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1. Introduction

A linear differential operator P with C* coefficients in an open set Q <R" (or a
manifold) is called hypoelliptic if for every distribution % in Q we have

sing supp » = sing supp Pu,

that is, if » must be a C* function in every ‘open set where Pu is a C” function.
Necessary and sufficient conditions for P to be hypoelliptic have been known for quite
some time when the coefficients are constant (see [3, Chap. IV]). It has also been shown
that such equations remain hypoelliptic after a perturbation by a “weaker” operator
with variable coefficients (see [3, Chap. VII]). Using pseudo-differential operators one
can extend the class of admissible perturbations further; in particular one can obtain
in that way many classes of hypoelliptic (differential) equations which are invariant
under a change of variables (see [2]). Roughly speaking the sufficient condition for
hypoellipticity given in [2] means that the differential equations with constant coeffi-
cients obtained by “freezing” the arguments in the coefficients at a point @ shall be
hypoelliptic and not vary too rapidly with .

However, the sufficient conditions for hypoellipticity given in [2] are far from
being necessary. For example, they are not satisfied by the equation

2
%+x2—;:—g?=f, (1.1)
for the operator obtained by freezing the coefficients at a point must operate along
a two dimensional plane only so- it cannot be hypoelliptic. But Kolmogorov [8] con-
structed already in 1934 an explicit fundamental solution of (1.1) which is a C*° func-
tion outside the diagonal, and this implies that (1.1) is hypoelliptic.
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The arguments of Kolmogorov [8] can also be applied to the more general equation

ou n 24 " ou
Ton” by om sen oy T 1.2
0y ’-"zﬂa}k 0, O J.kz=1 " e f (1.2)

where ay, by and ¢ denote real constants, and the matrix A = (ay) is symmetric and
positive semi-definite. If we take Fourier transforms in all variables except ¥, we are

led to the equation

_oU_ _ < 5 9&U) __oU_ o oy 20U _
P LI j’kzﬂbjk 2, TV o (A& & —c)U j.%‘;lb,kska& F, (1.3)

where ¢’ =c¢—TrB. To obtain a fundamental solution of (1.2) with pole at (y,, ¥) and
vanishing when z,<y, we wish to find a solution U of (1.3) when z,>y, such that

U= —¢*"® when x,=y, The characteristic equations for (1.3) are

_ dg; _ aUu
Z bjkgk U(A(E: E) - C’)

(1.4)

dux,

and have the solutions

t
Xo=YoTt, E&@E)=(expBt)y, U= —exp(—ely,n)— fo (A(&(s), E(s))— ) ds
if we take the initial condition into account. Elimination of ¢ and 5 gives

U(xy, &) = —exp (— iy, (exp By, — x,)) & — L " oA(exp (—Bs) &, exp(— Bs) &) ds
(@Y, X>Yos

and ‘we set U(x,, &) =0 when ,<y, The quadratic form in the exponent is positive
semi-definite, and it is positive definite unless for some £=0 we have A((exp Bs)¢,
(exp Bs) £)=0 identically in s, that is, A(B‘€, B*€)=0 for every k. This means that
the null space of A contains a non-trivial invariant subspace for B. If this is not the
case we obtain by inverting the Fourier transformation a two-sided fundamental solu-
tion which is a C® function off the diagonal; for fixed w, and ¥, it is the exponential
of a negative definite quadratic form in (exp’Bx,)z— (exp‘By,)y with eigenvalues
- — oo when z,—%,~0. (The eigenvalues may have different orders of magnitude so
the differentiability properties of the fundamental solution may be quite different in
different directions, a typical feature of the subject of this paper.) Thus it follows
that (1.2) is hypoelliptic unless the null space of A contains a non-trivial subspace which

is wnvariant for B.
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The results of Kolmogorov have been extended by Weber [11] and IV'in [4] to

the equation

L o*u T ou mooou  ou
a;; +>a,—tout+>b———=f, 1.5
uz=1 Y oy, 0y, Zla oY; a ; ‘ox; ot f (1.5)

where the coefficients are C* functions of z,y, ¢, the matrix (a;) is positive definite
and the matrix (9b,/dy,;) has rank m everywhere. The hypoellipticity follows from a
construction of a fundamental solution by the E. E. Levi method starting from that
given above after a change of variables to make b;=ys,.

In this paper we shall give a nearly complete characterization of hypoelliptic second
order differential operators P with real C* coefficients. First it is easy to show, as we
shall do in section 2, that the principal part must be semi-definite if P is hypoelliptic.

In any open set where the rank is constant we can then write locally

P=SX:+X,+c, (1.6)

r—lMﬂ

where X, ..., X, denote first order homogeneous differential operators in an open set
Qc R with C* coefficients, and ¢€C*(Q2). We assume from now on that P has this
form but do not necessarily require that the X, are linearly independent at every
point. There is of course a large freedom in the choice of the operators X, In par-

ticular, we may replace X, by

r
X_;:;Cijk, j=1,...,'r,

where (cyx) is an orthogonal matrix which is a % function of x€Q; then X, is re-
placed by an operator X, such that X;— X, is a linear combination of Xi,..., X,
with C* coefficients.

If the Lie algebra generated by X, ..., X, has constant rank <= in a neighbor-
hood of a point z€Q, it follows from the Frobenius theorem that there exists a local
change of variables near x so that P afterwards only acts in the variables x;, ..., 2, ;.
If the homogeneous equation Pu=0 is satisfied by some non-trivial function it follows
that P is not hypoelliptic, for a new solution is obtained by changing the definition
of w to 0 on one side of a hyperplane z,=constant. Thus the sufficient condition for

hypoellipticity in the following theorem is essentially necessary also:

THEOREM 1.1. Let P be written in the form (1.6) and assume that among the op-
erators X, [X;,, X;,), [Xj, [ Xy Xy 1, -ovs [ Xy [ X [Xps ooy X JH - where 5;=0,1,....7,
there exist m which are linearly independent af any given point in Q. Then it follows

that P is hypoelliptic.
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It is a simple exercise to verify that for the equation (1.2) the condition in
Theorem 1.1 is the same that we needed to construct a smooth fundamental solution
by the method of Kolmogorov [8].

As mentioned above we shall discuss necessary conditions for hypoellipticity in
section 2. It is proved in section 3 that Theorem 1.1 is a consequence of certain a
priori estimates and we make some preliminary stéps toward proving these. However,
they are proved completely only at the end of section 5 after a preliminary study of
fractional differentiability of functions along a set of non-commuting vector fields has
been made in section 4.

Finally we wish to mention that there is an extensive recent literature concerning
global regularity of solutions of boundary problems for second order equations with
semi-definite principal part. (See Kohn-Nirenberg [6, 7], Olejnik [10] and the references
in these papers.) I am very much indebted to Professor Olejnik who first called my
attention to the problem studied here and to Professor W. Feller who explained to
me the probabilistic meaning of equations such as (1.1) and pointed out the existence

of Kolmogorov’s paper [8].

2. A necessary condition for hypoellipticity

A hypoelliptic differential equation with constant coefficients must have multiple
characteristics if it is not elliptic (see [3, Theorem 4.17]). It is easy to extend this
result to operators with variable coefficients, and this may have been done before.

However, a proof will be given here since we do not know of any reference.

TrEoREM 2.1. Let P(x, D) be a differential operator in Q <R with C* coefficients,
and let the principal symbol p(x, &) be real. If for some x€Q one can find a real £+0
such that

p(x, &)=0, but a—?é——z__’jf)#o for some 7, (2.1)

i follows that P is mot hypoelliptic.

Proof. We may assume that the point x in (2.1) is 0. The classical integration
theory for the characteristic equation (cf. [3, section 1.8] shows that there exists a real
valued function ¢ in a neighborhood of 0 such that grad ¢(0)=§ and p(x, grad ¢)=0.
We can replace Q by such a neighborhood of 0, and shall then determine a formal
solution of the equation P(z, D)u=0 by setting

o0
w= % u,tl %,
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where u,€ 0*(Q) and ¢ is a parameter. Now we have
m
P(veittp) — 1t<pz Cjt‘,
0

where ¢, =vp(z, grad ) =0 and c,_1= o7 4,D;v+Bv with 4,=p%(x, grad ). Hence
we obtain

0
Pu=t"3 at e,
L]
n n
where a,=0, ay=2 A;Duy+Buy, ay=> A;Dyuy_1+ Buy.+ Ly,
1 1

where L, is a linear combination of wuy, ..., u;_s and their derivatives. Since 4, are
real and not all 0 we can if Q is conveniently chosen successively find solutions
Uy, Uy, ... Of these equations with u,(0)=1.

It the equation Pu=0 were hypoelliptic we would have an a priori estimate

|grad u(0)| < C {sup |u| + | IZNsup | D*Pul}, w€C”(Q), (2.2)

where o= (ay, ..., &,) is a multiorder, || =a, + ... + &,, and D* = (—1i8/dx,)™ ... (—i0/dwx,)™.
Indeed, the set of all continuous and bounded functions in Q with D*Pu continuous
and bounded in Q for every « is then contained in C* so (2.2) follows from the closed

graph theorem. However, if we apply (2.2) to
k-1
> ut e,
0

where N+m<k+1, it follows that the right-hand side of (2.2) is bounded when

t— + oo whereas the left-hand side is not. This proves the theorem.

CoroLLaRY 2.2. For a second order hypoelliptic operator with real principal part,

the principal part must be a semi-definite quadratic form.

3. Preliminaries for the proof of Theorem 1.1
Let P be a differential operator of the form (1.6) where X, € T(Q), the set of all

homogeneous real first order differential operators in Q with C* coefficients, and
c€C™(Q). (We shall denote by C*(Q) the space of complex valued C* functions in
Q and use the notation C*(Q,R) for the subset of real valued functions. Clearly 7'(Q)
is a C*(Q, R) module.) Alternatively we may of course regard 7(Q) as the space of
0% sections of the tangent bundle of Q.
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The starting point for the proof of Theorem 1.1 is an a priori estimate which is
obtained by partial integration and also occurs frequently in the work of Kohn-
Nirenberg [6, 7], Olejnik [10] and others. After noting that the adjoint of X, is — X;+a,,
where a,€ C”(Q, R), the inequality is obtained by taking » € Cy°(Q2) and integrating by

parts as follows:
—Revavdx= —Re> va?vdx—RefvE(ﬁdz - fRec]vF dx
1

=Re > ((va~a,v) X,vde—~ %on|”lz dx— fRec]dex

= Zle,vP dx + fd]v]z dz,

where we have written

d=1> (X,a,—a?) —}a,—Rec.

Hence S X0l + [olF<C o]t - Re f o Pods, veCE(K), 3.1)
1
if Kis a compact'subset of O and CF(K) denotes the set of elements in C*(Q) with

support in K. Here we have used the notation || | for the L* norm.
For the left-hand side of (3.1) we introduce the notation

r
olll* =211 Zsw[*+ [l

To have a precise estimate for the right-hand side of (3.1) we also need the dual norm

ffv dx

- Refvl’_vdx <[l Polll’< & ANo I + Il 2olll ™),

/elll, veC(Q).

|||f|||’=81v1p

Then we have

so with a new constant C' we obtain from (3.1)

ol <ol + 2ol vecs ) 62)
Noting that NX AN <clifl, feCs&), j=1,...,r,
we conclude that || X7v|||' <Cl| X;0||<C|||¢|||, =1, ...,r. Thus it follows from (3.2) that

ol + Il XKool < C ol + | Poll), e C5(K). (3.3)
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Let ||v||s denote the IL? norm of the derivatives of v of order s (cf. [3, sec-
tion 2.6]), defined by

|lv||?s>=(2n)‘”f|6(§)|“‘(1+|§|2)Sd§, vECY.

The main point of this paper is the proof given in sections 4 and 5 that for some ¢>0
ol <Cdlielll+ I Xoolil),  ve &), (3-4)
when the hypotheses of Theorem 1.1 are fulfilled. Combining this with (3.3) we obtain
Iollo <Cloll + I Pelll),  vece(K). (3.5)

We shall now prove that it follows from (3.5) that P is hypoelliptic. The main step
is the proof of the following proposition.

ProrosiTION 3.1. Assume that (3.5) is valid for compact subsets K of Q. Every
vELF(Q) N E'(Q) such that ||| Pvl|||' < oo is then in H,.

We recall that H, is the completion of Cf° in the norm || ||, but refer to [3, sec-
tion 2.6] for further discussion of this space.

Many statements of the same kind as Proposition 3.1 have been proved by Kohn
and Nirenberg [6] but it seems that none of them contains Proposition 3.1 explicitly
so we supply a proof here along lines similar to [3, Chap. VIII].

First note that (3.5) is valid for all v€ H,, with compact support in ). Indeed,
we can find a sequence v;€C§(K), where K is a compact neighborhood of supp v,
such that D*v,—D*v—0, j—>oco, when j<2. Hence ||Pv;— Pv||—0, which implies that
|| Pv, - Pv]||’ ~0. In particular,

lim | Po |l <[l| Pollf’

so it follows from (3.5) applied to », that
tim [[o,{| < O(lol| + [ Polll).

Hence (3.5) remains valid when v€ Hp, and suppv is in the interior of K.
If v satisfies the hypotheses of Proposition 3.1 we choose X€CF(Q) so that
0<X<1 and ¥=1 in a neighborhood w of supp v, and we set
vs=X(1 —8%A) 'w.

Here (1—8%A)'v is defined as the inverse Fourier transform of (1-+682|&?)7'6(¢). It

is clear that v, is then in H), that supp vs<supp X<=Q and that v5~v in L* norm
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when §—>0. Hence we may apply (3.5) to vs and conclude that [[v|| < oo provided
that we can show that |||Pusl||’ remains bounded when 8—0. This we shall do after

a few simple remarks:

1°. The inverse Fourier transform K of (1+]|&[?)™! and all derivatives of K de-

crease exponentially at infinity. Since
(=0 o) =57 [ K (@ =0)/0) o) dy

it follows that any derivative of (1 —48?A) 'w(x) decreases faster than any power of §

when 60 if z¢ w.

2°. If @ is a differential operator of order <2 with coefficients in C§, it fol-

lows that
| (1—8°A)"18Qu] <O|u|l, weL’ (3.6)

Indeed, the estimate ||@*6'(1—0°A)'u| <C|lu|, w€C{, for the adjoint operator is
trivial since &’(1+|&[Y(1+6%|&[%)~" is bounded.

3°. If @ is a differential operator of order <1 with coefficients in C§°, then
Q1 —8A) tu—(1—82A) Qu||<Cllul, ueCf. (3.7)
For writing w=(1—6°A)"'u, we have u=(1—482A)w and
Qu=(1—8*A) Qw + $*Ruw,
where R=[A, @] vis of second order. Multiplication by (1—4&%A)™! gives
(1-8°A)1Qu—Q(1 —8°A) 'u=(1—5A)"'6*Rw,
and in view of 2° the L? norm of the right-hand side can be estimated by || w|| <[ «|.
4°. When X,;€C§(Q) we have
@ =&a) xull <Clifull, wece@), llz.a—8A) nfll’<ClifIl,  feD'E.
The second inequality follows from the first which in turn is obvious since
[| X2, (1= 82A) 2 u — (1 — 82A) 2 X, oty Xpu|| < C || ]|
in view of 3°.

Proof of Proposition 3.1. We recall that with the notations introduced above we
have to show that [|Pus]||' is bounded when 6—0. In the neighborhood w of supp »
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we have (1—6°A)vs=v. If we apply the operator P noting that [X?, Al=X,[X,,A]+
[X;,A] X;=2X,[X,, A]+[[X,, A), X;], it follows that in w

(1 —6%A) Pvs=Pv+ ; X,6°B,vs + 8*Byvs,

where By, ..., B, are second order operators with compact support. In view of 1° it

follows that we have everywhere

.
(1 - (SzA) PUg =Pv+ Z desz’l)a + (SzBo’Ua + ha,
1
where ks vanishes in w, supphs“supp ¥ and |A;]|~0 when §—0. Hence
Pos=2,{(1 = °A) *Pv+2 (1 —6*°A) 2 X,6%B,ws + (1 — 8*A) 2 62B,ws + (1 — 6*A) by},
1

where ¥; is a function in C§°(Q) which is equal to 1 in supp . Since v=_ZXw, it fol-
lows from 4° that
i~ 8*8) Pol| <O |l| Pl

The last two terms are bounded in L? norm in view of 2°, and since
(1—-6°A) 1 X,;0°Bvs = X,(1 — 8°A) 2 8°B,ws + [(1 — 6°A) %, X,] 6*B,vs,
we obtain using 3°
M2 (1 = 6*A) 1 X,8°B,ws]||" < C(| (1 — 8*A) 1 62Byws || + || 62 B, ws|) < €' || 82B,ws || < C" || |-
This completes the proof of Proposition 3.1.

ProrosiTrion 3.2. Assume that (3.5) is valid for compact subsets K of Q. If
u€D'(Q) and Pu=f€HY(Q), it follows that u€ H'S,(Q). The same is true for open
subsets of Q, so in particular P is hypoelliptic.

Proof. Since the statement is local we may assume that u€ Hy (Q) for some ¢.

It suffices to show that ¢ can be replaced by t+¢ if £<s. Let £ be a compactly
supported pseudo-differential operator in Q with symbol e(&) = (1 + |£[%)"? (cf. [2]), and
set v=XEu where Y€C$(Q). If we can show that v€ H, for every X we will have
Eu€H, hence w€HES, since E is elliptic. It is clear that v€ L*Q) n '(Q), so in
view of Proposition 3.1 it only remains to show that |||Pv|||'<co. To do so we note
that XEf€L? since t<s, and form the difference

Pv—)Ef=(PXE — XEP)u.
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As in the proof of Proposition 3.1 we have [X;, xE]=2X,[X,, xE]+[[X,, xE], X;] so
it follows that
PxE —ZEP=§1: Xij+ Qo:

where @Q,=2[X,, XE] for j=1,...,r and all @, are compactly supported pseudo-dif-
ferential operators of order < t. Since @Q,u€L? and has compact support, it follows
that ||| PXBwu—xEPul||' < oo, that is, ||| Pv|||'< co. This completes the proof.

4. Differentiability along noncommuting vector fields

Let Q be an open set in R*, K a compact subset of (), and let X €T(Q). We
shall consider the one parameter (local) group of transformations in () defined by X.
Thus let f be the solution of the initial value problem

df(x,t
T X, ), 12,0) =z (1)
It is clear that f is a C® function from K x (—1#y,1%) to € if f, is a small positive

number depending on K and on X, and we have the group property

{(f(=, ), 5) ==, t+s),
when z€K and |t|+]s|<t,.

If u is a function in Q we set
(€*u) (z) = u(f(=, ?)).

When |¢|<t, this defines a mapping from COF(K) to C5(Q) and one from C*(Q) to
C*(K), and we have eXeXyu=¢"""%*y for small t and s. The differential equation
for f gives

d(e*u)

tXX )
di e u

The left-hand side is the limit of (e“*"%u —e*u)/h when h—0, hence also equal to

X ¥y by the same formula with  replaced by e*u and ¢ replaced by 0. Summing

up, ¥ is a local one parameter group of transformations of functions in ©, and

deu) =X Xu =X e*u.

de
When €0 we obtain the Taylor expansion at t=0

oo (3
FunS 228 u. (4.2)
o k!
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We shall be interested in Hélder continuity of functions along vector fields in

the sense of L? norms. Thus we shall for 0<s<1 and 0<eg<{, consider the norms

|u|%.s= sup lleXu—ul|t]"5, w€CFXK), (4.3)
0<|tj<e

where || | denotes the L? norm. The norm (4.3) increases with g, but since the dif-
ference between its values for two different choices of £ can be bounded by a constant
times |[x|, we shall usually omit ¢ from the notations below. An equivalent norm is
of course obtained if we take 0<i<e. (Since our aim is to prove the a prior: estimate
(3.4) for »€C§°(K) we have chosen not to introduce the complete spaces corresponding
to these norms and leave for the reader to state the implications for these spaces of

the estimates proved below.)
Lemma 4.1. If p€C*(Q,R), it follows that
|ulpx.s <Clulx,s, u€CF(K). (4.4)

Proof. We keep the notation f(z,t) used above so that (e*u)(x)=wu(f(z,t)). Let

7(x,t) be the solution of the initial value problem

Z—:=<p(f(x,t)), 7=0 when ¢=0.

From the differential equation (4.1) we then obtain

d
L;”;Z) = (¢X) ({(=, 7)),

Hence e'Fu(z)=u(f(z, 7)), so that

%o — w2 = flu(f(x, 7(, 1) = u(@)[* dz.

Since 7 depends on z we cannot compare this direetly with (4.3), so we first note

that for any ¢
|u(f(x, 7)) — (@) [* <2]u(f(z, )) — ulf(z, o))+ 2| ulf(z, o)) — u(@) [*

Integrating with respect to x and averaging over ¢ for |o|<|t|, we Obtain

let®u —ulf® < |t‘|‘lfjv |wlf(z, 7)) — u(f(z, 0)) [P dz do + 2 |ul?x., |t|é’.
lol<|t]
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In the integral we introduce new variables by setting
y=f 0), fy,w)=fx, 1), thatis, wto=r.
For fixed ¢t and for ¢=0 we obtain
dy=dz+ Xdo, dw=dr—dos.

When ¢=0 we have v=0, hence dr=0, so for t=0=0 the Jacobian D(y, w)/D(z, o)
is equal to —1. Hence it is arbitrarily close to —1 for sufficiently small ¢ and ¢. Since
7=0(t) we have |w|<A|t| for some constant 4 when |¢|<|t]. Thus we conclude that

for sufficiently small ¢
™ f f; @ )~ @ o)) dede

<2 |t|"1ffl ea lu(f(y, w)) —u(y) [ dydw < 4A4(A |t])** |ulk. s

This completes the proof of (4.4).

We shall also use a universal s-norm defined by

|ufs = sup [lzau —ufl |5]7,
|h|<e

where (7,u)(x)=u(z+h). If ¢, is the field of unit vectors along the jth coordinate

axis, we find immediately by using the triangle inequality that
|l <§ [les.s {4.5)

On the other hand, we can estimate |ul% , by a constant times |u[S for an arbitrary X.
s OY Yy

This is a special case (for N=1) of the following

Lemma 4.2. Let g(x,t) be a map from a neighborhood of K x 0 in Q x R to Q such
that g(x,t) —x=O0("), t—>0, where N>0, and g is a C™ function of x which is con-

tinuous in ¢ as well as its derivatives. Then we have for small |t|
flu(g(x, t) —u(@) P dx <Ot |ul?, weCF(K). (4.6)

Proof. The proof is parallel to that of Lemma 4.1. Thus we first compare with

the translations 7, and obtain
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f] u(g(z, 8)) —u(@)Pde < C’|t|“”"ff . |u(g(x, t) — u(zx + ) dzdh + 2| ul3 [P,
[n] < ¢l

We introduce new coordinates in the integral by setting y=xz+% and y+w=g(x,1).
For =0 this is the linear transformation y=x+h, w= — h, which has determinant + 1.
For small ¢ the Jacobian of the change of variables is therefore close to 1 in absolute
value, and since |w|< A4 [¢|¥ for some constant 4 in the domain of the new integral,
the proof is concluded as that of Lemma 4.1.

Note that the norm ||, together with the L* norm is weaker than the usual
s-norm || || (cf. [3, section 2.6]) used in paragraph 3, but is stronger than the norm
Il lly when ¢<s.

If XeT(Q) we shall use the standard notation ad X for the differential operator
from 7T'(Q) to T(Q) defined by

@dX)Y=[X,Y], YET(Q).

Given elements X,€T(Q), ¢=0,...,r, as in Theorem 1.1, and a multi-index I, that is,

a sequence (i, ..., %) with 0<{;<r, we shall write

X,=adX,...adX, X

i

(Note the distinction between a multi-index and a multi-order as used in section 2.)
We set k=|I| and always assume that |I|+0. The same notations will be used for
other Lie algebras than 7'(Q).

We can now state the main result to be proved in this section.

TaeEorEM 4.3. Given X,€T(Q) and s,€(0,1], 1=0,...,7, we denote by T*(Q) the
C*=(Q, R) submodule of T(Q) generated by all X; with s(I)>=s, where

1 k1
TR

4
Assume that T°(Q)=T(Q) for some s>0. Then we have for every compact set K = Q with
C depending on X and K but not on u
r
|u|X,s<o(z|u|X,.,s+||u||), wECR(K), XET'(Q). @)
0
In particular,

il <0 (Slult ), wecru, i T@ -7, «8)
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We remark that a slightly more precise version of a special case of (4.7) has been
proved by Kohn [5] but his method does not seem applicable in the general case.
The proof of (4.7) will be made by induction for increasing s starting from a point
where we expect (4.8) to be valid. We begin with a simple lemma justifying that we

have not considered more complicated commutators in Theorems 1.1 and 4.3.

Lemma 44. If 1/t +1/t,<1/t,, we have

[Th, TH] <%,
Proof. Let I, and I, be multi-indices with s(I,)>¢; and let ¢;€ C*(Q). Then we have

(1 X1 @2 X1 )= @i X1, 92) X, — 9o X1, 00) X, + 1o [ X, X ]

Since #;<t; for j=1,2, the first two terms on the right-hand side are in 7™, and so
is the third since the Jacobi identity ad[X,Y]=[ad X, ad Y] gives that [X,, X,]=
(ad X}, X, which written explicitly is a linear combination of elements X; where
1/s(J)=1/s(I;) +1/s(I,).

We shall have to make repeated use of the Campbell-Hausdorff formula which
can be stated as follows (cf. Hochschild [1], Chap. X): If x and y are two non-com-
muting indeterminates, we have in the sense of formal power series in x and y that
e“e’ =¢* where

z=§ (—D)**n™t 3 (ada)* (ady)” ... (ad 2)™ (ad y)P» 1y /ca s, -
1 a; + ;40
where ¢, 5=a! fl|a+B|. (When B,=0 the term should be modified so that the last
factor is (adx)* 'x.) The important facts for us are that the terms of order 1 are
x+y, that those of order two are }[x,y], and that all terms of higher order are
(repeated) commutators of = and y.
We shall use the Campbell-Hausdorff formula to derive a product decomposition

of ¢’*Y, With the notations used above we have

e Ve Tt Y g gt tY = e,

where r,= —z+taz+y+i[—z,z+ylt...= —L[x,y]+..., the dots indicating terms of
order at least three which are linear combinations of commutators. Writing z,= — % [, 9],
we form e #¢”=¢™. The Campbell-Hausdorff formula gives ry=2z;+... where z; is a
linear combination of commutators of x and of y of degree three, and the dots indi-

cate a formal series whose terms are commutators of degree at least four. Proceeding
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in this way, we choose for every integer k>2 a linear combination z; of commutators
of x and y of order k such that

e—akerkzerk+1’

where 7, is a formal series whose terms are commutators of x and y of order at least k.

Thus we have
-2 = ~23 ,—¥ ,— +
e ke -1, g7 e Ve Tt Y =gk, (4.9)

so that e**¥ is to a high degree of accuracy approximated by the product
e“eve ... e,

Lemma 4.5. Let X, YE€T(Q) and denote by Z; the linear combination of commutators
of § factors X and Y obtained by replacing x and y by X and Y above. Let 0< o<1, and
let N be an integer =2. Then we have for small t and u€ O (K)

N-1 N
X Pu—ul| <O()eFu—ulf+ | eFu—ul|+ 3 ||¢ Zu—u] +t|ul). (4¢.10)
z

Proof. The operator
Hiy=exp (—t""'Zy_1)...exp (—Z,)exp (—tY)exp (—tX) exp (X + Y)

is induced by a mapping in Q since every factor is. Hence there exists a C* func-
tion hy(z,t) from a neighborhood of K x0 to Q such that H v(zx)=uv(hy(z,t)). From
(4.9) and (4;2) it follows that Hiv—v=0@") if v€C™. Taking for v a coordinate
function we conclude that

hy(x, 1) — = O(tY),
so Lemma 4.2 gives | Hyv—2| <C|t]Y |0}

Now we have for any bounded operators S, ..., S, in L2

k k
181 Spu—ul =l 3 8. §-2(Su—wll < S NS - 1Sl 80 —ull. 4.11)

i
Since exp {(X + Y)=exp (tX) exp (tY) exp (2 Z,) ... exp (" ' Zy_1) HY

and the norm of each factor is bounded uniformly in ¢ the inequality (4.10) follows.

Lemmas 4.1 and 4.5 together will allow us to prove (4.7) for arbitrary X € 7°(Q)
after the estimate has been established for a set of generators. We shall therefore
study next: some identities which give control of the commutators of the given

operators X,.
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Let x,,...,% be k non-commuting indeterminates. By the Campbell-Hausdorff

formula we have
e%~1 g%k @~ Tk—1 ¢ Tk = g2k -1,

where z,_y =[z;_1, %] +...,the dots indicating a formal series all terms of which are
commutators of at least three factors equal to z, or x,_;; obviously both 2, and z,_,
must occur at least once in every one of them. We now form successive formal power

series 2j_1,%4_g,...,% by setting
etigfitle g Atl=¢%  §=1,...,k—2.

Then e* is a product of n, factors e**, where n,=4 and ny,1=2+2mn,, that is,
m=3-2"1-2, and z =c+... where c=ad x; adw,...ad z;_,, the dots denoting a
series with terms of higher order, each of which is a commutator containing each x;
at least once. As in the discussion preceding Lemma 4.5 we can use the Campbell-

Hausdorff formula again to show that for any N we can write
eE=e"e¢"e™ ... eV,

where each ¢; is a commutator formed from =z,,...,%, which contains each x; at least
once and some z; twice, and r is a formal sum of commutators of at least N factors
z;. If we recall the definition of ¢* we have thus found an approximate representa.-
tion of ¢° by products of e** and e where ¢, are commutators of higher order than

¢. This allows us to prove the final lemma needed for the proof of Theorem 4.3.

LeEMMA 4.6, Given X, and s, §=0,...,7, as in Theorem 4.3, we set m,=1/s; and
m(I)=1/s(I) when I is a multi-index. Let ¢>0. Then we have for small t>0 and an
arbitrary multi-index I

llexp ¢"P X)) u—ul|| <Cyt g ||z + Cot|uls, u€CT(K), (4.12)

where Cy and C, are constants and O, only depends on r and o, not on X, ..., X, 8g, ..., 8-

Proof. Since m;>1, we have m(I)>|I|, so (4.12) follows from Lemma 4.2 with
C,=0 if o|I|>1. If N is an integer with No>1, we may thus prove (4.12) by in-
duction for decreasing |I|, starting when |I|=N.

Replacing the indeterminates x; in the discussion preceding Lemma 4.6 by ¢ X,

we obtain as in the proof of Lemma 4.5 an identity
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exp (t"P X;) =[] exp (£t X,) exp (t"V X})) ... exp (" X, ) HY, (4.13)

where the product contains 3-2!71"'—2 factors as described above, the multi-indices

I, ..., I, have greater length than I and
Hiyv(z) = v(hy (2, 1))

with a C% function %y{z,f) of x, depending continuously on f, such that Ay(x,t)—x
=0(t"), t—~ 0. From Lemma 4.2 we obtain

|Hyu—ul <Ct¥|ul,, u€CF(K).
In view of (4.11) if follows that for small ¢

llexp (" Xp)u—ull <211 X |lexp (¢ X) u—u|
¢

+2; llexp (¢ Xp)u—u]l +Ct" |uls,

for the norm of each factor in (4.13) is close to 1 for small . We can apply the

inductive hypothesis to the terms in the second sum; and since oN >1, the estimate
(4.12) follows.

Remark. Since C; does not depend on the choice of X,, ..., X,, it follows that

for multi-indices I containing some index > 1, we have for every £>0
7
llexp (tm(I)Xf)u—u”<£t|ulxo.sa+0£t(§l:|u|Xi-SJ’+|u|¢7)’ w€Cy (K).  (412)

In fact, X; does not change if we replace X, by X, provided that at the same time
we replace X; by ¢ X, for a suitable >0 when §>1.

Proof of Theorem 4.3. Choose ¢>0 so that T7(Q)=T(Q) for some 7>¢g. We
wish to prove that

|2]y , <Cx (% |%|g5.5.7 |#|0), w€CE(K), XET(Q). (4.14)

This estimate is trivial if s<¢ and it follows from Lemma 4.6 if X is any one of
the commutators X; which generate 7°(Q). In view of Lemma 4.1 the estimate (4.14)
remains valid for X=¢X; if ¢€C*(Q). By definition every X €7* is therefore a
finite sum of vector fields for which (4.14) is valid. If X, Y € 7% (Q) are vector fields

for which (4.14) is valid, we apply Lemma 4.5 with ¢N >s noting that if follows
11 — 672909 Acta mathematica 119. Imprimé le 7 février 1968.
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from Lemma 4.4 that Z,€7°”. Assuming as we may that (4.14) has already been
proved when s is replaced by a number <s/2, we conclude that (4.14) is valid when
X is replaced by X+ Y. Hence (4.14) follows.

Now recall that 77(Q)=T(Q) for some r>g. Thus we obtain from (4.14) the

estimate
]u|,<0(%|u|x,,s,+|u[a), u € CF (K), (4.15)
if we take (4.5) into account. Since 7>0¢ we have for any §>0
|u|s <6 |ul.+Cs |[2]]. (4.16)

If we combine (4.15) and (4.16) taking C <4, we conclude that
|u|,,<|u|,<0’(%|u|x,._s,+||u|l), u€ 05 (K).

Using this estimate in the right-hand side of (4.14) we have proved (4.7).

5. Smoothing and estimates

In section 3 we have proved that Theorem 1.1 is a consequence of the a priori
estimate (3.4). We recall that

r
ol =Xl + Il

so the right-hand side of (3.4) gives us control of ]v]x,,l when j=1,...,7. However,
the information given about X,v is in a weaker norm which prevents us from ap-
plying Theorem 4.3. To study the differentiability of » in the direction X, we con-
sider f(t)=| e'**v —v||. Differentiation with respect to ¢ gives, if v is real as we may
well assume

df(t)?/dt = 2(et* Xy v, &% v —v).
Let us assume for a moment that ¢/ preserves the norms ||| ||| and ||| |||, although

we shall see below that this is far from true. Then we would obtain
df(ey?/ds <4 || Xoolll" ll2]il
hence fey<et (Mol + Il Xollf)-

Thus we would have control of |v|x,; and could apply Theorem 4.3 with s;=1,

§;=...=¢8=1, and this would give (3.4).
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To examine the validity of the preceding arguments we must consider ||[et*v||,
thus the L? norm of X,e!**v for j=1,...,r. This is essentially the same as the L?

norm of e *** X, ¢'* vy, Now

R X e =t X X =S (1) (ad XN X,/k),
0

where the first equality is a definition motivated by the second one which means
that the two sides have the same Taylor expansion in ¢ This follows immediately
from the fact that left and right multiplication by X, commute and that by defini-
tion their difference iz ad X,. Since we have no information about the differentia-
bility of v in the direction (ad X,)* X, when k=0, the argument as given above breaks
down. However, we note that the derivative in this direction occurs with a factor
¢, which indicates that we can impose sufficient smoothness on v by a regularization
which does not change v too much for small £ This we shall do in the following
discussion which aims at proving that f(t*)/t can be bounded by the right-hand side
of (3.4). It is in fact permissible to allow in the right-hand side of the estimates
any quantities which by the results of section 4 can be estimated by a small con-
stant times |v|x, ; and a large constant times |||v||].

The first step is to study regularization along a vector field X€T(Q). Let
w€CF (K), Kc=Q, and assume that ¢* maps C3*(K) into C§(Q) for |z|<1. With
p€Cy(—1,1) we set

Pxu= fe’xutp(r) dr.

This operator is smoothing in the direction X, for
d TX 4 X ’
Xozu= ol up(r)dr= —@xu= |(u—€*u)¢ (1) dr.
It follows that | Xpzul < f|d<p| sup ||eFu—u|, (6.1)
|z]<1

||¢Xu—u||<|§1|1<1;”e'xu—u|| if >0 and f(pd$=1. (5.2)

We shall later have to consider the commutator of @px with operators Y € T(Q), so

we note the formulas

Yopxu= f X (e X Y) up(c) dv, (5.3)
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pxYu= f(e’ 2 XY) e X up(r)dr. (5.4)

Each term in the Taylor expansion of e %%

will thus give an analogous expression
with a smoothing operator defined by some other function and acting on the other
side of another differential operator.

Besides the quite specific smoothing along certain vector fields using the operators
¢x we shall also employ the usual smoothing in all variables. Thus let ®€CfF (B),

where B is the unit ball in R", and set

D, u(z)= fu(x —&h) ®(R) dh.
Then we obtain

e|| D@ ul|| < f[ D,;®|dx ls;:llpl [|e(z — eh) —u(2)ll, (5.1

”(I)eu—ullélsup [|w(x—eb) —u(=x)]| if ®>0 and f(l)dx=1. 5.2y
hl<t

Instead of (5.3) and (5.4) we shall use Friedrichs’s lemma ([3, Theorem 2.4.3]) which
gives for every YET(Q)

(YO, —®.Y)u| <C|lu], u€CFEK), (5.5)

where C is uniformly bounded for small ¢ if ¥ lies in a bounded set in 7'(Q).

As in section 4 the notation I will stand for a multi-index and X; for the cor-
responding commutator. We set so=13, 8, =... =8,=1 and define s(I) and m(I)=1/s(I)
as in Theorem 4.3 and Lemma 4.6. Thus m(I) is the sum of the length [I]| of I
and the number of indices in I which are equal to 0.

Let ¢ be a positive number chosen so small that with the notations of Theorem
4.3 we have T°(Q)=T(Q) for some s>¢. As in section 4 we shall allow |ul, to
occur in the right-hand side of our estimates and use it to take care of various
remainder terms in Taylor expansions. Let J denote the set of all I with om(l)<1
and |I|<m(I)<2|I|; the latter condition means that I shall contain indices equal to

0 as well as indices = 0. Set
M) = [[lulll + M Xoulll + 2 lulxrsw+|ulo

Qur aim is to show that

|u|x, 3 SCM(u), u€CF(K). (5.6)
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By (4.12) we can estimate |u|x.«n by a small constant times |ux, ; and a large

constant times |||u||| +|=|, when I€J. Hence (5.6) implies

2 |ulz s Hllul <€ (lull + N Xoulll +|ul),  wels(K). (5.7)

Let s>¢ but T°(Q)=7T(Q). Then it follows from (5.7) and Theorem 4.3 that
|l <O (Mwlll + N Xoull +[uls), weCF (K),
and since |u|, <dé|u|,+Cs]|u] for any 6>0, we obtain with another constant C

lul.<C (el + I Xoull), weCF(K),

hence %‘Iulxj,s, <O (llu]ll I Xoull]), weOe (K). (5.8)

In view of Theorem 4.3 we conclude

TeeorEM 5.1. Let X,,...,X, satisfy the hypotheses of Theorem 4.3 and set

So=1%,8=...=8=1. Then we have
lulx.s <C&) (Jlulll + | Xoulll), wecsF (&), XeTQ), (5.9)
where ||| ||| and || |||’ are defined in section 3.

Clearly Theorem 5.1 completes the proof of Theorem 1.1, so all that remains now
is to prove (5.6).

We give J a total ordering so that m(I) is an increasing function of 7 € J and set
Siu= [T gimn XI(I)tl/au,
Iey
where ¢ and @ are functions satisfying the hypotheses of (5.2) and (5.2)'. The factors
in the product are taken from left to right in increasing order of I. If J€ J we shall
also write Sju for the similar expression with the product restricted to all I with

I>J. We also set J’=JUc and S =®us, and define o >I for every I€J.
If follows immediately from (5.2), (5.2), the definition of the norms and (4.11) that

| Sew—u|| <CtMu). (5.10)

We want to estimate ||e*w—u|. Noting that
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e Foy — =t X (u — S,u) + e 08 u— Su+ Su—u
and that the norm of ¢'* as an operator in b7 is uniformly bounded, we conclude that
[|ef Fru—u|| <Ct M(u)+ || e *8,u—S,ul. (5.11)

The advantage of this is that the regularity built into S,u will make it possible to
estimate the last term by applying the argument outlined at the beginning of the
section but which was then merely heuristic. We need the following lemma which
shows how differentiability is successively introduced by the regularizations in S;.
(Note that S,=8, when J is the smallest element in J.)

LemMa 5.2. For every JEJ' we have for small t>0

S1#4°D,8/u|| < Ct M), (5.12)

1
sz [t"P X, 8 || <CtM(u), (5.13)
X, 877 ull <CtM ). (5.14)

Proof. For J=co the estimate (5.12) follows from (5.1)’. As a superposition of
compositions with C*° maps, each factor in the operators S, is uniformly bounded in
the H, norm for every s, so (5.12) is valid for all JEJ'. For J= oo the statement
(6.13) is void and (5.14) is very much weaker than (5.5). When proving the lemma
we may therefore assume that it has already been proved for larger J and arbitrary
@€CT(—1,1). In the proof of (5.13) we must then distinguish-between two different
cases:

1°. I>J. Let J' be the smallest element in J' larger than J; then I>J'. We
shall use (5.3) with ¥ replaced by "X, and X replaced " X,. This allows us to

let X; pass through the first regularizer and we obtain

tm(I)XIStJu _ J‘ert”‘(” X { z (ad__,l.tm(l)X])v tm(nXIS{'A u/v I+ tNm(J)+m(I)Yt'tsi’u} (p(,':) dT,

v<N

where Y, . belongs to a bounded set when t—0. If Nm{J)+m(l)>1/¢ if follows
from (5.12) that we have the desired estimate for the term involving the remainder
term Y, .. Since (ad X,;)’ X;=X, for some I' with I'>I>J we have I' =J’, so the
inductive hypothesis concerning (5.13) allows us to estimate the terms in the sum to
the extent that they are not taken care of by (5.12).
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2°, I=J. With J’ defined as above we have in view of (5.1)

“tm(l)X; S/ u ” <O Iilug " enm(J)XJS{'u —S{'u]l.

The proof of (5.10) applies without change to prove that the right-hand side can be
bounded by CtM (u).

It remains to prove (5.14). We can write

(" Xy, 81w = g, [(M X, 8 Ju+[t™X,, g, ] 8 u.

By the inductive hypothesis concerning (5.14) it suffices to consider the second term.
Now (5.3) gives

O<v<N

[t X, gy o= f D X,( S (ad—w"D X,) tm X,u/v! + O+ Yt,,v) p(r)de

with ¥, as above in 1°. When »+0 we have (ad—X,)’ X;=X, for some I'€J’
with I' >J" or else om(I)>1, so we obtain (5.14) from the inductive hypotheses con-
cerning (5.12) and (5.13).

Proof of (6.6). Our aim is to estimate the right-hand side of (5.11) so we in-
troduce for 0 <7 <#* the function

fo)=lle*8,u—S.ul|.
Differentiation of f2 gives

H@) f (x) = (€% Xy S,u, €%8,u— S,u)
= (e[ Xy, 8] u, € F*8yu —u) + (7% 8, Xyu, € Sy u — Syu).

Using the Cauchy-Schwarz inequality and (5.14), we obtain
F F (v) SO M(w) f(2) + (Xgu, (€ S)* (€75 8,u — Syu)). (5.15)

We shall prove that the last expression can be estimated by CM(z)®. Admitting this
estimate for a moment, we obtain the integral inequality

If g=f/Mt, this reduces to g9’ <C(g+1)¢% so

g
fgdg/(g+1)<0ﬂ_2<0 when T<#.
0
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This implies that ¢ <C’' when 7 <, hence f(t*)<C'M(u)t, and (5.6) follows in view of
(5.11).

What remains is therefore to show that

[l (€% 8p)* (e7%° Syu — Syw) ||| < CM (). (5.16)
r n
Write N)=Z [ Kol + 2 (O oo +8772 3 | Dol + |l o]l.
1 Iey 1
Then we have N, (S,u) <CM(u). (6.17)

This follows immediately from Lemma 5.2 if we note that X;S,u=S8,X;u+[X;,S]u
and recall again that S, has uniformly bounded norm in L?. The norm N, is quite

well behaved under translations; indeed, we shall prove that
N, (" v) <ON,(v), 0 < 7 <™, (5.18)

provided that the multi;index J contains 0.
To prove (5.18) we let Y=X;, j=1,...,7, or Y =X, where I€J, and note that

Y % Syu =X (e~ 34X Y) S, u.
Now [[(ad zX,)¢ Yo <|| (ad ™ X, Y Yo ||

when 0<7<¢"? so we obtain the desired bound for each term in the Taylor ex-
pansion of ¢ *™*/ The error term can be estimated by using the last sum in the de-
finition of N,, so (5.18) follows.

In particular, we obtain from (5.17) and (5.18)

N (% 8u—S,u)<CM(u) when 0<t<{. (5.19)

Now the adjoint of a translation e¥ is equal to Jye ¥ where for ¥ in a suitable
neighborhood of 0 the Jacobian Jy has a uniform bound together with as many
derivatives as we wish. In view of (5.18) it follows that the adjoint of ¢** for
0<7<# and of &’ for 0< T<t"® JeJ, are unifdrmly bounded with respect to the
norms N, as is the adjoint of the operator ®,,. Since (¢°*°S,)* for 0< < is a
superposition with finite total mass of operators which have uniformly bounded norm
with respect to N, it follows from (5.19) that

Nt((eTX°St)* (erX"Stu — Syu)) SCM(u),

and this implies (5.16). Thus we have completed the proof of (5.6) and so we have
proved Theorems 5.1 and 1.1.
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