that  the quanti ty inside the parentheses is non-negative. 

We have therefore proved the following. 

(4.5) L ~ M M A. The Hermite /unction H = Ho. o ..... o satisfies dz~( F~) H = 0 /or  all ,~ > O. 

Next we show 

(4.6) L v . ~ A .  Let q~(x) = f~ ( z~ (x )H ,  H),~-~d,~, x ~IV, :where ( , )  is the usual inner 2~rod- 

uct on :H=Le(R~). Then s 

Proo/. Note first that  if Y ~ ~,  and x ~ N then 

d 
(4.7) Y(ze~(x) H) = dt 7t~(x exp t Y) H[~=0 = ~(x)  dze~(Y) H. 

By (4.2) and (4.3) it follows that  for any X1, X 2 . . . . .  X k E ~, and for fixed x E N, the function 

( X 1 X  2 ... X k ~ ( x ) H ) H  is absolutely integrable on R l. Therefore, 

In  particular, 

( X I X 2  ... Xk ) ( z~(x )H,  H }  = (z~(x)dz~(X~ X2 ... X k ) H ,  H} .  

s  H~ = ( ~ ( x ) d ~ (  F~)H, H }  = O. 

I t  will follow that  ~v = 0 if differentiation under the integral sign can be justified. However, 

by  (4.7) and (4.2), since C is an operator of order 2, ~<z~(x)H, H> grows at most as 2 2 

for x fixed. Hence s H>2 -a is absolutely integrable on [1, cr Therefore, 

To complete the proof of Theorem 2 (in the case ~ = ~ ) ,  it  suffices to show that  

9J r176 We shall prove this by showing that  the restriction of ~v to exp(R[Yj, Yk]) is 

not smooth for some j, k. In  fact, choose ], k so that  Qjk=~0, and note that  by (4.3), 

~ ( e x p  t(Yj, Yk]) = e~t~qJk. Pu t  c =~j~ for convenience and ~(t) =~(exp t[ Y~, Yk]); it suffices 

to show 

el(t) = ~o~ e ~ - 4 d 2  ~. C~(R) �9 
J 1  
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ing 

To see this, note tha t  since ~ is obviously twice differentiable, we are reduced to show- 

f le~t~-2d~ r C~~ 

This may be proved by  writing 

f ~  e~t~-2dX= f ~  c~ + i f~sindt~-2d~ = ]l(t)"~- ]-2(t) 

and showing that  the derivative of Is(t ) is unbounded as t~0 .  Details are left to the reader. 

This finishes the proof when ~ = ~2. In the general case we adopt the notation (and 

implicitly the point of view) we shall also use later. 

Let  ~ = ~ = 1  O lYr be a graded Lie algebra with ]Zl, ~z ... Yn spanning l?~, and let 

h: ~--->~'~ = V~+ V 2= (~/~j>2 ~ ~J)/(~j.kajk[ 17j, IY~]). Observe that  h(~') = V', i = 1, 2, and 

that  h is an isomorphism from 171 to V 1 and a surjection of ~ onto V 2 with kernel 

~j.kajk[Yj, Yk]. 

Let /V and /V denote the simply connected Lie groups corresponding to ~ and ~ 

respectively, and /V 0 that  of the Lie subalgebra of ~ spanned by ~>2(~IY~ and 

~j.kajk[Yj, Y~]. Then N 0 is a normal subgroup of 2~, and N/No=N. Denote also by h 

the canonical homomorphism h: 1V--->N/~Vo=N. y~=h(/~) ,  ?'=1, ..., n, is a basis for V ~. 

~2 1 ~ C~[y~ ' yz] is not hypoelliptic under We need to show that  the operator s = ~  Y~ + 

hypotheses (3.1) and (3.2). Now we have already seen that  the corresponding operator 

defined on the group ~V is not hypoelliptic; in fact we showed the existence of a ~, so that  

~ C  ~ but  s  Let now ~(~)=~(h(~)), ~eh~. Then since ]7~(~)(~)=(Y~)(h(~)), and 

Y~ Y~(~) (~) = ( Y~ Y ~ )  (h~), it follows that  s  =0; but ~ is not in C~ and so the theo- 

rem is completely proved. 

w 5. Dilations and homogeneity on groups 

A ]amily o] dilations on a nilpotent Lie algebra ~ i s  a one-parameter group { ~ t } t e R ~ - O f  

automorphisms of ~ determined by St(Yj)= t at Yi, where (Y~}l<j<m is a linear basis for 

and (aj}l<j<m is a set of positive real numbers. By the exponential map (~t lifts to a one- 

parameter group of automorphisms of N, the simply connected nilpotent Lie group cor- 

responding to ~;  these automorphisms will again be denoted by ((St}. N, equipped with 

these dilations, is then called a homogeneous group. 

Any graded nilpotent Lie algebra ~ has a natural family of dilations ((St}. Indeed, 
r t if ~ = ~ j = l  V, it is not hard to see that  the mappings ~t defined on each V j by (~t(Y) =tJY, 
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Y E V j, t > O, ex tend  b y  l inear i ty  to  au tomorph i sms  of ~ .  I n  this pape r  we shall ent i re ly  

restr ict  our  a t t en t ion  to  these dilations on graded Lie algebras.  

I n  this section we review some facts  abou t  operators  on homogeneous  groups,  and  

refer the  reader  to K n a p p - S t e i n  [12], Korany i -Vagi  [16], Fol land-Stein [8], and  especially 

Fol land [6], for details. 

A homogeneous norm/unction on a homogeneous group N is a mapp ing  x-~ ]x I , x e N  

satisfying 

(i) I x / > / 0  and  I x / = 0  if and  only if x = 0 ,  

(5.1) (ii) x-+ Ix/ is cont inuous on 2Y and smooth  on N - { 0 } ,  

Since we shall consider here the  case where ~ = ~ = x  V j is graded,  we m a y  exhibi t  a 

par t icular  norm funct ion as follows. Any  x E/V has a unique representa t ion  

Then  we m a y  define I [ b y  

x = exp ( y1 + y2 +... yr), yJ E V j. 

, 

where  II II indicates the  Eucl idean norm on V j. 

We shall occasionally need the  vec tor  space sum of points  of N: if x, y E N  we write 

x + g for exp (log x + log y). Then  we have  the  " t r iangle  inequali t ies" 

Ix+yl <~(Ixl + lyl), and 
(5.3) 

Ixyl ~<~(lzl + lyl) 

for  some constant  y >71. Wri t ing II II for the  Eucl idean no rm on N there  exist posi t ive 

constants  C 1 and  C2 such t h a t  for  all Ix[ ~< 1, 

(5.4) clllgl < Ixl <c211xll lit, 

The homogeneous dimension of 2Y is defined b y  

r 

(5.5) Q = Z i( d im W). 
J= l  

I t  significance is t h a t  if dx is Lebesgue measure  on N, then  dx/[ x 1 o is invar ian t  under  the  

dilations at, t >0.  
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A measurable function [ on 1V will be called homogeneous of degree ~ if/o(~=t~/, all 

t > 0. Any function K which is homogeneous of degree - Q  § a, 0 < :r and smooth away 

from the origin is locally integrable and thus defines a distribution T. T will be called a 

homogeneous distribution of type ~. Similarly, suppose K is a homogeneous function of 

degree - Q  which is smooth away from the origin and satisfies the mean value property 

~a<lxl<~K(x)dx=O, all a, b, 0 < a < b .  I f  cEG, then the pair (K, c) defines a distribution T 

given by  

(5.6) T(]) = lim I" K(x) ](x) dx § c/(O), 
e~o J~<lxl<~ 

] E C~ T will be called a homogeneous distribution of type 0. With  a slight abuse of 

notation we shall also denote a homogeneous distribution of type 0 by  K. 

A differential operator D or N is called homogeneous of degree ~ if D(/oOt)=ta(D])oOt, 

all t >0.  I f  / is a homogeneous function of degree a and D is homogeneous of degree ~, 

then 1)/is a homogeneous function of degree ~ - 2 .  I f  ~ is a homogeneous distribution of 

type g>~2, then D~ is of type ~-2. 

Recall tha t  if ] and g are functions on N their convolution / ~e g is defined by  

(5.7) ]-)e g(y)= fN](X)g(x-ly)dx= f](ux l)g(x) dx. 

I f  / E C~ and v is a distribution we may  define/~e~ and v~e/as  C ~ functions by  ( f ~ )  (x) = 

T(/x), where/X(y) =f(xy -1) and (v~-/)(x)=~(h),  where L(Y)=t(Y-lX). 

I f  v is actually a function these definitions agree with the usual notion of convolution 

given by  (5.7). I f  D is a left-invariant differential operator the reduction to the case D -- 

Y E ~ shows 

(5.8) D(/~T)=/~e D~, and D(~e/)=~e(D/).  

We shall need to discuss next  the existence of fundamental  solutions for a certain 

class of left-invariant differential operators on a graded Lie group. For some of the applica- 

tions below we shall have to deal with systems of such differential operators. For this 

purpose we shall assume tha t  our functions take their values in a finite-dimensional vector 

space W over G. The coefficients of the differential operator ~ in question, as well as the 

fundamental  solution K,  will then take their values in the space of linear transformations 

of W to itself. Thus the notions of homogeneity defined above for scalar functions and 

operators may  be extended to this case by  requiring the  appropriate homogeneity of each 

component or matr ix  entry. 

Now let D = (D~k) be a homogeneous differential operator of degree 2 and K = (Ktk) 

17 - 752901 Acta mathematica 137. Imprim5 le 20 Janvi t r  1977 
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a homogmleous distr ibution of type  ~. We denote by  D K  the matr ix  of scalar distributions 

(DK)m = ~l  DjzKlk. Each  (DK)j  k is a scalar distr ibution of type  ~-2, by  the  above remarks.  

(5.9) L~MMA. Let D, K be as above. Suppose that D is le/t-invariant. Let T be the operator 

given on smooth compactly supported/unctions f by T ( / )= f  ~e K.  Then 

(5.10) D(T(/)) = D(f~eK) = f ~  (DK). 

Proof. The content  of (5.10) is t ha t  convolut ion by  the matr ix  product  D K  corresponds 

to  the composition of the operators D and T when D is left-invariant. This follows f rom 

the  corresponding s ta tement  (5.8) in the scalar ease. Since every  component  funct ion of 

D K  is smooth  away  from 0 and homogeneous of degree ( - Q  + ~) - 2 ,  the proof of the last 

s ta tement  reduces to  showing tha t  if ~ = 2 ,  the components  have mean  value 0. This is 

immediate  f rom the  scalar case. (See e.g. Fol land [6], Proposit ion 1.8.) q.e.d. 

l~ow if a fixed (positive definite) inner product ,  (,)0, has been given in W, we m a y  

define (f, g ) =  fN(f, g)o(X) dx whenever f, gEC~(N, W). We write ~* for the formal adjoint  

of s  i.e. (l f, g) = (f, s whenever f, g are smooth  and have compact  support .  

The following theorem concerning the existence of fundamenta l  solutions for left- 

invar iant  differential operators will be crucial in our construct ion of parametrices.  

PROPOSITION A.(1) Let 1= be a le/t-invariant hypoelliptic differential operator on ~Y 

such that the formal adjoint s  is also hypoeUiptic. I / I :  is homogeneous of degree ~, 0 < ~ <Q, 

then there is a unique homogeneous distribution lc of type ~ such that for all /E C~(N), 

(5.11)  s  = ( s  ~ k  = ]. 

We shall now sta te  several results which are known in the scalar case; the extension 

to  the  vector-valued case is immediate.  

A fundamenta l  result on convolution by  homogeneous distributions is the following. 

P ~ o r  o S S T I o N B. Let "~ be a homogeneous distribution o/type o:, 0 <~ o: < Q. I f  o~ ~- 0 then 

convolution by ~ extends from C~(N) to a bounded mapping on L~(N), 1 < p < o o .  / /  g > 0  

convolution by ~ extends to a bounded map from 1_2 to L q, where I /q= ( l / p ) -  (~/Q) provided 

1 <p<Q/~.  

I n  defining the  convolut ion of matr ix-valued functions K and L we mus t  take into 

account  the fact  t h a t  in general L(x )K(x )~K(x )L(x ) .  We pu t  

(*) See Folland [6], Corollary 2.8. A similar result was also obtained both by R. Strichartz and the 
second author (unpublished). The result in Folland [6] is stated in the scalar ease (dim W = 1); the same 
argumen~ holds as well in the general case. 
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(K  ~eL) (x) = f L ( y )  K ( x y  -1) dy. 

R 0 P 0 S I TI 0 N C. Let K=, K~ be homogeneous distributions o / t ype  ~, fl >~ O, respectively 

with Q > o~ + fl > O. Then K= ~r KZ exists, and is a homogeneous distribution o/type ~ +ft. Further- 

more, the associative law 

(5.12) (/ ~+ K=) ~ Kp = / ~e ( K= ~ K~) 

holds/or all ]EI2,  i / p  <Q/(~§ 

w 6. Smoothly varying families of fundamental solutions 

Let ~ = ~.~=1 V j be a graded Lie algebra and let 

(6.1) L:= ~ 2 z r~ +~ SoAr .  r~] 
t=1 L/~ 

where Y, is a basis of V 1, V 1 is assumed to generate ~ ,  and (cjk) = c = a + ib, where a and b 

are real skew-symmetric matrices. 

By  Theorem 1' we know tha t  whenever cjk lies in a certain (open) subset of the n(n - 1)- 

dimensional parameter  space s is hypoelliptic. Proposition A in w 5 then tells us tha t  s 

has associated to it a unique fundamental  solution, which is a distribution of type 2. 

We shall be concerned with proving tha t  this fundamental  solution varies smoothly with 

the (c,j). 

The considerations of the ~b problem in w 19 below will require tha t  we prove our results 

for systems. As we already did in w 5 we shall assume tha t  our functions take values in a 

finite-dimensional vector space W. The operator ~ in (6.1) is then replaced by  

(~=1/~)I+~-~j .~c~k[Yj ,  Yk] where each cj~ is a linear transformation of W to itself. 

However now the necessary and sufficient conditions on the cjz tha t  E is hypoelIiptic are 

no longer as simple as those given in Theorems 1' and 2. We shall assume nevertheless 

tha t  for some fixed (cjk) the two a-priori inequalities hold: 

I1 r,/ll <clICl,//I, .te (N) 

and 

We now define s by  

II YflIP< I( */,I)I, 
J = l  
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Then for y ranging in some open subset ~ of the parameter space (of real dimension = 

n ( n - 1 )  • (dim W)2), and in particular for ? sufficiently small, the operators s and s 

satisfy ~-~=~]] YJ/]P 4 C v  ](s  and ~_~]] r /li I fo r /eC~(N) .  Thus by  the 

reasoning already quoted in w 2, both Ev and ~ are hypoelliptic. Now by Proposition A 

in w 5 it follows that  for each ~ E~, there exists a unique homogeneous distribution /c r 

of type 2 on N, so that  Ev(kv) = I~, and such that  s162 = (l:v/) ~- kr = / f o r  all / E C~(N). 

Our result on the smooth dependence of k v on ~ may be stated as follows. 

THEOREM 3. The/unct ion  (y, x)~Icv(x) is (jointly) C ~ on the set ~ • (N- (0} ) .  

Since each function k~(x), ~ E~, is homogeneous in x of the same degree, it suffices 

to prove smoothness on the set a • {xe/V: 1 ~ I x / ~  2}, where ]] is a homogeneous norm 

function. For this purpose we define C ~~ to be the space consisting of all complex valued 

functions which are smooth on (xe/V: 1<  Ix /<2}  and which, together with all their 

derivatives, are continuous on the closure (x e N: 1 ~< I z I ~< 2}. On C ~ we define a countable 

collection of seminorms (][ I1~}, ~ = (:r .... , ~n) a multi-index of non-negative integers by 

1<~ ~ < 2 1 \ ~ X l  I 

The space C OO is complete with respect to these seminorms. 

We shall say that  a mapping/ :  g2-~ Coo is bounded if the positive functions ?-~ ]l/(r)l]~ 

are bounded for each seminorm. Our proof will proceed in two steps. 

Step 1. The mapping ?-~]cv of ~ to Coo is bounded on any compact subset of ~.  

Step 2. For each x E N - { 0 }  the function ?z~k~(x) is Coo, and its partial derivatives 

with respect to ? are bounded on compact subsets of ~ • {x: 1 4 Ix /<2} .  

Now Theorem 3 is proved from steps 1 and 2 by the following lemma. 

(6.2) LEMMA. Suppose a complex valued /unction (~, x)-->F(~, x) is de/ined on an 

open subset U c R ~1 x R n' and satis/ies the/oUowing properties: 

(i) t7' is C ~ in both variables x and y, separately. 

(ii) All  partial derivatives o/ F with respect to either x or ~ are bounded on compact 

subsets o/ U. 

Then F is jointly C ~~ on U. 

This result is certainly not new, but, lacking an explicit reference, we give a proof. 

Since the conclusion is local we may assume (after multiplying by suitable C ~ functions 

of compact support) tha t  F also has compact support. Let  ~(~', x') be the Fourier trans- 

form of F. By our assumptions both [r']k~(~ ', z') and Ix']k_~(~, ', x') belong to L ~ for any 
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k>0.  Therefore (Ix'[2+ ]71~)k'2~(7 ', x') is in L ~ for all k>0,  so Ff iC  ~~ by the Fourier 

inversion formula. 

We shall need some prehminaries before proceeding to the proof of steps 1 and 2. 

For any y E ~ write T~ for the mapping corresponding to the kernel k~. 

(6.3) L~M~A..For any 7x, 9'~ fi~l, 

Proo/. Recall that  this equality is with reference to smooth functions / of compact 

support. Evaluating the right hand gives 

Tv,(Cr,(Tv,/)) - Tv,(F~rl(Tvl f))= T v , / -  Tv, f 

by identity (5.11) which proves the lemma. 

I t  will be important in what follows to note that  since Cr2- F.~, is left-invariant, by 

Lemma 5.9 

(6.4)  (C,~ - Cr,) (Tr~ 1) = (F~, - F.~) (Tv,) 1; 

here (Cr is the mapping given by convolution by the kernel (s162 

which is of type 0. 

(6.5) LEM~A. Given 706~, there exists e > 0  such that i/ ]~-~0] <e  the operator 

satis]ies 

(6.6) 

Proo/. 

IIE III,-< �89 

%.(l)=l~k~~ k~~ a homogeneous distribution of type 2. Thus each of the 

operators Yj Yk T~~ and [ Yj, Yk] T~. is given by convolution with a homogeneous distribution 

of type 0, and is therefore bounded o n / 2  by Proposition B of w 5. This proves (6.6) for 

e sufficiently small. 

The following is a key point in the proof of step 1. 

(6.7) LEM~x.  The estimates 

(6.s) II T (/)II < II,' 

hold with �89 = ( l /p)-2/Q,  and C~ bounded on any compact subset o / ~ .  

Proo/. I t  suffices to show that  given any ~o E~ there is an e neighborhood of 7o so 

that  (6.8) holds for all lY-~ol < e. Let Co be the norm of Tr~ as a bounded operator from 
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L p to L ~ (see Proposition B of w 5). We shall prove (6.8) provided Cv >2C 0 and e is chosen 

m E n  to satisfy conditions of Lemma 6.5. Then putting g = ~ = o  (]), E=(C~r~176 we 

have 
oo 

Ilgll,.,< >: 2- ' l l l l le=211/IL, �9 
l=O 

However, since Tv(/) = Tr,(g ), by Proposition B 

II T,(I) IIL, = II T~.(g)llL,-v< C'ollgllL~ < 2Collllle, 

and Lemma 6.7 is proved. 

(6.9) LE~MA. There exists e > 0  with the/ollowing properties: Whenever ~ and $I EC~ 

and ~1 = 1 on the support o/~ and y E 

(6. lO) II ~/ILL:+, < c(ll cl ~(/)IlL: + II Cl /IILo~). 

The constant C depends on ~, ~1, k, and y, but when the first three are fixed, C remains bounded 

as y ranges over compact subsets o / ~ .  

Proo/. (6.10), without estimates for the constant C, is proved e.g. in Kohn [15] as a 

consequence of the estimate 

(6.11) :~ Ilxflll~< c,l(r.~/, 1)1 + ll/ll ~) / e t a  ~ 
./=1 

Moreover, (6.11) is proved in Theorem 1' in the scalar ease, and is what we have assumed 

in the general case. I t  is clear that  Cv remains bounded on compact subsets of ~.  Now 

(6.10) with the additional statement about the dependence of C on ~ is a consequence 

merely of keeping track of the constants in Kohn's argument. We omit the details. 

We may now prove step 1. Suppose that  g is any complex valued function satisfying 

(i) supp g c  {x: 1~< Ixl <2},  and 

(ii) Slg(x) l~dx < 1. 

Now let /=T~,(g)=g~ek v. Since s  in the sense of distributions, s for 

Ixl < 1 .  Also l=fg(y)KT(y- lx)dy is C m for Ixl <1 .  
with ~, ~1 satisfying 

~1=1 for [x]~<�89 and = 0  

$ = 1  for Ix[~<�88 and =0  

Then 

(6.12) 

Now apply the inequality (6.10) 

for Ix[ >.>- 1, 

for Ixl >~�89 

II r < c l l l l l .  = oll k~(g) ll..< ~llglle < c~ llgll. 
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where C~ remains bounded as ~ ranges over compact subsets of ~.  The next to last in- 

equality follows from (6.8) and the last from ttblder's inequality since p <2  and g is sup- 

ported in a compact set. In our case inequality (6.10) becomes 

(6.13) l[ c/ll~+ < C~.k,~llgllL,, any k. 

An application of Sobolev's Lemma then gives 

/(0/-~ G,~II gll., any multi-index ft. 

In  partieular if D is any left-invariant differential operator on 3]" i.e. a polynomial in the 

Ys's, then 

(6.~4) I(Dt)(0)I ~< o~.:,llgll ~,. 

However, ] = g-x-Icy so that  

(6.15) D/(O) = (g-~ DI%) (0) = jg(y) D(k~,(y-:))dy. 

Since g is arbitrary among L ~ functions of norm ~<1 supported in {x; 1~< Ix[ <2}, the 

converse of Sehwarz's inequality can be applied to (6.14) and (6.15). The result is 

(fl<l~l<2lDlc~,(y-1)[' dy) <~ CD,~,. 

By homogeneity of the kernel lr ) if 0 <8 < 1, there exists CD.v such tha t  

(f: \:i~ _o<.~,+ lD~#y-')l'ey) <_ o;.,. 

Finally another application of Sobolev's Lemma gives 

3 ~ 

with C~.~ bounded as y ranges over compact subsets of ~.  step 1 is therefore completely 

proved. 

We shall now prove step 2 i.e. tha t  for x fixed the map y-+Ic~(x) is C ~ with partial 

derivatives bounded on compact subsets of ~.  We have the identities 

T~,(I- E) = Tr. with E = (F~. - C,~) T~,., 

(as operators on smooth functions of compact support), which follow from Lemmas (6.3) 

and (6,4). With the observation ( I -  E) ( ~ - o  E ~) = I -  E ~+1 we obtain 
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l k 

We shall interpret (6.16) as a Taylor expansion in 7 with remainder. First write 

(6.17} E = ( ~ ~  ~ )  T~o = ~ (7 ~ -  7~) E~.~., 
t 

where 7 s are the coordinates of 7, and each E j, 70 is an operator of the form Ej.r0(/) = / ~e ks. to, 

with kj.~~ of the form Y~(kT) or [Y~l, Yk] (kv). (See (5.10).) Hence each k~.r~ is a homogeneous 

distribution of type 0. Also, in view of step 1, each kj.r, ranges over a bounded subset of 

C ~ as 7o ranges over a compact subset of ~.  

For each j, consider the operator TroES.vo. By Proposition C of w 5, 

T~~ Ej, ~,(/) = / ~ (~j. ~~ ~ ~0). 

Furthermore, by examining the proof of Proposition C (see e.g. [6], (1.13)) we may obtain 

the stronger result that  if kl, k~ are kernels varying over a bounded subset of C ~, then 

then k l ~ k  ~ varies over a bounded subset of C ~~ Thus the kernels (7J-7~o)Kj.ro~k:,~ 
vary  over a bounded subset of C ~~ if 7o, T are bounded. Now substituting (6.17) into (6.16) 

we obtain for any / smooth and compactly supported, 

(6.18) T2.,(/) = / ~ ( ~, (7 --.~_~o)~/,.(~) Dr - RI(7 ' 7o) 17 -- 701 l+1) 
\l~l<l ~! "~ro 

where the k~ ) and R~(7, 70) are homogeneous distributions of type 2 which vary  over a 

bounded subset of C ~ as 7 and 70 vary in a compact subset of ~. However, by definition, 

TT(f) = f ~ k~,. Hence 

(r 
(6.19) k~(x) = 5 ~.Y0 k(v~)(x) § R~(7 ' 70)(x)[T _ 70 [~+' 

I~l<z 

for all z e {0). For x fi ed, 1 < 1 I < 2, (6.19) provides a Taylor e pansiou with remainder 

for the function 7-+k~(x); for each 1 the coefficients k(~,)(x) and remainder R,(7, 7o)(x) 
are bounded as 70 and 7 range over a compact subset of ~.  Thus we may apply the converse 

of Taylor's theorem with remainder. (See e.g. [1], where a slightly weaker form is given 

i.e. assuming the coefficients are continuous instead of bounded. An easy modification of 

their argument proves a similar result in the hounded case.) Thus we conclude thab 7-~k~(x) 

is C ~ on ~,  and for each ~, 

k~(~)-- kP)(~)" 

Since ]c(~ ~) is bounded for 7 in a compact subset of ~,  so is (~/~7):q~v(x), proving the 

second claim of step 2. This completes the proof of step 2 and therefore of Theorem 3. 
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Part H. Extension of the manifold and approximation by a free group 

w 7. Lifting of vector fields to free groups 

Let M be a real C ~~ manifold of dimension m, and let X1, X~ ... Xn be real, smooth 

vector fields on M such tha t  finitely many  commutators  of the X / s  span the tangent space 

at  every point. We would like to associate to every point ~ E M a nilpotent Lie group N~ 

and a local diffeomorphism ~)~ identifying a neighborhood of ~ in M with one of the identi ty 

in ~V~. In  this local coordinate system the XI, X 2 ... . .  X~ should be closely approximated,  

in some sense, by  left invariant vector fields Y1 ..... Y~ generating the Lie algebra. This 

is, roughly speaking, the approach used by  Folland and Stein [8] to construct a parametr ix  

for the Laplacian E]b of the tangential Cauchy-Riemann operator. For this case the vector 

fields involved satisfy particularly simple commutat ion relations, and it  is therefore 

possible to assign the same group N~, the Heisenberg group of appropriate dimension, 

at  each point ~. 

In  the general case there seems to be no natural  group 1V having dim N = d i m  M. 

Consider, however, Example  (b) of the Introduction, where the Xj are not linearly inde- 

pendent at  each point. In  tha t  example it is necessary to add an extra variable and thus 

to lift the original vector fields to a higher dimensional space. The resulting manifold may  

then be identified with a nilpotent Lie group. With this example in mind, our approach 

in general will be to lift the Xj to a higher dimensional manifold ~ in such a way as to 

eliminate inessential relations among the commutators.  We will then assign to every 

point ~ E ~ the free nilpotent group on n generators of step r, where r is sufficiently large. 

We now proceed to the details of this construction. 

We shall refer to the elements in the linear span of 

{[X,1, [X~ . . . . .  , [Xi~_~, Xts]]...]: l<~ij<n) 

as the commutators  of length s, and to the span of X1, X 2 ... Xn as the commutators of 

length 1 to avoid having to deal with this special case. If  X is any vector field and ~EM 

we write X IS for t he  restriction of X to the tangent space at  ~. Throughout this paper  

we  shall assume tha t  the commutators of length ~ r  span the tangent  space at  every 

~eM.  

We now make precise the notion tha t  a set of vector fields {Wk}~=~. 2 ....... and their 

commutators of lengths ~ s  satisfy as few linear relations as possible at  a given point ~. 

To do this, we compare the W~ and their commutators  with left-invariant vector fields 

on a free nilpotent Lie algebra. Let  ns be the dimension of the free nilpotent Lie algebra 

~ .  s of step s on n generators, and let m s be the dimension of the linear space spanned by  
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all commutators  of the W~ of lengths ~<s restricted to ~. I t  is not hard to see tha t  ms ~<ns. 

We shall say tha t  Wz, W2 ..... W,~ are free up to step s at  ~ if m s = n  s. In  particular, the 

condition for s = 1 means simply tha t  W z I~, W~I~ ..... W~I ~ are linearly independent. 

Furthermore, note tha t  if W~, W~ .... .  W~ are free up to step s at  ~, then they are free up 

to step s at  ~ for all ~ in a neighborhood of ~. 

We shall now lift our original vector fields {X~)~_Le ..... n, locally, to a higher dimen- 

sional space in such a way tha t  they become free up to step r. We shall also write ~ for the 

dimension of the free nilpotent Lie algebra of step r on n generators. 

T~EOREM 4. Let X1, X~ ... . .  Xn be vector fields on a mani/old M o/d imens ion  m such 

that the commutators o/ length <~r span the tangent space at ~ E M.  Then in terms o/ new 

variables, tin+z, tin+2 .. . .  , t~, there exist smooth /unctions lkz(~, t) de/ined in a neighborhood 

0 o /~=(~ ,  0 )EM • R ~-m = ~  such that the vector ]ields {Xk} given by 

(7.2) = + ,=m§ t) 

are/ tee  up to step r at every point  in ~.  

The proof of Theorem 4 will require a precise notion of approximating an arbi t rary 

vector field on a graded nilpotent Lie group N by a vector field which is left-invariant. 

I f  ~ =~]=~ V j is the Lie algebra of N, a choice of basis {Yjk} of V j for each j gives rise to 

a coordinate system 
(uj~)*-* exp (~ ujk Yjk). 

For a multi-index ~ = (jzk~, j j Q ,  ..., ]zk~), I~ ] = ~S=l]l, w e  write u= for uj,k, uj=k~ ... ujt~ ~ 

and D~ for ~z/(~uj~ auj=k~ ... ~uj~k~ ). In  terms of the definition of degree of homogeneity 

given in w 5, if a, fl are multi-indices u~ D ~ is a homogeneous differential operator of degree 

] f l ] -  ]~l" For a general differential operator on s a notion of local degree (at 0) on N 

is defined as follows. I f /=(u)  is smooth on N we shall say tha t  the differential operator 

]=(u)Da is of (local) degree-~,~ if the T~ylor expansion [=(u)D ~ ~ ~.~c=;~uzD= around u = 0  

is a formal sum of homogeneous differential operators of degree ~ t .  More generally, a 

smooth differential operator D = ~ j = ( u ) D =  is of local degree ~<1 if each [=(u)D~ is. 

Now suppose Xz, X~ .. . .  , ~ are free up to step s at  a point ~E/~, and tha t  the com- 

mutators  of length ~<s span the tangent space. For each j, 1 < j  ~<s, choose {Xm}~, com- 

mutators  of length j with ~ = ~ ,  k = l ,  2, ..., n, such tha t  {~}~ . ~  restricted to ~ is a 

basis of T~(~/). Then {~}~ .~  determines a system of coordinates around ~ by  the expo- 

nential map  based at  

(7.3) exp(  �9 
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This will be called a system o/canonical coordinates; it is dependent on the choice of basis 

We m a y  now give our main result comparing ~ with Yk. { Yk}k=l. 2.. . . . .  generate 

the free Lie algebra of step r as described in example 4, w 3. 

THEOREM 5. Let -X1, .X 2, ..., .X n be vector/ields on a mani/old 7V27, ~o r ~ such that 

(i) commutators o/length <~ r span the tangent space, and 

(ii) {~k} is/ tee up to step r at $o. 

Choose {X jk), commutators o/length <~r, determining a system o/canonical coordinates (ujk) 

around ~o by (7.3). Let iV=NF, r be the free Lie group o/step r on n generators and ~ its Lie 

algebra. Then there is a basis (Yjk) o / ~  and neighborhoods 17 o/~o e ]7I and U o/0 e N with the 

/ollowing properties. On ~ • 17 consider the mapping to U 

(7.4) O(~, ~) = exp (5 ujk Yjk) e U, 

where ~ = e x p  (~ u~k.Xj~)~. Then/or each/ixed ~'the mapping 

v ~ o i ( ~ )  = o(~,  ~) = (uj~) 

is a coordinate chart/or V centered at ~. 

In  this coordinate system 

(7.5) X~ = Yk + R~, /c = 1 ... . .  n, 

where R k is a diHerential operator o/local degree <-< O. 

Combining Theorems 4 and 5 we obtain the following local results for {X~} on a 

manifold M such tha t  commutators of length < r span at  each point. Fixing ~0 E M, Theorem 

5 gives prolongations {~7~} of {Xk} with {~Tk} vector fields on M • R ~- ~, ~ = dim N such 

tha t  2~k = X~ on functions constant in the new variables tj. Furthermore,  applying Theorem 

5 shows tha t  in local coordinates the ~Tk thus obtained differ at  each point ff from the 

generators of a free nilpotent Lie algebra by  operators of local degree < 0. 

w 8. The main induction step. 

We begin by  giving a generalization of Theorem 5 which will be needed as well for the 

proof of Theorem 4. For what follows we shall first have to extend the notion of systems 

of canonical coordinates introduced in w 7. 

Suppose (Wk} is a set of vector fields on a manifold M',  ~EM' ,  such tha t  

(i) the commutators  of length < s  1 span tangent  space at  ~, and 

(ii) {Wk} is free up to step s<sv  
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A partial system of canonical coordinates around ~ is determiued by  a choice of a set 

of commutators  {Wjk}j.~, with Wlk= Wk. W~k is a commutator  of the {Wk} of length ~', 

such tha t  {Wjkl$}j.k is a basis of the tangent  space and also satisfies the condition tha t  

{Wjk[~}j<~ spans the commutators  of length ~<s at  ~. This second condition m a y  be satisfied 

by  choosing each W~k with j as small as possible. The coordinate system is then given by  

(ujk) ~ exp (~ uj~ Wjk)'~. 

Now suppose Yn, YI~ ....  , Yln are generators of the free nilpotent Lie algebra ~F. sl 

Of step s r (We recall tha t  with respect to the dilations of ~ .  ~1, described in w 5, each 

Ylk is homogeneous of degree 1.) Then the correspondence 

WI~O Ylk = ~(Wlk) 

extends to a one-to-one correspondence 

Wjk~ Yjk=q~(Wjk), ]<~s, 

where { Yjk}J<~ spans the commutators  of length < s of the { Ylk}, and the W m are as above. 

Furthermore,  this correspondence can be chosen so tha t  if Wj~= [Wj_I. k,, WI~] 

(s.1) ~(wj~) = [~(Wj_l, ~), ~(w~3]. 

We shall say tha t  the correspondence ~c is a partial isomorphism up to step s. 

For our generalization of Theorem 5 we shall assume tha t  we are given vector fields 

W~, W2 ....  , W~ which are free up to step s, but  for which commutators  of length s +  1 

are needed to span the tangent space of a fixed point ~. We shall assign to { Wk} a nilpotent 

Lie algebra ~ of step s + l ,  free up to step s. In  case W1 .. . .  , Wn are actually free up to 

step s + 1, ~ will turn  out to be the free nilpotent Lie algebra of step s + 1. 

To simplify our cosstruction we consider first the following example. Suppose n = 3, 

s + 1 =2,  W1 W~, Ws are linearly independent (free up to step 1) and W1, W~, W3 and 

{[W,, Wj]} span at ~. Suppose tha t  the only linear relation is given by  

e~[W. W2]]e+vdW2, W~]I~+%[W1, W3]]~ =X b~W~I~. 

Then ~ will be the 2-step Lie algebra with generators Y1, Y2, ]73, the only relation being 

cl[Y1, Y~]+c2[Y2, Y3]+ca[Y~, Y3]=0. Now consider the general case where W1 .... .  Wn 

are free up to step 8, but  span a t  step s + I.  We construct ~ of step s + 1 in such ~ way 

tha t  the linear relations among the commutators  of length s + 1 correspond to the linear 

relations of the commutators  of the W~ of length s + 1 at  ~, modulo lower terms. Let  

Y~ .. . .  , Yn generate ~ .  s+x, the free Lie algebra of step s + 1, and extend the correspondence 

W~ = WI~OY ~ = Y~ to a partial  isomorphism up to step s given by  W~+-~Y~. Now let 
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~ =~r.~+x/y, where y is the ideal spanned by 

{ ~ a~i~,[Yz~,, Ylz,]: there exist c m such that  ~ a~,k,[Ws~,, W~,]]~ = ~ cr Wml~}. 
kx,k~ k~,k~ i<~S 

k 

We identify Yj~ with its image in ~ for ?" ~< s, and extend the partial isomorphism 

Wjk~Yjk,  j <~ s 

by choosing a basis { Y~+l,k} for the commutators of length s + 1 in ~r Then if 

Y~+~.k = [Y~k,, Ylk:], we let Y~+I.kOW~+~.~, where W~+~.k = [W~k, W 1 j .  

By construction, {Wjk}j<~+~ restrict to a basis of the tangent space at  ~. 

(8.2) LEM~A. Let {We} be /tee up to step s, and assume the commutators o] length 

<~s § 1 span at ~. Construct the nilpotent Lie algebra ~ as above and the correspondence 

Wjkc-~Ym, where (Yk} generate ~ .  Write each Yk and Wk in the common coordinate system 

(uj~) ~ exp(~ ujk Y~) ~ exp(5 uj~ Wjk). ~. 

Then 

w~ = y ~ + R ~ ,  

where Rk is o/local degree ~ 0 on the graded Lie group N~ corresponding to ~ .  

This 1emma, and other technical results, will be proved in w 11. Theorem 5 is an imme- 

diate consequence of Lemma 8.2 with s + l  = r  since ~ = ~ y . ~ + l  in ease [Wk} is actually 

free up to step s + 1. 

We now show that  we can add vector fields in new variables to the generators 

Y1, Y2,-.-, Y~ of ~ to produce ~'1 ..... ~z free up to step s + 1. More precisely, we have 

the following. 

(8.3) L]~M~A. There exist smooth ]unctions ~kl(x, t), xEN~, tER q such that 

q 

are/tee up to step s + 1 and are such that the commutators o] length <~s-4-1 span the tangent 

space o/N~ • R q. 

Lemma 8.3 is proved by the following more general result, whose proof will be given 

inw 11. 
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(8.4) LEMMA. Let (~ be a Lie algebra, :] an ideal o/(~, (~1 the quotient ~ 1 = ~ / 3  and 

7e: (~->(~1 the projection. Let Y1, Y2 ..... yk, e@ be chosen so that a(Yl), a(l'2) ..... a(Y~,) 

is a vector space basis o / ( ~  and let Z~, Z 2 .. . .  , Z~, be a basis o/~). Choose canonical coordinates 

in a neighborhood o/ the identities o/ the connected groups G, G~ corresponding to ~ ,  ~ 

respectively: 

on G, and 

Then there are smooth/unctions a~ on R ~' and b~q on R ~" such that 

Yt : ~ a l , ( u ) ~ §  ~btq(u,v)~ ~-- 
p q ~Vq 

and ,~(~'j) = ~ ajp(u) ~ 

near O. 

Finally we combine Lemmas 8.2 and 8.3 to lift the {Wj} to {~j} which are free up 

to step s + 1. The result we prove is the following. 

(8.5) LEMMA. Let {Wk} be/tee up to step s with commutators o/length <s + 1 spanning 

at ~. Let {Yk} be the corresponding generators o/the nilpotent Lie algebra ~ as in Lemma 8.2. 

Lilt  {Yk} to new vector/ields {Yk}, Y~= Yk + ~Yk~(x,t)~/atz, t e Rq, by Zemma 8.3. Regarding 

each Wk as a vector field on 1u the Lie group o/ ~ ,  put  ~Vk=W~§ ~kz ( x ,  t)~/~t l. Then 

( ~Vk} is/ree up to step s + 1, and commutators o/ length <~ s + 1 span the (higher dimensional) 

tangent space. 

Proo/. Using the coordinate systems given in Lemmas 8.2 and 8.4 we may regard 

Wk and Yk as vector fields on/V~.8+ 1. Then by Lemma 8.2, 17Vk= ~k§ where R k is of 

degree ~<0. (Note that if an operator on/V~ is of degree 40, then it is still of degree ~<0 

when regarded as an operator on/VF.8+I by the correspondence of coordinate systems given 

in Lemma 8.4.) 

Now let {Wjk}, {YCk} be the corresponding commutators of length ] of the ITVk and :Yk 

respectively. We claim that 

(8.6) 17VJk = s + Rjk, 

where /~jk is of local degree < ] - 1 ,  which will prove the 1emma. Indeed, this is true for 
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= 1, where Wxk= Wk, Yxk= Y~. Now (8.6) follows easily b y  induction, using the simple 

fact  t ha t  if Dx, D 2 are differential operators of local degrees less than  or equal to  2~ and X~ 

respectively, then [D~, D2] is of local degree ~<2~ +22. 

w 9. Proof of Theorem 4. 

Now assume X 1, ..., Xn are real vector  fields for which the  commuta tors  of length 

~<r span the tangent  space at  a fixed point  ~. We  show first how to  lift the  {Xk} to  {X~ )} 

which are linearly independent  (= f r ee  up to step 1) at  ~. Then we shall use the results of 

w 8 show tha t  vector  fields free up to step s can be lifted to  be free up to step s + 1. 

Rearranging the X~'s if necessary we m a y  assume X1, X 2 .. . . .  Xv, p ~<n, is a maximal  

set of linearly independent  vectors among  the Xz at  ~, k = 1 .. . . .  n. P u t  

(9.1) 
O 

X~.p+l = X~+l+ 3t--~++~ , l = 1 , 2  . . . . .  n - p .  

The commuta tors  of length s>~2 of the {X~k) are the same as t ha t  of the (Xk). Fur ther-  

more, X]~ [~i, k = l  . . . . .  n, are linearly independent,  where ~1=(~, 0)e  U x R m-~, and by  

dimensional considerations their commuta tors  of order ~<r span T~(U • Rm-V). 

Assume now by  induct ion tha t  for some s ~> 1 one can find vector  fields F~ = 

q )~s ~ p ~ + l  kv(~, t)~/~tv, where t e R  ~-" and ~p(~,  t) are defined and smooth  for all (~/, t) 

in  a neighborhood of (~, 0 ) e M  • R ~-~ such tha t  

(9.2) (i) X ~ = X k + F ~ ,  k = l  .. . . .  n, are free up to step s, and 

(ii) the commuta tors  (X]k), of length ~< r span the tangent  space at  ~ = (~, 0). 

I f  s + l  < r ,  L e m m a  8.4 cannot  be applied directly to lift the {X~) to {X~+~), to  be free 

up to step s + 1. Therefore, in this case we shall restrict the X~ to  act  on a lower dimensional 

space. To do this we shall need specific information about  the X~ in a partial  canonical 

coordinate system. Le t  u = (u k)*-*exp (Y. ujkX~k ) .$ be such a system. I n  analogy with the 

case where u is on a graded group we define the  family Ot of dilations by  (~t(ujk)= (tJujk), 

and we define homogeneous functions as before with respect to  Or. Note,  however, t h a t  

unlike the group case degrees of homogenei ty  here m a y  depend on the choice of part ial  

canonical coordinates if s + 1 < r .  We shall write O([u[ ~) for any  function whose Taylor  

series at  u = 0 is a formal sum of homogeneous terms of degree >~ l. 

(9.3) LEM~A. Suppose X~k, k=  l, 2 ..... n, are /ree up to step s, where commutators o/ 

length <~r span the tangent space at ~s, Let {X~k) be commutators determining a partial canonical 
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coordinate system around ~8, 

u = (urn) ~ exp( ~. ujkX]k). ~s. 
Lk 

Then i/]c' is fixed, 1 <~ k' <~ n, 

j~<s k G n s + l ,  k Lk 

where gj~ is homogeneous o/degree ] - ], and e~'k is homogeneous o/degree s. 

This l emma  will be p roved  in w 11. Using it, we define the vector  fields W~ k,, k' = 1, 2 . . . . .  n, 

by  

Wlk" = ~ (gkk(u) + e~k(U)) ~ + ~k k' _ ~  
8 gj+l. k(u) ~98+1. k" l<~s 

We th ink  of the  W~k as act ing on the  Eucl idean space with coordinates (u~k), ] ~ < s + l .  

W 8 Now we claim t h a t  { lk} is free up to  s tep s, and  t h a t  the  commuta to r s  up  to s tep s + 1 

span the  tangent  space. To prove  this, let W~-k, 1 ~<j~<s+ l, be the  commuta to r s  of the  

W~k corresponding to the  X~k, j ~<s + 1. We  shall p rove  

( 9 . 4 )  

for  all ?0 ~<s + 1. Indeed,  apply ing  (9.4) wi th  ?'0 ~<s will show t h a t  {W~k) is free up to s tep s, 

since {X~k} is free up  to s tep s. Next ,  since Xj~.ko [~=o =O/~Ujok,, (9.4) appl ied to  all io ~<s + 1 

show t h a t  (Wj~0 I~=o} spans the  t angen t  space to  the  coordinates uj~, ] ~<s + 1. 

To see (9.4) note  first  t h a t  b y  definit ion W ~ = X ~ - - ~ j . k O ( l u ]  ~+~)~/~u k. We claim 

t h a t  for a n y  ?'0 ~< s + 1, 

(9.5) W . . . . . .  Eo(I P) a 

To prove  this, note  t h a t  

OU], kt ' ~ 2  

= a a . 

The first  t e rm  on the  r ight  has a coefficient which is O([u l (j~-~)+(~+~-j~)) = O(lu I~), while 

the  second t e rm  has a coefficient which is a t  least O(lu  ] ~+~). Similarly 

has  coefficients which are O(lul" ). Applying this a rgumen t  s t imes one obtains  (9.5), 

and  hence (9.4). 
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We m a y  now apply Lemma 8.5 to the vector fields W ~lk. Thus we can find vector fields 
~s  x-~ s ,~ l/rs+l k=Zt~'kzt , t)~/~t~, t E R  q~, such tha t  by  defining ws+z v~rs . r , s  ,, tk = ,, tk-r ~, k, we have tha t  ,, tk , 

k = l  ... . .  n, are free up to step s + l ,  and tha t  their commutators  of lengths ~<s+l  span 

the tangent space. 

Now put  
xs+l  _ .X. s - k+F~,  k = l , 2  . . . .  n. 

In  order to complete the proof of Theorem 4 it will suffice to show tha t  {X~ +1} is free 

up to step s + 1, and tha t  the commutators  of lengths ~<r span the tangent  space at  (~, O) 

in the extended space. Let  cX ~+1~ J~ s be the commutators  of the X ~+1 k corresponding to the 

{X~k}, and {W~ -+1} tha t  of the W ~ =  W~ +1. To prove tha t  {Z~ +1} is free up to step s + 1 

it will suffice to show tha t  

(9.6) x]+llu=O m W]+l]u=o 

for all ?" ~< s + 1. The proof of this is completely analogous to tha t  of (9.4) because 

[O(l~tls+l) ~-~/~lk x. ~2Skl(~ ' t )~]--O(l~t[s+l)~lk t  ('Skl)~t l' 

since O([u[ ~+1) does not involve the variables tt .  

Now we shall show tha t  the ~-jkv~+x span. First we claim tha t  for any ~, 

(9.7) v s + l _  ~jk - X~k + Fjk, 

where F m involves differentiation only in the new variables. To see (9.7) it suffices, since 

X8+1 s s lk = Xlk + Fk, to note tha t  if h(u) does not vary  with the new tj's, then 

[ h ( u ) ~ ,  ~uT~l( 

Now (9.6) shows 

dim (span -,~jkgs +1 lu=t=o,]~8+l ) 1  = dim (span X]. k ]==o, J ~< s + 1) + number  of added variables. 

Hence, because of (9.7) 

~ s + l  jk dim (span ~ jk  ] u=t=0)~>dim (span X s ]u=0)+number of added variables. 

Since the reverse inequality is obvious, we have proved the spanning property.  

w 10. The Campbell-Hausdortf to rmula  

We shall prove Lemmas 8.2, 8.4, and 9.3 by  explicit calculations of vector fields 

in canonical coordinates. Before giving the proofs, we need to make some preliminary 

remarks on the application of the Campbell-Hausdorff formula. 

18 -762901 Acta mathematica 137. Imprim6 le 20 Janvier 1977 
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Let ~ E U, where U is an open subset of R z, and suppose {Wjk}s.k are real vector fields 

which form a basis of T~, the tangent space at ~. With U replaced by a smaller neighbor- 

hood of ~ if necessary, the exponential map exp identifies each u=(ujk) with ~j.~]ujk[ ~ 

sufficiently small, with a transformation exp u. W, where u.  W = ~ j . k u j k W j ~ , .  The image 

of an element ~TE U under this transformation will be denoted exp(u. W)~. Now if ~ is 

fixed and / is a smooth function defined in a neighborhood of ~, then / may be regarded 

as a function of u near ~; for any ~7 near ~, , /=  exp (u. W) ~, uniquely for some u = (ujk). 

I t  might be useful in this section to distinguish between / as a function of ~ and / as a func- 

tion of u. Thus we define/ '  near u = 0 by 

/ ' (u) =/((exp u. W)'~). 

We claim that  the Taylor expansion o f / '  around u = 0 is given by the formal power 

series (e (=" w)/) (~). Indeed, this follows from the identity 

(10.1) - - ( / ' ( u ) )  = Wjk/(exp u .  W). ~). 
~uik 

The correspondence ] ~ ] '  on functions gives rise to a correspondence X ~ X '  of vector 

fields, defined by X ' ] ' ( u ) = X ] ( e x p ( u .  W)~). We want to calculate the Taylor series of X '  

in local coordinates around u =  (0). By the above, for any / ' ,  the Taylor series of X ' / '  

around u = (0) is given by 

(10.2) Z ' / ' ( u )  N e u" wx/ (~) ,  

where the right hand side is interpreted as a formal power series in u. Now fix (?'0, k0) and 

let /=hj0k~ be the coordinate function hjo~0(~)=uj0k~ if ~ =exp  (u. W)~. Then e ~" wXhj~176 

is the Taylor expansion of the coefficient of ~/~ujok~ at u = 0 .  That is, if X '  = ~  a'j~(u)~/~ur 

then 

(10.3) a~o~,(u) ,,~ e u" WXhj.~~ 

In  order to calculate the right hand side of (10.3) we consider the formal power series 

in u and ~ given by 

(10.4) e ~'" We~Z/(~). 

We may consider (10.4) as a formal power series in ~ whose coefficients are formal power 

series in u. The right hand side of (10.2) is then obtained as the coefficient of ~ in (10.4). 

We express this equality of power series symbolically by 

(10.5) e~ wX/(~) N ~ (eu" We~X/(~))l,= o. 
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I n  order to make use of the formula (10.5) we shall have  to express e u" We*X as an  

exponential.  This is done formally by  the Campbell-Hausdorff  formula: I f  x and y are 

non-commut ing  indeterminates,  the following is an equal i ty  of formal power series in x 

and y, e.g., [21], L A  4.17: 

(10.6) e~e ~ = e z+~+h(~" v). 

Here h(x, y) is a formal sum over ordered pairs of positive integers (% k) of terms 

h(j.k)(x, y) = ~ c(p, q) D~ ...... pj.q ...... qj(x, y) 
pi+qf>O 

2<Epi+ qi~< k 

where c(p, q) is a constant,  

{ (Adx)m(Ady)  qi, .... (hdx)~'J(Ady)qj-l(x) if qj 1> 1 

Dp ...... ~j.q ...... ~(x, y) = (Ad x ) " ( A d y )  q`, .... (Ad y)q~-~(Adx)PJ-l(y) if qt = 0 

with (Ada)(b) defined as [a b]. 

We consider the application of this formula to calculate the r ight hand  side of (10.5) 

for X = Wlk,, 1 ~<k ~<n, / =hj0k 0. Suppose tha t  we are only interested in the  Taylor  expansion 

up to an  error which is O( [u] z), in terms of the  homogenei ty  defined in w 9. B y  (10.6) 

e u. We~ w m =  exp(u.  W + 7W~,  + 7( ~ %(Ad u .  W) ~. W~k~) + 0(]u [z, 72)). 
l~<p</ 

Thus, 

(lO.7) e u" we~wlklhjo~,(~) = exp(u �9 W + ~Wlkl + 7( ~. %(Ad u .  W)PWlkl)) hjoko(~ ) ~- O([Ul l, T2). 
l~p<  l 

Note  also tha t  since u.  W + T W l k ~ + ~ ( ~ < z % A d ( u "  W)~Wlk,) is an actual  vector field 

(rather than  merely a formal power series), the coefficient of 7 in the first t e rm on the r ight  

of (10.7) is the actual  derivative 

d 
d-~ (hj~ W + TWI~, + 7( ~ %(Ad u .  W f .  Wlk,)) �9 ~))l~0. 

l<~p<l 

w 11. Proofs of the Lemmas of w 8 and w 9. 

Our main technique in these proofs will be the  use of the Campbell-Hausdorff  formula 

as developed in w 10. 

P r o o / o / L e m m a  8.2. We assume Wlk = W~, k = 1, 2 . . . .  , n, are free up to  step s at  

and t h a t  commuta tors  of length ~<s + 1 span. Let  W k ~ Y j ~ ,  (Y jk )  spanning ~ ,  determine 

the  common coordinate system 

= (us~) ~ exp( ~ ~j~ Yj~) ~ exp( ~ uj~ wj~). 
t.k J, lc 
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In order to prove W~, = Y,, + R~., it suffices to show that  if 

Y~.= ~ ff~(u) ~ , 

and 

then 

(11.1) lj,,(~) =/?k(~) + o(1~ l J). 

Here, as in w 9, 0 ( lu l  ~) indicates a function whose Taylor series at 0 is a sum of terms 

hi~ be the coordinate functions homogeneous of degrees >~j. Fix (joko) and let h(j0~,), * 

around ~ and 0 respectively: 

hj.ko((exp u .  W) ~) = uj~ 

h~.k,(exp u .  Y) = u3~k o, 

where ~. W= 5 J . ~  Wj~, ~.  r =  Zs.~J~ Yj~. By (m.3), (m.5) 

(11.2) b.~.(u) ~ d (e ~. ~e ~ ~*'hj.~.(~))[~o. 

By (10.7), 

(11.3) e ~" wd w~k'hjoko(~) = exp(u �9 W + ~W~, + ~(~.%(Ad(u �9 W)) ~) W~,,) h~0~~ + O([ u] s+~, ~*). 

A similar calculation holds for ]~*~~ replacing W by Y and h~,~~ by h* ~~ Thus we must 

compare the expansions Ad(u. W)~W~k: with Ad(u.  Y)'Yz~'.  If Qm denotes either W~ 

or Yi~, then 

(11.4) Ad(u. Qy'. Q~, = ~ b~,u~, Q=, o, = (j~ k~, ]2k~ . . . . .  ]~kv), 
a :  

where u~ = u ~ ,  �9 u j ~ . . . .  �9 ujpk~, and Qo~= [Qt, k,, [Qt~k,, [ . . . . .  [Qjv;cp, QI~.] . . . . .  ]. 

Note that  u= is homogeneous of degree I~l = ~ L l y , ,  and Q= is a commutator (of the 

Q~) of length [al + 1. In  calculating (11.3) we compare the expansions of W= and Y=. 

I t  suffices to do this for 1~1~ < s, since ua W=, ]a I ~  > s + 1 will contribute a term which is 

0( ] u I s+l) which may therefore by absorbed in the error term. 

If  ] a ] ~< s - 1, then Q= is a commutator of length ~< s. Hence by the partial isomorphism 

up to step s 
Y= = ~ a ~  Yl=l+l,k 

k 

(11.5) 
W= = ~ a=k Wl=l+Lk, 

k 
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where the aa~ are constants. Now suppose I a ] = s. By the construction of ~ ,  if 

Y~ = ~ a ~  Ys+l.~, 
k 

(Ii.6) 

then 

(11.7) a~j~ Wjk + ~ zjk(~) Wjk, 
k /~<s J,k 

k 

where z~k($)= 0. Substituting this into (11.3) gives 

(11.8) e ~" we'wlk'hjok~ = exp(u. W + TWlk, + ~( ~. (gjk(u) + ej~(u)) Wm 
i<~s 

~- ~ gs+l ,k(u) Ws+l.k) ~- "EO(] U Is) ~ ZTk W]k ) h)0k0(~ ) ~- O(]U I s+l, T2), 
k 

where gjk is homogeneous of degree j - 1  if j ~ 2 ,  ffxk=0, em is homogeneous of degree s, 

and the z~k(~) are smooth functions such that  z~k(~)=0. (Note that  the ejk come from 

the second term on the right in (11.7), multiplied by ua. ) 

Now we claim that  the contribution of the t e rm TO([u]S) Z2.kI~I=sZ~k(v])Wtk, 
appearing in the exponential of (11.8), may be absorbed in O(lu] s+l, ~2). Indeed, since 

(z;~(v) w ~ )  hj~ = z;~(~)( Wj~hj.~.)(~) = O, 

this term contributes only a product with other terms in the exponential, when the right 

hand side of (11.8) is expanded. Since any product of ~O(lulS)z~k(~)Wjk with one of the 

other terms is O( ]u] ,+1, ~2), the claim is proved. Thus 

(11.9) (expu.  W)(exp~Wlk.)h~,~o($) 

= exp(?~ �9 W + TWIk, + T( ~ (gtk + ejk) Wjk + ~, ~s+l.k Ws+x,k)) hJoko(~) + O(lu] s+l, T2) �9 

Now we claim that  then 

e': %.~.(~) =pj.~~ 

for p sufficiently small. Indeed, by (10.2) the left side is the Taylor series, in the variables 

Pro, of hj,~o((exp ~.~p jkWm)~) .  By definition of hj0k~ this latter expression is equal to 

PJ, k0, proving the claim. Applying this to the exponential term on the right in (11.9), we 

obtain 

I Uj~176 + 7f+ 7;(eJoko(U ) + e]ok,(u)) + O(lu]  s+i, T2), i f  (io ko) = (1, k ' )  
eU" we" wlk'hJok~ = s+i 

t U~o~o + ~(g~o~o(U) + e/o~o(U)) + O(lu I , ~2), otherwise, 

where e~~ o is defined to be zero for ]0>~s+l. Thus we obtain by (11.2) 

1 ~- ~ioko(U) -~ e]oko(U ) -1- O(]u[s+l) ,  i f  (]0, ]gO) = (1, k ' )  
(11.1o) h.~.(u) = 

g~o~,(u) + e~o~o(U) + O([u]~+'), otherwise. 
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By a similar calculation for Ylk', using (11.5) and (11.6), we obtain 

11 + + (J0, ko) = (1, k') 

= t + otherwise. 

This completes the proof of Lemma 8.2. 

Pro| of Lemma 9.3. We again let hj0k~ denote a coordinate function and follow the 

method of the proof of Lemma 8.2 to calculate Wk, in partial canonical coordinates. I t  

is easy to check that  we still obtain the expression (11.10) for/Jo~o(U), and by the homo- 

geneities given there this suffices to prove Lemma 9.3. 

(11.11) 

and 

(11.12) 

Pro|  8.4, We compute ~ and ~(Yk) in canonical coordinates by expanding 

exp (~1 u~ ~(15i) ) exp(t~r(Yk)), 

using the Campbell-Hausdorff formula (10.6). Since Y is an ideal, any commutator which 

contains a Z j0 can be expressed as a linear combination of the Z~. Now the result can 

be obtained by comparing the expansions of (11.11) and (11.12). We omit the details. 

This supplies the arguments omitted from w 8 and w 9, and thus completes the proofs 

of Theorems 4 and 5. 

w 12. Properties of the Map 6). 

For any point ~o E ~  = M  • R 7n-m, Theorem 5 produces a map 6): 17 • lY~ U, where l? 

is a neighborhood of ~0 and U is a neighborhood of 0 in the free Lie group N = NF. r of step 

r on n generators. Recall that  for ~7 e ~ we define 6)~: V-+ V by 6)~?(~) = 6)(~, ~). To 

simplify notation, we shall now assume that  Xk = Xk, k = 1 ..... n, and omit the tildas. 

Since (9 is defined by means of the exponential map we have 

(12.1) (9(~, ~/) = - 6)(~/, ~) = 6)($, ~)-1. 

Using (12.1) we may define a pseudo-metric ~ on V by putting 

(12.2) ~(~, ~) = 16)(~, ~)l, 

where I I is the norm function on N given by (5.2). We now show that  ~ satisfies inequalities, 

similar to the triangle inequality, which will be useful later. 
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(12.3) PROPOSITION.  / /  ~, ~, ~E ? with ~(~, ~) and Q(~, ~) both <~1, we have 

(i) I O(~, 7) - 0(r  7)l ~< Cl(e(~, r + e(~, ~)l/'e(~' 7)l--(1/r)), 

(if) ~(r 7) ~< C2(Q(~, ~) +e(7,  ~)). 

Note  t ha t  this proposi t ion is the  analogue for the  general  case of Theorem 14.10 (d) 

of Fol land-Stein [8]. However ,  the  proof of (12:3) seems to be much  more  complicated t h a n  

t h a t  of the  corresponding result  in [8]. 

Proo[. We first show t h a t  (if) follows f rom (i). B y  the  inequal i ty  (5.3) on groups we 

have  

~(~, 7) = } O(~, 7) l = } ( -O(~,  7) +O(~, 7)) + O(~, 7) l < 7(I O(~, 7) 1 + 10(~, 7) -O(~,  7) l) 

for some ~ > 0. Since 

0(~, ~) _~ 0(~: ' ~)i/r0(~, ~)1-(1/r) < 2(~(~, ~) -~ ~(~, 7)), 

(if) will be proved  when (i) is. 

To establish (i) we first  p rove  

(i)' 7. Z �9 

l<j~r l~l<j 

For  this we fix ~ and  establish local coordinates a round  ~. Le t  h m be the  corresponding 

coordinate functions: 

h~k(7) = (O~(7)b~- 

Now we define v = (vj~), w = (w~k) as funct ions of ~, 7 b y  

v = 0 ~ ( 7 ) ,  

and  w = 0~(~). 

Since 

(exp v. X) ~ = 7, 

Hence  

( e x p w . X ) ~ = r  (where v ' X = ~ j . k v ~ k X j k ,  w ' X = Z j . k w j ~ X j k ) ,  

(exp v . X )  (exp ( - w . X ) ) ~  = 7" 

hjk(7) = hj~(exp v- X exp ( - w .  X) ~). 

As in w 10 it  follows t h a t  the  Taylor  series of h m as a funct ion of v, w, a round  v=O, w=O 

is given b y  

(12.r  e v x d -  w" X)h j60 ,  

where e v" x and e (-w" x) are regarded as formal  power  series in v and  w respectively.  
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We now expand (12.4) using the Campbell-Hausdorff formula (10.6). Then 

(12.5) e~':%-w"~=exp((v-w).X+j~rd~q~X~'+O(oE< lvl~lw]'-Z)) 

where ~=( j ,k , ,  j~k2 ..... jsk~), ] a l = ~ = x j ~ ,  q~=qj~k, qj,~....,q~,~,,, with each qj~h=VJ~k~ or 

wj,~, and Xa=[Xj~k,, [Xj~k,, [ ..... [Xh_,k,_,, X~,k,], ...,]. X ~ is a commutator of length [a[. 

To check that  (12.5) holds, it suffices to show that  if in] >~ r, then q~ may be absorbed in 

the e=o~ term O(~0<,<r 1~ I'lw I r - ' )  By the definition of the norm on the group, 

(12.6) IleAl < I~1' and IIw~ll < I~1', 

where 1] H indicates Euclidean norm. (See (5.2).) We shall show, more generally, tha t  for 

any ~, 

(12.7) Hq~l[=o( Y, H'lwl'~'-'). 
O< l<  [a] 

By deletion, q~=(v,.~.v, . . . . . . .  , % ~,.)(w,;~; ..... w,~;~,;) with ~ l,+E~'~= [~]. Observe, 

however, that  since q~ is a coefficient of a commutator, it cannot be made up entirely of 

either v's or w's. Thus 0 < ~  l~< I~[. Putt ing l=~.  l~ and applying (12.6) we get (12.7). 

l~rom (12.5) and the above we have 

~ ~-w %.~.(:)=exp((v-w).X+ E o( E Ivl%l'~'-'))h,o~.(~)+o(21vl'lwl r-`) 
I~l<r 0<1<1~1 

=v,.~o-W~.~~ 20(Ivl'lwl'~ Y. Ivlqwl'-'). 
0</<1o O < l < r  

Therefore, 

(12.8) ((~(~,~)-O(~,~)),.,~.=v~,k.-(vj.,~.-wj.,~.+ ~ O([vl~lw[J'-z)) 
0<t< /0  

=w,.~.+ 2 o(l~l'lwl"-'). 
0<1<1~ 

Now since I(u,~)l < c Z~.<~.<,Z~IluAI (1,), (i)' follows from (12.8). To prove (i), it suffices 

to show that  there exists a constant 0 '  such that  if A and B are positive real numbers, 

(12.9) A~'B *-~' < C'(A + AaB ~-a) 

whenever 0 < a ~ < a , < l .  Indeed, if (I2.9) holds we put  A=~(~, ~), B=~(~,~]), a = l / r  to 

obtain 
e(~/, r ~)(j-z), < C(e(~/' ~.) + e(r/' r ~)(,.-~),-) 

from which (i) will follow, given (i)'. To prove (12.9) we use the trivial inequality 

xey l -~  if 0,,<0 ~ 1. 

Then put  x =A, y = A a B  ~-a, and choose 0 such that  0 + a ( 1 - 0 ) = a , .  q. e. d. 

In  defining integral operators on M =3~, we must first choose a suitable measure. 

Since the invariant measure on hr~ may be given by defining the Riemannian metric which 
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makes {Yj~}j.k orthonormal, we impose on 21~ the metric making {Xjk}j.~ orthonormal. 

For ~ fixed, the differential dO~ satisfies 

Therefore the volume element d~ at  ~ in ~ is carried into the volume dement  du on NF 

at  0. Since any smooth function on NF which vanishes at  u = 0  is O([uIX), we have 

(12.10) = (1 

Part IH. Operators corresponding to free vector fields 

We shall begin by  giving an outline of the material  presented in this and the remaining 

par t  of the paper. 

We are concerned with the situation tha t  arises when we are given vector fields 

X 1, X2 . . . . .  X , ,  on a manifold M, whose commutators  (up to length r) span the tangent  

space a t  each point. In  the previous par t  we have shown how, in terms of these vector 

fields, we can embed M locally as a submanifold of a larger 21~ and extend the vector fields 

to X1, X2 .... .  Xn so tha t  these are free (up to step r) and span the tangent space of _37/. 

Par t  I I I  will be devoted to the resulting analysis on -~, and in particular to the s tudy 

of the integral operators which arise when inverting differential operators of the type 

i=1 .~,,~ 

In  Par t  IV  we shall apply our results to the original situation involving the vector fields 

X 1, X 2  . . . . .  X n. 

To simplify notation we shall in all of Par t  I I I  omit  the ~ and write X1, X 2 . . . .  , X .  

for a set of vector fields which are free (up to step r) on M, and whose commutators  up 

to step r span the tangent  space at  each point. Shrinking M if necessary we obtain from 

Par t  I I  the existence of the important  mapping | M • M ~ ,  where N is the free nilpotent 

group on n generators, of step r; (see w 7, Theorem 5). 

We shall use O to construct our basic integral operators. Our problem then becomes 

tha t  of proving tha t  these operators satisfy certain commutat ion relations with differential 

operators, and tha t  they are bounded on appropriate spaces such as L ~, L v, L~, S~, and 

A~. I t  is here tha t  matters  become very similar to the situation already studied in Folland- 

Stein [8], where the group N was the Heisenberg group. We shall describe the arguments 

required in full detail only when they are substantially different from those given in tha t  

paper. The proofs tha t  can be given merely by  paraphrasing similar proofs of [8] will 
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be outlined only. As in w 5 and w 6, we shall assume, however, that  our functions may  be 

vector-valued. As before, by  definition a vector-valued function will be said to be in a 

certain class if each of its scalar-valued components is in tha t  class. 

w 13. L ~ inequalities for operators of type A. 

In  the standard theory of singular integral operators (using the Mihlin-Calder5n- 

Zygmund formalism) the. operators are given in the form 

(13.1) / --+ f k(x, x -  y)/(y) dy, 

where, for each fixed x, k(x, z) is a homogeneous function in z of suitable degree, and the 

dependence on x is smooth. 

In  our situation matters  wiI1 be similar. The analogue of (13.1) will be 

(13.2) / -+ fk~(@(~, ~))/(~) d~, 

where each k~(u) will be a homogeneous function of u defined on ~V, where the homogeity 

is taken with respect to the standard one appropriate for N. Furthermore, the dependence 

on ~ will be smooth. Observe tha t  O(~, ~) plays the role of x - y .  

Before giving formal definitions, we recall some notation concerning groups. N = N F 

is defined in w 3. With the standard homogeneity (~t given on/Vp as in w 5, the homogeneous 

dimension Q is t ha t  integer so tha t  5t(du)= tQdu. (1) A function k defined on N - ( 0 }  which 

is smooth away from the origin is said to be of type ~, ~ > O, if 

k(5~(U)) = t-Q+~k(U) all t>0 .  

k is said to be of type 0 if the above holds with ~ = 0 and the mean value of/c vanishes, i.e. 

f~<l~Kbk(u) du = 0, 

where I" [ is the norm function. (See (5.2).) 

We may  assume (replacing M by  an open relatively compact subset of M) tha t  the 

mapping @ is uniformly smooth on M • M. Write d~ for the measure given by  the Rieman- 

nian metric as described in w 12. A function K(~, ~) on M • M will be said to be a kernel 

of type ~, ~ ~> 0 if for any  positive integer 1 we can write 

(13.3) K(~, V) = ~ as(S)k~~ ~))b~(v) § Ez(~, V). 

(x) F o o t n o t e :  T h e  r e a d e r  s h o u l d  n o t e  t h a t  i n  t h e  c a s e  t r e a t e d  i n  F o l l a n d - S t e i n  [8 ] ,  Q = 2 n  + 2.  
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(a) EzECZ(M • 

(b) a~,b~eC~(M), i = 1 , 2  ..... s, 

__> (i) (c) For  each i, the function u k~ (u), defined on N is of type >~2 and depends smoothly 

o n  ~.  

(Of course the integer s depends on l.) 

I t  is instructive to point out that  the definition (13.3) is not as unsymmetric as it 

might seem. Indeed we claim that  if K(~, ~) is a kernel of type 2 then so is K(~, ~). To 

see this, note first that  since O(~, ~) = - 0 0 7 ,  ~) we are easily reduced to the statement that  

if ]c~(u) is of type 2 and smooth in ~, then a(~) ]%(O(~, ~))b(~) is a kernel of type 2. 

In  fact, write u=(ujk)EN, where Ujk=Ujk(~, ~), and expand the function ~-+/%(z) 

in a Taylor expansion about the point ~ in powers of the ujg. Then 

t ~ 

lcn(z ) = k~(z) + Z kT)(z) ~V + Rt(z' u), 
I=1=1 

where k(~)(z) denotes the appropriate partial derivative of kg(z) with respect to ~, and u = 

is the corresponding monomial in the ujk. Observe that  if k~(z) is of type 2 (as a function of 

z) then so is k~)(z). With z=(ujk)=O(~, ~) the lc(~=)(u)u= are therefore of type >2. Finally, 

if t is sufficiently large, the function Rt(z, u)with z=u=O(~, ~)belongs to Cl(M• 
This proves the assertion concerning the symmetry of kernels of type 2. 

Our final, and basic, definition is now as follows. An operator T is said to be of type 2, 
2 > 0 i f  

(13.4) (T/)(~) = ~MK(~, ~) /(~) d~, 

where K is a kernel of type 2. We shall show below that  this integral converges absolutely. 

When 2 = 0, we say T is of type 2 if 

(13.5) T/(~) = fMK(~, 7)/(~) d~ + a(~)/(~), 

where K is of type 0 and aEC~(M). The integral (13.5) will be taken in the principal- 

value sense. 

Several facts will be needed to show that  the operators are well-defined. First observe 

that  if K is a kernel of type 2, 

(13.6) I K(}, ~)[ 4 C(~(}, ~))- Q+~, 
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where ~ is the pseudo-metric given by ~(~, 7 )=  ]| 7)]. Next, by (13.6) and the fact 

that  d 7 = (1 + O(lu I))du, (see 12.10) 

if 2>0.(1) Now suppose 1=0.  Using the vanishing mean-value property we have (as on 

p. 479 of [8]) 

(13.7) v) do < e) 

from which the existence of the principal value integral defining (13.5) follows easily for 

smooth/ ,  by using (13.6) (See [8], p. 480). 

The first main theorem is as follows. Suppose 2 = 0. 

For each e > 0 define T~ by 

Jqf(~.,)> K(~, ~)/(7) dv + a(~)/(~). T~(/)(~) 

THWOR~,~ 6. Suppose T is an operator o/type O. Then T can be extended to LV(M), 

1 <p < ~ ,  as /ollows: For each /EL  v, lim~..~ T~(/)= T(/) exists in the s norm, and the 

mapping T-+ T(/) is bounded/tom Z ~ to itsel/. 

Proo/. The first step is to prove that  T has the required property when p = 2. For this 

purpose we may assume a = 0  in (13.5) and define 

Tk(/) = f2_,<q(~.,)<=_k+ 1K(~, ~)/(~) d~, k = 0, 1, 2 

Following the argument of [8], w 15, it suffices to show that  

IIT~ Till < C2-,~-* r, 
and 

IITkT~H <~ C2-1k-r 

For simphcity we may assume that  

K(~, ~) = k~(O(7, ~)), 

where k~(u) is of type 0. 

(1) F o o t n o t e :  I t  is use fu l  to  recal l  thai) ; [  ul<~ a [r I - Q +2 du  = CX a I if ~t > 0 ; l u l >  a l u I - Q+R d~ = C~ 2 

if ~t < 0. See K n a p p - S t e i n  [12], F o l l a n d - S t e i n  [8], F o l l a n d  [6]. 
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The main ingredients for the proof are: 

I (i) ]K(~, ~7) I ~< AS(~, 7)- Q, obtained from 03.6) with ~=0;  

(13.8) (if) the mean-vMue estimate (13.7); 

(iii) the estimate 

I K(n, r ~)I < 0o(5(~, ;)+5(~, ~)1/r5(7, r ~)- Q- 

when q(~, r > C5(~, r for C sufficiently large. 

To prove (iii), first write u=O(~,$), v=O(7,~) and note that  if 5(7,~)>C5(~,~) then 

l u I = 5(7, r >~ 01(5(e, r + e(e, r 5(~, r ) 02 I 0(~, ~) -- 0 (~, ~)l '  by (12.3), = 02 [u - v  l" 

By choosing C sufficiently large, we may assure that  C~ ~>2. Therefore, estimating I K(~, 

~)-K(~/, ~)1, 5(7, ~) > C5(~, ~) becomes a question of estimating 

(13.9) kr with I~1/> 21u-vl. 

Now the difference in (13.9) can be written as 

(13.10) {~d~) - ~d~)} + {kd~) - kdv)}. 

For the first bracket we have the successive estimates 

Ik~(u)-k~(~)l ~ c l l~ -~ l l  Ir(~)l  ~ c l l r  l~l -Q 

~< Cl o(7, r a)l I~1 -Q~< clo(7, r ~)15(7, r ~-'. 

The first estimate above follows from the mean value theorem, the next by the homogeneity 

of k', the third from the fact that  ~-' |  ~) is a diffeomorphism, and the last since lul = 

5(7, ~) ~< constant. For the second bracket of (13.10), observe that  whenever k is a smooth 

homogeneous function of degree -Q ,  then 

]u-vl 
I k,(~) - ~(v)l < c I~1 o+1 for I~ I~ > 2 I ~ -  vl, 

as a simple homogeneity argument shows. (See Lemma 8.10 in [8].) Putting these two to- 

gether gives 

I K(n, ~)- K(7, ~)l ~< C[ 0(~/, ~) - 0(7, ~)l 5(7, r Q-~, 

from which (13.8 iii) now follows by (12.3). 

By  using (13.8) the rest of the proof of the L 2 boundedness may be completed as in 

the case treated in [8]. To prove that  T extends to a bounded operator o n / 2 ,  1 <1o ~< 2, 

we need to show that for sufficiently large C 

o, ,  
> C~(~, 
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where 

{ K(~,~) when Q(~,~)>e 

K~((, ~)= 0 otherwise. 

This is proved by the same argument as i~ [8], upon using (13.8 iii) and the fact that  

I K(~, ~)1 ~< CQ(~, ~)- Q. Finally, the result for 2 < p  < ~o then follows from the case 1 < p  ~<2 

by duMity, in view of the essential symmetry of the kernel K(~, ~) already discussed above. 

T h e / 2  theory for operators of type 2, 2 > 0 is much simpler. 

T ~ O R ~ M  7. Suppose T is o/ type 2>0 .  Then T has a bounded extension on Lp(M), 

l ~ < p ~ .  If  0 < 2 < Q ,  T is bounded /tom /2(M)  to Lq(M), where 1/q=(1/p)-(2/Q),  i/ 

l < p ,  q < ~ .  

The proof is not different from the proof of the corresponding theorem in [8]. See in 

particular Theorem 15.11 and the general lemmas (15.2) and (15.3) used to prove it. 

w 14. Operators of type 2 and vector fields 

We shall next study the interplay of the basic vector fields X1, X 2 ..... Xn and the 

operators T of type 2. 

Recall (from the definitions of w 7) that  we have a doubly indexed family of vector 

fields {Xjk}, 1 ~j<~r, where Xlk=  Xk, and more generally the j index indicates that  X~k 

is a commutator of length j of the X1, X2, ..., X n. The {Xm} span the tangent space at each 

point. 

The results which we shall need are as follows. 

THEOREM 8. Suppose T is an operator o/type 2 >~ 1. Then X k T  and T X  k are operators 

o/type 2--1.(1) 

THEORnM 9. Suppose T is an operator o/type 2 >~0. Given the vector field Xj~ 1 <~ Ja <~ r, 

there exist operators ( T~.k) and T o so that 

Xj~176 ~.T,~X~ + To, 
Lk 

where the operator Tj~ is o/type 2 + ] - ] o  i/J>~]o or o/type 2 i/J<]o, and T O is of type 2. 

Before proceding to the proof of Theorems 8 and 9, we review some notions concerning 

homogeneity with respect to the family of dilations ~. Recall that  a function / on N 

(1) Strictly speaking one should say that there exists an operator T" of type ~t - 1 so that TX] = T" ] 
for smooth functions of compact support. A similar interpretation should be given to all further state- 
ments of the Same form. 
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is said to be homogeneous of degree 21 if Ot/(u)=taJ(u), where ~t/(u)=/(0tu). A differential 

operator D is homogeneous of degree 22 if D(O~h)=ta'Dho5~ for all functions h. Since we 

are now primarily interested in local questions, we shall say that  a function / is of (local) 

degree >~2i if its Taylor expansion at 0 is a formal sum of terms each of which is homo- 

geneous of degree >~21. Similarly, D is of degree ~<2~ if its Taylor expansion is a formal sum 

operators of degrees ~22. (See w 7.) In  the sequel we shall use inplicitly the following simple 

relations between functions and differential operators: 

If / is a function of degree J>21 and D is a differential operator of degree --<22, then 

(i) ]D is a differential operator of degree ~22-21,  and 

(ii) D/is a function of degree >~21-22. 

Proo/ o/ Theorem 8. We consider first the case when 2 > 1. Using the reasoning in [8], 

pp. 488-490, it suffices to prove that  whenever K(~, ~) is a kernel of type 2, 2 > 1, then 

X~.K(~,~) and X'~K(~,~)) are kernels of type ~ - 1 ,  where the superscripts indicate the 

variable of differentiation. 

Recall from w 7 that  the vector fields X~ can be suitably approximated by the cor- 

responding vector fields Y~ on the free nilpotent Lie group NF. Now if ~ is fixed, we express 

near ~ in terms of u by 4*-*u = 0(~/, 4). Then by Theorem 5, 

(14.3) X~= Xk= Yk + Rk, 

where Rk is a differential operator of degree ~< 0. 

I t  will also be useful to express Yk in canonical coordinates. Since (~t(exp~Yk)= 

t exp vYk, Yk is a homogeneous differential operator of degree 1. Therefore, if we write 

~]ls ~, ! (14.4) Yk-~-~ + ~ "(k~'u~-- 
1 < l<~v ~ U l s  

each g~)~(u)~/~u~.~ is homogeneous of degree 1, and hence ,(k) uz. s is homogeneous of degree 

1 -1 .  

We are now ready to calculate X~K(4, 9)" I t  suffices to restrict attention to a kernel 

K(4, 9) of the form 

K(4, V) = a(4)/c~(O( v, 4)) b(v), 

where k~(u) is homogeneous of degree - Q  +2 and depends smoothly on 4. Then a differenti- 

ation on a(4) gives a kernel of type 2. Similarly the differentiation with respect to ~ on 

k~(u) again gives a function of the same type, 2, and this again leads to a kernel of type 2. 

Finally we apply X~ to the 4 variable of @(9, 4) by using (14.3) and (14:4). Observe 

that  since Yz is a homogeneous differential operator of degree 1, Yz(lQ(u)) is homogeneous 
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function k}(u) of degree 1 - 1 ,  while R~(k~(u)) is of degree > t .  If the Taylor expansion of 

RI(IQ(u)) at u=O is taken to enough terms the remainders will contribute a function of 

u which is of class C a in u, whenever q is fixed beforehand. 

There remarks show that  the kernel XCIK(~, ~]) satisfies the expansion property (13.3) 

for 2 - 1  and hence is a kernel of type i - 1 .  The proof is the same for X~K(~, ~). This 

concludes the proof of the theorem when 1 > 1. 

The proof for i = 1 is similar except for one modification. We need to show that  if 

k(u) is a kernel of type 1 on NF, i.e. k(u) homogeneous of degree - Q + I  and smooth away 

from the origin, then Yikk(u) is a homogeneous function of degree - Q  with vanishing mean 

value. The latter fact of course follows because Ym k is a homogeneous distribution of type 0, 

and all such are, modulo a constant multiple of the dirac delta function, given by  a homo- 

geneous function of degree - Q  with vanishing mean value. (See e.g. Folland [6], Proposition 

1.8.) Now the rest of the proof for the case 1 = 1 is completed as in case of 2 > 1. 

Proo/o/ Theorem 9. We first extend (14.3) and (14.4) to higher commutators. First 

note that  if D 1 and D~ are differential operators of local degrees ~ i  1 and ~t~, respectively, 

then D1D2, and therefore [D1, D2], are of degree ~21 +22. Since each Yj~ ko is a commutator 

of length ?" of the Ym, and Xj~176 is the corresponding commutator of the Xm, (14.3) may 

be generalized to 

(14.3') XjCk = Yjk§ 

where Rjk is a differential operator of degree ~<~ - 1. (14.4) generalizes to 

(14.4') y j ~ = ~ +  ~ jk a gzs (U) - - ,  
r i < l < r ~Ul s  

where g~ is homogeneous of degree l - j .  This follows from the fact that  Ym is homogeneous 

of degree ]. 

We next claim that  if R is any vector field of degree ~< ]0, then 

(14.5) R=XhmX~k , 

where each hj~ has a Taylor expansion whose homogeneous terms are functions of degrees 

~>~'-]0. In fact, expressing R first in terms of the a/~uj~, we have 

R = ~ a~k buj~' 

where the ajk involve homogeneities of degrees ~>]-]0. By inverting the triangular system 

(14.4), we obtain 

(14.6) ~u,~,- :rj~+ ~<,<.,E /lJ~)(u) r . ,  
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with each jz~(~'~)tu~ ~ homogeneous of degree 1-?'. Substituting this in the expression above 

for R gives 
R = 5 b~ r ~ ,  

where again the homogeneities of the b~ are of degrees ~ - ~ 0 -  However since Ym= 

X ~ - R ~ ,  R~ of degree ~<~-1 by (14.3') we may write 

R = 5 ~ X~ - 5 ~ R,~. 

The term ~ bmX~ is already in the proper form, while ~ b~R m is of degree ~<~0-1. 

Thus we may apply the argument again to R ' = - ~  bmR m. Continuing this way we 

establish (14.5). 

Let us next define the vector fields Y~-~ by 

Because of (14.6) we have 

r i ~ ( l ) ( - u )  = - Y~(/(-u)). 

0 
- y;~ + 5 11'2)(- u) z',.: 

~U27 r j < l <~ r 

and hence by (14.4) 

(14.7) Yjk = ~g~(u) Y' 18, 

where g~ is homogeneous of degree l-io. Also, since 0(~:, 7) = - 0 ( 7 ,  ~) it follows from 

(14.33 t h a t  

(14.3-) x ,~  = - Yi~ + R;~, 

where R'jk is of degree ~ j - 1 .  Thus if R is any vector field of degree ~'0, then 

(14.5') R = ~ h;~ xT~, 

where each h'j~ has a Taylor expansion of homogeneous functions of degree >~]-]0. 

In proving Theorem 9, we need to apply the vector fields Xj, k~ to terms of the form 

k~(~)(~, ~)) and to compare this with the effect of the X~k on/r ~)). When the differenti- 

ation is with respect to ~ in k~(u) we get a term of type ~ which is incorporated in T o. Now 

let X~k and X~k act on the u variable. By (14.3'), (14.3"), (14.5), (14.5'), and (14.7), 

x~.~. = Z ~ . ( ~ )  xT~, 

where each a~~ is of local degree ~> max {i ]0, 0}. Hence, 

X~ok~162 = ~ a~'~k~ X~k(]c~(u)) -= ~ X~k(a~'~o(u) br -- ~. X~k(a~*kkO(U)) k~(U). 

ai~'(~)kd~) is a funotion of type ~>max{a, ( i -J0)+~}-  Thus the operator T~  whose 

kernel is K(~,~)=a(~)a~'k~o(u)lc~(u)b(~7), with u=E)(~,~), is of type max(~, ( i - jo)+~},  

1 9 -  762901 A c t a  m a t h e m a t i c a  137. Imprim5 le 20 Janvier 1977 
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and is in the desired form for (14.1). The terms X~.k(a~:~'(u))k~(u) give operators of type X, 

which again are incorporated in T o . This concludes the proof of the theorem. 

COROLLARY. ~uppose T ~8 an operator o/ type ~, ~>~0. Then there exist operators 

To, T 1 .... , T n o/type ~ so that 

(14.8) Xk~ T=  ~ T~:Xk + To. 
Ir 

Proo/. Applying Theorem 9, we obtain 

Xk, T =~  TjkXjk+ To, 

with T m of type A + ~ - I .  Now consider, for example, the monomial T~X~ ,  writing 

X~k = [Xlk', XI~-], 
T2k X2k = ( T2k Xlk ' )  X l k  n -- ( T2k X lk .  ) Xlk ' .  

By Theorem 9, T2~Xlk, and T~XI~, are type ~, since T ~  is of t y p e A + l .  Hence T ~ X ~  

has the required form for (14.8). A similar argument holds for TmXjk, ] > 2. 

w 15. Parametriees 

We are now ready to achieve one of our main goals. We consider the differential 

operator 

(15.1) s = ~ X~ + �89 ~. cjk[Xj, Xk], 
s ~ l  J.k 

where c = (cjk) is a skew symmetric matrix of smooth functions on M. For  further applica- 

tions the appropriate conditions to impose on the cj~ are of two alternative kinds. Recall 

tha t  the cjk take values in the space Of linear transformations of a finite dimensional 

vector space W, (See w 5). In  the scalar case (i.e. when dim W = I )  we shall require 

(15.2) II m < 1 for each ~EM, 

where I1" II denotes the operator norm as in rar  I. 

When the functions are vector-valued (and vr is a linear transformation) we shall 

require the following less explicit condition on the cck.(1) Suppose Y1, Y~, ..., Yn are the 

generators of the free Lie algebra ~r.r .  Then for each ~ tiM, we require tha t  

(15.2') yl[r/ll <cl(r  f,/)l, y llYJ/ll ,<ol(cTf,r fec , 

for all ~ EM, where s = ~. Y~ + �89 ~ cjk(~) [Y ,  Yk]. 

(*) Observe b y  the  resul ts  of  P a r t  I t h a t  in t h e  scalar  case (15.2) a lways  implies (15.2'), a n d  con- 

versely  (15.2') implies (15.2) w h e n  n ~ 3 a n d  c is pure ly  imaginary .  I n  t he  general  case i t  would  be in- 

te res t ing  to de te rmine  more  explici t  condi t ions  equivalent  wi th  (15.2"). 
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T ~ O R E M  10. Given a~C~0 (M), there exist operators P, S, and S' so that 

(i) P is o I type 2, 

(ii) S and S' are o/type 1, 

(15.3) (iii) ~ = a I  + S, PI= = a I  § S', where I denotes the identity trans/ormation. 

Proo/. We pass to the free nilpotent algebra 92 with generating vec tor  fields 

Yl, Y~, ..-, Yn used to approximate the vector fields Xk, by  Theorem 5. For each ~EM 

consider the operator 

n 

c~= ~ r~+�89 Y~]. 
t = 1  

]flow if we are in the scalar case and condition (15.2) holds, then so does (15.2') by (2.11) 

of Par t  I. However, if (15.2') holds in either case, then Theorem 3 of Par t  I, guarentees 

tha t  s is hypoelliptic and has a unique fundamental solution k~ which satisfies the following 

properties. (See w 5 and w 6). 

(1) u-+kt(u ) is of type 2 (as a function on h r, the group corresponding to 92); 

(2) s where ~ is the Dirac distribution on N; 

(3) The function ~-~k~(u) is smooth in ~. 

We fashion our parametrix out of k~ as follows. Consider any C ~ function b with com- 

pact support in M such that  b---1 on the support of a. Now let K be the kernel of type 2 

given by  

(15.4) K(~, ~) = a(~)k~(O(~, ~))b(~), 

and P the corresponding type 2 operator 

To verify that  P satisfies the properties (ii) and (iii) of the Theorem we follow the analog- 

ous argument for the proof of Proposition 16.2 of [8], the only difference being that  in our 

ease we shall have to carry out an additional differentiation on the ~ variable of k~(u). 

Thus for fixed ~, let us consider the action of differentiation with respect to ~, given by 

s V)). We claim that  the result is a(~)~,(~)§ ~), where K 1 will be a kernel of 

type 1 and ~(~) is the delta function centered at  ~. 

In  carrying out the indicated differentiations, it is easy to see that  the main contri- 

bution arises when M1 differentiation is on the u variable in k~(u), since the other dif- 

ferentiations will lead to kernels of type 1 or higher. Now we approximate X~ by Yk with 
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error Rk, R~ of degree ~<0. Then 

J t k  j , k  

where A is a differential operator of local degree ~< 1. The application of Z Y~ + �89 [ Yj, 

Y~] to/Q(u) gives us the delta function at  u = 0  (i.e. at  ~ =~), and thus this term contributes 

a(~)b(~)~(~) =a(~)~(~).  Since k~(u) is a kernel of type 2, the application of A to k~(u) is 

a kernel of type 1, and so leads to an operator of type 1. Putt ing the above together shows 

tha t  F~P=aI+S, where S is of type 1. The proof for P s  is similar, q.e.d. 

From Theorem 10 we can find a useful expression for • in terms of the X J .  

COROLLARY. Suppose a is a C ~176 /unction o/compact support. Then there exists operators 

T 0, T z ..... T~, o/type 1, such that/or any ] E C~(M), 

(15.5) al= ~ T;Xfl + To/. 
j = l  

r, ~ X 2 and use (15.3). The Proo/. Apply the theorem to the special ease when , . . , = ~ j - 1  j, 

result is (15.5) with Tj=PXj ,  ?'=1 .. . .  , n, and To=S'. Since P is of type 2, Tj=PXj  is of 

type 1 by  Theorem 8 of w 14, and the corollary is proved. 

w 16. The spaces Sf ,  L~, and A= 

The basic properties of operators of type ~, and in particular, of the parametr ix P 

and the error te rms S and S' of Theorem 10, will be expressed in terms of function spaces 

which we now study. 

For any  integer k >~0 and any  p, 1 < p  < ~ ,  we define S~ (M) to consist of all 1 ELf(M) 

such tha t  (X~, Xi~ ... X~)/ELY(M), all 0 ~ 1 ~ k. For the norm we take 

II111  = Ilx,,... 

where the sum is taken over all ordered monomials X~,X~ ... X~z, O~l<~r of the basic 

vector fields. 

THEOREM 11. Suppose T is an operator o/type ~, where ~ is a non-negative integer. 

Then T is bounded/rom S~ to S~+~. 
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Pro@ Write 2' = T([). Then successive applications of Theorem 8 and the corollary 

of Theorem 10 show tha t  

x , . . . ,  xj,,f, 
O<~k" <~lf J l . . . ]  k, 

where the operators T h...k, are each of type 0. By  Theorem 6 these operators are bounded 

o n / 7 ( M )  and the assertion of Theorem 11 then follows. 

The function spaces S~(M) take into account the special directions given by  the basic 

vector fields X 1 . . . .  , X n. For some other applications it is useful also to consider the classical 

Sobolev spaces which don' t  distinguish these directions. To s tudy these spaces we can 

embed M (which we may  assume has already been shrunk) in R~(m = d i m  M) by  an 

appropriate coordinate chart. Then any compactly supported function f on M may  be 

extended to all of R m by  setting it equal to zero outside the coordinate neighborhood 

corresponding to M. Now let L~(R~), 1 < p  < oo be the classical Sobolev spaces. (See e.g. 

Stein [22]). I f  f is a function on M we shall say /EL~(M) if af EL~(R m) for everyaeC~(M). 

Following this convention we shall say tha t  a mapping T taking functions on M to 

functions on M is bounded from L~,(M) to L~(M) if for every pair a, b E C~~ the mapping 

aTb is bounded from L~,(R ~) to L ,~..tllm~. Of course the bounds of the mappings aTb may  

depend on the cut-off functions a and b. 

THEORElV~ 12.(1) Suppose T is an operator of type ,t, where ~ is a non-negative integer. 
p Then T is a bounded mapping from L~(M) to L~+(~/T)(M), /or ~>0 ,  1 < p <  oo. 

The reader should recall tha t  r is the least integer so tha t  

[X h, [X~,[... X~j]...], ],/" < r, span the tangent space. 

The theorem will be based on the following lcmma. 

the commutators  

(16.1) LEMMA. Suppose T is an operator o/type 1. Then T maps L~(M) to LIlT(M), 

1<10<oo. 

The proof of the lemma is merely a reworking of the argument (corresponding to the 

case r =2) given for Proposition 19.7, pp. 508-514 of Folland-Stein [8], and so we may  be 

brief. 

I t  suffices to consider T with a kernel of the form a(~)k~(| ~))b(~), where /Q(u) 

is homogeneous of degree - Q + I  and smooth jointly in ~ and u when u4=0. We replace 

(1) An  elaborat ion of the  a rgum e n t  shows t h a t  the  resul t  ex tends  to any  non-negat ive real }t. 
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/~(u) by the analytic family zk~(u)lul z-l, 0 <Re(z)<~r, and write T~ for the operator with 

kernel a(~)zk~(O(~l, ~))I (9(~, ~)1 ~-1 b(~). 

As in [8], and by the use of the reasoning in w 13 and w 14, one can verify the following. 

(i) For each / fi/2(M), g e C~0 (M), the function z-+ S T~(]) gd~ is analytic for 0 < Re(z) < r, 

continuous in the closure of the strip, and of at  most polynomial growth at infinity. 

(ii) When Re(z) = r, T~(/) G I-~I(M) and II Tz / II L~(R m) "~< C(1 + [z ])r+2 ]] / II L P(z~). 

(Hi) For each z with Re(z)=0, T~,(f)~Tz(/) in I2, as z'~z, when Re(z')>0. Moreover, 

II T,(/)II 0(1 + I=l)" II/II ,(M,. 

(In (ii) and (fii) above we have considered the natural extensions of T z to functions 

on R ~ as described above.) A combination of (ii) and (Hi) via the Calderhn interpolation 

theorem (see [4])then gives 

I1 = II < c II l 

and the lemma is proved. 

Still assuming T is of type 1, we shall show that  T maps L[(M) toL[+r Consider 

the vector fields Xm, 1 <]  ~< r spanning the full tangent space. By Theorem 9, if b e C~~ 

then 

Xjok, T(bl) = ~, Tj~(Xjk bl) + To bl, 

where T m and T O are of type 1. If  ]eL[, each X~kb I is i n / 2 ,  and so by the lemma, 

X~a2~ ). Since the Xjk span, this implies aTbfeL~+(li,)(M). By repeating this 

argument, we can show that  T maps L~(M) to L~+(I+~) when ~ is a non-negative integer. 

The standard interpolation theorem for L~(R ~) (see Calderhn [4]) then shows that  the 

same result holds for any real ~, 0 < ~ < oo. 

Finally, we drop the restriction that  the operator T is of type 1. Suppose T is of type 

/ > 1, and a is any smooth function of compact support. By induction it will suffice to show 

that  

(16.2) aT =~ TITS, 

where Tj is of type l - 1  and T'~ is of type 1. To prove (16.2), let P be the parametrix for 

s =~. X~. Then 

a T  = T8-  ( T X j ) ( X j P ) ,  

which proves (16.2) with To=T, T;=S, and Tj=TXs, T'j=XjT. (The operators are of 

the required type by Theorem 8.) This concludes the proof of the theorem. 

There is the following basic inclusion relating the spaces S~ and L~. 
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Proo/. Suppose f i r s t /ES~(M) .  B y  (15.5) 

(16.3) a/= ~ T jX , /  + To/, 
. t= l  

Tj  of t ype  1. Since X j / 6 1 2 ( M )  b y  assumption,  Theorem 12 shows a/EL[IT(M), proving  the  

case b = 1. For  } = 2 app ly  (15.5) again  to  the  funct ion a/, using ano ther  funct ion a~ E C~0(M) 

wi th  a 1 = 1 on the  suppor t  of a. This  gives 

a~ = ~ TjXjTi, Xj,/-t- 5 TsXj To/" 
t . t"  i 

By the  corollary to .Theorem 9 we can reverse the  order of X j  T'j which gives 

a[= ,~ T, TTXz, Xr[+ Z T,T'~'Xd, 
/, , "J" t . k . !  

where the  T~, T'~, T~" are of t ype  1. An appl icat ion of Theorem 12 then  shows /6L~/~(M ). 

This  a rgumen t  can be cont inued indefinitely, giving the  theorem.  

We  now come to  the  A a spaces. We  shall say  t h a t / ,  defined on M, belongs to  A=(M) 

if a], ex tended  to  R ~, belongs to  A~(R m) for any  a6C~~ (M). For  the  basic propert ies  of the  

A~ spaces, see e.g. Stein [22]. The  ma in  fact  we shall p rove  is the  following. 

THEOREM 14. Suppose T is an operator el type l, ~ > 0 .  Then 

(a) T maps  A~(M) to A~+(~/r)(M),/] ~ > 0, 

(b) T maps Z~~ to A~/~(M). 

Remark. For  the  case r = 2 see Greiner-Stein [9]. 

Proo[.(1) We consider first  the  case 0 < t  ~< 1. Eve ry th ing  will be based on the  following 

est imate:  

(16.4) LEMMA. Suppose K(~, 7) is a kernel o[ type 2, 0 < t ~ < 1 .  Then 

(16.5) JMI K(}I, 7) - K(}2, 7)] d~ ~< C [l } * -  }~ 

(The no ta t ion  ]]}~-}~ll indicates the  Eucl idean distance be tween two points  

}1, }2 e M C  Itm.) 

(1) We limit ourselves to the case r ~ 2. The argument given would have to be modified somewhat 
to cover the classical case r = 1 (see also the proof of Lemma 18.3 below). 
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and 

Pro| We divide the region of integration of the ~ variable into two subregions: 

The constant d will be chosen in the course of the proof. We can as usual assume that  

K(~ e, ~])=a(~)k~(| ~))b(~), where each u-+lc~(u) is a function of type A on the group 

and the dependence on ~ is smooth. 

Consider first 

/1 = fq(~l ,,)~<d Jl~-~l l  1/" [ K(~I '  ~]) -- K(~ ,  V)[ d~. 

Observe that e(~l, ~) = I 0(~1, ~2) 1 ~< Cli| ~:)111/: since Iluli ~ -< c ,  5+:llU+~lr 1,<~Clluill/r. 

(See (5.2) and 5.4).) However, | ~) vanishes on the diagonal and is jointly smooth. 

Therefore lie(~, ~)11 < Cll~-~ll, which combined with the above gives 

From this and the "triangle inequality" 

e(~,, ~) < c(e(~l, ~) + d ~ .  ~)). 

(see (12.3)) we have the containment 

{~." e(~l , ~])~ di l l1-~2[[  l/r} c: {~: ~(~2, ~) ~ C:]]~1--~2HI/r} �9 

Hence we get as an estimate for 11 

In view of (13.6) and the properties of 0(~, fl) and the measure d~ already discussed in 

w 12, we get 

< cj i , , ,~ ~,~,-~:,,,,, lu I- Q +~du < c '  II ~, - ~ II ~,~ 11 

when ~ >0. (See Footnote before (13.7).) 

Next, consider 

J q(~n~)>~. II&-~ll 

We shall estimate IK(~l, ~ ) - K ( ~ ,  ~)]. Except for a trivial term which is dominated by 

II~x-~all (~(~1, ~))-e+~, this difference can be estimated by  

(16.6) I ~,(~) - -~, (u)  I + I ~,(u) - ~,(v) I 
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where u=0(~ ,~z )  and v=0(~,~2) .  The first difference in (16.6) can be majorized by 

CIl~x-~ll  }ul-  Q+~ = CIl~z-~2]l~(~x' ~)- Q+a, which again gives a contribution of the size 

of the trivial term. 

We now focus on estimating the main term of (16.6): lk~(u)-k~,(v)l .  We write 

u 6 N as u = (ujk). Recall that  the basic dilations are (ujk)-* (tJujk), t > 0. We claim that  

( ,6.7) I k~ (u ) -~ (v ) l  <c  ~ ~ lu,,,-v,,d I,,I- ~+% 
j : l  k 

whenever [u[ >t 2 ] u - v  I. To prove (16!7), we note tha t  since both sides are homogeneous 

of degree - Q  +2 under (u, v)---> (tu, tv), it suffices to prove the equality when ]uJ = 1 and 

l u - v l  <~�89 In  tha t  case (16.7) is an immediate consequence of the smoothness of k~(u) 

away from u = 0. 

Now lu-vl = I o(,;. ~ , ) - o ( , ; .  ~,)1 --<< CliO(,;. ~x ) -e ( , ; .  $,)11 ''~ < c d l ~ l - a ,  ll "~ 

as before. Thus in the region under consideration, I~ I ~> ~11~,- ~11 ~'' implies l u I >~ 2 1 ~ -  v I, 
for d>~2Cx. Now fix d so that  d=2C r Then since ~. lujk--vjk] <~ C'][O(~, Sx)-O(~], ~2)]] 

<~ C"'11~1 -~:z]}, (16.7) impnes 

I ~ ( ~ ) - k , ( v )  ~< c l l ~ x - ~ l l  I ~ l - ~  

whe,, lul ~> dll~,-~11 x'~. 
Gathering together our estimates gives us 

] K (~ I ,  ~/) - g(~:u, ,q)[ ~< CH~ x -~:2[[ (~(~:x, ~/))- Q+a-" 

in the region used to define 12. Hence we obtain 

12 K C]] ~x - ~2 H ( e(~X ' ~ ) -  Q+)'-rd~" 
de(& m)>>- a I I ~ -  &I lilt 

However, for any positive s, 

/q(~. n)~>~(~' ~)- Q+a-~&/~< C ;  ,,l~>Cs 'U]Q+t-rdUg~' ' t -r= 'Jl,r8 

provided 2 < r, which holds in our case since 2 <~ 1 and r >~ 2 by assumption. This proves 

the lemma. 

The lemma immediately yields part  (b) of the theorem when 0 <2 ~< 1. 

We prove par t  (a) of the theorem first when 0 < ~ < 1. Suppose ] EA~(Rm). Then there 

exists a family/~ E C~176 m) so tha t  

nl(a/~x,)/.llLoo~c~ ~-1, j = i  . . . .  m. a . d  I 1 / - / ~ I I L ~ c ~  ~ 
19f - 762901 Acta mathematica 137. Imprim6 le 20 Janvier 1977 
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whenever  0 < s <  0% I n  fact,  we m a y  t a k e / ~ ( x ) = u ( x ,  ~.), where u is the Poisson integral  

o f / ,  as in Chapter  V of Stein [22]. The  propert ies  above then  follow since 

/- /~= - f[ (au/ay)dy, H~u/ayl]Loo ~ Cya-1 and ][Su/Sx~llLoo <~ Cya-1. 

Observe C ~< constant II111.:. 
Suppose now T is our opera tor  of type  2~<1. Wri te  T'(/)=aT(b/) with a, bECk(M). 

Let  F =  T'(/) and F~ = T'(]~). Then  b y  the lemma,  

ll - F.II**,,< ( 1 6 . 8 )  

Next  note  t h a t  

(16.9) HF~HA(~,,)+~<~C(][F, HA~/,+j~_~ ~x F~IIA~,, ) . 

B y  using Theorem 9, it is an  easy  m a t t e r  to  express each (8/Sxj) T'/~ as 

- -  T 0 (16.1o) oxjT ' (h)=~ j.~ ~ /~  +Tj.o(A), 

where the  Tj.k and T , . .  are of type  ~,. Therefore by  the l emma and the bound for 11o /o  11 ~ ,  

we get  II(e/o ,) < Combining 

this wi th  (16.9) gives 

(16.11) 

F rom (16.8), 

(16.12) 

Now we claim t h a t  (16.11) and  (16.12) show tha t  FGA(~,r)+~. To see this, we can 

argue as follows. Since 0 < a < 1, )t ~< 1, and  r ~> 1, we have  ,~/r + a < 2. Therefore, it suffices 

to show tha t  IA ,,FI ~< Clhl (~'r,+`, Ihl < 1, where A,2F=F(x§ Now 

A~, F=A~(F-F~)+ A~(F~) However ,  in general IIA2 G[]Loo~< ]h[~HGIIA~ , if 0 < f l < 2 .  There- 

fore, [[A~F]]L~<~C([h]~lre~+ ]h](~/r)+ie ~-~, b y  (16.11) and (16.12). We take  therefore 

e = I hl and get H A~ FII L~ <~ C]hl(~/~ This proves  t ha t  F EA(~/r)+~ when 0 < a < 1. To prove  

the  theorem when k < : r  we use the  ident i ty  (16.10) k t imes (with / in place of/~) 

and reduce ma t t e r s  to the case 0 < a < 1. 

Thus the  theorem is proved  when 0 < ~  ~< 1, and a > 0  but  non-integral.  The case when 

is an integer then  follows b y  the s tandard  interpolat ion theorems for the A a spaces. 

(See O'Neil  [18], Taibleson [23], Calderon [4], and  Lions-Peetre  [17]). Finally,  the restr ict ion 

0 < 2  ~ 1 is lifted by  observing t h a t  by  (16.2) each opera tor  T of type  2, 1 <2,  can be wri t ten  

as a finite sum of operators,  where each summund  is the  product  of an opera tor  of type  

- 1 and one of t ype  1. This completes the  proof of Theorem 14. 
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Part IV. Applications 

We present now the main applications of the theory. In  w 17 we shall deal with the 

regularity properties of the operator ~ 2 s  +~ ~j.kcjk[Xj, X~], where X 1 ... X~ are 

smooth real vector fields on M whose commutators up to step r span the tangent space, 

and (%k) is a skew symmetric matrix of smooth functions. As in w 15, we shall allow the 

cjk to take values in the space of linear transformations of a vector space W. In  w 18 we 

describe how Che arguments must be modified to deal with an operator given by 
n 2 ~ j ~ X j  + X  0, where now it is assumed that  X0, ..., X~, and their commutators up to some 

step span. Finally in w 19 we show how by these methods we can obtain sharp regularity 

results for the ~b Laplacian arising from the ~b complex on an appropriate C-R  manifold. 

The results for ~b extend those of Folland-Stein [8] in two ways: 

(i) We may allow general metrics, 

(ii) The Levi form need not be nondcgencrate. 

In  all our applications we shall lift our initial vector fields X 1 .... X= (and X0) on M 

to 2~1 ..... )~n (and)~0) on M which are free in the sense described in Part  I I  and in w 18 

below. We then use the results of Part  I I I  to write down parametrices, estimates, etc. 

for the corresponding operators on Jl~ in place of M. We therefore must begin here by 

studying the restriction of operators on ~ to operators on M. 

w 17. Hypoelliptlc operators, I: Sum ot squares of vector fields 

We are given smooth real vector fields on M with the property that commutators 

of length <~ r span the tangent space at every point in some neighborhood of a fixed ~0 E M. 

The construction of Par t  I I  allows us to write - ~ = M x T ,  (where M has, if necessary, 

been shrunk to a smaller neighborhood of ~0). Recall that  in Part  I I I  we have written 

M for ~5. Here T is the space of additional variables. Shrinking 2~, we will take T to be 

an open ball centered around the origin in R ~-m, where ~ is the dimension of the free 

group 2V~. T and r e=d im M. W e may thus assume 2~ is an open subset of R g with compact 

closure. The vector fields X1, X 2 ..... X n on M are extended to vector fields 2~ 1 ... Xn on 

_37/, which are free up to step r. 

We write ~ = (~, t) where ~ E 21~, ~ E M, t E T. Since M is itself a coordinate neighborhood 

of some Euclidean space we may take Euclidean measures d~ and dt on M and T respectively. 

As a consequence, the product measure d~dt is equivalent with the measure d~ defined for 

3~ in w 12 above, up to multiplication by a factor which is bounded and has bounded 

inverse. If  [ is any smooth function on 21~ which is independent of t (i.e. [(g)=]($, 0)) then 

2 0 - 7 6 2 9 0 1  Acta mathematica 137. I m p r i m 6  le 20 J anv i e r  1977 
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.~(/)=X~(/), i = l ,  ..., n. In  this connection we define the extension operator E which 

maps functions on M to functions on 317/in the obvious way: 

(El) ('~) =/(~, t) = 1(~), 

where ~ = (~, t) e 2tl. We shall also need to define a restriction operator R mapping functions 

in ~ to functions on M as follows. Suppose ~EC~~ with ]+q~(t)dt=l. Write 

(17.1) = fT t) dr. 

The operator R depends on the particular q0 we have chosen. We shall keep ~ fixed in 

the rest of the discussion, but  it can be observed that  our results are largely independent 

of ~. An obvious relation between E and R is the identity 

(17.2) RE = I. 

I t  is possible to define the function spaces S~(M), L~(M), and Aa(M) in exactly the 

same way as the corresponding analogues for _)17/in w 16. (In fact, since in Par t  I I I  we had 

used the convention of labeling ~ ,  i f  i, etc. by M, X~, etc., even the notations needed for 

the present definitions are unchanged.) 

The main properties of E and R are contained in the following propositions. 

(17.3) PROPOSITIOn. E is bounded mapping /rom S~(M) to S~(2~); /rom L~(M) to 

L~(~);  and/rom A~(M) to A~(~).  

(17.4) PROPOSITIOn. R is a bounded mapping /rom S~(~i) to S~(M); /rom L~(M) 

to L~(M); and/rom Aa(~;/) to A~(M). 

Proo/. Suppose /EI2(M). To see that  E/EI.2(2~) we check that  ]~1](~, t)] pd~<~"  

However ,  as we  have  observed,  d~<~d~dt. Thus S~,l/(~,t)l'd~dt<VyT{S~l/(~)l'd~}dt. 

Since T is an open ball, it has finite Euclidean measure. Thus the integral on the right 

above is finite, which shows that  E/EL~(2~). 

Next, it is obvious from the definition of E and from the properties of the )~f as exten- 

sions of Xj that  

(17.5) .~j~ J~  ... s = EX~ ... X~,(/). 

From this and the previous remarks it is clear tha t  E maps S~(M) boundedly to S~(2~1). 

To study the mapping E on the spaces L~, recall the definition of Z~ given in w 16. A function 

/ defined in M is in, say, L~(M) if for every a ~ C~0 (M) the function a/(regarded as a function 

on R m when extended by  zero outside M) belongs to the space L~(R~). To prove that  E 
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is bounded, we must show that for every a E C~176 and b E C~0 (ll~), the mapping [-+bE(a]) 

induces a bounded mapping of L~(R m) to L~(R~), where X = d i m  =71;/. Now observe that  

E 0 ~' 

From this it follows that  E is bounded from Lg to L~(.Z~) when/c is an integer, and the 

general ease for all ~ positive is then proved by the standard interpolation theorem for 

L~ spaces. (See Calderdn [4].) 

Finally, it is easy to see from the definitions that  E is bounded from A~(M) to A~(2~) 

when 0 < e < 1. Using (17.6) leads immediately to an extension of this to all positive non- 

integral values of ~. The integral values of ~ are then obtained by the interpolation theorem 

for A~ spaces. (See the references quoted at the end of w Proposition 17.3 is then 

proved. 

To prove Proposition 17.4, notice first that  [(R])(~)[ < ST[](~, t)[ [+(t)[dt, and so by 

Hhlder's inequality, ] (R]) (~)[v < CST [[(~, t)[vdt. An integration in ~ gives ]M [ (R]) (~) [vd~ ~< 

CS~zSv[t(~,t)[rd~dt<~C']~[l(~)[~'d~, which shows that R is a bounded mapping from 

LV(~) t o / 2 ( M ) .  We may generalize this by replacing +(t) by a function 2(~, t) E C~176 

which together with its derivatives is bounded on ~/. If R' is defined by  

(17.7) = f t)1(~, t)dt, 

the above argument then shows 

(17.8) II R'/lt < civil 

:Next we can see that  

(17.9) XkR(J) = t t~kt  + R'(]), 

where R' is of the form (17.7). In fact, by (7.2), 

X k  R - RX~ = - ~ fT 2k~(,, t)q~(t)~t~ 1(', t)dr. 

An integration by parts then gives the desired formula with 2(~, t)=~l~/~t~(2~(~, t)q~(t)). 

Repeated application of formulae of the type (17.9) yields 

(17.10) X~ . . . .  X~ R = R X ~ ,  ... iX~+ ~, R'~X~, ... X ~ +  R'o, 
0 ~  ( ~ . . . . . ~ i )  

0<<.1<t 

where each R'~ and R~ is of the form (17.7). 
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From (17.10) it is then obvious tha t  R takes S~(~]~) to S~(M). The proof tha t  R takes 

L~(M) to L~(M), and A~(M) to A:(M) is similar to tha t  for E once we observe tha t  

Now Proposition 17.4 is also proved. 

For  later purposes we observe tha t  in the course of the above proof we have also in 

effect shown the folloMng. 

(17.11) COROLLARY. I /  R" is an operator o/ the /orm (17.7), then R' takes S~(~)  

to S~(M), L3(~]1) to L~(M), A~(M) to A~(M), and L~176 to L~~ 

Given any operator T mapping functions on ~ to functions on M we may  define an 

operator T, mapping functions on M to functions on M by  

T = RTE.  

An operator T on M will be said to be smoothing o/order ~ (~ is a non-negative integer) 

if it maps S~(M) to S~+~(M), L~(M) to L~+~/r(M), :r A~(M) to A~+a/~(M), ~>0 ,  and 

L~176 to fl~/r(M). 

(17.12) P ~ o ~ o s i T i o ~ .  I] T is o] type ~, then T is smoothing o/ order ~. I /  ,~>~1, then 

X k T and T X  k are smoothing o/order ~ - 1, 1 ~ k ~ n. 

The first s tatement  follows from the definitions, Propositions 17.3 and 17.4, and the 

results in w 16. For the second, use (17.9) and Theorem 11 of w 16. 

We are now in a position to obtain our basic results for the parametr ix of the operator 
n 2 1 = ~ = I X j  +~ ~s,kc~k[Xj, Xk] on M. We shall assume that  condition (15.2) holds for s 

in the scalar case, or tha t  (15.2') holds if C is an operator on vector-valued functions. 

THE OR ~M 15. Given a E C~(M), there exist operators P, S, and S' so that 

(a) P is smoothing o/ order 2, 

(17.13) (b) S and S" are smoothing o/ order 1, 

F_.~P =aI  + S, P s  =aI  + S'. 

Proo/. Let ~p E C~(T) with the property tha t  ~f(t) = 1 on the support of ~0. (Recall tha t  

(R/)(~)=fT/(~ , t)qz(t)dt.) Write d(~, t)=a(~)~f(t). Then according to Theorem 10 in w 15 

there exist operators/5, ~, and ~1 respectively of types 2, l, and 1, so tha t  

~ P = ~ I + ~  and ~ / ~ = t ~ I + S  1. 
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~7ow multiply the second equation by  the operator  R on the left and by  the operator 

E on the right. I t  is clear tha t  R h l E = a I .  Define SI=R'S1E and P = R P E .  By (17.5) 

we also have s 1 6 3  Putt ing all these together gives P s  ~ a I  + S 1, and half of our claim 

is proved if we invoke proposition 17.12. 

Next  note tha t  s  = s  = R~[='E + [ s  - R~]  P E .  However, by (17.10)s - R ~  = 
n ! ~ t ~ _ l R k X k + R o  and so 

s  = aI + RSE + ~ R'k Xk [ 'E + Ro.PE. 
k 

Thus we may  take S = R S E  + ~ R'k-Xk P E  + R~) DE, and the required property for S follows 

from Corollary 17.11, Proposition 17.3, and Theorem 8 in w 14. The theorem is therefore 

proved. 

By an iteration argument it is possible to refine the parametr ix  so tha t  the error 

terms in (17.13) are smoothing of any preassigned order. We shall exhibit a result of this 

kind in the form most convenient for applications. 

(17.14) COROLLARY. Suppose a, b, c are in C~(M) with b = l  on the support of a, 

and c = 1 on the support o/b. Then/or each integer l there exist operators Pi and Sl so that 

(17.15) Pzbl: = a I  +Sz.c, 

where PI is smoothing o/ order 2, and S~ is smoothing o/ order 1. 

Proo/. We shall use the partial ordering a ~ b  to mean tha t  b = 1 on the support  of a. 

Suppose we are given any  three functions ~, fl, 7 in C~(M) with the property :r  

We can always find another function fl0 so tha t  ~ f l o ~ f l .  ~ o w  apply Theorem 15 with a 

replaced by  ~ and / replaced by  flo/. The result is P(s However, s 

flo s  XjXj(fio)Xj(f) +/s Now put  P1 =Pflo and 

Sf f  = S'(fio/) - 2 ~sP( Xj(flo) Xj(/) ) - P (  ( s ) /). 

Since flofi=fio, it follows tha t  P~fl=P~. Also Xj(flo)7 =X~(fl0), (s = s and floY =flo 

imply $1~/=$1/. Thus we obtain 

(17.16) P~(fis = ~/ + S~(71), 

which proves the lemma for 1 = 1. 

To prove the general case, we proceed by  induction. Suppose we wish to prove the 

result for l, given the triple of functions a, b, c with a ~ b ~ c .  Choose a', b', c', and :r fl, 

with 

a = a ' ~  b ' ~  c ' ~  a ~ f l ~  b ~  c ~ y ,  
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such that  ~, fl, 7 satisfy (17.16). By  induction there exist operators Pl-1 and Sz-1 so that  

(17.17) Pz_l(b's = a' + Sz-l" c' 

Since c ' ~ ,  then c'~=c'. Multiplying (17.16) by c' and substituting for c'/ in (17.17), 

we obtain 

(17.18) P ~_~(b'1~(f) ) = a'/ + S~_~(c' (P~(fi l~(f) ) - c'Sx(rf ) 

Now take Pt =P~_~(b') -St_ic 'Pxfl  and S~ =S~_~cS~. Since b'b =b', fib =fl, a =a', and ~c =y,  

we obtain (17.15) from (17.18). The corollary is therefore proved. 

THEOREM 16. Suppose / is locally in L~(M), and s =g. 

v ~ 0 .  (a) I /  gELS(M), then fEL~+(2/r)(M), 

(b) I /  gEAr(M), then fEA~+(21~)(M), ~ > 0 .  

(c) I/gEL~176 then/EArn(M).  

(d) I f  gES~(M), then afES~+~(M), for each aEC~(M), 1 <p < cr  k=O, 1, .. . .  

Proof. Vte are assuming that  s =g holds in the weak sense, i.e. ]Mfs = SMgCpd~, 

for all ~EC~(M). Now apply the adjoint of the identity (17.15) and insert in the above. 

The result is 

fMP,(bg)~d~= fM(a/ + S,(f))~d~, 

and therefore 

(17.19) a / =  Pz(bg)-Sz(c/) 

This identi ty holds for all triples a, b, cEC~(M) with a,~b~c,  and all I. P t  is smoothing of 

order 2, and S z is smoothing of order 1. Choose l >~ g + (2/r). Then Sz(c/)EL~+(2/r)(M), and 

Pz(bg) EZ~v+(21r)(M). Since a is an arbitrary function in C~(M), it follows from (17.19) and 

the above that  /EL~+(~Ir)(M). Parts (b), (e), and (d) of Theorem 16 have parallel proofs. 

The theorem may be strengthened by assuming merely that  / is a distribution on 

M with E(/) =g, where g is in one of the spaces L~176 L~(M), A~(M), or S~(M). The proof 

would require an elaboration of the argument, which we shall refrain from giving. 

Our last result here is the sharp form of estimates studied in the L ~ context by  HSr- 

mander, Kohn, and Radkevitch. 

THEOREM 17. Suppose X 1, X 2 .....  X ,  are real smooth vector/ields whose commutators 

of length <~r span the tangent space at each point. I f  f and XJEL~(M)  (resp. A~(M)) then 

/ EL~+mo(M ) (resp. A~+(1/r)(M)) when 1 < p < ~  and o:>10 (resp. ~>0) .  
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Proof. Let /EL~(M)  such that  each XffEL~(M) also, and put  [=E(/), the extension 

of / to 2[I. By the Corollary of Theorem 10 in w 15 (see (15.5)), there exist operators 

~0, T~ .... , ~ of type 1 such that  [ = ~ = ~  ~ i ~ ( [ ) + ~ 0 ( [ ) .  Now we have already observed 

that  X~(E/)=E(Xd). Hence [EL~(/~/) and i ~ e L ~ ( ~ )  by  Proposition 17,3. Thus by 

Theorem 12 in w 16, /EL~+(1/~)(/~), and finally by Proposition 17.4, /eL~+m~)(M). The 

proof for A~ is similar. 

I t  is easy to see that  the argument also gives the following inequality. Whenever a and b 

are in C~(M) with b = 1 on the support of a, then 

?t 

(17.20) II < C Z (11 + II 

Finally, it may be worthwhile to exhibit a parametrix more explicitly. We shall 

consider the case where E = ~,~_IX~. The operator P has a kernel which, apart  from some 

cut-off functions, is given by  

(17.21) f T f T ~f(t) lC( O( (8, t), (,, S) ) ) dtds, 

(8, ~) EM • M. Here/c is the fundamental solution (kernel) for the operator ~ - 1  Y~ on the 

free group/%.r ,  as in w 5 of Par t  I; (8, t) and (~, t) are points on the extended manifold 

3~r = M • T; | is the basic mapping of 21~ • 37~ to Nr. ~ described in w 7, and V E C~~ with 

ST (t)dt = 1. 

w 18. Hypoelliptie Operators, H: Operators of Hfirmander type 

We consider the differential operator • given by 

s ~ X~+Xo, 

where X0, X 1 ..... Xn are real smooth vector fields on M; we assume that  these vector 

fields, together with their commutators of some finite order, span the tangent space at 

any point. We shall show here how the theory which has been worked out in particular 

for operators of the form ~ I X ~  must be modified to take care of this more general case. 

First we define the versions of the spaces S~(M) in the present context. Let  Xj, ... Xj~ 

be a monomial with O<]s<~n, s=l, ..., 1. We shall say tha t  this monomial has weight 
r if r=rl+2r~, where r 1 is the number of X / s  that  enter with ] between 1 and n, and r~ 

is the number of X0's. So in computing the total weight, we count each X 1, X~ ..... Xn 

to have weight 1 and X 0 to have weight 2. Similarly, the weight of a commutator [X~,, 
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[Xj~, [ .... Xjz]]... ] is defined to be equal to the weight of the corresponding monomial 

X:~X:~ ... Xji.(~) 

Now when k is an integer, S~(M) is the collection of all /ELY(M) such tha t  

Xj, ... X J E L ~ ( M )  for all monomials of weight ~<k. For the norm we take 

II/11   = Y II x ,  . . . .  

where the sum is taken over all ordered monomials of weight ~< k. Observe tha t  in a sense 

this definition is not entirely optimal when k is an odd integer, In  fact, when k = 1 the 

direction X 0 is not explicitly involved. We shall return to this point later. 

The spaces L~(M), ~ >~0, and Aa(M) are of course defined as before. With these defini- 

tions the main regularity result for solution of 1:(/) =g  is then as follows. 

r . _ ~  X ~ , X where all commutators o/ weight ~ r  span THEOREM 18. Suppose , . , -~ j=l  j ~  o, 

the tangent space at each point, and L:(/)=g, /ELY(M), 1 < p < 0% Then the regularity results 

/or/ ,  in terms o/g, given in Theorem 16 (w 17) hold for ~ as well. 

In  complete analogy with what  has been done through w 17, we can proceed to prove 

Theorem 18 by  the following steps. 

Step 1. Let  (~ro be the free Lie algebra on n + 1 generators Yo, Y1 ..... Yn and let 

be the ideal spanned by all commutators of weight ~> r + 1. (Recall tha t  ]To has weight 2, 

while Yl, Y~ . . . . .  Yn each have weight 1.) T h e n  ~=~)~//.r=(~F0/~ will be called the free 

nilpotent Lie algebra of type I I ,  on n + 1 generators and of weight r. We can identify 

Y0, ..., Yn with their images in ~IIp.r. (We may  assume r ~>2.) Now the mappings: 

yo___>t~Yo 

~t Yj--->tjY~, ] = 1  .. . .  , n  

0 < t  < 0% are easily seen to extend to automorphisms of ~ .  These dilations give a grading of 

= ~=1 Q Vj. Vj is the subspace of ~ on which the action of Ot is given by  t j. Alternatively, 

Vj is spanned by  the commutators of weight ]. Thus V 1 is spanned by  Yl . . . .  , Yn, and V~ 

is spanned by  Y0 and the [Yj, Yk], 1 <~j<k<~n. ~ is then stratified of type I I ,  according 

to the definition in w 3. 

Now the teft-invariant differential operator E0 = ~+1  Y~ + Y0 is homogeneous of degree 

2 with respect to the: above dilations. Furthermore,  s and s are both hypoelliptie, 

according to Hhrmander ' s  theorem in [10]. Thus by  Proposition A in w 5, there exists 

a unique distribution k of type 2 so tha t  s =3. This is the fundamental  solution of s 

(l) Obviously the weight of a commutator is not smaller than its length. 
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Step 2. Return ing  to our original vector  fields Xo, X1, ..., X n on M, we shall say  

t h a t  these arc free up to weight s, s = l ,  2, ... a t  a given point  ~06M if all commuta tors  

of weight ~<s, restricted to ~0, span a subspace of maximal  dimension, i.e. of dimension 

equal to dim(~1.~). 

Now if we know tha t  the commuta tors  of weight ~ r  span the tangent  space at a 

point  ~0, then in terms of addit ional  variables, we can lift the vector  fields X0, X 1 .. . . .  X n 

to  vector  fields J~o, X1, ..., )~n on 21I, so tha t  these vector  fields are free up to weight r; 

moreover,  the commuta tors  of weight ~ r  will span the tangent  space at the point  (~0, 0); 

here ~ = M • R q. Secondly, if we define the  mapping  0 as in w 7, then at  each point  ~ 62~ 

we can introduce the canonical coordinate system centered at  ~. I n  terms of local coordinates 

a round  any  point  ~ near ~ we have 

:~j = Yj + R j, 

where Rj has local degree 4 0  if ] = 1 ,  ..., n, and R 0 has local degree ~<1. (Recall t ha t  the 

variable u 0 dual to  Y0 has degree 2, while the  v~riables uj dual  to  Yj,  ~=1,  ..., n have 

degree 1.) 

The proofs of these facts are entirely similar to the  si tuat ion detailed in Pa r t  I I .  

Step 3. We can now write down a paramctr ix  for ~ ~" -- z.j=l ~ TM )~j ~-' )~0. I t  is given by  the 

kernel K(~, ~)=a(~)/c(@(~, ~))b(v), where Ic is the  fundamenta l  solution for ~=~  Y~+ Y0 

discussed above, and a and b 6 C~(211) with b = 1 on the support  of a. 

I f  we define operators of type  2 in the same way  as in w 14, then the result of Theorem 

10 holds for C as well; t ha t  is, the operator  P whose kernel is K (the parametrix)  is of type  2, 

and C P - a I  and P C - a I  are bo th  of type  1. 

Step 4.  The results of w 16 can be extended, in large part ,  to  include the current  case. 

Thus  we can show tha t  if T is an  operator  of type  2, then if 2 is a non-negative integer, 

T maps  SkP to Sk+~,~ and T maps  L~ to L~+(~/r)V if" 1 < p  < ~ and 0 ~< zr < ~ .  T maps  A~toA~+(~/r) 
p p 

and  L ~~ to  A~/r if ~ > 0  and 2 > 0 .  However  in general it is not t rue tha t  SkcLk , r ,  al though 

inclusion does hold if/c is even or a multiple of r. (We have previously alluded to  the reason 

the  inclusion m a y  fail in e.g. the  case when ]c = 1.) The difference from the previous ease 

arises essentially f rom the fact  t h a t  the representat ion formula (15.5) for / in terms of 

2~j/is  no longer available. Ins tead  we mus t  use the formula 

(18.1) az = p + p 2 0 -  s' ,  

where P is the parametr ix  for ~n  X e .~j=l ~ +Xo, and  hence of t ype  2, and S '  is of type  1. 

We outline next  a proof of the assertions made  above about  operators of type  2. 
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(18.2) L E M ~ .  I[ T is o[ type 4, 4 = 1 or 2, then T maps L~(2V~) to L~/~(]~), 1 < p < 0% 

The proof is a straightforward modification of the proof of the corresponding lemma, 

Sr ~L1,  needed for the proof of the lemma still holds in this (16.1) in w 16. (The inclusion P 

c a s e . )  

One also needs the following analogue of Lemma 16.4. 

(18.3) LE~MA. Suppose K(~, ~,) is a kernel o/ type 4, 0 < 4 ~ 2 .  Then i/ T]= 

yK(~, ~)/(~)d~l, T maps L~ to Aai~(~ ). 

Proo]. I f  we were to exclude the case r = 1 (which corresponds to the classical case) 

and also r =2,  then we would have 4/r < 1, and the argument  given for Lemma 16.4 actually 

gives the desired result without modification. But  when r = 2 or r = 1, then 4/r m a y  be 1> 1 

and the condition tha t  T/EAaIr is more complicated to verify and thus needs an addi- 

tional argument.  One can proceed as follows. We assume r = 2  and 4 = 2 ,  since the cases 

r > 2  or r = 2 ,  0 < 4 < 2  have already been taken care of and the case r = l  can be t reated 

similarly. 

We can restrict consideration to T with kernel of the form a(~)k(O(~/, ~))b(~/), where 

k(u) is homogeneous of degree - Q  + 2. (Q is the homogeneous dimension of the free nilpotent 

algebra of type I I  and weight r.) Let  ]. I denote the norm function, and for complex z 

in the strip [Re z[ < 1, we write T~ for the operator whose kerenel is a(~)k(| ~)). 

]@(~, ~)]Zb(~). Using the arguments of the proof of Lemma 16.1, one shows tha t  when- 

ever /EL~176 and g ELl(M) the following hold. 

(i) The function z-+ ~ T~(/)gd~ is analytic and bounded in the strip - 1 < Re (z) ~< 1. 

(if) When Re (z) = - 1, Tz([) EA~/~(2~), and II T~/IIA,~(~) ~< A (1 + l z I)H/[I ~o. 

(iii) When Re (z)= 1, T~(/)EA~/~(2~) and I[ T,/]]A,~,(~)<A(1 + Iz[ )~[][][~. 

(To prove (if) we note tha t  the operator T z where Re z = 1 has a kernel which is like one 

of type 1. To prove (iii) we use the fact tha t  since r =2,  X~, j = 0 ,  1, ..., n, and [X s, Xk], 

0<j<k-~<n,  span all the tangent  directions. Thus to prove Tz(/)EAa/~(~), for instance, 

we are reduced to a case similar to a kernel of type 1.) 

Now a known complex convexity argument  (see Taibleson [23] or Calder6n [5]) shows 

tha t  To(/) EAI(2~) and I I T0(/)II~(~, <A II/lI~. This proves the lemma. 

With Lemmas 18.2 and 18.3 one shows as in w 16 tha t  if T is of type 4 with 4--<2, 

then T maps Z~(]7/) to L~+(~/r)(2~/), A=(-~) to A=+(afr)(2~/), if a > 0 ,  and L~(2~/) to Aa/~(2~/). 
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To pass to the case of general ~, one uses (18.1) to reduce the case A>2 to the cases ~ - 1  

and ~ - 2, and thus obtain the result for all 2 > 0. We shall describe the rest of the argument 

in terms of an example. Suppose that  T is of type A and/6L~(217/). We want to show that  

T/6L~+(~l~)(l]~ ). Then it suffices to deal with aT(/), where a6C~~ (~) .  By  (18.1), 

aT = ~ PTj-  S'T. 

Here T j = ~ T ,  if ]=1 . . . .  , n; and To=XoT. In  any case Tj is of type t - 2 .  T is of type ~ 

and therefore also of type ~ -  1. Since P is of type 2 and S is of type 1, we are reduced to 

showing that  Tj maps A~ to A~+((~.-2)r~) and T mapsA~toA~+((~_l)/~). This reduces the problem 

to the case of operators of types ~ - 2 and 2 - 1, and the induction is complete. 

Step 5. The final step in the proof of Theorem 18 requires that  we observe that  the 

properties of the mappings E and R, linking the function spaces on M with those on J]~, 

expressed in Propositions 17.3 and 17.4 go through without change. 

w Estimates for [=]~ 

Suppose M is a "partially complex" manifold of dimension 2l + 1, l >~ 1. (See Folland- 

Kohn [7], pp. 93-104.) M is then a C ~ manifold together with a smooth sub-bundle T1. 0 

(of "holomorphic" vectors) of the complex tangent bundle C T(M), so that  dime (T1.0)~ = l, 

for ~6M; also (T1.0) N (T1,0)t={0}, and T1. 0 is integrable in the sense that  the bracket of 

two holom~rphic vector fields (cross-sections of Tl.o) is again a holomorphie vector field. 

Assume we are given a hermitian metric on M, i.e. a positive definite hermitian form 

on the complex tangent spaces CT~, ~ eM,  varying smoothly with ~, and having the property 

that  (T1,0)6 and (T L 0)g are orthogonal. 

Since our considerations are purely local (i.e. we may assume that  M has, if necessary, 

been shrunk to a sufficiently small neighborhood of a given point ~0) we may construct 

a vector field N which is purely imaginary and is orthogonal to the spaces T1. 0 and T~.0 

at each point. I t  follows that  TL0, T1.0, and CN span the tangent space at each point.(1) 

Now if Z and W are any two holomorphie vector fields, let ~0~(Z~, W~) be the smooth 

function so that  

(19.1) [Z, W]~ = -2Vg(Zg, W~)Ni modulo ( Z  1 . . . . .  Z l ,  Z 1 . . . .  , Z l ) .  

Then ~0~(,), ~EM, defines a hermitian form called the Levi ]orm. Our basic assumption, 

((19.10) below) will be in terms of the number of positive and negative eigenvalues of the 

(1) 1~ is i T  in t h e  no ta t ion  of Fol land-Ste in  [8]. 
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Levi form. We shall choose Z~, Z2 ..... Z z to be an orthonormal basis of smooth holomorphic 

vector fields at each point. Then we have a corresponding matrix %k(~) given by 

(19.2) [Zj, Zk] = - 2 ~ ( ~ ) N  modulo (Z 1 .. . .  , Z~,Z~, ...,Z~). 

We shall be working in a neighborhood of the fixed point ~0; we shall therefore make 

the further choice as far as the basis Z~, Z 2 .. . .  , Z~ is concerned that  at ~0, ~(~0)  is diagonal. 

(Note however that  in general it is not possible to choose smooth vector fields Z1, Z 2 ..... Z~ 

in such a way that  ~ ( ~ )  is diagonal for all ~ in a neighborhood of ~0.) 

The partially complex structure described above allows one to define the ~ complex; 

using the given metric, we can also define the dual bs complex and the resulting Laplacian. 

With our choice of basis we now set out to compute [ ~  rather explicitly. We follow the 

formalism of [8], w 5 and w 13. 

Let  eo 1 . . . . .  o) ~ denote a dual basis to Z~ ..... Z~. A q-form / is given by/=Xl~l=q/ j& J, 

where J=(s~, s 2 ..... sq), with sl<s2<...<s~, ~5~=&~'A 05~... A ~ .  Suppose / = ~ / i ( 5  ~, 

g = Xj/j~5 ~ are a pair of q-forms whose coefficients ( the / j  and gj) belong to C~(M). Then 

their inner product is given by (/, g )=Xj  (/j, g j )=  X~ ]M/j(~)g~(~)d~, with d~ the measure 

induced by the metric. When / is a function (i.e. a 0-form) the C~uchy-l%iemann operator 

~ is defined by ~]=5~ffilg~(/)~5 ~. More generally, if / = ~ ] j ~ ,  then ~(~/~&~)= 

~(8~/)  A ehJ§ ~ / ~  A ~b(r I) = ~ - l g ~ ( / ) ~ ( ~  A ~hJ+ ~(/). Here ~(/) indicates an expression 

which depends linearly on / but not on derivatives o f / .  Similarly, the formal adjoint ~ 

satisfies 

Thus 

/ 

J J I = 1  

) .k ,  1 

where E(Z/, 2/)  represents an expression that  depends on / and its first order Z and 2 

derivatives, but  not on higher derivatives or on 27 derivatives of F. Similarly, 

~ ~o(1) = - Z 2 j  Z,~ I, ~ j_ I  ( ~,,, A 5/) + ,2( ZI, 21). 
j . k , J  

Now if ?" = k, then 

eh~(&JA~hJ)=~ J, i f j~J ,  =0  i f j E J ,  
while 

ehJA(ehk~5~)=c5 I, i f ? ' e J ,  = 0  f f j~J .  
However, if j~/c, 

Thus putting [~b=~ bb+b~b we get 

(19.3) [~b /=  E] (~1)/+ [3 (b2)/+ E(Z/, Z/). 
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Here [ ~ ) i s  a "diagonal" operator (i.e. it does not mix components) given by 

(19.4) []  ~,(2/~ ~) = ~ ( - ~) ~ zj  z ,  + z j  z~ + ~ [z , ,  2,] /~ ~ 
J J 

with s~= l  if ]6J ,  and ej + = - 1 if ] ~J. [~2) is the '"non-diagonal" part given by 

(19.5) D g~)<2/j~) = - 2 7 [zj, 2 ~ ] / ~ j  A ( ~ A  (5~). 
J J J=~k 

Since the Levi form is diagonal at ~0, ~Jk(~0) =0 if ]@k. However, if ~ is not identically zero 

at ~0, there exists some ] for which ~z(~0)=~0. Without loss of generality we may take j = 1. 

Then by (19.2) we have 

[Zj, Zk] = djk(~)[gl, Z1] + E(Z, Z), 

where djk($0)=0, and dj~($) is smooth in a neighborhood of ~o. Substituting this into (19.5) 

gives 

(19.5') ~>(~/+~+)  = -~(Z4~(~))[Z1,2~] / j~ / /~  ( ~ / C ~ ) + s  
1 J ] ~ k  

We now introduce the real and imaginary parts of the Zj, ] = 1, ..., I. Let X1, X2, ..., )in, 

n = 21 be defined by 

Zj = �89  iXz+j), 
(19.6) 

Zj  = �89 ] = 1, 2 ..... 1. 

The passage from the complex vector fields to the real vector fields induces a passage 

from l • l hermitian matrices to 21 • 2l real skew symmetric matrices given as follows. 

If a is any l • 1 hermitian matrix the corresponding (real skew-symmetric) 2l x 21 matrix 

a* is given by 

(19.7) a~=( ' I ra(a) I  Re(a) ).  
\ - -  l~e(a) Im(a) 

From (19.6) it follows directly that  Z~Z~+Z~Z~-�89 [Z~,Z]]=�89 

Thus (19.4) becomes 

(19.8) ~ (~)(~/~ d )  = - } ~ s ~ ,  
J ] 

with 

where 

[~  
(+)'= \--z71-7-)' 

and e ~ is the diagonal matrix s ] ~ = e ~ ,  l~<j,/~<l.  
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The identity (19.2) becomes 

(19.9) [Xj, Xk] = 4i(~m(~))*_N modulo (X1, X2, ..., Xn). 

We now state the main hypothesis on the Levi form ~ for a given q at each point 

~EM: 

(19.10) p t ~ > m a x ( q + l , l + l - q ) ,  or p ~ > m i n ( q + l , / + l - q ) ,  

where Px is the larger of the number of eigenvalues of the same sign, and P2 is the number 

of pairs of eigenvalues of opposite sign. 

(19.11) L~MMA. 1] the Levi ]orm q~ at ~o satis/ies the hypothesis (19.10), then 

(19.12) < 

/or some q, 0~<~<1. 

Proo[. We obviously have tr  (~J~*) = 2 tr  (ei~%), where ~ is the real part  of the hermitian 

matrix ~. We have assumed that  ~0 at ~0 is diagonal. Let  ~1 .. . .  , At by its eigenvalues. Then 

t r  (eJ~R)=tr (sJ~)= 5~=1d2~. By checking the four cases implicit in (19.10), one can see that  

it is not possible for all the e]2j, ]=1 ,  2 .. . .  , n to be positive, or all ~]2j to be negative. 

Therefore, there is a number a, 0 ~< a < 1 such that  ] Z e~2j] ~< a Z~.I ]2j I" However, the 

eigenvalues of ~* are {_iRj}S=l ..... ,, so that  H~*H =2  5~-112j[, which proves the lemma. 

By the lemma the linear functional x ~ t r  (yax) has norm not exceeding q, when defined 

on the one-dimensional subspace spanned by  ~+(~0) in the space of n x n real skew symmetric 

matrices. For the present purpose we take the norm on this space of matrices to be the 

trace norm, II II1- Thus by the Hahn-Banaeh theorem the linear function can be extended 

to the whole space of skew symmetric matrices without increasing the norm. Invoking the 

duality (2.2), this means that  there is a real skew-symmetric 2l • 21 matrix h =h]k with the 

properties 

I tr(ha~+(~~ = 0 
(19.18) [ hall < < 1. 

Next, choose a smooth function ha(~) so that  ha(seo) =h a and 

(19.13') t r  (hJ(~)~*(~)) = 0 

for all ~ in some neighborhood of ~0. 

Because of (19.8) and (19.3) we can write 

(19.14) -41Bb(]) = s + E(X/), 
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where s X~]§189 ~ cjk[Xj, Xk]/ and E(X/) is an error term depending linearly on / 

and Xj], ~ = 1, 2,..., n. In  fact, cm(~ ) ( ~ / j  ~ )  = i ~(7]k(~) + h~k(~)) [ ~ '  § terms coming from 

D(b 2). (Note that  ~ h]k(~)[X~, Xk]~ = ~(X~) by  (19.13').) However, by (19.5') the coefficients 

of the non-diagonal part, D(~ 2), vanish at ~ =~0, modulo an error term which may be 

absorbed in ~(X/). 

Thus for each ~, k the value of the function cjk at ~0 is a diagonal matrix. Furthermore, 

i (cj~(~0)b.~ = (TJ~(~0) +h~(~0)).  

Hence by (19.13) and the results of Par t  I and in particular, Theorem 1, the condition 

(15.2') is satisfied at  ~o, and by continuity in a neighborhood of ~0; we restrict ourselves 

to this neighborhood in what follows. (For this application observe that  since the Levi 

form ~0 is non-zero, by  (19.9) it follows that  X1, X 2 ..... X n together with their commutators 

of length 2 span the tangent space at each point.) We can therefore invoke Theorem 15 

to obtain regularity properties of solutions of Db. 

T~EOREM 19. Assume that the condition (19.10) /s satis/ied. I / / a n d  g are q-/orms 

each in 12 with Db/=g, then the/oUowing hold. 

(a) I! geLS(M), ~hen /eL~+~(M). 

(b) I! gEAr(M), then !EAa+IIM), ~>0.  

(c) I / g  EL~176 then ! EA~(M). 

(d) I/gES~.(M), then a/ES~+2(M) ]or all aEC~o (M). 

Proof. By Theorem 15 for each a E C(~M) there exists a parametrix P which is smooth- 

ing of order 2 and a smoothing operator S' of order 1, so that  Ps  Since - 4 [ ~ b =  

1~+ E(X/), we take P 1  = - 4 P  and S 1 =S'-P(E(X/)). Then 

(19.15) P~ D J  = a! +S~(/), 

where S~ is then also smoothing of order 1. (See Proposition 17.12.) 

Next  we can iterate the identity (19.15) as in the proof of the corollary to Theorem 

15 to obtain error terms which are smoothing of preassigned order. Finally the rest of the 

proof of the theorem follows as in the proof of Theorem 16. 

The above also gives optimal regularity results for global solutions of ~ !  =g  on com- 

pact manifolds, as in [8], w 17; we shall not enter into the details here. 
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