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1, Introduction 

A linear differential operator P with C ~r coefficients in an open set ~ c R n (or a 

manifold) is called hypoelliptie if for every distribution u in ~ we have 

sing supp u = sing supp Pu, 

that  is, if u must  be a C ~ function in every open set where Pu is a C ~ function. 

Necessary and sufficient conditions for P to be hypoelliptic have been known for quite 

some time when the coefficients are constant (see [3, Chap. IV]). I t  has also been shown 

tha t  such equations remain hypoelliptic after a perturbation by  a "weaker"  operator 

with variable coefficients (see [3, Chap. VIII) .  Using pseudo-differential operators one 

can extend the class of admissible perturbations further; in particular one can obtain 

in that  way many  classes of hypoelliptic (differential) equations which are invariant 

under a change of variables (see [2]). Roughly speaking the sufficient condition for 

hypoelliptieity given in [2] means tha t  the differential equations with constant coeffi- 

cients obtained by  "freezing" the arguments in the coefficients at a point x shall be 

hypoelliptie and not vary  too rapidly with x .  

However, the sufficient conditions for hypoelliptieity given in [2] are far from 

being necessary. For example, they are not satisfied by  the equation 

~2u 
~- x 

au 
~x ~ y ~t it' (1.1) 

for the operator obtained by freezing the coefficients a t  a point must  operate along 

a two dimensional plane only s o  it cannot be hypoelliptie. But  Kolmogorov [8] con- 

structed already in 1934 an explicit fundamental  solution of (1.1) which is a C ~162 func- 

tion outside the diagonal, and this implies tha t  (1.1) is hypoelliptic. 
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The arguments of Kolmogorov [8] can also be applied to the more general equation 

Oxo + E a ~ +  E b~X~x~x+eU=l, (1.2) 
J , k = l  t /  j o  k J , k = l  k 

where ajk, bj~ and c denote real constants, and the matrix A = (a~) is symmetric and 

positive semi-definite. If we take  Fourier transforms in all variables except x o we are 

led to the equation 

- - - -  U ~ b 8(SkU)+ 0U 8U A(8,8) - /_ jk~-~ cU . . . .  ( A ( 8 , 8 ) - c ' ) U -  ~ bjk 8U 
~xo j.k=l yes 8xo j.k=l ~ ~ = F, (1.3) 

where c' = c - T r B .  To obtain a fundamental solution of (1.2) with pole at (Y0, Y)and 

vanishing when x o < y  o we wish to find a solution U of (1.3) when Xo>~y o such that  

U = - e  -*<y'~> when xo=y o. The characteristic equations for (1.3) are 

d~j dU 
dxo - Z bjk~k-- U(A(~, ~) - c') 

and have the solutions 

xo=Yo+t, ~(t)=(expBt)~, U = - e x p ( - i ( y , ~ ) -  I~(A(~(s), 8(s))-c')ds 
J O  

(1.4) 

if we take the initial condition into account. Elimination of t and ~ gives 

f~ 
o - Y a  

U(xo, ~) = - e x p ( - i ( 9 ,  (expB(yo-xo)) ~ ) -  A(exp ( - B s )  ~ , exp( -Bs )  8) ds 

+(xo-yo)c', xo >yo; 

and w e  set U(xo, ~)= 0 when x 0 < Yo. The quadratic form in the exponent is positive 

semi-definite, and it is positive definite unless for some ~ = 0  we have A((expBs)~, 

(expBs) ~)= 0 identically in s, that  is, A(Bk~, Bk~)= 0 for every /c. This means that  

the null space of A contains a non-trivial invariant subspace for B. If this is not the 

case we obtain by inverting the Fourier transformation a two-sided fundamental solu- 

tion which is a C ~ function off the diagonal; for fixed x 0 and Y0 it is the exponential 

of a negative definite quadratic form in (exp~Bxo)x-(exptByo)y with eigenvalues 

- o o  when x 0 - y 0 ~ 0 .  (The eigenvalues may have different orders of magnitude so 

the differentiability properties of the fundamental solution may be quite different in 

different directions, a typical feature of the subject of this paper.) Thus it follows 

that  (1.2) is hypoelliptic unless the null space o] A contains a non-trivial subspace which 

is invariant /or B. 
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The results of Kolmogorov  have been extended by  Weber  [11] and II ' in  [4] to  

the equat ion 
n ~U 

a ~ j - - +  ~ ~u b~U ~u Z as - -  § au -k ~ - / ,  (1.5) 

where the coefficients are C ~ functions of x, y, t, the mat r ix  (a~j) is positive definite 

and the mat r ix  (~b~/~yj) has rank  m everywhere.  The hypoell ipt ici ty follows f rom a 

construct ion of a fundamenta l  solution by  the E. E. Levi  method  s tar t ing f rom t h a t  

given above after a change of variables to  make  b~ = y~. 

I n  this paper we shall give a nearly complete characterizat ion of hypoelliptic second 

order differential operators P with real C ~ coefficients. Firs t  it is easy to show, as we 

shall do in section 2, t ha t  the principal par t  mus t  be semi-definite if P is hypoelliptic.  

I n  any  open set where the rank  is constant  we can then write locally 

P X~ + X 0 + c, (1.6) 
1 

where Xo, ..., Xr denote first order homogeneous differential operators in an open set  

~ c R  ~ with C a coefficients, and cEC:r We assume f rom now on tha t  P has this  

form but  do not  necessarily require tha t  the Xj are l inearly independent  at  every 

point.  There is of course a large freedom in the choice of the operators Xj. In  par-  

ticular, we m a y  replace Xj by  
r 

i= l , . . . , r ,  
1 

where (cjk) is an or thogonal  mat r ix  which is a C ~ funct ion of x E ~ ;  then  X 0 is re- 

placed by  an operator  X0 such tha t  X 0 -  X0 is a linear combinat ion of X 1 . . . . .  X~ 

with C ~r coefficients. 

I f  the Lie algebra generated by  X0, ..., X,  has constant  rank  < n in a neighbor- 

hood of a point  x E ~ ,  it follows f rom the Frobenius  theorem tha t  there exists a local 

change of variables near x so tha t  P af terwards only acts in the variables x~, ..., X~-l. 

I f  the homogeneous equat ion P u  = 0 is satisfied by  some non-tr ivial  funct ion it follows 

tha t  P is not  hypoelliptic, for a new solution is obtained by  changing the definition 

of u to 0 on one side of a hyperplane x~ = constant .  Thus the sufficient condition for  

hypoell iptici ty in the following theorem is essentially necessary also: 

TH~ORV, M 1.1. Let P be written in the form (1.6) and assume that among the op- 

erators Xs, , [Xj,, Xj~], [Xj~, [Xj~, Xj,]], . . . ,  [Xj,, [X~,, [Xj,, ..., X j ] ]  ... where i~ = O, 1, ..., r, 

there exist n which are linearly independent at any given point in ~ .  Then it ]ollows 

that P is hypoelliptic. 
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I t  is a simple exercise to verify that  for the equat ion (1.2) the condition in 

Theorem 1.1 is the same that  we needed to construct a smooth fundamental solution 

by  the method of Kolmogorov [8]. 

As mentioned above we shall discuss necessary conditions for hypoellipticity in 

section 2. It, is proved in section 3 that  Theorem 1.1 is a consequence of certain a 

priori estimates and we make some preliminary steps toward proving these. However, 

they are proved completely only at  the end of section 5 after a preliminary study of 

fractional differentiability of functions along a set of non-commuting vector fields has 

been made in section 4. 

Finally we wish to mention that  there is an extensive recent literature concerning 

global regularity of solutions of boundary problems for second order equations with 

semi-definite principal part. (See Kohn-Nirenberg [6, 7], Olejnik [10] and the references 

in these papers.) I am very much indebted to Professor Olejnik who first called my 

attention to the problem studied here and to Professor W. Feller who explained to 

me the probabilistic meaning of equations such as (1.1)and pointed out the existence 

of Kolmogorov's paper [8]. 

2. A necessary condition for hypoelliptieity 

A hypoelliptic differential equation with constant coefficients must have multiple 

characteristics if it is not elliptic (see [3, Theorem 4.17]). I t  is easy to extend this 

result to operators with variable coefficients, and this may have been done before. 

However, a proof will be given here since we do not know of any reference. 

T ~ E O ~ M  2.1. Let P(x,  D) be a di//erential operator in ~ c R n with C ~r coe//icients, 

and let the principal symbol p(x, ~) be real. I /  /or some x E ~ one can lind a real ~ 0 

such that 

p ( z ,~ )=O,  but ~p(z,~) 4 =0 /or some i, 

it /ollows that P is not hypoeUiptic. 

(2.1) 

Proo]. We may assume that  the point x in (2.1) is 0. The classical integration 

theory for the characteristic equation (cf. [3, section 1.8] shows that  there exists a real 

valued function ~ in a neighborhood of 0 such that  g rad~(0)=  ~ and p(x, grad ~0)=0. 

We can replace ~ by such a neighborhood of 0, and shall then determine a /ormal 

solution of the equation P(x, D ) u = 0  by setting 

u = ~ ujt  -j  e ~t~, 
0 
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where ujEC~~ and t is a parameter .  Now we have 

m 

p(vd  ~) = d~  ~ cjt ~, 
0 

where cm = vp(x, grad ~o) = 0 and c~-1 = ~ AjDjv + By with Aj = p(J)(x, grad ~o). Hence 

we obtain  

Pu = t m ~. ajt -j e its, 
0 

where ao=O, a l = ~ A j D j % §  a~=~A~Djuk_ l+Buk- l+L~,  
1 1 

where Lk is a linear combinat ion of u 0 . . . .  , uk-~ and their derivatives. Since Aj are 

real and  no t  all 0 we can if t-I is convenient ly chosen successively find solutions 

u0, ul . . . .  of these equat ions with u0(0)= 1. 

If  the equat ion Pu = 0 were hypoelliptic we would have an  a priori estimate 

]gradu(0)] ~< C{sup ]u I + ~ sup ID~Pu]}, ue  C~r (2.2) 
I~K<N 

where ~ = (~1 ..... ~,) is a multiorder,  [~I = ~t + . . .  + ~,, and D ~ = ( - iS/Sxl)~... ( - iS/dx,,) ~. 

Indeed,  the set of all continuous and bounded  functions in ~ with D~Pu continuous 

and bounded  in ~ for every ~ is then contained in C ~ so (2.2) follows f rom the closed 

graph theorem. However ,  ff we apply (2.2) to 

k - I  

ujt-~ e i~, 
0 

where N + m ~ < ] c + 1 ,  it follows tha t  the r ight -hand side of (2.2) is bounded when 

t-* + oo whereas the left-hand side is not.  This proves the theorem. 

COROLLARY 2.2. For a second order hypoelliptic operator with real principal Tart, 

the principal Tart must be a semi-de/inite quadratic /orm. 

3. Preliminaries for the proof of Theorem 1.1 

Le t  P be a differential operator  of the form (1.6) where XjE T(~) ,  the set of all 

homogeneous real first order differential operators in t l  with C ~ coefficients, and 

ceCCC(gl). (We shall denote by  C~(t l )  the space of complex valued C ~ functions in 

t l  and  use the nota t ion  C~(~ ,  R) for the subset of real valued functions. Clearly T(~I) 

is a C~(t~, R) module.) Alternat ively we m a y  of course regard T(~I) as the space of 

C r162 sections of the tangent  bundle of t-l. 



152 LARS ItORMANDER 

The starting point for the proof of Theorem 1.1 is an a priori estimate which is 

obtained by partial integration and  also occurs frequently in the work of K o h n -  

Nirenberg [6, 7], Olejnik [10] and others. After noting tha t  the adjoint of X~ is - X j  + at, 

where ajEC~176 It), the inequality is obtained by taking v E C ~ ( ~ ) a n d  integrating by  

parts as follows: 

=ReYf (X ,v -ay )X ,  vdz-~fXolvpd~-fRe~lvpd~ 

where we have written 

d = �89 ~ (X ja~  - a~) - ~ ao - R e  c. 

Hence ~1 IIX~vlI2 + IlvlP<CIIvlP-Refv~vax, vec~(g), (3.1) 

if K is a compact subset of g2 and O'S(K) denotes the set of elements in C~(~2) with 

support in K. Here we have used the notation II II for the L z norm. 

For the left-hand side of (3.1) we introduce the notat ion 

r 

IIIvllP = ~ IIX, vlP + IIvlP 

To have a precise estimate for the right-hand side of (3.1) we also need the dual norm 

IIIllll'=~pl f /vdx /lllvlll, v~Cr(a) 
Then we have 

f __ 
-Re  vPvdx~ IIIvlll IIIPvlll' < ~(lllvllP § IIIPvlll'h, 

so with a new constant C we obtain from (3.1) 

IIIvllP ~< c l lv lP§  IIIpvlll% 

Noting that IIIx/lll'~<olltll, /eCr(K), 

v E C~(K). (3.2) 

j = l  . . . .  ,r ,  

we conclude tha t  ]IIX~v]H'< C IIX~vH <~ C [HUH], j = 1 , . . . ,  r. Thus it follows from (3.2) that  

Ill viii 2 + Ill xovl lP  < c (llvll2+ IIIPvlll% v e C~(K). (3.3) 
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Le t  [Ivll(~) denote  t h e  L ~ no rm of the der iva t ives  of v of order s (cf. [3, sec- 

t ion 2.6]), defined b y  

I[ V H~s) ~ (27~)- n f [  ?~(~)[2 ( l  -~- [~ 12) s d~, v c a .  

The  ma in  point  of this paper  is the  proof given in sections 4 and  5 t ha t  for  some s > 0 

livH(~) <~ C(H]vll I + H]X0vlll'), vE Ca(K), (3.4) 

when the  hypotheses  of Theorem 1.1 are fulfilled. Combining this wi th  (3.3) we obta in  

1] v H(~) ~< C(I] v ]] + 1[] Po ill'), v E c a  (K). (3.5) 

We  shall now prove  t h a t  i t  fol lows f rom (3.5) t h a t  P is hypoelliptic.  The  ma in  s tep 

is the  proof  of the  following proposit ion.  

P R O P O S I T I O ~  3.1. Assume that (3.5) is valid /or compact subsets K o[ t-l. Every 
v e / 2 ( g l )  N s  such that HIPvll['< ~ is then in H(~). 

We recall t ha t  H(~) is the  complet ion of C a  in the no rm II II<~) bu t  refer to [3, sec- 

t ion 2.6] for fur ther  discussion of this space. 

Many  s t a tements  of the  same kind  as Proposi t ion  3.1 have  been proved  b y  K o h n  

and  51irenberg [6] bu t  it  seems t h a t  none of t h e m  contains Proposi t ion 3.1 explicit ly 

so we supply  a proof  here along lines similar to [3, Chap. V I I I ] .  

Fi rs t  note  t h a t  (3.5) is val id  for all v E H(~) with compac t  suppor t  in gl. Indeed,  

we can find a sequence vjeC~(K), where K is a compac t  neighborhood of supp v, 

such t h a t  D~vj-D%--~O, j -+~,  when j < 2 .  Hence  HPvj-Pvll~O, which implies t ha t  

[llPvj- PvH[' ~0. I n  par t icular ,  

l im [11PvJlH' <<-I]1Pv [11', 

so it follows f rom (3.5) applied to vj t h a t  

lim Ilvjil(,) <~ C(HviI + ][[Pvil[' ). 

Hence  (3.5) remains  val id  when v E H(2) and  s u p p v  is in the  interior of K.  

I f  v satisfies the  hypotheses  of Proposi t ion 3.1 we choose ZECa(~) so t ha t  

0~<Z~<I and  g =  1 in a ne ighborhood eo of supp v, and  we set 

v~ = Z(1 - ( ~ 2 A ) - I v .  

Here  (1--~2A) iv is defined as the  inverse Fourier  t r ans form of (1 +(~21~12)-1~(~). I t  

is clear t h a t  v~ is then  in H(e), t h a t  supp v~ c supp Z c c  ~ and  t h a t  v~-+ v in L ~ norm 
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when (~-~0. Hence  we m a y  app ly  (3.5) to v6 and  conclude t h a t  Ilvll<~)< oo provided  

t h a t  we can show t h a t  [[[Pv~][l' remains  bounded  when ~ 0 .  This we shall do af ter  

a few simple remarks :  

1 ~ The  inverse Fourier  t r ans form K of (1 + [~[2)-1 and  all der iva t ives  of K de- 

crease exponent ia l ly  a t  infinity.  Since 

(1 - (~A)-Iv(x) = ~-~ f K ((~- y)/~) v(y) dy 

it follows t h a t  any  der iva t ive  of ( 1 - ~ 2 A ) - l v ( x )  decreases fas ter  than  a n y  power  of 

when ~->0 if x~ to .  

2 ~ I f  Q is a differential  opera tor  of order ] 4 2  with  coefficients in C~ ~ it  fol- 

lows t h a t  

II (1 -o~) - lO'Qul l  < c l l ~ l [ ,  u e L  ~. (3.6) 

Indeed,  the es t imate  I[ Q*(~J(1 - (~2A)-~u [[ ~< C II ~ II, u e c r ,  for  the  adjoint  opera tor  is 

t r ivial  since ~J(1 +l~l)  j (1 + ~1~[~) - ,  is bounded.  

3 ~ I f  Q is a differential  opera to r  of order  ~< 1 wi th  coefficients in C~,  then  

II Q(1 - (~2A)-I U - -  ( 1  - -  ~ 2 A ) - 1  Qu II < c II ~ II, u e c ~ .  (3.7) 

For  writ ing W:(1--(~2A)-lu,  we have  u = ( 1 - ( ~ 2 A ) w  and 

Qu = (1 - (l~A) Qw + (~2Rw, 

where R =  [A, Q] is of second order.  Multiplication b y  (1-(~2A)-1 gives 

(1 - ~ A )  -1 Qu - Q(1 - ~2A)-I u = (1 - ( ~ 2 A ) -  1 ~2Rw, 

and in view of 2 ~ the L 2 no rm of the  r ight -hand side can be es t imated  b y  H w[[ ~< [[ u ll. 

4 ~ W h e n  Z j E C ~ ( ~ )  we have  

lllZlO-~)-~x~lll<cll[~l[l, u e C ~ ( ~ ) ,  l l l z~ (x -~ ) -~zx / l l l ' ~c l l l / l l l  ', / e ~ ' ( ~ ) .  

The second inequal i ty  follows f rom the  first  which in tu rn  is obvious  since 

IIXjZl(1 - ~ a )  -1 z ~ -  (1 - ~ a )  -1 i ,  z l z~u l l  < c Ilull 
in view of 3 ~ . 

Proo] o] Proposition 3.1. We recall t h a t  with the  nota t ions  in t roduced above  we 

have  to show tha t  [][Pv~l[J' is bounded  when ~-~0.  In  the neighborhood co of s n p p v  
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we have  (1 - (~eA) v~ = v. If  we apply  the operator  P not ing t h a t  [X~, A] = Xj[Xj,  A S + 

[Xj, A] Xj  = 2Xj[Xj, A] + [[Xj, A], Xj], it follows tha t  in co 

( 1  - (~2A) Pv~ = Pv + ~ Xj~Bjv~ + ~2Bov~, 
1 

where B0, . . . ,Br  are second order operators with compact  support .  I n  view of 1 ~ it 

follows tha t  we have everywhere 

r 

( 1  - ~A)  Pv~ = Pv + ~ Xj~2Bjv~ + ~2Bov~ + h~, 
1 

where h~ vanishes in co~ s u p p h ~ c s u p p Z  and  ]]h~]]~0 when ( ~ 0 .  Hence 

r 

Pv~ = z l  {(1 - ~ 5 ) - l P v  + 5 (1 - ~ A )  -1xjo~Bjv~ + (1 - ~ A )  -1 ~Bovo + (1 - ~ 5 )  - l  h~}, 
1 

where Z1 is a funct ion in C~(~)  which is equal to 1 in suppX. Since v=)Cv, it fol- 

lows f rom 4 ~ tha t  

1[I g~ (1 - ~2A)-~Pv]][' < C mPv[]]'. 

The last two terms are bounded  in L ~ norm in view of 2 ~ and since 

(1 - ~2A)-1 Xj~2Bjvo = Xj  (1 - ~ A )  -1 d~Bjva + [(1 - ~ A )  -1, Xs] ~B~ve, 

we obtain  using 3 ~ 

Ill z~(1 - ~ ) - ~  x,d~B,  voll[ ' < c(l[ (1 - ~ ' A ) - ~ : B ,  voi[ + II O~B,v~ 1[) < C' II ~:B,v~l[ < e" Ilv[I. 

This completes the proof of Proposi t ion 3.1. 

PROPOSXTION 3.2. Assume that (3.5) is valid /or compact subsets K o/ ~.  I[ 

u e O ' ( ~ )  and Pu=~"r41~162 it /oUows that uq  ~oo H(s+~)(~). The same is true /or open ! ~" ~'~ ( s )  

subsets o/ ~ ,  so in particular P is hypoelliptic. 

H~~ ~ for some t. Pro@ Since the s ta tement  is local we m a y  assume tha t  u fi <t) t , 

I t  suffices t o  show tha t  t can be replaced by  t + e  if t<.s. Let  E be a compact ly  

supported pseudo-differential operator  in ~ with symbol  e(~) = (1 +]~]~)t/~ (cf. [2]), and 

set v = Z E u  where Z qC~(~ ) .  If  we can show tha t  v qH<~) for every Z we will have 

EueH(~),~~176 hence ue,=<t+~)~J~~ since E is elliptic. I t  is clear t ha t  v ~ L ~ ( ~ ) n  ~'(g2), so in 

view of Proposi t ion 3.1 it only remains to show tha t  [[[Pv]]['< oo. To do so we note  

t ha t  Z E / ~ L  ~ since t < s ,  and  form the difference 

Pv - XE[ = (PZE - ZEP) u. 
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As in the proof of Proposition 3.1 we have [X~, XE] = 2Xj[Xj, ZE] + [[Xr i~E], X s] so 

it follows tha t  

PY, E - ZEP = ~ Xj Qj + Qo, 
1 

where Qj=2[Xj, XE] for ?'= 1, . . . , r  and all Qj are compactly supported pseudo-dif- 

ferential operators of order ~< t. Since Qr 2 and has compact support, i t  follows 

tha t  IIIPXE~-ZEPuIII'< ~ ,  that  is, IllPvlll'< ~ .  This completes the proof. 

4. Differentiabil ity a long  n o n c o m m u t i n g  vector fields 

Let ~2 be an open set in R n , K  a compact subset of ~ ,  and let X E T ( ~ ) .  We 

shall consider the one parameter  (local) group of transformations in ~ defined by  X. 

Thus let / be the solution of the initial value problem 

dt(x, t) 
- x ( / ( x ,  t)), / ( z ,  o) = x .  (4.1) 

dt 

I t  is clear that  / is a C ~ function from K •  o , to) to ~ if t o is a small positive 

number  depending on K and on X, and we have the group proper ty  

/ ( l (x,  t), 8) = l (z ,  t + 8), 

when x e K  and Itl+lsl<to. 
I f  u is a function in g2 we set 

(etXu) (z) = u(f(x,  t)). 

When ]t]<t o this defines a mapping from C~(K) to C~r and one f r o m  Cr162 to 

C:r and we have etXe~Xu=e(t+S)Xu for small t and s. The differential equation 

for / gives 
d(e~Xu) et:~Xu. 

dt 

The left-hand side is the limit of (e(t+h)Xu--etXu)/h when h-+0, hence also equal to 

XetXu by the same formula with u replaced by e~Xu and t replaced by  0. Summing 

up, e tx is a local one parameter  group of transformations of functions in ~ ,  and 

d(etXu) etXXu = X etXu. 
dt 

When u E C r162 we obtain the Taylor expansion at  t = 0 

t~Xku (4.2) Cxu~Y ~ .  
0 
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We shall be interested in H51der continui ty of functions along vector  fields in 

the sense of L ~ norms. Thus we shall for 0 < s ~< 1 and  0 <  ~<  t o consider the norms 

U c I I~.~= sup I I r  -~, u e C r ( K ) ,  (4.3) 
O<ltl<e 

where II II deno tes  the L ~ norm.  The norm (4.3) increases with e, bu t  since the  dif- 

ference between its values for two different choices of e can be bounded  by  a constant  

t imes I1~11, we shall usually omit  e f rom the notat ions below. An equivalent  norm is 

of course obtained if we take  0 < t < e. (Since our aim is to prove the a priori estimate 

(3.4) for v E C~(K) we have chosen not  to introduce the complete spaces corresponding 

to  these norms and leave for the reader to state the implications for these spaces of 

the est imates proved below.) 

L E P T A  4.1. If ~EC~(~,R), it follows that 

lU[~x.~<C[u]x.s, u e C ~ ( g ) .  (4.4) 

Proof. We keep the notat ion /(x,t) used above so tha t  (etXu)(x)=u(/(x,t)). Let  

T(x, t) be the solution of the initial value problem 

dT 
dt-=qg(f(x'~))' T = 0  when t = 0 .  

F r o m  the differential equat ion (4.1) we then obtain 

d/(x, 7:) 
dt - (q~X) (/(x, 7:)), 

Hence et~Xu(x)=u(/(x,~)), so that 

Ile' x u - n i l  s = f l  ,))) - . ) i  dx. 

Since T depends on x we cannot  compare this direct ly with (4.3), so we first note 

t ha t  for a ny  a 

I u( l (x ,  , ) )  - u(x)I  s < 21 ~( t (x ,  T)) - u(t(x, ~))I ~ + 21 u( / (~ ,  ~))  - u(~)I  s. 

In tegra t ing  with respect to x and averaging over a for I(~]< It[, we obtain 

Ilet~Xu - -  U] ]2  ~< Itl-1 f fal<ltlJJI I U(/(X' ~)) -- U(/(X, a))[~ dx da + 2 lU]~x,s It] ~. 
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In the  integral  we introduce new variables  by  set t ing 

y = / ( x , a ) ,  /(y, w )=  /(x, v), t h a t  is, w + a = T .  

For  fixed t and  for a = 0 we obtain  

dy = dx + X da, dw = dr - d~. 

When  t=  0 we have  ~ =  0, hence d~=O, so for t =  o =  0 the  J acob ian  D(y, w) /D(x ,  a) 

is equal  to - 1. Hence  it is arbi t rar i ly  close to - 1 for sufficiently small  a and  t. Since 

T=O(t)  we have  lwl ~ A I t  I for  some cons tan t  A when  lal ~<ltl. Thus  we conclude t h a t  

for  sufficiently small  t 

I tl-iff~al <lti ] U(f(X, T)) - -  U(/(•,  0"))[2 dx aft 

< 2 l t p l f f  I lu( / (y ,w))-u(y) l 'dydw<~4A(Alt l )~81ul~z.s .  
wl<A]~[ 

This completes  the  proof  of (4.4). 

We shall also use a universal  s -norm defined b y  

l u l : =  sup l i~u-uH Ihl -s, 
Ihl<e 

where ( ~ h u ) ( x ) = u ( x + h ) .  I f  e~ is the field of uni t  vectors  along the i th  coordinate  

axis, we find immedia te ly  b y  using the  tr iangle inequal i ty  t ha t  

n $ 
l u I: < 5 l u I.,s. (4.5) 

1 

On the other  hand,  we can es t imate  ]ul~.s by  a cons tant  t imes ]ul: for an  a rb i t r a ry  i .  

This is a special case (for N = I )  of the  following 

L ] ~ A  4.2. Let g(x, t) be a map /rom a neighborhood o/ K • 0 in ~ x R to ~ such 

that g ( x , t ) - x = O ( ~ ) ,  t ~O ,  where N > 0 ,  and g is a C ~ /unction o/ x which is con- 

tinuous in t as well as its derivatives. Then we have /or small It] 

l - I ~ d~ <. ~ lull ,  e C~ t)) u(x) It (K). (4.6) u 

Proo]. The proof is parallel  to t h a t  of L e m m a  4.1. Thus  we firs~ c o m p a r e  wi th  

the  t ranslat ions vh and  ob ta in  
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f l -  I sdx<cltI-N~ff~h I l u ( g ( x , -  + I ~d~dh+21ul~itl ~Ns. u(g(x, t)) U(~) t)) U(X h) 
i~[ N < 

We introduce new coordinates in the integral by  sett ing y = x + h  and y + w = g ( x , t ) .  

For  t = 0 this is the linear t ransformat ion y = x + h, w = - h, which has determinant  _+ 1. 

For  small t the Jacob ian  of the change of variables is therefore close to 1 in absolute 

value, and  since I w l < A  ]ti N for some constant  A in the domain of the new integral, 

the proof is concluded as t ha t  of L e m m a  4.1. 

Note  tha t  the norm I]8 together  with the L ~ norm is weaker t han  the usual 

s-norm II ]l(s) (cf. [3, section 2.6]) used in paragraph  3, bu t  is stronger t han  the norm 

il I1<~> when t<s. 
I f  X E T(~)  we shall use the s tandard  notat ion a d X  for the differential operator  

f rom T(~)  to  T(~)  defined by  

( a d i )  Y =  IX, Y], YET(s 

Given elements X~ET(s i = 0  . . . . .  r, as in Theorem 1.1, and a mult i - index I ,  t ha t  is, 

a sequence (i 1 . . . . .  ik) with 0 ~<ij ~<r, we shall write 

X~ = ad X~ ... ad X~_ 1Xi~" 

(Note the distinction between a mult i- index and a mult i -order  as used in section 2.) 

We set /c = ]II and  always assume tha t  ]II 4= 0. The same notat ions  will be used for 

other  Lie algebras than  T(~) .  

We can now state the main result to be proved in this section. 

THEOREM 4.3. Given X j E T ( ~ )  and s jE(0,1] ,  j = 0 , . . . , r ,  we denote by T~(~) the 

C~(s It) submodule o/ T(s generated by all X z with s(I)>~s, where 

1 k l  
;,, 

Assume that T~(~) = T(~)  /or some s > O. Then we have/or every compact set K c ~ with 

C depending on X and K but not on u 

) lui~,,<c ulx.+llull, ueC~C(K), X e T ~ ( n ) .  (4.7) 

In  particular, 

lul.< c( lul .+liull , uEc (K), il (4.8) 
\ o  / 
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W e  r e m a r k  t h a t  a s l ight ly  more  precise vers ion of a special  case of (4.7) has  been 

p roved  b y  K o h n  [5] b u t  his m e t h o d  does no t  seem appl icab le  in the  genera l  case. 

The proof  of (4.7) will be made  b y  induct ion  for increas ing s s t a r t ing  f rom a po in t  

where  we expec t  (4.8) to  be val id.  W e  begin  wi th  a s imple l emma  jus t i fy ing  t h a t  we 

have  n o t  considered more  compl ica ted  c o m m u t a t o r s  in Theorems  1.1 a n d  4.3. 

L•MMA 4.4. I/ 1/tl+ 1/t2<~l/t3, we have 

[T t,, Ttq a T ~3. 

Proo]. L e t  I 1 and  13 be mul t i - indices  wi th  s(Ij)>~ tj a n d  le t  ~ j 6  C~(~) .  Then  we have  

[~, X~,, ~v2 X,.] = ~, (X, ,~2 ) X~, - ~dX,2~q) X~, + ~01~02 [X,,,  X12]. 

Since t s ~<tj for j =  1, 2, the  f irst  two t e rms  on the  r igh t -hand  side are  in T t', and  so 

is the  t h i rd  since the  J a c o b i  i d e n t i t y  a d  [X, Y] = [ a d X ,  a d  Y] gives t h a t  [X**, X,~] = 

( a d X ) , , X , ,  which wr i t t en  expl ic i t ly  is a l inear  combina t ion  of e lements  Xa where  

1 / s ( J )  = l / s ( / , )  + 1/s(I2).  

We shall  have  to  make  r e p e a t e d  use of the  Campbe l l -Hausdo r f f  fo rmula  which 

can be s t a t ed  as follows (ef. Hochschi ld  [1], Chap.  X): I f  x and  y are  two non-com- 

mu t ing  inde te rmina tes ,  we have  in the  sense of formal  power  series in x a n d  y t h a t  

e x e ~ = e ~ where  

z = ~ ( -  1)n+*n -1 ~ ( a d x ) ~ ' ( a d y )  ~' . . .  (adx):'.(ady)t~'~-ly/c~.~, " 

where  e~.~ = ~! fi! [~ + fl]. (When ft. = 0  the  t e r m  should  be  modif ied  so t h a t  the  l as t  

fac tor  is ( a d x ) ~ - l x . )  The i m p o r t a n t  facts  for us are  t h a t  the  t e rms  of order  1 are  

x + y ,  t h a t  those  of o rder  two are  �89 and  t h a t  all t e rms  of higher  o rder  are  

( repeated)  commuta to r s  of x a n d  y. 

W e  shall  use the  Campbe l l -Hausdo r f f  fo rmula  to  der ive  a p roduc t  decompos i t ion  

of e x+~. W i t h  the  no ta t ions  used  above  we have  

e-Y e-X eX+y =e-Z eZ+y =er, 

where r 2 = - z + x + y + �89 - z, x + y] + . . .  = - �89 [x, y] + . . . ,  the  do t s  ind ica t ing  te rms  of 

order  a t  leas t  th ree  which are  l inear  combina t ions  of commuta to r s .  Wr i t i ng  z 2 = - �89 [x, y], 

we form e - ~ e  TM = e  ~. The  Campbe l l -Hausdo r f f  fo rmula  gives r 3 = z 3 +  .. .  where  z 3 is a 

l inear  combina t ion  of c o m m u t a t o r s  of x and  of y of degree three,  and  the  do t s  indi-  

ca t e  a formal  series whose te rms  are  c o m m u t a t o r s  of degree a t  l eas t  four. Proceed ing  
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in th is  way,  we choose for eve ry  in teger  k ~> 2 a l inear  combina t ion  zk of c o m m u t a t o r s  

of x and  y of o rde r  k such t h a t  

e - Z k  erk  ~ e r k + l  

where r k is a formal  series whose te rms  are  commuta to r s  of x and  y of order  a t  leas t  k. 

Thus we have  
e-Z~ e-Zk- i . . .  e - ~  e -  ~ e -x e x + y = e r k +  1, ( 4 . 9 )  

so t h a t  e ~+y is to  a high degree of accuracy  a p p r o x i m a t e d  b y  the  p roduc t  

e x e  y e  z2 . . .  e zk. 

LEMMX 4.5. Let X ,  Y E T(~)  and denote by Zj the linear combination o/commutators 

o/ j /actors X and Y obtained by replacing x and y by X and Y above. Let 0 < a <~ 1, and 

let IV be an integer >~2. Then we have/or small t and uEC~C(K) 

N - 1  

Ile~<x+Y)u-ull<,c(lle~Xu-ull+lle~u-ull+ y I l e ~ r 1 7 6  (4.ao) 
2 

Proo[. The opera to r  

H~v = exp ( - t N-1 ZN-1)...  exp ( -- t 2 Z2) exp ( - tY)  exp ( - tX) exp t(X + Y) 

is induced  b y  a mapp ing  in ~ since eve ry  fac tor  is. Hence  there  exis ts  a C ~r func- 

t ion hN(x,t) from a ne ighborhood  of K • 0 to  ~ such t h a t  H~v(x)=V(hN(X,t)). F r o m  

(4.9) and  (4.2) i t  follows t h a t  Htgv--v = O(t N) if v E C ~. Tak ing  for v a coordina te  

funct ion  we conclude t h a t  
h ~  (x,  t) - x = O(tN), 

so L e m m a  4.2 gives I IH~v-v l l  < ~ l t l ~  

Now we have  for a n y  bounded  opera tors  S D . . . ,  S~ in L ~ 

k k 

IIs~ .. .  8 ~ u - u l l  = II Y $1 .. .  s~_~(S,u-u)II-<< ~ IIs~ll ... IIS,-lll IIS, u - u l l .  (4.11) 
i=1 t~1 

Since exp t (X + Y ) =  exp (tX) exp (tY) exp  (t ~ Z2) . . .  exp  (t N-1ZN.1) H t 

and  the  no rm of each fac tor  is bounded  un i fo rmly  in t the  inequa l i t y  (4.10) follows. 

L e m m a s  4.1 and  4.5 toge the r  will a l low us to  p rove  (4 .7) for  a r b i t r a r y  X E T~(~) 

af ter  the  e s t ima te  has  been es tab l i shed  for a set  of generators .  W e  shal l  therefore  

s t u d y  n e x t '  some ident i t ies  which give control  of the  commuta to r s  of the  given 

opera tors  Xr 
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Le t  x I . . . .  , x  k be k non-commut ing  inde te rmina tes .  B y  the  Campbe l l -Hausdo r f f  

fo rmula  we have  

eXtz-1 eX~ e-Xk-1 e-Xk ~ eZ~- i 

where  z~-i  = [xk- l ,x~]  + . . . .  t he  dots  ind ica t ing  a formal  series all  t e rms  of which are  

commuta to r s  of a t  leas t  th ree  fac tors  equal  to  x~ or Xk-x; obvious ly  bo th  x~ a n d  xk-1 

m u s t  occur a t  leas t  once in eve ry  one of them.  W e  now form successive formal  power  

series zk-1, zk-2 . . . . .  Zl b y  se t t ing 

e~Je ~j+~ e-~Je -~j+~ = e% j = 1 . . . .  , k - 2. 

Then  e z' is a p roduc t  of nk fac tors  e ~ i ,  where  n 2 = 4  and  n k + l = 2 + 2 n k ,  t h a t  is, 

n k = 3 " 2 k - 1 - - 2 ,  and  z ~ = c + . . ,  where e = a d  xx a d x z . . ,  ad  x~_~xk, the  do t s  denot ing  a 

series wi th  t e rms  of h igher  order,  each of which is a c o m m u t a t o r  conta in ing each xj 

a t  leas t  once. As in the  discussion preceding L e m m a  4.5 we can use the  C a m p b e l l -  

Hausdorf f  formula  again  to  show t h a t  for a n y  N we can wri te  

e~ = e~ eC, e ~, .. .  e~ d,  

where each ej is a c o m m u t a t o r  fo rmed  from x I . . . .  ,z/r which contains  each xj a t  leas t  

once and  some xj twice,  and  r is a formal  sum of commuta to r s  of a t  leas t  IV factors  

xj. I f  we recal l  the  def ini t ion of e z' we have  thus  found  an  a p p r o x i m a t e  representa-  

t ion of e c b y  produc ts  of e ~ j  and  e ~j where  c s are  commuta to r s  of higher  order  t han  

c. This  al lows us to  p rove  the  f inal  l e m m a  needed  for the  proof  of Theorem 4.3. 

LP~M~A 4.6. Given X j  and sj, ? ' = 0 , . . . , r ,  as  in Theorem4.3,  we s e t m j = l / s j a n d  

re(I) = 1/s( I )  when I is a multi-index. Let a > 0 .  Then we have /or small t > 0 and an 

arbitrary multi-index I 

r 

[[exp (tm'l' Z , ) u - - U l l  <C~t  ~. lUlXj.sj + C 2 t l u l , ,  u e C ~ ( K ) ,  (4.12) 
0 

where Cx and C2 are constants and Cx only depends on r and a, not on X o . . . . .  Xr, so , . . . ,  s,. 

Proof. Since mj>~l ,  we have  m ( I ) > ~ l I  I, so (4.12) follows f rom L e m m a  4.2 wi th  

C 1 = 0  if aI I l>~l .  I f  N is an  in teger  wi th  N a ~ > l ,  we m a y  thus  prove  (4.12) b y  in- 

duc t ion  for decreasing III ,  s t a r t i ng  when  I zl = N .  

l~eplacing the  inde te rmina te s  zj  in  the  discussion preceding L e m m a  4,.6 b y  t ~*~ X~j. 

we ob ta in  as in the  proof  of L e m m a  4.5 an  i d e n t i t y  
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exp (tm(z)X1)=1-[ exp (q-tm1xi) exp (tree~ X1,).. .  exp (t'~(zPXg)H~N, (4.13) 

where the product contains 3 . 2 t ' t - l - 2  factors as described above, the multi-indices 

11 . . . .  , Iv have greater length than I and 

H i  v(x) = v(hN(x, t)) 

with a C a function hN(x, t) of x, depending continuously on t, such that  hN(x, t ) - x  

=0(tN), t-+ 0. From Lemma 4.2 we obtain 

llu%u-ull <ct~~ uEC~(K).  

In  view of (4.11) if follows that  for small t 

Ilexp (t'~(')X,)u-ull <2 '''+1 ~ Ilexp ( t='Xj)u-ul l  
0 
y 

+2 E Ilexp (e(")X,)u-ull +ct~ 
1 

for the norm of each factor in (4.13) is close to 1 for small t. We can apply the 

inductive hypothesis to the terms in the second sum; and since aN~> 1, the estimate 

(4.12) follows. 

Remark. Since C1 does not depend on the choice of X 0 . . . .  , Xr, it follows tha t  

for multi-indices I containing some index ~> 1, we have for every s > 0 

r 

[[exp (t~'x,),,-ull<~tlul,,.,o+v.t(21ulx,.,,+lulo), uEC;(K) .  (4.12') 
1 

In  fact, Xz does not change if we replace X o by  eX o provided tha t  a t  the same t ime 

we replace X s by  e - ' X j  for a suitable y > 0  when ]~>1. 

Proo/ o/ Theorem 4.3. Choose a > 0  so tha t  T ~(~)=T(f2)  for some v>o ' .  We 

wish to prove tha t  

r 

luf~.~ <v~ (5 lull;.,, + l u g  ~e v~(g) ,  x e  T~(~). (4.14) 
0 

This estimate is tr ivial  if s ~<a and it follows from Lemma 4.6 if X is any one of 

the commutators Xz which generate T'(f~). In  view of Lemma 4.1 the estimate (4.14) 

remains valid for X = ~ X I  if ~EC~(f2) .  By  definition every X E T  s is therefore a 

finite sum of vec tor  fields for. which (4.14) is va l id .  If X,  Y E TS(~)are vector fields 

for which (4.14) is valid, we apply L e m m a  4,5 with a N > s  noting that  if follows 

11 - - 6 7 2 9 0 9  Acta mathematica 119. I m p r i m 6  le 7 f 6 v r i e r  1968.  



164 LAas HORMANDER 

from Lemma 4.4 tha t  Z j E T  s/j. Assuming as we m a y  t h a t  (4.14) has already been 

proved when s is replaced by  a number  <~s/2,  we conclude tha t  (4.14)is valid when 

X is replaced by  X +  Y. Hence (4.14) follows. 

Now recall tha t  T ~ ( ~ ) = T ( ~ )  for some v > a .  Thus we obtain f rom (4.14) the 

est imate 
r 

I~1~ < c(Eo I~1~,.,, + I~1o), ~e  Cr (K) ,  (4.15) 

i f  we take (4.5) into account. Since ~ > a  we have for any & > 0  

lul~ ~<~ I~1, + c, II ~11. 

I f  we combine (4.15) and (4.16) taking ~C<  �89 we conclude tha t  

(4.16) 

Using this estimate in the r ight-hand side of (4.14) we have proved (4.7). 

5. Smoothing and estimates 

In  section 3 we have proved tha t  Theorem 1.1 is a consequence of the a p r i o r i  

estimate (3.4). We recall t ha t  

IIIvlll ~= ~ II x ,  vll ~ + IlvlL 
1 

so the r ight -hand side of (3.4) gives us control of ]v]x,,1 when i = 1  . . . .  , r .  However,  

the information given about  X o v  is in a weaker norm which prevents  us from ap- 

plying Theorem 4.3. To s tudy  the differentiabil i ty of v in the direction X 0 we con- 

sider fit/= II~X0v-vii. Differentiation with respect to t gives, if v is real as we m a y  

well assume 
d/ ( t )2 /d t  = 2(e tx~ X o v, e tX' v - v). 

Let  us assume for a momen t  t ha t  e ix~ preserves the  norms III IH and  III Ill', a l though 

we shall see below tha t  this is far  f rom true. Then we would obtain 

d/(t)2/dt < 4 Ill Xov II1' III v III, 

hence /(t) .< t~ (111 ~ III + III Xovlll'). 

Thus we would have control  o f  [Vlxo. �89 and  could apply  Theorem 4.3 with so=�89 

s l =  ... = s t = l ,  and this would give (3.4). 
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To examine the val idi ty  of the preceding arguments  we must  consider Illr 

thus the L 2 norm of Xje tX 'v  for j = 1, ..., r. This is essentially the same as the L ~ 

norm of e-tX~ Xj e tx~ v. Now 

e- t x. X j  e t x~ = e - tad X. Xj = ~. ( - t) ~ (ad X o)~ X J k  !, 
0 

where the first equal i ty  is a definition mot iva ted  by  the second one which means 

tha t  the two sides have the same Taylor  expansion in t. This follows immediate ly  

from the fact  tha t  left and r ight  multiplication by  X 0 commute  and tha t  by  defini- 

t ion their difference is ad X 0. Since we have no information about  the differentia- 

bility of v in the direction (ad Xo)kXj  when k 4= 0, the a rgument  as given above breaks 

down. However,  we note tha t  the derivative in this direction occurs with a factor  

t k, which indicates t ha t  we can impose sufficient smoothness on v by  a regularization 

which does not  change v too much  for small t. This we shall do in the following 

discussion which aims at  proving tha t  [(t2)/t can be bounded by  the r ight -hand side 

of (3.4). I t  is in fact  permissible to allow in the r ight -hand side of the est imates 

any  quantit ies which by  the results of section 4 can be est imated by  a small con- 

s tant  times ]v]xo.�89 and a large constant  times ][]v]][. 

The first step is to s tudy  regularization along a vector field X ET(~) .  Let, 

u E C ~ ( K ) ,  K c ~ ,  and  assume tha t  e ~x maps C ~ ( K )  into C ~ ( ~ )  for ]r]~<l.  W i t h  

~oEC~~ we set 

= I'e~Xuq~(r) dr. qJx u 
J 

This operator  is smoothing in the direction X,  for 

f d ev X , f X ~ x u =  ~ u q ~ ( ~ ) d r = - q ~ x U =  ( u - e ~ X u ) q Y ( v ) d r .  

It follows that II x v x .  II < f l  II - - -II, 

supll  %- ll if and 
I r l< l  

(5.1) 

~ dx = 1. (5.2) 

We shall later have to  consider the commuta to r  of qx with operators YET(E2), so 

we note  the formulas 

Yq~xU = [ d x (e -~ ad x y )  u~(r) dr, (5.3) 
d 
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 xYu = f ad x y )  (5.4) 

Each  term in the Taylor  expansion of e ~aa x will thus give an analogous expression 

with a smoothing operator defined b y  some other  function and acting on the other 

side of another  differential operator.  

Besides the quite specific smoothing along certain vector  fields using the operators 

~x we shall also employ the usual smoothing in all variables. Thus let (I)E C~ r (B), 

where B is the unit  ball in R n, and set 

Then  we obtain 

r = f u(x - ~h) ~9(h) dh. 

e 11 D , r  u II < f[ Djr dx ,,,~ <~sup Ilu(~ - eh) - u(~)II, (5.1)' 

IIr if r  and fCdx= . (52), 

Ins tead  of (5.3) and (5.4) we shall use Friedriehs's lemma ([3, Theorem 2.4 .3])which 

gives for every YE T(~)  

II(Yr H 4CHu]], ueC~(K),  (5.5) 

where C is uni formly bounded  for small e if Y lies in a bounded set in T(~) .  

As in section 4 the nota t ion I will s tand for a multi- index and Xz for the cor- 

responding commutator .  We set so = �89 sl = . . .  = sr = 1 and define s(I) and m(I) = 1/s(I) 
as in Theorem 4.3 and  L e m m a  4.6. Thus re(I) is the sum of the length I l l  of I 

and the number  of indices in I which are equal to  0. 

Le t  a be a positive number  chosen so small t ha t  with the notat ions of Theorem 

4.3 we have Ts(~)=T(~)  for some a>( r .  As in section 4 we shall allow lul~ to 

occur in the r ight -hand side of our  estimates and use it to  take care of various 

remainder  terms in Taylor  expansions. Let  Y denote the set of all I with am(I)~ 1 
and IIl<m(I)<21II; the lat ter  condition means tha t  I shall contain indices equal to  

0 as wel l  as indices 4: 0. Set 

M(u)  = Illulll + IlIXoulll' + ~ lu lx , . s< , )+  lul l .  

Our aim is to  show tha t  

luIx,.�89 4OM(u), ueO~r (5.6) 
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By (4.12)' we can estimate [ulxl.~(z) by a small constant times lUlx0,�89 and a large 

constant times Illulll +l~lo when I e J .  Hence (5.6) implies 

r 

~o lulx,,~,+ Ilull ~<c' (lllulll+lllxo~lll' +lulo), u f i C r ( K ) .  (5.7) 

Let  s > a but  T~(~)= T(~).  Then it follows from (5.7) and Theorem 4.3 tha t  

lul,~c'(lllulll~-IIIxo~lll' +l~lo), u~C~(K), 

and since lulo~<~l%§ for any ~ > 0 ,  we obtain with another constant C 

lul, ~c(lllulll + l[l/o~lll'), uEC~C(K), 

r 

hence z~x: I~lx,,, -< c (111 u III + Ill x0 ~111'), u ~ c ~  (K). (58) 
0 

In view of Theorem 4.3 we conclude 

THEOREM 5.1. Let X o . . . .  , X r  satis/y the hypotheses o/ Theorem 4.3 and set 

so = �89 81=. . .  = s, = 1. Then we have 

luk~<c(x)  (lll~lll + lllXoulll'), u e C ~ ( K ) ,  X e T ' ( ~ ) ,  (5.9) 

where III III and IH II1' are de/ined in section 3. 

Clearly Theorem 5.1 completes the proof of Theorem 1.1, so all that  remains now 

is to prove (5.6). 

We give Y a total ordering so that  re(I) is an increasing function of I E Y and set 

StU = 1--[ Cftm(1) Xii~')tl/aU, 
1GY 

where ~ and (I) are functions satisfying the hypotheses of (5.2)and (5.2)'. The factors 

in the product are t aken  from left to right in increasing order of I.  If J E Y we shall 

also write S~u for the similar expression with the product restricted to all I with 

I>~J.  We also set : J '=YU ~ and S~=(Pt l l  - , t  and define ~ > I  for every IE:J .  

If follows immediately from (5.2), (5.2)', the definition of the norms and (4.11) that  

[ I S t u - u l l  4 C t M ( u ) .  (5.1o) 

We want to estimate II r 1 7 6  u II. Noting that  
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e t, Xo u - u = e t' x, (u - St  u) + e t" Xo St  u - S tu + S t u - u 

and tha t  the norm of e t' x~ as an operator in L 2 is uniformly bounded, we conclude tha t  

II e" ~'u - u II < C t M ( u )  + II ~" ~*8,u - S, ull. (5.11) 

The advantage of this is that  the regularity built into S t u  will make it possible to 

estimate the last term by  applying the argument  outlined at  the beginning of the 

section but  which was then merely heuristic. We need the following lemma which 

shows how differentiability is successively introduced by  the regularizations in S t. 

(Note that  ~ t = S t  "r when J is the smallest element in :7.) 

LEMMA 5.2. For  every J E ~ '  we have /or small  t > 0 

[I tl/aDt St  yu H <~ C t M ( u ) ,  (5.12) 
1 

5 Iltm")X,S/ull <.CtM(u), (5.13) 
.1<~ I c Y  

II [~x~ ,  ~ / ]  ull <~CtM(u). (5.14) 
0 

Proof.  For  J =  ~ the estimate (5.12) follows from (5.1)'. As a superposition of 

compositions with C ~r maps, each factor in the operators S /  is uniformly bounded in 

the H(s) norm for every s, so (5.12) is valid for all J E Y ' .  For J =  ~ the s ta tement  

(5.13) is void and (5.14) is very much weaker than (5.5). When proving the lemma 

we may  therefore assume tha t  it has already been proved f o r  larger J and arbi trary 

~ E C ~ ( - 1 ,  1). In  the proof of (5.13) we must  then distinguish, between two different 

cases: 

1 ~ I > J .  Let  J '  be the smallest element in :~' larger than J ;  then I ~>J'. We 

shall use (5.3) with Y replaced by  tmr and X replaced tm(~)X~. This allows us to 

let X~ pass through the first regularizer and we obtain 

�9 { } tm(z~ X z S / u  = e~t'~J) xJ , ~<N (ad - "t'tm(1) X1)" t m(1) Y.,,,z,-,t'~l" "t~ ~ / v  ~ /" .V .• tNm(1)+m(1) y t .  ~ S~'ut qJ('r) d~, 

where Yt.~ belongs to a bounded set when t-~O. I f  N m ( J ) + m ( I ) > ~ l / a  if follows 

from (5.12) tha t  we have the desired estimate for the term involving the remainder 

te rm Yt.~. Since (ad X ~ ) ~ X z = X r  for some I '  with I ' > ~ I > J  we have I '>~J ' ,  so the 

inductive hypothesis concerning (5.13) allows us to estimate the terms in the sum to 

the extent tha t  they are not taken care of by (5.12). 
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2% I = J .  With J '  defined as above we have in view of (5.1) 

~ T t m ( J ) x j  ,~y" . .  ctJ" I I l tm( ' )x , s /u l l  ~ c  sup II- ~,  ~ - o ,  u 

The proof of (5.10) applies without change to prove that  the right-hand side can be 

bounded by  CtM(u). 
I t  remains to prove (5.14). We can write 

By the inductive hypothesis concerning (5.14) it suffices to consider the second term. 

Now (5.3) gives 

[tm~Xt, q)t'~,J)xj]V= fe*t~(J)Xj( ~ (ad-~m(")Xj)'tm, Xtv/v,  +tNM(~+mJYt.,V ) q)('r)d'r 
d \O<~<N 

with Y~,~ as above in 1 ~ When ~ 4 0  we have ( a d - X j )  ~ X ~ = X r  for some I ' E ~ '  

with l'>~J' or else am(1)>~l, so we obtain (5.14) from the inductive hypotheses con- 

cerning (5.12) and (5.13). 

Proo] o] (5,6). Our aim is to estimate the right-hand side of (5.11) so we in- 

troduce for 0 ~< v ~<t ~ the function 

I(~) = II r  - s , ~  II. 
Differentiation of /2 gives 

l('O t'  ('0 = (e 'X 'XoStU,  e'X"S~u - S tu )  

= ( d x ' [ X o ,  St] u, e 'zoS~u - u) + (dXoStXo  u, e ' X ' S t u  - S tu) .  

Using the Cauchy-Schwarz inequality and (5.14), we obtain 

/ (T) 1' (~) < Ot-~M (u) 1 (~) + (Xou, (dx'St) * (e'X*St u - Stu) ). (5.15) 

We shall prove tha t  the last expression can be estimated by  CM(u) ~. Admitting this 

estimate for a moment,  we obtain the integral inequality 

11' <- o + M M when 0 < T < t~; 1(0)= O. 

I f  g=///Mt, this reduces to gg'<<.C(g+l)t -2, so 

f~g dg//(g+l)<~GN-2<~C when ~ < t  ~. 



170 LARS HORMANDER 

This implies that  g ~ C '  when T~<t 2, hence /(t 2) <~C'M(u)t, a n d  (5.6)follows in view of 

(5.11). 

What  remains is therefore to show tha t  

III Stu)III < (5.16) 

=i Write Nt(v) IIX, vll + 2 Ilt' <')-lX,vll + t l / a - 1  ~ liD, vii + IIvll. 
1 le:1 1 

Then we have Nt(S tu )  <~CM(u). (5.17) 

This follows immediately from Lemma 5.2 if we note tha t  X j S t u = S ,  X s u +  [Xj, St] u 

and recall again that  St has uniformly bounded norm in L ~. The norm N t is quite 

well behaved under translations; indeed, we shall prove that  

N t (e ~XJ v) < CN t (v), 0 < ~ < t re(J), (5.18) 

provided tha t  the multi-index J contains 0. 

To prove (5118) we let Y = X j ,  j = l  . . . . .  r, or Y = X z  where I E Y ,  and note that  

Y d xd S t U = e vxd (e -  ad ~rXJ y )  S t  U. 

Now II (ad zX, )~Yv  l[ ~< II (ad tm(J'X,)krv II 

when 0 ~<z ~ t  re(J), so we obtain the desired bound for each term in the Taylor ex- 

pansion of e-ad ~xj. The error term can be estimated by  using the last sum in the de- 

finition of hrt, so (5.18) follows. 

In  particular, we obtain from (5.17) and (5.18) 

IVt (e~X~ - Stu) ~ CM(u) when 0 ~< ~ ~< t 2. (5.19) 

Now the adjoint of a translation e r is equal to J r e  - r  where for Y in a suitable 

neighborhood of 0 the Jacobian J r  has a uniform bound together with as many  

derivatives as we wish. In  view of (5.18) it follows tha t  the adjoint of e ~x* for 

0 ~<r ~<t 2 and of e ~Xz for 0 ~<T ~<t ~(z),IE Y, are uniformly bounded with respect to the 

norms /Vt, as is the adjoint of the operator qbtl/~. Since (e~X~ * for 0~<~<t  2 is a 

superposition with finite total  mass of operators which have uniformly bounded norm 

with respect to Nt, it follows from (5.19) that  

Nt ( (dx 'S t )  * (d'r*Stu - Stu))  < CM(u),  

and this implies (5.16). Thus we have completed the proof of (5.6) and so we have 

proved Theorems 5.1 and 1.1. 
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