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HYPOELLIPTICITY ON THE HEISENBERG
GROUP-REPRESENTATION-THEORETIC CRITERIA

BY
CHARLES ROCKLAND1

Abstract. A representation-theoretic characterization is given for hypoel-
lipticity of homogeneous (with respect to dilations) left-invariant differential
operators P on the Heisenberg group H„; it is the precise analogue for H„ of
the statement for R" that a homogeneous constant-coefficient differential
operator is hypoelliptic if and only if it is elliptic. Under these repre-
sentation-theoretic conditions a parametrix is constructed for P by means of
the Plancherel formula. However, these conditions involve all the irreducible
representations of H„, whereas only the generic, infinite-dimensional repre-
sentations occur in the Plancherel formula. A simple class of examples is
discussed, namely P = 2?_ i-Vj2"1 + Y}n, where X¡, Y¡, i - 1,..., n, and Z
generate the Lie algebra of H„ via the commutation relations [X„ Yß = S^Z,
and where m is a positive integer. In the course of the proof a connection is
made between homogeneous left-invariant operators on H„ and a class of
degenerate-elliptic operators on R"+1 studied by Grusin. This connection is
examined in the context of localization in enveloping algebras.

1. Introduction. The main purpose of this paper is to present a repre-
sentation-theoretic characterization of hypoellipticity for homogeneous (with
respect to dilations) left-invariant differential operators P on the Heisenberg
group H„.

Definition 1.1. A differential operator P on a manifold M is hypoelliptic if
and only if for any distribution u E ty '(M), s.s. u C s.s. Pu, where s.s.
denotes singular support. That is, if Pu is C00 on the open set fi ÇJ M, then u
isC°°onfi.

The principal result is the following:

Theorem 1.2. Let P be a left-invariant homogeneous differential operator on
the Heisenberg group Hn. Then the following are equivalent:

(1.1) P and P', the formal transpose of P, are both hypoelliptic.
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2 CHARLES ROCKLAND

(1.2) For every irreducible unitary representation tt of Hn (except the 1-
dimensional identity representation), tt(P) has a bounded two-sided inverse.
Here tt(P) is viewed as an unbounded linear operator in the Hilbert-space H of
tt, with domain the space of C*-vectors of the representation tt.

(1.3) For every irreducible unitary representation tt of Hn (except the 1-
dimensional identity representation), tt(P)v ¥= 0 and tt(P)*v =£ 0, for every
nonzero C*'-vector v of the representation tt.

Theorem 1.2 is simply the analogue for G = Hn of the following well-
known result for G = R", the translation group, endowed with the usual
family of dilations: A homogeneous constant-coefficient differential operator
is hypoelliptic if and only if it is elliptic. (For details see §5.) The idea of
focusing attention on homogeneous differential operators is due to Stein [23],
and also, in a different context, to Grusin [9].

Our work relies heavily on the representation theory, in particular, on the
Plancherel formula, for H„, which we examine in the general context of the
Kirillov orbit picture. A basic ingredient in the proof of Theorem 1.2 is the
use of the Plancherel formula to construct a parametrix for P', the formal
transpose of P, which is C°° away from the identity element. However, only
the "generic" representations of H„ occur in the Plancherel formula, and if
one tries to use the formula to write down a fundamental solution for P', a
serious convergence problem arises as the generic representations approach
the hyperplane of "degenerate" representations, i.e., as Planck's constant
approaches 0. It is the hypothesis that tt(P) is invertible for "degenerate" tt
which allows us to circumvent this difficulty. Roughly speaking, with this
hypothesis we are able to find W in the center of the enveloping algebra such
that P' + W is elliptic, and to construct u E ^'(G), with the Plancherel
formula, satisfying P'u = (P' + W)8. Convolving u with a compactly
supported parametrix for P' + W, we obtain a parametrix for P'. In earlier
work relating hypoellipticity with representation theory [7], [21], the inverti-
bility hypothesis for the degenerate representations is satisfied implicitly, and,
consequently, the significance of the "degenerate" representations has been
overlooked. (See [11], however.)

As the reader will see, the methods we use are rather "formal", in the sense
that they are not crucially tied to H„, but should, with appropriate modi-
fication, go over to more general simply-connected nilpotent Lie groups G
with "dilations". (Precisely how general is not yet clear. See §8.) Certainly the
Kirillov orbit picture, in particular the use of the center of the enveloping
algebra to parametrize the orbits, is valid in full generality, and the dilations
can be naturally incorporated into this scheme. We consider the present
paper a first step towards the proof of the general case, and, consequently,
shall keep this general context in view throughout the exposition.
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HYPOELLIPTICITY ON THE HEISENBERG GROUP 3

We proceed to an outline of the paper.
In §2 we sketch some basic results concerning representation theory for

simply-connected nilpotent Lie groups, including the Plancherel theorem.
In §3 we work specifically on Hn. We show, under the hypothesis that tt(P)

has a bounded left-inverse for every m except the 1-dimensional identity
representation, how to construct a parametrix for P'.

In §4, assuming some results from §6, we shall show that, under the
stronger hypothesis (1.2), the parametrix for P' constructed in §3 is C00 away
from the identity, and hence that P is hypoelliptic. The same argument, but
with P and P' interchanged, shows that P' is hypoelliptic. Actually, it seems
very likely that the /e//-invertibility of tt(P) should be sufficient to guarantee
hypoellipticity of P. We return to this point in §6. We should observe also
that if we know that P and P' are both hypoelliptic, and if we appropriately
restrict the degree of homogeneity, then, by work of Folland [6], we can
deduce much additional information.

In §5 we prove that if P and P' are both hypoelliptic then (1.3) holds. This,
together with the fact, to be proved in §6, that (1.2) and (1.3) are equivalent,
completes the proof of Theorem 1.2.

There is a very close and natural relationship between operators studied by
Grusin in [9] and homogeneous left-invariant operators on nilpotent Lie
groups. Indeed, there is a very direct link between Theorem 1.2 and the
results of Grusin [9]; in fact it was the discovery of the group-theoretic
interpretation of the results of Grusin which led us to conjecture Theorem 1.2,
and, in particular, directed our attention to the "degenerate" representations.

In §6 we study this relationship. We feel it is of interest in its own right, but
we include it here primarily because some of the consequences are needed in
§§4 and 5.

There is an interesting class of operators P for which it is easy to verify that
(1.3) holds. We examine this class in §7, where we derive a strengthened form
of the following proposition:

Proposition 1.3. Let G be a simply-connected nilpotent Lie group, with Lie
algebra g. Let Xx,..., Xk be elements of g whose repeated commutators span g.
Then for any positive integers m¡, i = 1,..., k, all even or all odd, the operator
P = 2*_ xX2m< satisfies (1.3) (with Hn replaced by G).

These operators, with m¡, = 1, have received a good deal of attention, both
in the group-theoretic context and in the more general "variable-coefficient"
context. (See, for example, [13], [6], [22].)

At least in the case of G = H„ we can, by Theorem 1.2, say that such P, if
homogeneous, are hypoelliptic. We thus have

Corollary 1.4. Let Xx,..., Xn, Yx,..., Y„, Z be the standard generators
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4 CHARLES ROCKLAND

for the Lie algebra of Hn, i.e., [Xt, Yj] = SyZ, and [X„ Z] = 0, [Y„ Z] = 0.
Then for any positive integer m, the operator P = 2Z"i=x(X2m + Y^") is hypoel-
liptic.

We conclude in §8 with a discussion of open problems.

2. Preliminaries on nilpotent Lie groups. We assume that the reader has
some familiarity with basic representation theory, and shall review only those
points which will be needed later. As general references we shall use [2] and
[15].

Let G be a simply-connected nilpotent Lie group, with Lie algebra g and
(complexified) universal enveloping algebra ^i(g). Since G is simply-connec-
ted the exponential map exp: g -» G is a diffeomorphism. In fact [2] G is
unimodular, i.e., left Haar measure equals right Haar measure, and is the
image under exp of Lebesgue measure on g.

We identify g with the left-invariant real vector fields on G by associating
to A' G g the vector-field, still denoted X, defined by

(p(xexptX),      <pECœ(G).
1=0

This identification extends uniquely to an isomorphism between the algebra
%(g) and the algebra of all left-invariant differential operators on G (with
complex coefficients) (see [12]). Thus, every left-invariant differential operator
on G is of the form

(2.2) P=   S    aaX?Xp • - Xp,       aaEC,XtEg.
\a\<m

If Xx,..., X„ form an ordered basis for g then the expansion (2.2) is unique
by the Birkhoff-Poincaré-Witt theorem.

If P is a differential operator on G, then by P' we mean the formal
transpose of P with respect to Haar measure, and by P* the formal adjoint.
Thus, P* = (P)' =(F), where P is defined by P(<p) =P(rf), ~ denoting
complex-conjugation.

Since translation is an isometry with respect to Haar measure it follows
that if X e g then

(2.3) X' = -X.
Thus, if P E %(g) is given by (2.2),

(2.4) P=   2    âaX\-X? • • • X?,
\a\<m

(2.5)     i"= 2 cta(-xNr(-xN_xr-i'-'(-xx)a\
\a\<m

(2.1) (m*) = i
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HYPOELLIPTICITY ON THE HEISENBERG GROUP 5

(2.6)     p*= s da(-xNr(-xN_xr-'---(-xx)a\
\a\<m

Of course, P, P', P* also lie in %(g).
If 77 is a unitary representation of G on the Hilbert space H, then v E H is

called a C"-vector for it if the map jc \^tt(x)v from G to H is C°°. The
C "-vectors form a vector subspace of H, which we denote by Hœ. The
representation it determines a Lie algebra representation it of g as linear
maps: Hx -» Hx defined by

(2.7) tt(X)v = ^-      Tr(exptX)v,      XEg,vEHx.
at ,_o

This extends uniquely to a representation of the algebra %(g) as linear maps:
H^ -» H^. (If c G C, tt(c) = c.) If tt is irreducible then [15] there is a unitar-
equivalence taking H to L2(R") for some « (possibly 0) and taking Hx to
§ (R"), the Schwartz space.

The summable functions LX(G) form an algebra under convolution,
defined by

(f*g)(x) = [f(xy-x)g(y)dy=[f(y)g(y-xx)dy
JG JG

where ay denotes Haar measure. If m is a unitary representation of G on H,
then 77 determines a representation of the algebra L\G) as bounded linear
operators on H by

(2.8) Tr(f)v = [ f(y)TT(y)v dy,      v E H.JG

To say that it is an algebra representation means, in particular,

(2.9) ^(/*«) = î(/)î(ï).

It is clear from (2.8) that, letting || • || denote bounded operator norm,

(2-10) H/)fl <||/1L,C).
Kirillov [15] shows that if tt is irreducible, ir(f) is a compact operator for
/ E LX(G), and if <p 6 C0°°(C7), then tt(cp) is of trace-class. Also, tt(<p) maps H
into HK, even if tt is not irreducible. The space spanned by {ir((p)v\<p S
C0X(G), v 6 H), called the Gârding subspace, is dense in H, and hence, so is

Lemma 2.1. Let <p e Cq°(G) and X E g. Then for any unitary representation
it of G and any C"'-vector v,

(2.11) ir(Xcp)v = Tr(q>)TT(-X)v.
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6 CHARLES ROCKLAND

Proof.

tt(X<p)v = ( (Xqp)(x)tt(x)v dx= f  4:\     <P(X exp íX)tt(x)v dx
jg Jg dt |,_0

= TA       I <P(X exP tX)ir(x)v dx
"' I/-0 JG

= ~Tt\      Í <P(x)v(x exp - tX)v dx    (by right-translation)al l<=0 JG

= ~Tt\      Í <P(x)v(x)Tr(exp - tX)v dx
ul I/-0 JG

= fG <p(x)tt(x)[ j¡ |    »(exp - ar)0) dx

= f <p(x)tt(x)tt(-X)v dx = tt(<p)tt(-X)v.   D

Lemma 2.2. For any unitary representation it of G, and for any X Eg,
tt(—X) = tt(X)* (where * denotes formal Hilbert-space adjoint). That is,
(tt(X)v, w} = <t>, tt(—X)w} for every v,wE Hx.

Proof. Since tt is a unitary representation of G, tt is skew-adjoint on g.
Thus, tt(X)* = - tt(X) = tt(-X).   \J

Since X E gis real it follows from (2.3) that X* «■ — X. Hence Lemma 2.2
states that tt(X*) = tt(X)*. A simple argument using (2.6) now shows

(2.12) For any P E ^(g), tt(P*) = tt(P)*.
Similarly, an argument based on Lemma 2.1 and (2.5) shows
(2.13) For any P E %(g), for any <p e C0°°(G), and for any C°°-vector tJ,

tt(P<p)v = tt((p)tt(P')v.
It follows immediately that

(2.14) tt(P'<p)v = tt((p)tt(P)v,

(2.15) tt(P*<p)v = tt(<p)tt(P)v,

(2.16) Tt(P<p)v = TT(q>)TT(P)*V.

For <p G C°°(G) we define <p, <p* G C°°(G) by

(2.17) <p(x) = <p(x-');   <?*(*) = <?(*-').

Lemma 2.3. For any tp E C0X(G) and any unitary representation it of G,
Tr(<p*) = tt(<p)*.
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HYPOELLIPTICITY ON THE HEISENBERG GROUP 7

Proof.

w(<P#) = ( <P(x~l)*(x) ¿x
JG

= ( <p(x) it(x~x) dx   (since Haar measure is unimodular)
JG

= f tfxj tt(x)* dx=\f <p(x)w(x) dx * = 77(<p)*.   D

Combining this with (2.9) we see
(2.18) For any <p E C0"(G), ir(<p * (<p*)) = v(<fM<p)*-
We also derive the following.
(2.19) For any <p e C0°°(G), q> * <p*(e) = \\<p\\2LHc) = ||<P*||iJ(G), where e

denotes the identity element of G.
Proof. Using the second definition of convolution we get

9 * <p#0) = [ <p(y)<p*(y~}) dy = \ «pOOtöÖ dy - iMii>(G).JG JG

Since G is unimodular,

( <p(y) vUJ dy = ( <p(y~x)<p(y~x) dy
JG JG

= ( <p*(y) <p*(y) dy = IIt#II2^c)- D
Jg

We shall find it necessary when we deal with hypoellipticity questions to be
able to apply unitary representations of G to compactly-supported
distributions on G, denoted S '(G). To do so it is convenient to introduce a
variant of the notion of C "-vector.

Definition 2.4. Let tt be a unitary representation of G on H. We say that
v E H is a weak C"-vector for 77 if it satisfies the following two conditions:

(2.20) For every w E H the map <pvw: G->C given by x H> (,tt(x)v, w> is
C".

(2.21) The map w h» <p„ w from H to C"(C7) is continuous with respect to
the norm topology on H and the usual topology on C"(G) (uniform
convergence on compact subsets of all partial derivatives).

Remarks. 1. Clearly the weak C "-vectors for 77 form a linear subspace,
HI, of H:

2. Every C "-vector is certainly weak C" as well, i.e., Hx ç H^. In fact, at
least when 77 is irreducible, the two spaces coincide. (See Note 6 following
Proposition 2.6.)

Definition 2.5. Let 77 be a unitary representation of G on H, and let
u E S '(G). We define ir(u) as a possibly unbounded linear operator on H with
domain H™ as follows. For any v E H£, tt(u)v is the unique vector in H
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8 CHARLES ROCKLAND

satisfying
(2.22) (rr(u)v, w) = (u, %w)   for every w G H.

We check that this definition makes sense. Since <p0M, is in C°°(C), (u, <püw) is
a well-defined complex number. For fixed u E & '(G) and v G H^ the
function Vf h» (u, <pOH,) from H to C is clearly conjugate-linear and, because
of (2.21), continuous. Therefore for fixed u, v there is a unique vector
tt(u)v E H such that (2.22) holds. Clearly the map v h-> tt(u)v is linear.

Remark. It is probably possible to extend tt(u) naturally to a larger domain
than H™. For example, although I have not carefully checked this, it is
probably possible to extend tt(u) to a linear map from H to the dual space
H'm of //„ with the "Schwartz-space topology." (See Kirillov [15, p. 62]).
Thus by the remark following (2.7), if tt were irreducible tt(u) would give a
linear map: L2(R")-> S'(R")> trie space of tempered distributions. Also, by
putting the Schwartz-space topology on Hœ we can probably make tt(u):
Hœ -> H'x continuous. Again, I have not checked this carefully since we shall
not need this information in the case when G is the Heisenberg group.

Many of the earlier results for tt(<p), <p E C0°°(G), continue to hold for tt(u).
We bring various of these together in the next proposition.

First, define it, u* E S '(G) for m G S '(G) by

(2.23) (ù,4,)-(u,$),   (u*, 4>) = (ii, **)    for every i//G C00 (G).

A simple verification, using the fact that Haar measure is unimodular, shows
that this definition agrees with (2.17) for u G C^G).

Proposition 2.6.(1) /// G LX(G) n &'(G), then tt(j~), where fis viewed as
an element of ê '(G) is the "same" operator as in the original definition ofTr(f);
more precisely, Tr(f), defined on the dense subspace //* of H, extends uniquely
to a bounded operator on H which equals the original tt(j~).

(2) For any u E ê>'(G), tt(u#) = tt(u)*. More precisely, for any v,w E J/£,
(tt(u)v, vv> = <t>, 77-(m*)vw>.

(3) For anyuEë '(G), tt(u) maps H™ into itself.
(4) If uE S'(G) and <p E C0X(G), then ir(u * <p) = vr(u)7r(<p), both sides

being viewed as bounded operators on H.
(5) // ux, u2 are in S '(fj)> then tt(ux * uf) = ^(u^TT^f), both sides viewed as

(unbounded) operators defined on //*.
(6) For any P E %(g) and any u E $'(G), tt(Pu) = tt(u)tt(P'), viewed as

(unbounded) operators on H^.
(7) For any unitary representation tt, tt(S) = I, the identity operator on H.

Here 8 is the 8-function supported at the identity element.

Notes. 1. We assume the reader is familiar with the notion of convolution
of distributions which appears in(4) and (5). In particular, in (4) u * op E
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HYPOELLIPTICITY ON THE HEISENBERG GROUP 9

C"(C7) since <p E C0"(G), and so tt(u * <p) is a bounded operator on H. By
the remarks following (2.10), 77(9) maps H into Hx, and similarly for
ir(u * <p). In particular, tt(u)tt(qp) is defined on all of H. Note that (4) shows
that tt(u)tt(<p)v is in H^, in fact in the Gârding subspace, for any v E H.
That is, tt(u) maps the Gârding subspace into itself.

2. The right-hand side of (5) is meaningful because of (3). I do not know
whether (3) remains true, in general, with H£ replaced by H^. This is the
reason for introducing the space //*. However, see Note 6 below.

3. In (6) we work with Hœ, since this is the usual domain for tt(P). It is
easy to see, however, that the domain for 77(P) can be taken as H£> and that
(6) is valid on this domain. For example, we could use (2.24) below to define
tt(P)v for v E H^.

4. Of course (7) means that 77(5) extends to /.
5. Using (7) we obtain a useful special case of (6):
(2.24) For every P E %(g), tt(P) = 77(P'5).
6. If 77 is irreducible then //£ = Hœ. In particular, by (3), for any

u E &'(G), 77(h) maps Hx into itself. Clearly, it suffices to prove this for any
unitarily equivalent representation. Thus, since 77 is irreducible we may
assume without loss of generality (see [15]) that H = L2(R") for some n, that
HM = S(R"), the Schwartz space, and that {t7(P)|P G %(g)) - A„(C), the
algebra of all differential operators on R" with polynomial coefficients. From
(2) and (2.24) we see that for every P£l(g), vE H%, and w E H^,
(tt(P)v, w} = <ü, 77((P'S)#)w>. Taking both v and w in the above to be in
#«,, we see from (2.12) that 7r((P'S)#)u> = tt(P*)w. Hence (ir(P)v, w> =
< v, Tr(P*)w} for any v E H^, w E Hx. This equation says that 77(P)t> G
L2(R"), defined via (2.22), coincides with the tempered distribution in S '(R")
obtained by applying the differential operator with polynomial coefficients,
tt(P), to v E L2(R") viewed as an element of S '(R"). Thus, in particular,
Qv E L2(R") for every differential operator Q E An(Q. It follows from the
Sobolev lemma that Qv E Ck(R") for every Q E A„(C) and every positive
integer k, where C*(R") is space of all fc-times continuously-differentiable
functions on R" whose derivatives up through order k are bounded. This
clearly implies that v E S(R") = Hx.

Proof of Proposition. (1) Obvious.
(2) Straightforward generalization of proof of Lemma 2.3.
(3) We need to show that for any v E H£ the following hold:
(2.25) For any w G //, the map <p„(u)v,w: G -> C is C°.
(2.26) The map w 1-» (p„(u)v¡„ from H to C"(G) is continuous.

But
%Mv,w(x) = {tt(x)tt(u)v, w) = {tt(u)v, tt(x)*w) = (u, (¡vu)«»),

and
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10 CHARLES ROCKLAND

<PvMx)*»(y) = (v(y)v, v(x)*w) = (TT(xy)v, w> = <pv>w(xy).

That is, <pHu)VyW(x) = (Uy, %tW(xy)), i.e. u applied to the C°°-function of y,
%,w(xy)- Since this equals u * %tW(x~x), it is C°°. This proves (2.25). But for
any « G &'(G) the map <p \-> u * <p from C°°(t7) to C^G) is continuous;
also the map v: CX(G) -> C^G) is continuous; Hence, since we know that
the map w r-»mUM, from H to C°°(G) is continuous, and since 9T(u)0(M, =
(u * <pÜM,)v, (2.26) follows.

(4) We want to show that
(2.27) (îr(M * <p)v, w) = {tt(u)tt(<p)v, w)   for all v,w E H.
For ü, w G //, <pOM,(x) = (tt(x)v, w>, although not a C00 function on G, is
certainly continuous (as part of the definition of unitary representation) and,
in particular, a distribution. Thus, since

(tt(u * <p)v, w) = f (u* <p)(x)<pvw(x) dx,
JG

(tt(u * <p)v, w> = (u * <p) * 4>0>w(e) = u*(<p* %,w)(e) = (u, (<p * %tW)~).

On the other hand, by definition of tt(u), (tt(u)tt(<p)v, w> = (u, %çV)C>w).
Thus, to prove (2.27) it suffices to show that for any v, w E H, <p„(9)l)>H, =
(<p * %<WY, a relation we derived in a more general form in the proof of (3),
with qp replaced by u, but with v restricted to //*. A straightforward
computation shows that the desired relation holds for arbitrary v G H.

(5) Now let ux, «2 G S'(G), and tp G Cq~(G). Then (ux * uf) * ç =
m, * («2 * <p), and since u2 * <p E C0X(G), it follows from (4) that

tt(ux * u2)-rr(<p) = tt(ux)tt(u2 *<p) = tt(ux)tt(u2)tt(<p).

In particular, for any v E H and w E H™,
(tt(ux * u2)tt((p)v, w) = (tt(ux)tt(u2)tt(<p)v, w).

Therefore, by (2) and (3),

(tt(<p)v,tt((ux * u2)*)w) = (v(ip)vtv{u^)v{uf)yv).

But an easy argument shows that (ux * uf)* = u2 * uf. So, for any v E H
and any w G //*,

(tt(<p)v,tt(u2* * ux#)w) = (tt(<p)v, tt(u2)tt(ux#)w).

But [15] {tt(<p)v\<p E C0°°(G), v E H) is dense in H. Thus, ir(«2* * uf)w =
7r(M2#)7r(«*)w for any w E H^. Replacing «,*, w* by h„ m2, we prove (5).

(6) Let m G S '(G) and P G %(g). Pu = P(u* 8). Since P is left-invariant
this equals u * P8. Thus, by (5), tt(Pu) - tt(u)tt(P8). Let v E Hx and
w G //. Then

<»r(/»a)t>, w> = (P5, Vo>w) = (5, P'%¡w) = P' «*(*)©, w»!,.,.
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It follows from (2.7) that this equals <jt(P')v, w). Thus, for any v E HM,
tt(PS)v = tt(P')v, and so, by the above, tt(Pu)v = 7t(h)t7(P')ü.

(?) (S, <p0J = %,w(e) = «e)v, w) = <o, w).   Q
We next turn to the Plancherel theorem . We shall need to use it both in its

distributional and in its L2 formulation. The version we present below is a
compilation of results in Dixmier [2] and Kirillov [15]. Dixmier presents a
sharp formulation of the L2-version, and Kirillov provides a satisfying
geometrical exposition of the distributional version. The reader is referred to
[2] and [15] for details and further information (also, see Kirillov [16].)

Theorem 2.7. Let G be a simply-connected nilpotent Lie group of dimension
N. Let g denote the Lie algebra, g* the dual of the Lie algebra, %(g) the
complexified enveloping algebra, and Z(g) the center of the enveloping algebra.
Every coadjoint orbit in g* is even dimensional. Let 2n be the maximal
dimension which occurs, and let q = N — 2n. Let Wx,... ,Wq be selfadfoint,
algebraically independent elements ofZ(g) which generate the field of fractions
of Z(g). Then there exists a nonempty Zariski-open subset T of Rq, and for
every X = (a„ ..., \) E T a unitary irreducible representation trx of G in
H = L2(R") so that the following properties are satisfied.

(1) For every X ET and any i = \,... ,q, ttx(W¡) = X¡I; moreover, any
unitary irreducible representation of G satisfying this property is unitarily
equivalent to irx.

(2) For every X E T, the space of C*-vectors for ttx is S (Rn).
(3) For every X E T, the algebra of operators ttx(Q) as Q runs through ^(g)

is A„(C), the Weyl-algebra, consisting of all differential operators on R" with
polynomial coefficients.

(4) For every fixed Q E GlL(g), ttx(Q) is a finite linear combination of
elements in A„(C), independent ofX, whose coefficients are rational functions of
X, regular on T.

(5) For every f E Ll(G) and every v E H, the map X h» irx(f)vfrom T to H
is continuous; moreover, the function X J-» ||wA(/)|| tends to 0 as X approaches
infinity.

(6) For every f E LX(G) the nonnegative (possibly + co-valued) function
X \-> tr(irx(f)Trx(f)*) on T (where tr denotes trace) is lower semicontinuous.
There is a real-valued rational function R, regular on T, and unique up to
multiplication by —I, such that

(2.28) For every f E LX(G) n L2(G),

Jf |/(x)|2 dx =/r trK(/K(/)*) dp(X)

where dp(X) = \R(XX,..., Xq)\dXx ... dXq.
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12 CHARLES ROCKLAND

[Note that it follows from (2.28) that ttx(j~) is a Hilbert-Schmidt oper-
ator dp-almost everywhere.]

(7) Let K be the Hilbert-space of Hilbert-Schmidt operators on H, with the
inner-product (S, T} = tr(ST*), and let L2(T; K) denote the L2-functions on T
with values in K, with respect to the measure dp. Then there is a unique bijective
isometry 0: L2(G) -» L2(r; K) such that for every f E LX(G) n L2(G), $(/)
is the function X h» Trx(f).

(8) For every <p E C0"(G) and every XET, irx((p) is of trace-class and the
function X (-> tr ttx(<p) is in LX(T; dp). Moreover,

(2.29) <5, <p> = <p<e) = /r tr 77x((p) dp(X).

Notes. 1.If W E Z(g) and 77 is an irreducible unitary representation of G,
then 77(Z) •= ci for some c E C. By (2.12), if W = W*, then c G R.

2. The polynomials on g* corresponding to W¡, i = X,..., q, under the
symmetrization map parametrize the "generic" orbits. We caution the reader
that the symmetrization maps in [2] and [15] are slightly different.

3. Since LX(G) n L2(C7) is dense in L2(G) the existence of a (unique)
isometric extension 0 from L2(C7) into L2(r; K) is automatic. The delicate
part is to show that $> is surjective. It would be desirable to have a simpler
proof of this along the lines of the proof in [13] for the case G = RN.

4. The fact that the function X h» tr ttx(<p) is in LX(T; dp) follows from the
treatment in [15] describing tr 7rA(<p) as the integral of the Fourier transform
of <p over the coadjoint orbit in g* corresponding to ttx. This interpretation
also indicates that we should expect much better regularity properties for
X h» tr 77A(«p) than simply measurability. We shall see later that when G =
Hn this map is C".

We wish to discuss some consequences of the Plancherel theorem. We
maintain the preceding notation.

Lemma 2.8. Let G be a simply-connected nilpotent Lie group. Then for any
u E &'(G)andany «p G Cq°(G),

(2.30) («, 9) = f tr(77A(«K(<p)*) dp(X).

Proof, (u, y) = (u* $)(e) = (u * (<p*))(e), and u * (y*) G C^G). Thus,
by (2.29),

(u, 9) =/ ^(ttx(u * ç>*)) i//i(A).

Then (2.30) follows from Lemma 2.3 and from Proposition 2.6(4).   □

Lemma 2.9. Let G be a simply-connected nilpotent Lie group. Then for any f,
g S L\G),
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HYPOELLIPTICITY ON THE HEISENBERG GROUP 13

(2.31) f f(x) g(x) dx = <<£>(/), 0(g)),
JG

where (,)is the Hilbert-space inner-product for L2(T; K).

Proof. The result is immediate, for the left-hand side of (2.31) equals
(/, g>, the inner-product on L2(G), and $ is an isometry of Hilbert-spaces.
D

The following proposition is crucial for §5.

Proposition 2.10. Let G be a simply-connected nilpotent Lie group, and let u
lie in &'(G). Suppose that the function X \-* ttx(u) from T into the space of
unbounded linear operators on H = L2(R"), say with domain the space S (Rrt) of
C^-vectors, is in fact a function in L2(T; K). Then u G L2(G) n & '(G).

Proof. Since $: L2(G) -» L2(r; K) is bijective there exists/ G L2(G) such
that $(/) is the function X h» ttx(u). Let <p G C^G). By Lemma 2.8,

(u,y) = ( tr(TTx(u)TTK(<p)*) dp(X).
Jr

But C0°°(G) Ç L\G) n L2(C7), so $(<p) is the function X H> irx(tp). Thus, by
Lemma 2.9,

/ f(x)^x) dx=f tr(7r,(MK(<p)*) dp(X).

That is, (u, <p) = (/, ff), where we consider/ as an element of ^'(G). Since
<p E C0œ(G) is arbitrary, u = /.   D

We next recall the notion of dilations for the simply-connected nilpotent
Lie group G.

Definition 2.11. Let r |->6V be a homomorphism from R+, the multi-
plicative group of positive real numbers, into Aut g, the group of
automorphisms of g, of the form 8r = exp((log r)A), where A: g^*g is a
semisimple linear transformation with positive eigenvalues, y,,..., y^. We
then call (8r) a group of dilations for G.

Notes. 1. Taking an ordered basis XX,...,XN for g of eigenvectors for A,
we see that 8r(X¡) = rrX¡. We shall generally be interested in cases where all
the y, are positive integers.

2. Since G is simply-connected, (8r), via the exponential map, forms a
group of automorphisms of G.

3. Of course, {5,} also determines a group of automorphisms of %(g). For
various examples of nilpotent groups with dilations, see, for example, Folland
[6].

Definition 2.12. P G %(g) is homogeneous of degree k if 8r(P) = rkP for
every r. Observe that if we expand P as in (2.2) in terms of the basis
Xx,... ,XN in Note 1, then P is homogeneous of degree k if and only if
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14 CHARLES ROCKLAND

^•j-iC/Yj = ^ *or every a with aa ^0. Suppose now that each W¡, i =
1,..., q, in Theorem 2.7 is homogeneous of degree m¡; that is, 8r(rV¡) =
r^W,. Define "dilations" Sr: R" -* R" by 8r: X = (Xx, . . . , Xq) h»
(rm,Xx,..., rmiXq). Suppose also that each 8r: R? -»R9 maps T into T, and
that 0 G T. Clearly, for every X E Rq, X =£ 0, there is a unique r G R+ such
that ||S,-iA|| = 1, where || || denotes the Euclidean norm in R?. We call this
positive number r the "norm" of X, and denote it by |X|. (Compare with
Folland[6,§l].)

Since each 5, is an automorphism of G, ttx ° S, is an irreducible unitary
representation of G for every X E T. Since 8r(W¡) = r^W» it follows by (1) of
Theorem 2.7 that tta ° 8r(W¡) = r^XJ. Hence, again by (1), irx <> 8, is
unitarily equivalent to irSrX. That is,

(2.32) For every X E T, r E R+, there is a unitary operator Ux¡r on H such
that 77A ° 8r = UXrTTsxUx~x.(Since 77^A is irreducible, t/Ar is unique, up to
scalar factor of modulus 1.)

In order to work effectively with homogeneous P E%(g) we must
renormalize our choice of 77A to get rid of the Ux>r.

Lemma 2.13. For every X ET there is a unitary operator Vx on H such that
the representations ttx = Vxttx Vx ' satisfy the same properties as the ttx in
Theorem 2.7 (with (4) slightly modified), and, in addition, satisfy
(2.33) 7TA » 8r = 776A   for every XETandrER+.

Proof. A simple computation shows that to ensure (2.33) it suffices that
(2-34) V^mVxU^
where s denotes equality up to scalar multiple of modulus 1. But it follows
from (2.32) that UXr satisfies the "cocycle" condition
(2.35) l/A>ri ° ^,x,r2 = Ux,xri   for every X G T, r„ r2 G R+.

If we now define Vx by

(2-36) Vx = USN_m,
it follows from (2.35) and the definition of |A| that (2.34) holds, i.e., the
"cocycle" Ux<r is a "coboundary". Thus (2.33) holds.

It follows from (2.32) that for any t> G H = L2(R"), o is a C "-vector for
tt^ if and only if UXrv is a C "-vector for tta ° 8r. But by Theorem 2.7(2), for
each of these representations the space of C "-vectors is S(R"). Thus, for any
X, r, and any v E L2(R"), UKrv is in §(R") if and only if v is in §(R").
Hence, by the definition, (2.36), of Vx, it follows that the space of C "-vectors
for 77A is S (Rn). Thus (2) holds for ttx.

From Theorem 2.7(3) and (2.32) it follows that for every X, r,

(2.37) ¿n(C) = { UX,TUX;\ T G ̂ „(C)}.
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Hence, again by (2.36), it follows that (3) holds for irx.
Now let Q be an element of %(g). By Theorem 2.7(4) there exist

Tx,...,TkE A„(C) and rational functions RX(X),..., Rk(X) such that

(2.38) ^(ß)=l  RjQ^Tj.
7=1

If Q is homogeneous of degree m it follows that

(2.39) ^°Sr(ß) = rm£ Rj(X)Tj.
7-1

But by (2.32) and (2.38),

(2.40) ttx o 8r(Q) = uj S  RjmTj\u¿.

Thus the right-hand sides of (2.39) and (2.40) are equal for any X, r. Now
replace X by 8^-iX and r by |X|; of course this replaces 8,X by X. Hence by
(2.36) and the above we get

Vxlî RjWj}vx-x = |a|* £ RAs^Tj.

But by (2.38) the left-hand side of (2.41) equals ttx(Q). We have therefore
shown

(2.42) If Q G %(g) satisfies (2.38) and is homogeneous of degree m, then

*ÁQ) = mm í Rj(sw-u\)Tj.
7-1

Clearly, every Q E %(g) is uniquely expressible as a finite sum of homo-
geneous elements of %(g). Applying (2.42) to each of these separately we
obtain the desired analogue of Theorem 2.7(4).

Just as in Dixmier [2; see, in particular, Lemma 33], one shows by applying
(4) to Q Eg that for any v E H the map (x, X) h-> ttx(x)v from G X T into
H is continuous, and the first part of (5) follows. Properties (1), (6), (8), and
the second part of (5) are clearly invariant under unitary equivalence.
Property (7) for ttx is proved the same way as for ttk. This concludes the proof
of the lemma.   □

Condition (2.33) allows us to pass to the unit ball in R9 when dealing with
homogeneous operators. More precisely,

(2.43) If P G %(g) is homogeneous of degree m, then for any X E T,

ix(p) = ixi%ul_lX(p)=iAr^w_„(P).
Proof. The first equality follows immediately from (2.33). Since 8X is the

identity map it follows from (2.32) that Uxx ¡¡~ I for any X G T. Hence, by
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16 CHARLES ROCKLAND

(2.36), Vx ss / if |X| = 1. Thus ttx = ttx if |X| = 1, and so the second equality
holds,   n

We shall need to work interchangeably with P and P (resp., P* and P').
We therefore introduce the following considerations. Suppose that for every
i' ■» 1,..., q W¡ is either symmetric, i.e., W¡ = W¡, or antisymmetric, i.e.,
W¡= — W¡, and let t, = 1 or — 1, correspondingly. (Since each W¡ is
selfadjoint, i.e., W, = W?, these conditions correspond to W, = W¡, W¡ =
- W¡, respectively.) Also, for any A G R?, let ta = (t,a, ..., t^), and
suppose that t leaves T invariant.

Since ttx is an irreducible unitary representation of G, so is ttx, defined by
ñ\(x) = [ñ\(x~x)]' =ttx(x), where ' denotes the Hubert-space transpose
(rather than adjoint) in L2(R"), and where ttx(x)v — (t\(x)v)~ for any
v E L2(R"). Since §(R") is closed with respect to ~, it follows from the
second equality above that the space of C "-vectors for ttx is also S (Rn).

At the level of ^l(g), ttx takes the form

(2.44) *A(ß)-K(ß')]'-[*x(ß)]~'
the second equality follows from (2.12) and the fact that ß = ß'*. It follows
from Theorem 2.7 (1) that ttx is unitarily equivalent to tttX. If Sx is the (unique
up to scalar multiple) unitary operator on L2(R") implementing the equiva-
lence, then Sx and Sx~x map C "-vectors to C "-vectors, i.e., Sx and Sxx map
S (Rn) to S (R"). Viewing the equivalence at the level of ^(g) we see that for
every ß G %(g),

(2.45) [*A(ß)]"-[*x(ß')]'- SxtttX(Q)Sx1   foreveryX G T.

Since Sx, Sxx map S(R") to §(R"), it follows from (2.45) that if ttx(P) (resp.
ttx(P*)) has a bounded left or right inverse in the sense of Definition 3.2 for
every X E T, then so does ttx(P) (resp. ttx(P')).

Finally we note that if P is homogeneous of degree k, then the same is true
of P, P*, P'. This follows, for example, from the remark immediately
following Definition 2.12 and from (2.4)-(2.6).

3. Construction of the parametrix. Recall that the 2« + 1-dimensional
Heisenberg algebra, h„, is the Lie algebra with generators X¡,i=I,..., n, Y¡,
i = 1,...,«, Z satisfying the commutation relations

(3.1) [X„ Yj] = 8yZ,      [Xt, Z] = 0,      [ Y„ Z] = 0.
The Heisenberg group Hn is the unique simply-connected Lie group having h„
as its Lie algebra. The group H„ has a group of dilations {5,} defined by

(3.2) 8r(Xi) = rXi,      5r(y;) = /-y(,     8r(Z) = r2Z.
In this section we want to prove the following:
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Theorem 3.1. Let P E %(A„) be homogeneous, and suppose
(3.3) 77(P) has a bounded right-inverse for every irreducible unitary represen-

tation 77 of Hn (except the trivial, identity representation).
Then P has a right parametrix. That is, there exists u E fy'(G) and f E
C^G) such that
(3.4) Pu = 8+f.

As in §2 we let H denote the Hilbert-space of tt, and H«, the space of
C"-vectors.

Definition 3.2. A bounded right (resp., left) inverse for tt(P) is a bounded
linear operator B: H -* H such that

(3.5) B maps Hœ into //«,,
(3.6) tt(P)B = I on Hœ (resp., Btr(P) = I on HJ.
We begin with a discussion of the irreducible unitary representations of H„.

(See, for example, [2], [3], [15]. We shall adhere most closely to the treatment
in [15]) We shall use exponential coordinates, (a, b, c) E R2n+1 h» exp(a • X
+ b-Y+ cZ), on H„.

There are two classes of irreducible unitary representations, as follows from
the Stone-von Neumann theorem:

(1) A "degenerate" family of 1-dimensional representations which map Z
to 0. These correspond to the irreducible unitary representations of
H„/{exp cZ\c £R}s R2n. They are parametrized by (£, r/) G R2n, and are
given by
(3.7) niv)(a, b, c) = g'í-f+M),       (¿ V) e R2».

The trivial 1-dimensional identity representation corresponds to (£, tj) = 0.
At the Lie algebra level these representations take the form

(3.8) ra^Ai)-V=Tfc   77^,(7,.) =V=T i,„   tt(m(Z) = 0.
(2) A "generic" family parametrized by X E R - {0}, acting on L2(R"),

which map Z to a nonzero scalar. They are given by

(3.9) [TTx(a, b, c)v](t) = e^b'+c+a-b/2)vrt + a)>   for c e ¿2(Rn)-

The space of C "-vectors for each ttx is §(R"). At the Lie algebra level these
representations take the form

(3.10) TTx(X¡) = d/dt¡,     TTx(Yi)=V^\Xti,     77A(Z)=V^TX.
This family of representations, {t7a}, is the one occurring in Theorem 2.7.
Indeed, when G = Hn, Z(g) consists precisely of the polynomials in Z, so
q - 1, and we can take W = Z/V^T. T becomes R - {0}, and, as seen in
[3], the Plancherel measure dp(X) equals \X\" dX, where | | denotes absolute
value.

Since Z is homogeneous of degree 2, it follows that |A| = \X\X/2 for every
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A G R — {0}. Thus, when we renormalize as in Lemma 2.13, it follows from
(2.43) and (3.10) that

*(*,)-W,/a 4.   ^ra-V=T (sgnA)^,,.,
(3.11)

t7x(Z)=V=Î A.
More generally it follows from (2.43) that

(3.12) If P G %(An) is homogeneous of degree m, then

ttx(P) = IXr^.iP) = |A|"/V,(P)   if A > 0,
and

*Â(P) = ixr^-iO = \Mm/2"-i(p) if a < o.
The unitary operator Vx implementing the equivalence between ttx and irx is
given by ©(0 h> |A|-"/4ü(|A|-|/20forü G L2(R2n).

We also have from (3.8) that 7r(i>t)) ° 5r = «/,$,,). Hence,
(3.13) If P G %(/»,,) is homogeneous of degree m, then for any r G R+ and

any (& i,) G R2n,

nrtmÄP) = '"W)-
Since W — — W, we can apply the considerations at the end of §2. In fact,

a straightforward verification shows that we can take Sx in (2.45) equal to /.
Hence (2.45) takes the form

C")       *x(ß')=[*-*(ß)]'. **(ß)-[*-x(ß)r
for every A G R — {0}. Similarly we see

(3.15) TT^v)(Q') = TTl_l_n)(Q),   ^(Q) =[n-i,-v)(Q)]~
for every (£, tj) G R2".

Remarks. 1. For <p G C0°°(Hn), let AT(m; A, s, f) denote the kernel associa-
ted to Trx(q>), and K((p; X, s, t) the kernel associated to wA(rp). It follows from
(3.9) that

K(<p; X, s, t) = [eMn+c+O-sH/i) ,t _ Sj b C) & dc
(3.16) J

= y(t-s,X((s+ 0/2), A),
where «p here denotes the (inverse) partial Fourier transform of y(a, b, c) with
respect to the variables b, c. (We ignore factors of 2tt.) Also, it follows from
the explicit form of Vx that

(3.17) K(<p; X, s, t) = \X\-»/2K(<p, A, |A|-»/25, \X\~x/2t).

Notice that K(<p; X, s, t), originally defined only for A G R - {0} can, by the
Paley-Wiener theorem, be viewed as defined for all A G C, C" in (A, s, t),
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holomorphic in X for fixed s, t, and having a well-determined rate of growth
at oo.

2. Using integration by parts and differentiation under the integral the
following can be proved:

(3.18) For every <p E C0"(//„) there exists a unique i// G C0"(/Yn) such that

-^ K(r, A, s, t) = A-'tfty; A, s, t),      X^O.

(3.19) For every <p E C0œ(H„) there exists a unique tj G C0"(//„) such that

-^ K(<p; X, s, t) = X~xK(r, X, s,t),      A G R - {0}.

The functions $, tj can be explicitly expressed in terms of <p.
3. Using either (3.16) or the general orbit picture in [15] we find

(3.20) tr 77A(<p) = tr 77A(<p) = <p(0, 0, A)/|A|",

where
<p denotes the (inverse) partial Fourier transform of <p(a, b, c) with respect

to the variable c.
We next sketch the idea for the construction of a parametrix for P E

%(AJ, homogeneous of degree m, and satisfying (3.3). Let BX,B_X be
bounded right-inverses for ñx(P), ë_ X(P), respectively. Then if the integral

(3.21) (u,q>) = [        tr(tx(<p)tx(P)-x)dp(X)^R-{0}      v '

were well defined for <p G Com(Hn), and determined a distribution u, then u
would satisfy the equation Pu = 8. Indeed, we would have

(Pu, <p) = (u, P'<p) = [        tr(irx(P'<p)iTX(P)-x) dp(X)^R-{0}     v '

= /        tr^x(i)TTx(P)TTx(P)-x)dp(X)   (by(2.13))

(3.22)
= /        tr (77A((p)) dp(X)

•'R-fO}
= (8,<p)   (by (2.29)).

But, by (3.12),

(3.23) ^(P)-'=ir^1ifA>0;
*\(p)  ' =|Arm/25_,ifA<0.

Thus, since dp(X) = \X\" dX,
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/        tr(77X(<p)77A(P)-'>/.x(A)=/   \X\-m/2tr(êx(<p)Bx)\X\" dX
^J R-fO) ^R+(3.24)       l '

+ (   lAI-^t^^Ä.OIAr^A.
We shall see that both the integrands behave well for |A| large, but clearly
they may blow up as |A| -» 0. (See, for instance, (3.20).) Thus u in (3.21) is not
well defined. We will, however, be able to solve the equation Pv = [PP +
Z2m] 8 with the Plancherel_formula. Moreover, we shall see that, since
ir((tV)(P) ¥= 0 for (£, t/) ^ 0, PP + Z2m is elliptic. We can consequently obtain
a solution u of (3.4) be convolving v with a compactly-supported parametrix
for PP + Z2m.

We proceed next to the details. First, in order to estimate tr(irx(<p)Bx) and
tr(iïx(y)B_x) without introducing the trace-norm of TTx(op), which does not
seem to us to be simply-expressible in terms of tr(77A(<p)) or tr 77A(<p * <p#), we
would like Bx and B_x to be Hilbert-Schmidt, or even of trace class, rather
than merely bounded. We proceed by replacing P by PQ, where Q is a
homogeneous operator in %(h„) satisfying (3.3), and such that the bounded
right-inverses ttx(Q)~x, "¡t-\(Q)~x are of trace-class. Then ttx(Q)~xBx,
77_1(Q)_I5_1 are bounded right-inverses for ttx(PQ), ñ-\(PQ), and are of
trace-class, since the trace-class operators form a two-sided ideal in the space
of bounded operators. Notice, moreover, that if » is a parametrix for PQ,
then Qu is a parametrix for P; also, if u is C" away from e, so is Qu.
Actually, as will follow from §4, we could take Q = PN for N sufficiently
large. However, we would still require the following lemma.

Lemma 3.3. There exists a homogeneous Q E ^(A,,) such that for every
irreducible unitary representation tt of Hn except iT(o,oy ""(0) has a bounded
two-sided inverse which is, in fact, of trace-class. We can take Q = [27- \(X2
+ Y2)]N,for N a sufficiently large positive integer depending on n.

Proof. Clearly 2?= [(A",2 + Y2) is homogeneous of degree 2. By (3.8),

nJ 2  (X2 + Y2 )) = - ¿  (|2 + r,2) * 0   if (I, r,) * (0, 0).
\i-i / i=i

By (3.10),

*,(¿ (A? + 1?)) = ¿-.(¿i*,2 + 1?)) = - SW + tf),
where D, = (- l)~1/2(d/dt¡). But it is well known (see, for example, [17]) that
there is a complete orthonormal basis for L2(R') consisting of eigenfunctions
{u,}" o for the harmonic oscillator D2 + t2. These so-called Hermite
functions lie in S (R1) and satisfy the equation
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(3.25) (D2 + t2)v¡ = (2/ + l)v¡   for every /.

It follows that the functions i>,(0 = vit(tx) ... v¡J(tn), as i = (/„ ..., i„) runs
through all «-tuples of nonnegative integers, form a complete orthonormal
basis for L2(R"), and that

(3.26) 2 (d; + <,2)
7 = 1

t>; 2 04 +1)
7 = 1

v¡   for every /.

Thus 2"_ i(Z),2 + f2) has a two-sided bounded inverse T, given by

(3.27) 7t>,. = -—~- v¡.

(We shall see in §4 that T maps § (Rn) to S (R").) Since all the eigenvalues of
T are positive, TN is of trace-class precisely if

(3.28)
R7-.P* + Of

But (3.28) is certainly equivalent to
°°    a(&)

(3.29)

< +00.

2
A-l *"

<   +00,

where a(k) is the number of ways k can be written as a sum of « positive
integers. Of course, a(k) can be determined explicitly; for us, however, it is
enough to notice the obvious fact that a(k) < k". Hence (3.29), and therefore
(3.28), holds if N - n > 1, i.e. if N > n + 1.   □

We next examine the question of measurability of the functions A h»
tr(TTX(op)Bx), X h» tr(TTx(cp)B_x). It is convenient to work in the general
context of §2. We maintain the notation of that section.

Lemma 3.4. Let G be a simply-connected nilpotent Lie group (with dilations)
and let B: H -» H be a bounded linear operator. Then for any <p G C0"(G) the
function X h» xt(ttx(<p)B) from T to C is measurable. If B is of trace-class then
the function is in fact continuous.

Proof. First suppose only that B is bounded. Since t7x(<p) is of trace-class
so is t7x(<p)B. Also, tr(T}x(<p)B) = tr(Six(tp)). Let {t>,}%,0 De anv orthonormal
basis for H. Then

tr(<iix(<p)B) = tr(Bwx(<p)) = 2 <^(v)o,. t*>
(3.30)

- 2 <**(9>K **«,>•

By Theorem 2.7(5), for each / the function A h» (ttx(<p)v¡, B*v¡) from T to C
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is continuous, a fortiori measurable. Hence tr(77A(<p)5), being a pointwise
limit of measurable functions, is measurable.

Suppose next that B is of trace-class. We express B* in polarized form,
B* = UT, where T = (BB*)X/2 and U is a partial isometry. T is positive
definite and of trace-class, in particular, compact, so H has an orthonormal
basis {v¡)fL0 consisting of eigenvectors of T, with eigenvalues {i,}Jl0- (Recall
that the trace-norm of B is, in fact, 2£,0 h < °°-) Then

(3.31) <iA(«p)«„ B*v/) = <C/**x(q>K Tv,) = t,(U*Mv)^ »/>•
In particular,

|<77A(9)0(,5*«(>| = t,\(U*nx(<p)vt,v,)\

(3.32) < *|D| |*x(v)| = ^.¡77,(9)11
<*U) (by(2-io))-

Thus, for every integer n > 0,

(3.33) | |<*(»)* Ä*t%>| < ( f t,) ■ \\<p\\Ll(GY
¡™n \i=n    I

Since the right-hand side of (3.33) is independent of A, and since 2£,0 h < °°»
the series in (3.30) converges uniformly in A, in particular, uniformly on
compact subsets of T. Since each of the functions A h» (,ttx(<p)v¡, B*v¡} is
continuous, it follows that the sum is continuous.

Remark. Returning to the special case of G = Hn, it can be shown, using
(3.19), that differentiation under the integral is valid, and that for any v,
w E L2(R") the function A h» <t7a(c>)ü, w> is differentiable, and that

(3.34) j_ ^{(p)Vt wy m x-i(ix(ri)v, w).

Combining this with the above procedure and iterating, we find that if B is of
trace-class then the function A h» tr(77A(<p)5) is C". I suspect that this is
probably true for general G.

We are now ready to examine the convergence of integrals of the type
occurring in (3.24). We begin by noting:

(3.35) For any Hilbert-Schmidt operators S, T on H, \tr(ST)\ <
[tr(55*)]l/2[tr(7T*)]1/2. This is simply a variant of the Cauchy-Schwarz
inequality for the Hilbert space of Hilbert-Schmidt operators, under the inner
product Is, T) = tr(ST*).

We now work in the context of G = Hn.

Lemma 3.5. Let e > 0, and let B be a trace-class operator on L2(R"). If
s EC with Re s > -(n + l)/2, then the linear map u: C0X(H„) -> C given by

(3.36) (u,<p)=f \Xr»tr(TTx(<p)B)dX
J0<\<e
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is well defined, and u G ^'(H„). In fact, there exists a constant C independent
of q> such that

(3-37)      |(«, 9)| < f |A|Re*+n|tr(#A(<p)P)| dX < C\\<p\\m„a),
J0<\<e'

so u E L2(H„). The same is true if we replace the domain of integration by
-e < A<0.

Proof. By the preceding lemma, the integrand in (3.36) is measurable, in
fact C". To show that it is integrable, i.e., in Lx, observe that

|A|Re*+"|tr(*A(<p)P)| = (|A|R-+»/2)(|Ar/2|tr(^(m)P)|).

Hence,

/        |A|Re*+»|tr(£A(<p)5)| dX
J0<X<e

(3-38) 1/2
</nl     |A|2Re'+"¿A     •/        |tr(íx(<P)5)|2 |A|" dX[JQ<X<e J        [^0<X<e

Our hypothesis on s states that 2 Re s + « > -1. Hence, the integral
I/o<x<. |A|2Re,+'' ¿A]1'2 is finite. Call it C.

By (3.35), |tr(iA(<p)P)|2 < tr(5P*)tr(#A(c>)7rA(<p)*). But by Theorem 2.7(6)
and Lemma 2.13 the function A h> tr(Trx(<p)irx(<p)*) from R - {0} to R+ is
measurable. [In fact, nx(<p)nx(<p)* = wA(<p * <p#), and since <p * <p* G
C0"(G), one sees from (3.20) that the funaction A k ti(ëx(<p)ëx((p)*) is C".]
Thus,

1/2

(3.39)
u0<X<e

\tr(ñx(q>)B)\2\X\"dX
T>/2

<[tr(BB*)]i/2\f tr(T7x(<p)TTx(<py)\X\» dX
1»/2

Since tr(iA(<p)7rA(<p)*) > 0 for every A G R - {0}, and since the Plancherel
measure dp(X) = |A|" dX, it follows from (2.28) that

11/2

(3.40)
/        tr(¿A(<p)£A((p)*)|Ar¿A

/        tr(£A(<p)£A(<p)*)|Ar</A•'"-{0}

i'/2
= IMI £»(«.)•

Letting C - C'[tr(BB*)]x/2 we obtain from (3.38H3.40) the desired result
(3.37). (The first inequality in (3.37) follows automatically from the definition
of u.) Since L2(H„) is its own dual space it follows from (3.37) and the
Hahn-Banach theorem that u G L2(Hn). Clearly the same proof is valid for
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the domain of the integration — e < A < 0.   □

Lemma 3.6. Let e > 0, and let B be a trace-class operator on L2(Rn). For any
s G C the linear map u: C0x(Hn) -> C given by

(3.41) (u,<p) = [     \Xr»lr(TTx(<p)B)dX
JX>e

is well defined, and u E ^'(H,,). Moreover, for any nonnegative integer N such
that N > (Re s + (n + l)/2) there exists a constant C independent of <p such
that

(3.42) |(«, <p)\ </     |A|R"+" \tr(trx(<p)B)\dX < C\\ZN<p\\w

Thus, there exists f E L2(H„) such that u = ZNf. The same is true if we replace
the domain of integration byX< — e.

Proof. The proof is similar to that of the preceding lemma, only we
consider behavior "at oo" rather than "at 0". First note that ttx(Z') =
- ttx(Z) = - VhT A. Hence by (2.13) we have

|A|R"+»|tr(77A(9)5)| = (|A|R"+»/2-»)- (|A|"/2. \XN tr(irx(<p)B)\)

(3'43) = (|A|R»+»/2^)(|Ar/2|tr(77A(Z\)5)|).

Therefore
r iI/2

f     |A|Rei+n|tr(77A(<p)5)| dX <\[     |a|**"+«/2-*> dX
(3.44)      X>£ L X>ï J

tr(77A(Z*9)5)|2 |A|" dX]

Our hypothesis on N states that 2(Re s + n/2 - N) < -1, so that
l>/2

li-
li |X|2(Re, + n/2-A') dX < 00.

Proceeding now precisely as in the previous lemma, but with Z^tp replacing
9, we obtain (3.42). Now let V = {ZN<p\<p E C0"(/i'n)}. Then V is a subspace
of L2(Hn), and by (3.42) the linear map Z*fy h» (u, 9) from V to C is well
defined and continuous. Hence, by the Hahn-Banach theorem and the fact
that L2(H„) is its own dual space, there exists/ G L2(Hn) such that, for every
<p e Q°°(C),
(3.45)    (M, .p) = <z V/> = (/, Z\) = ((Z* )'/, 9) = [ZN ((-1)7), <p).
That is, u = ZN((-\)Nj). Clearly the same proof holds for the domain of
integration A < - e.   □
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We next want to show the following.

Proposition 3.7. Let P G %(/!„) be homogeneous of degree m, and suppose
(3.46)jrr&v)(P) * Ofor every (£, rj) G R2n except (0, 0).

Then PP + Z2m G %(hn) is elliptic (though not homogeneous).

We first prove a lemma.

Lemma 3.8. Let P E ^L(A„) be homogeneous of degree m and satisfy (3.46).
Then P is of order mas a differential operator. Let V(P) C T*Hn/0 denote the
real characteristic variety of P, i.e., the zero-set of the principal symbol om(P).
Identifying TfH„ with h* we have

(3.47) V(P)e = the annihilator of the 2n-dimensional subspace of hn spanned
by X„ Y¡, i = 1,..., n (with 0 deleted).

In terms of the coordinates £, tj„ t, i = 1,..., n, defined on h* by X¡, Y¡, Z
this can be expressed as

(3.48) V(P)e = {(£, * t)|€ = n = 0, t * 0).

Proof. Let

P-      2       ctaßyX? ■ ■ • x?rp • • • Y*-Z\     aaßy E c.
\a\ + \ß\ + y<k

We assume, of course, that for some aßy with \a\ + \ ß\ + y = k, aaßy ̂  0.
Since P is homogeneous of degree m,
(3.49) \a\ + | ß\ + 2y = m   for every aßy such that a^ ¥= 0.

Since \a\ + \ ß\ + y < k for every aßy it follows that
(3.50) k < m;   for every aßy such that aaßy =£ 0, y > m - k.

But tt((v)(Z) = 0 for every (|, -q). So, since ^«.^(P) =*= 0 for (£, tj) ¥" 0, it
follows from the above expression for P that there exists aß such that
aaß0 ¥= 0. Hence, by (3.50), k = m. That is, P is of order m.

Thus, om(P)e, the principal symbol of P at e, which we consider as an
element of S(h„), the (complexified) symmetric algebra, and hence as a
polynomial function on h*, is given by

om(P)e- (V-T )m      2       aaßyX? • • • X+Yf ■ • • • yAz*
(3 5n \a\ + \ß\ + y = m

= (vr=T)m  2   -wff • • • x?Ytx • • •y* (by(3-49))-
W + 1/ïl-M

Evaluating at (£, tj, t) G A* we get

<am(P)e, (£ -, t)> = ( V=T )"       S       «*#' • • • tfijf' • • • 1U*
(3.52) l«l + l/8|=m

- W)-
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Hence, by (3.46)

(3.53) <o-m(P)e,(£r,,T)>^0   if(É,r,)*0.
But, clearly, (o(P)e, (0, 0, t)> = 0 for all t\ Hence (3.48) holds.   □

Since P is of order m, PP, and hence PP + Z2m, is of order 2m, and so the
principal symbol of PP + Z2™ is given by

{a2m(PP+Z2m)e,(í,%T))

(3.54) = (0m{P)^F^ ft * *)) + (^(Z2"1 h (fc * t)>

= (-l)m|<am(P)e,(|,T,,T)>|2 + (/T)2"'

= (- \)m\{om(P)e, (fc „, r)>|2 + (- lfM2".
Since both terms on the right-hand side of (3.54) have the same sign, the sum
can be 0 only if both are 0. Hence, by (3.48),

(3.55) V(PP + Z2m ) = {(0, 0, t)|t * 0} n {(€, if, 0)|(fe r,) * (0, 0)} - 0.
Since PP + Z2m is invariant under left translation this implies that PP +
Z2m has empty characteristic variety, i.e., is elliptic.   □

As we noted at the end of §2, if P G %(A„) is homogeneous, so is P. Also,
by (3.14) and (3.15), if P satisfies (3.3) so does P. Thus, if we take Q as in
Lemma 3.3 and replace P by PQ(PQ) = P(QPQ), it follows by Proposition
3.7 and the remarks preceding Lemma 3.3 that we can, without loss of
generality, replace the hypotheses of Theorem 3.1 by the following:

(3.56) P G %(/!„) is homogeneous of degree m.
(3.57)*(Ê,>(P)*0if(|,ii)*(0,0).
(3.58) 77,(P), 77_,(P) have bounded right-inverses Bx, B_x, respectively,

which are both of trace-class.
(3.59) P + Zm is elliptic.
Fix e > 0. Then for any í G C with Re s - m/2 > -(n + l)/2 define

distributions w¿, «£,, us by

(3.60)
("6\ «P) = 0)7        \Xrm/2tT(TTx(<p)Bx)\X\" dX

+ (-07 |Ar-/2tr(77A(9)P_I)WB^,
J-e<\<0

K, <P) = (0* /     M"m/2 tr(77A(9)5,)|Ar rfX
^A>e

+ (-/)7       lAr^tr^MP-OIAI^A,
•'X<-e

(3.61)

(3.62) us = u¿ + uoo-
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[We shall always take s real, in fact an integer, so there is no question of
which branch of the functions (i)s to take.]

We know by Lemmas 3.5 and 3.6 that u¿, usx are distributions. In fact we
know:

(3.63) For every s, u*0 E L2(H„).
(3.64) For any positive integer N > (Re s - m/2 + (n + l)/2) there exists

/ G L\Hn) such that usx = ZNf.

Lemma 3.9. The distributions m¿, usœ, us satisfy the following properties.
(3.65) For any nonnegative integer k, Zku¿ = u¿+k, Z*«£, = i/^+*, Zku' =

us+k.

(3.66) For any positive integer I > (m/2 - (n + l)/2), Pu' = Z'8.
Proof. (ZkusQ, <p) = (usa, (Zk)'<p). But, by (2.13),

#A((Z*)'<p) = ¿A(<pK(Z*) = (/A)*¿A(<p).

Since (iX)k = (±/)*|A|\ depending on the sign of A, it follows that Zku*ü =
«ô+\ The same argument shows that Z*w£, = us*k, and, hence, that Zkus =
us+k.

(Pu¿,cp) = (u¿,P'<p)   and   (P«i,ç)) = (Mi,P'<p).

Again by (2.13),
ñx(P'<p)v = ctx(ç>)ctx(P)»   for every v E S(R").

Thus, by definition of Bx, B_x and by (3.12),
(3.67) T}x(P'(p)Bxv = W^Wv   if A > 0 and v G S (R"),
(3.68) TTx(P'q>)B_xv = IXf/^tfv   if A < 0 and v E S(R").
Since both sides of (3.67), (3.68) involve bounded, in fact trace-class, opera-
tors it follows that
(3.69) *x(P'<P)Bi = \Mm/\(9)   ifA>0,
(3.70) ñx(P'<p)B-X = |A|m/2^x(<p)   ifA<0.
Thus

(Pu1, <p) = (Pui>, tp) + (Pu'M, <p)=f        (iX)' tr(^A(<p))|Ar dX
•'R-fO}

(3.71)
= /R_o  trN(Z'),<p))W^ = (ô,(Z')'<p) = (Z/Ô,«p).   D

As an immediate corollary of (3.66) we get

Corollary 3.10. P(8 + um) = (P + Zm)8.

But by (3.59) P + Zm is elliptic, and so (see, for example, [13]) is locally
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solvable and hypoelliptic. In particular, there exist v' G ^'(Hn), C" away
from e, and/' G C"(/Y„) such that
(3.72) (P+Zm)v' = 8+f.
Choose 9 G C0"(r7„) such that 9 = 1 in a neighborhood of e. Then, letting
v = <pv',

(P + Zm)v = 9(P + Zm)v' +[P + Zm, <p]v'
(3.73)

= 95 + 9/'+[P+ Zm,(p]v' = 8+f,
where/ = 9/' + [P + Zm, q>]v'. Since v' is C" away from e it follows that/
is C". It is also clear that v and/are compactly supported, and that v is C"
away from e.

Since u G S '(#„)> we can define a distribution aGÍ '(H„) by
(3.74) w - v * (8 + um).

Applying (3.72) and (3.73) we get

Pu = P(v *(8 + um)) = v*P(8 + um)

(3-75) =v*(P +Zm)8 = (P +Zm)(v*8)

= (P + Zm)(v) = 8+f.

This proves Theorem 3.1.

4. Sufficiency for hypoellipticity. We want to prove that, at least under the
stronger hypothesis that the inverses for ttx(P), 7t_,(P) are fiw-sided, the
parametrix u for P constructed in the preceding section is C" away from e.
To do this we need to make use of stronger boundedness properties of the
inverses above than simply L2-boundedness. Hence, the following
preliminaries.

Definition 4.1. For any 8 > 0 and any nonnegative integer k, let
HikS)(Rn) he the set of all functions v(t) such that (1 + \t\fk-W)SD?v(t) G
L2(R") for all multi-indices a with \a\ < k. Observe that H,kS)(R") is a
Hilbert-space with respect to the obvious norm, and that § (R") Q HlkS)(R!').
In fact, C0"(R"), and so, a fortiori S(R"), is dense in HlkS)(R"). This can be
seen, for example, as follows. Choose 9 G C0"(R") such that 0 < 9 < 1, and
such that 9 = 1 in a neighborhood of 0. Let <pe(t) = 9(ei). Then for any
v E H(kS), <pev converges to v in H(kS) as e -»0. This shows that H,kS)(R'') n
&'(R") is dense in HikS)(R"). But for any v E H{kS)(Rn) n & (Rn), to
approximate v in H(kS)(R") it suffices to approximate v in Hk(R"), the
standard Sobolev space. Since C0"(R'1) is dense in Hk(Rn) we are done.

Lemma 4.2. Let Q E %(/?„) be homogeneous of degree < k. Then 77,(2) and
ñ- i(Q)> viewed as operators from S (Rn) to S (Rn), are bounded if we give the
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domain the ¿7(JU)(Rn) norm, and the range the L2(R") norm. Hence, since S (Rn)
is dense in H(kX)(Rn), both ttx(Q) and tt_x(Q) extend uniquely as bounded
operators from H(kX){R") to L2(R").

Proof. Let

Q=       2        aaßyYx*>---Y?X*>"-XP-Z\
H + |/3| + Y</

We are assuming that ß is homogeneous of degree j < k. Thus, for each
nonzero coefficient aaßy, \a\ + \ß\ + 2y =/ < k. In particular, \a\ + \ß\ <
k. But by (3.11),

(4.1) #i(fi)-       2        ctaßy(if^f ^-,

(4-2) #-,«?)-     2      ^(-ow+v^.
M+|/»|+y</ 0i

Thus, it suffices to show that ta dß/dt defines a bounded operator from
HiktX)(R") to L2(R") if \a\ + \ß\ < k. But this follows immediately from the
definition of H(kX).   □

Notice that in the preceding proof it would have been sufficient to assume
that the order of g as a differential operator < k. We note for future
reference that the preceding proof actually shows the following stronger
statement.

(4.3) If ß G %(A„) is homogeneous of degree < k, then for any integer
r > k, ttx(Q) and tt_x(Q) define bounded operators from f/(r^(R") to
Hçr-k.nW)-

We shall need the following lemma, which will be proved in §6.

Lemma 4.3. Let P E ^(/l,) be homogeneous of degree m, and suppose that
w(Él,)(P) i* Ofor every (£, tj) G R2" - {0}. Fix A G R - {0}. Then the follow-
ing are equivalent:

(1) Neither of the equations ttx(P)v = 0, ttx(P*)v = 0 Aas a nontrivial
solution vE% (R").

(2) ttx(P) has a bounded two-sided inverse L, i.e., a bounded operator L:
L2(R") -» L2(R") such that L maps S (Rn) into S (R"), and such that ttx(P)L =
I on S(R"), and Lttx(P) = I on S(R"). (Clearly, such an L, if it exists, is
unique.)

If the equivalent conditions (I), (2) hold, then L-satisfies the following ad-
ditional properties:

(4.4) L maps L2(R") into H(m X)(Rn), and is bounded as an operator from
L2(R")intoH(m^).

(4.5)*X(P)L = Ion L2(R").
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(4.6) Lttx(P) = IonH(mA)(RP).
(4.7) /// G L2(Rn) andLf E S(R"), thenf E S(R").
We can now pass to the following critical proposition.

Proposition 4.4. Let P E %(AJ be homogeneous of degree m and satisfy
(4.8) 77(£,,)(P) # Ofor every & r,) G R2n - {0}.
(4.9) 77,(P), 77_[(P) both have bounded two-sided inverses.

Let um be the distribution solution of Pum = Zm8 defined by (3.62). Let <p be
any function in C0œ(H„) such that e $ support 9 (i.e., such that <p = 0 in a
neighborhood of e). Then

(4.10) Zk(<pum) G L2(Hn)for every nonnegative integer k.

Proof. Arguing just as in the remarks preceding (3.56) we see that if P
satisfies (4.8) and (4.9) then so does P (and, of course, Q of Lemma 3.3), so
that, without loss of generality, we can assume as before that

(4.11) P + Zm is elliptic.
Since P satisfies (4.8) so does P*, by (2.12). Also, by Lemma 4.3, if P satisfies
(4.9), then so does P*, and hence, by the above, so does P' = (P*)~. In
particular,

(4.12) 77,(P'), tt-X(P') both have bounded two-sided inverses.
Recall that, viewing <pum as an element in & '(Hn), we have
(4.13) 77A(Z*(9«'")) - TTx(Wm)TTx((Zky) = (-/)*A*77A(9Hm).

In view of Proposition 2.10 (with tta replaced by ttx), (4.10) is equivalent to
the following condition.

(4.14) For any nonnegative integer k and for any 9 G C0œ(Hn) such that
e G supp 9, the function A (-» \X\kJTx(<pum) lies in L2(R - {0}; K), where AT is
the Hilbert-space of Hilbert-Schmidt operators on L2(R"), and where R -
{0} carries the Plancherel measure |A|" dX.

Our goal, then, will be to prove (4.14). First note that
(4.15) P(9«m) = <pPum +[P, <p]um = <pZm8 +[P, <p]um.

But if e $ supp 9, then 9Zm5 = 0. Thus,
(4.16) For any 9 G C0°°(Hn) such that e £ supp 9, P(9«m) = [P, 9]«"".
To reexpress [P, 9] we need the next lemma.

Lemma 4.5. Let Q E °ll(h„) be homogeneous of degree k, and let 9 G
Co°(H„). Then there is a finite set of differential operators Qx,..., Qr G
%(A„), each homogeneous of some degree < k, and 9,, ..., <pr E C0"(//„) with
supp tpj C supp 9, so that

(4.17)[ß,9] = 2;_,ß,97.
Proof. Straightforward induction on k.   □
Applying the lemma to (4.16) we get
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(4.18) For any <p G C¿°(H„) such that e g supp tp there exist finitely many
ß„ ..., Q, E %(An), and <p„ ..., tpf G Cq(H„) such that each ßy is homo-
geneous of degree < m, such that e 6 supp m,., and such that P(<pum) =
Vj-iQj(<f>j»m)-

Next, we bring together some pertinent facts concerning h™ and u™.
Combining (3.63) and (3.65) we get

(4.19) For any nonnegative integer k, Zku¡f E L2(H„).
Also, (3.64) implies, in particular,

(4.20) There exists / G L2(Hn) and a positive integer N such that «£ =
ZNf.

Lemma 4.6. For any <p G C™(H„) the following hold.
(4.21) For any nonnegative integer k, Z*(<pw¿?) G LX(H„) n L2(H„).
(4.22) There exist <p, G C0"(//„),y = 0,..., N, with supp <p7 Ç supp q> (and

<pN = <p) such that <pM£ - 2»_0ZJ(<pjf).
Note, in particular, that for every j, tpjf E Lx(Hn) n L2(Hn).

Proof. First we note that if ^ G C£°(H„) and g G L2(Hn), then it is
obvious that t/g G LX(H„) n L2(H„).

To see (4.21) observe that by an iterated application of the product rule for
differentiation it follows that

zk(wS,)=î 0*XzV)(z*-Xm).
7=0

Since Zfy G C0"(//„), (4.21) follows from (4.19) and the preceding remark.
Statement (4.22) follows from (4.20) and a variant of the proof of Lemma

4.5.
Since «puo" G &'(H„) also lies in LX(H„), we can view ttx(<puq) as a

bounded operator from L2(R") to L2(R"). (See Proposition 2.6(1).) Also, by
(4.22),

¿x(«ïO=2 *x(Zj(<Pjf))
(4.23) j-°

= 2 *x(^*x((Z/)0- 2 (-oyA^x(«p/)-
7-0 7=0

Since m/- G LX(H„), we again see that üx((p/), and hence, ^(«PO» ^s a
bounded operator from L2(R") to L2(R").

We are now ready to prove the main part of (4.14).

Lemma 4.7. Let N be the integer appearing in (4.20). Let k be any integer >
-2N, and let rp G C¿°(H„)such that e £ supp (p. Fix e > 0, and let R£ = {A G
R| |A| > e). Then the function X h» \X\k/2r}x((pum) lies in L2(R£; K), where Re
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is provided with the Plancherel measure \X\" dX.

Proof. The proof will proceed by induction on k. First we take k = —2N.
Thus, we want to show:

(4.24) The function A H> |A|~"7^(90 lies in L2(RC; K).
Since

(4.25) 77A(9t/m) = 77A(9Wom) + 77A(90,
it suffices to show

(4.24a) A h> |A|-"77A(9t/0m) lies in L2(Rt; K).
(4.24b) A H- \X\-nttx(<puZ) lies in L2(Re; K).
By (4.21) we know, in particular, that 9W¿" G LX(H„) n L2(H„). Thus, by

the Plancherel theorem, A \-+ñx(<puo) acs in ^2(R ~ {0}! ̂ 0> an(* so> by
restriction, it also lies in L2(RC; K). Since A h» \X\~N is C" and bounded on
Re (in particular, measurable and bounded), (4.24a) follows.

To prove (4.24b) we use (4.23) and argue as above. Since <pj E Lx(Hn) n
L2(H„), the Plancherel theorem implies that A h» ñ\(<pj) lies in L2(R —
{0}; K), and, hence, in L2(Re; K). For any 0 < / < N the function A (-»
\X\~NXj is C" and bounded on R£. Hence (4.24b) follows from (4.23). Thus,
we have proved the lemma for k = —2N. Notice that, thus far, we have not
used the fact that e G supp 9. This assumption will be needed when we use
(4.18) in the proof of the inductive step.

We now assume that we have shown
(4.26) For any integer k such that -2N < k < /, and for any 9 G C0"(/Yn)

such that e & supp 9, the function A (-» |A|*/277A(9«m) lies in L2(Re; K).
Since for any nonnegative integer r the function A h» |A|~r/2 is C" and

bounded on Re, it follows that the function A h» |A|(*~r)/277A(9«m) also lies in
L2(R£; K). That is, (4.26) is equivalent to

(4.27) For any integer k < / and for any 9 G C0x(Hn) such that e $
supp 9, the function A1-» |A|*/277A(9«m) lies in L2(Re; K).

We shall show that (4.27) implies:
(4.28) For any 9 G C0"(#„) such that e £ supp 9, the function A (-»

l^l('+1)/2^A(<P"m) lies in L2(Re; K).
Let 9 G Co°(H„) such that e g supp 9. Applying îrA to the compactly

supported distributions in (4.18) we get

(4.29) *x(P(Vim)) = 2  *a(Ô>,«m))-
y-1

So, by Proposition 2.6 (6),

(4.30) 77A(9«'")77A(P') -   2    iX(<PjUm)TTx(Q>).

Here both sides may be viewed as unbounded operators on S(R"). Recall,
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however (see remarks preceding Lemma 4.7), that ttx(<puq) and %(?"»)> and
hence, by (4.25), Trx(q>um) are bounded operators from L2(R") to L2(R").

Each Qj is homogeneous of degree Sj < m, so the same is true of QJ.
Applying (3.12) we get

(4.31a)     \xr/\(tpum)T}x(P' ) = 2  W»/^(^«")*i(<y )   for A > 0,
7-1

(4.31b) \X\m/2Trx(<pu'")T}_x(P')=t  \MSj/\(^m)^-i(QJ)   forA<0.
7-1

By (4.12), ttx(P') and tt_x(P') have bounded two-sided inverses, Lx, L_x,
respectively. Since P' is homogeneous of degree m and satisfies (4.8), it
follows from Lemma 4.3 that

(4.32) L„ L_, map L2(R") into #(mil)(R"), and are bounded as operators
fromL2(R") intoH(mX)(Rn).

Since Sj < m it follows from Lemma 4.2 that
(4.33) For every/ = 1,..., r, ttx(QJ), ñ-X(Qj) are bounded operators from

H(m¡X)(R") to L2(R"). (Of course, (4.33) would hold even if Sj were equal to m.)
Letting TXJ = t7x(QJ)Lx, T_xj = tt_x(QJ)L_x, we know by (4.32) and

(4.33) that
(4.34) TXJ, T_XJ are bounded operators from L2(R") to L2(R") which map

§(Rn)intoS(R").
Applying L„ L_, to (4.31a), (4.31b), respectively, we get

(4.35a)        *x(«P"'")=2  Us>-m)/1*x(<f>jUm)Tij   forA>0,
7-1

(4.35b)        Tjx((pum) = 2  \X\^-m)/2TTX(<pjUm)T_XJ   forA<0.
y-l

Initially we know that (4.35a) and (4.35b) are valid as equations between
operators defined on S(R"). However, since 7rA(<p«m), 7?A(<pyi/m), TXJ, T_XJ all
are bounded operators from L2(R") to L2(R"), and since S(R") is dense in
L2(R"), we can view (4.35a) and (4.35b) as equations between bounded
operators on L2(R").

Multiplying (4.35a), (4.35b) by |A|(/+,)/2 we get

(4.36a)    |A|(/+I)/2iA((p«'") = 2  |À|('+,+^~m)/2%(«P7"m)7,i7   forA>0,
7-1

(4.36b)    \X\a+x)/2T}x(<pum) = 2  W+~+Si-m)/2*x{<PjUm)T-xj   for A < 0.
7=1

Since Sj - m < 0, I + I + Sj — m < I. Hence, by the inductive hypothesis
(4.27) the function X» |A|(/+1+,;-m)/27rA(<pj,um) lies in L2(Rt; K), and so, by
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restriction, in L2(R£+; K), L2(R~; K), where R£+ = (A G R|A > e} and R£" =
{A G R|A < - e).

But if (ñ, p) is any measure space, H a Hilbert-space, and T a bounded
linear operator from H to H, then for any function A h»/(A) in L2(ß; H), the
function A h» T(f(X)) also hes in L2(ß; H). Indeed, it is easy to see that
A h» T(f(X)) is /¿-measurable, and

u\\T(f(X))\\2Hdp(X)
Q

1/2

/ll/(*)lßr*(*)
1/2

< «Till
Returning to our particular case, any bounded linear operator T: L2(R") -*
L2(R") determines a bounded linear operator: K-+K, K being the Hilbert-
space of Hilbert-Schmidt operators on L2(R"), defined by S E K h> ST E
K.

Thus, the function
A h* |A|</+,+*-m>/277A(9,.um)rli/

lies in L2^"1"; ̂ f), and the function
\ K |A|(/+1+i'-m)/277A(9jr.Mm)r_li/.

hes in L2(R~; K). Hence, by (4.36a), (4.36b), the function
X !_> |A|(/+1)/2#A(9«'")

lies in L2^ ; K). This proves (4.28).   □
To conclude the proof of (4.14) it suffices to show

Lemma 4.8. Let k be any nonnegative integer, and let 9 G Co°(Hn) such that
e G supp 9. Then the function X h» |A|*77a(9m'") lies in L2({0 < \X\ < e);K).

Proof. As a matter of fact, we do not require the hypothesis that e G
supp 9.

By (4.25) it suffices to show that each of the functions A h» |A|*77a(9h"),
X h |A|*77A(9t/£) lies in L2({0 < |A| < e); K). For the first of these functions
this follows from (4.21). On the other hand, it follows from (4.23) that

(4.37) |A|*77A(90 = ¿   (-^W).
y-o

where 9/ G LX(H„) n L2(H„), so that A h» ̂ (9/) lies in L2({0 < |A| <
e); K). Since A h-> |A|*A; is bounded and C" on (0 < |A| < e), it follows
that A h> |A|*77A(9w") lies in L2({0A|A| < e); K).   Q
Thus we have proved (4.14), and, therefore, Proposition 4.4.

We can now prove the main result of this section.

Theorem 4.9. Let P E %(A„) be homogeneous of degree m and satisfy
(1) tt(íJP) * Ofor every (£ 1,) G R2n - {0},  "
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(2) 7T,(P), tt_ ,(P) both have bounded two-sided inverses.
Then the parametrix u = v * (8 + um) for P constructed in §3 is C" away

from e.

Proof. As we noted in (4.11), we can assume without loss of generality that
P + Zm is elliptic, a fact that we needed to obtain v.

First we show that um is C" away from e. Since Z lies in the center of
%(A„), so does Zm. In particular, Zm commutes with P. Hence, for every
positive integer k,

(4.38) (P + Zm)*"" = 2 (k) ZmjPk-Jum.

Hence, since Pum = Zm8, which is supported at e,
(4.39) ZmJPk~Jum is supported at e when/ < k.

Thus
(4.40) <p(P + Zm)kum = <pZmkum for any <p G C0"(//n) such that e g

supp tp.
By the same argument used to prove (4.22) we see that
(4.41) <pZm*Mm = 2jt0ZJ(<PjUm), where <py G C0"(/fn) such that supp <p7- Q

supp Ç.
In particular, e £ supp <p,. Applying Proposition 4.4, we see that ZJ(q>jUm)

G L2(H„) for every/ = 0,...,mk. Hence, ^Zmkum G L2(//„), and so, by
(4.40),

(4.42) <p(P + Zm)kum E L2(H„) for every positive integer k and for every
<p G Cq°(H„) such that e £ supp <p. Since (P + Zm)k is an elliptic operator of
order mk, it follows by the standard regularity results for elliptic operators
that um E HX^(H„ - (e)), where HXoc denotes the usual Sobolev space.
Since k is arbitrary it follows by the Sobolev lemma that um E C~°(Hn —
{e}). That is, um is C" away from e.

Hence, 8 + um is C" away from e. But, by construction, v G &'(H„) is
C" away from e. Since convolution by a distribution which is C" away from
e does not increase singular support, it follows that v * (8 + um) is C" away
from e.   □

Remarks. 1. Since u is C" away from e we can, by multiplying by a
suitable cutoff function, obtain a compactly-supported parametrix for P, C00
away from e. (See the remarks following (3.7).)

2. As we observed at the beginning of the proof of Proposition 4.4, if P
satisfies (1) and (2) of Theorem 4.9 then so do P*, P, P'.

It is a well-known result that if P has a parametrix which is C" away from
e, then P' is hypoelliptic. (See, for example, Trêves [24, Chapter 52].) Hence,
by Theorem 4.9 and Remark 2 above, condition (1.2) in Theorem 1.2 implies
condition (1.1).
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5. Necessity for hypoellipticity. In this section we prove

Theorem 5.1. Let P E %(hn) be homogeneous, say of degree m, and suppose
that both P and P' are hypoelliptic. Then:

(5.1) 77(f>„)(P) * Ofor every (fc r,) G R2" - {0}.
(5.2) Neither of the equations ttx(P)v = 0, ttx(P*)v = 0 has a nonzero

solution v E §(R"),/or any X ER- {0).

Remark. Since a distribution u is C" on an open set if and only ifjhe
same is true for U, it follows that P is hypoelliptic if and only if P is
hypoelliptic. Since P* = (P')~, this implies also that P' is hypoelliptic if and
only if P* is hypoelliptic. (Of course, the same holds with "hypoelliptic"
replaced by "locally solvable".)

The next lemma is crucial, since it provides us with compactly supported
distributions, to which we can then apply unitary representations.

Lemma 5.2. Let P be a differential operator on Hn such that both P and P'
are hypoelliptic. Then there exist distributions ux, u2 E ë'(H„), both C" away
from e, and functions fx,f2 E C0x(Hn) such that

(5.3a) Pux = 8 +/„
(5.3b)P'«2 = 5+/2.

Proof. This follows immediately from Theorem 52.2 in Trêves [24], and
from the use of cutoff functions as the proof of (3.73).   □

As motivation for the proof of Theorem 5.1, we shall first present a
treatment of the simpler case G = R", with addition as the group operation,
and with the usual dilations x h» rx. The result is, of course, well known,
being a special case of Hörmander's characterization [13, Chapter IV] of
hypoellipticity for, not necessarily homogeneous, constant-coefficient
differential operators. However, the homogeneous case allows a particularly
simple treatment. We should also point out a special feature of the case
G = R" which follows from the fact that G is commutative. If

o     v        3"' S* „ l-r-
\a\<m °Xl 0Xn

then

and so for any u E ^'(R"), P'(u(-x)) = (Pu)(-x). Hence a constant-coef-
ficient differential operator P is hypoelliptic if and only if P' is hypoelliptic.

Proposition 5.3. Let P be a left-invariant (hence bi-invariant) differential
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operator on R", i.e., a constant-coefficient differential operator. Suppose, more-
over, that P is homogeneous with respect to dilations, which means precisely that
P has only terms of highest order in the usual sense. Then the following are
equivalent.

(5.4) tt(P) is invertible for every unitary irreducible representation tt of R"
except the trivial, identity representation. (This fust says that P is elliptic.)

(5.5) P is hypoelliptic.
(5.6) There exists u E &'(R") such that Pu = 8 + ffor somef G C0"(R").

Proof. First recall that the irreducible unitary representations of R" are all
1-dimensional and are parametrized by R" as follows.
(5.7) v((x) = e~ix*,       ¿GR".

We mean, of course, that Tré(x) acts on the 1-dimensional Hubert space C by
multiplication by e~'xi. The identity representation corresponds to £ = 0.

The left-invariant vector-fields 9/9*i,..., d/dx„ form a basis for the Lie
algebra of R". Letting 5, be the vector in R" with/th entry equal to 1 and all
other entries 0, we see

(5.8)
*<(£)-ábhiBL-'W±

dt f-0

Hence, ̂ (Zy = -£,, where DXj = (1/09/9*,.
Taking the appropriate multiple of Lebesgue measure as Haar measure we

see from (5.7) that
(5.9) *|(if) - ti(Q   foranyt/GSTR").
where û denotes the Fourier transform of u.

Since P is constant-coefficient and homogeneous, say of degree m, we can
write P as
(5.10) P=   2    OaD% • • ■ Z>£,       aaEC,

\a\-m

so that o(P), the usual principal symbol of P, is given by

(5.11)      a(P)(o- 2 *«*."'• ••e-(-o'Vn
\a\~m

This shows that (5.4) states precisely that P is elliptic, and hence implies (5.5).
Every constant-coefficient differential operator on R" has a fundamental

solution, i.e., there exists v E <3) '(Rn) such that Pv = 8. If P is hypoelliptic
then v is C" away from 0, and so Pu = 8 + f, where/ G C0"(Rn), if we take
« = <po with <p G Cq'ÇR") such that <p = 1 in a neighborhood of 0. Hence
(5.5) implies (5.6).
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Finally (and this is what we are mainly interested in showing) we prove
that (5.6) implies (5.4). Since u (and therefore Pu) is compactly supported we
can apply unitary representations. Thus it follows from (5.6), (5.9) that

(5.12) HQ*i(P') - <rt(A) = »t(«) + *«(/) = 1 +/(£)•
But from (5.10) it follows that P' = (- l)mP. Hence, by (5.11) and (5.12),

(5.13) «(£)a(P)(£) = l+/(£)•
Replacing £ by r£, r E R+, and noting that
(5.14) o(P)(ri) = rmo(P)(Ç),

we get

(5.15) r"tf (r£) • <t(P)(£) = 1 + />£)   for every r G R+.
Since/ G C0"(R"),/ G S(R"). In particular, for fixed £ =/= 0, |/(r|)| < e for r
sufficiently large. Therefore, for r sufficiently large the right-hand side of
(5.15) does not equal 0, and so, by (5.15), o(P)(Ç) * 0. That is, P is elliptic.
D

We next pass to the proof of Theorem 5.1. Applying Lemma 5.2 (but with
P replaced by P in (5.3a)) we obtain
(5.16a)    *({,„)(«,) i7(£,,,)(P) = 1 + "«,,)(/, )   for every (& r,) G R2" - {0},

(5.16b)     tt({j,>(M2) 77({,,)(P) = 1 + 77(i,,)(/2)   for every (|, r,) G R2" - {0},

(5 17a)    ^(Mi)íx(i>)*ü = (/+Í^))«
for every A G R - {0} and v G S(R"),

(5.17b)      ^("2)^(^)0 = (/ + ^a(/2))«
for every A G R - {0} and o G S(R").

It follows from (3.7) that if we use exponential coordinates on Hn,
(5.18) 77^(9) = 9(-|,-tj,0)   for any 9 G C0" (H„).
Here 9 denotes the Fourier transform of 9.

Applying this, together with (3.12) and (3.13), to the above we see that for
any r G R+,

(5.19a) rmTt(rlni)(ux)tt<m(P) = 1 + /, (-r£, - rn, 0),

(5.19b) r'V(ritn))(t/2)77(f>,)(P) = 1 + f2(-r& - rn,0),

(5.20a) /•m/2^A(«i)*A(Tu - (/ + *m(/i )K

(5.20b) rm'\x(u2)TTx(P)v = (I + TTrX(f2 ))v.

Using either (5.19a) or (5.19b) and arguing as in the preceding proposition,
we obtain (5.1). But, by Theorem 2.7(5), with ttx replacing 77A, ||77rA(/,)|| < e
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and ||7?rA(/2)|| < e for r sufficiently large, and fixed A. Hence, for r sufficiently
large, I + irX(fx) and I + TirX(f2) are invertible bounded linear operators on
L2(R"). In particular, the right-hand sides of (5.20a), (5.20b) cannot be 0
unless v = 0. Thus (5.2) follows from (5.20a) and (5.20b).   □

Theorem 5.1 shows that (1.1)=* (1.3). Also, we saw at the end of §4 that
(1.2) => (1.1). But, by Lemma 4.3, (1.3) => (1.1). Hence, modulo Lemma 4.3,
which will be proved in §6, we have proved Theorem 1.2.

6. Grusin operators. Grusin [9] (see also [8], [10]) derives a characterization
of hypoellipticity for a class of differential operators arising in the study of
degenerate-elliptic boundary-value problems. In the process he needs to
derive certain results concerning the partial Fourier transforms of these
operators. By introducing an "equivalence" between certain of the Grusin
operators and operators on H„ we are able to carry over to our context
Grusin's results on the partially Fourier-transformed operators. In this way
we prove Lemma 4.3, and hence complete the proof of Theorem 1.2.

The plan of this section is as follows. First we shall discuss Grusin's results.
Next we shall prove the above-mentioned equivalence, and, in particular,
prove Lemma 4.3. We shall also find it instructive to compare the translation
(via this equivalence) of Grusin's hypoellipticity criterion with Theorem 1.2.
The equivalence between certain of the Grusin operators and operators on
the Heisenberg group is very natural from the point of view of the represen-
tation theory of enveloping algebras of nilpotent Lie algebras. Essentially, it is
the map introduced by Gabriel and Nouazé [19]. (See also [5, Chapitre 4, §7]
and [4].) Although we have not attempted to prove this in general, we believe
that by using other nilpotent Lie groups with dilations besides the Heisenberg
group, one can probably obtain all the Grusin operators (though not vice
versa) via such an equivalence. We shall present one simple example to
illustrate the new phenomena which may arise. To conclude this section we
shall sketch a possible method for proving Lemma 4.3 and, consequently, the
essential parts of Grusin's results concerning the partially Fourier-trans-
formed operators directly in the group-theoretic context. This method, which
reduces everything to standard facts about elliptic operators, seems to us to
offer one explanation of "why" these results hold.

Let n, k be positive integers, and let 5 be a positive rational number. The
differential operators P(t, D„ Dz) considered by Grusin have polynomial
coefficients in t = (tx,..., tn) and are constant-coefficient with respect to
z = (zx,..., zk), and satisfy the following additional two properties.

(6.1) P(t, Dt, Dz) is quasi-homogeneous of degree m.
That is, p(t/r, rr, /-(1+fi)A) = r"p(t, t, A) for every t G R", A G R* and

r > 0. Here p(t, t, A) is the total-symbol of P(t, D„ Dz), obtained by re-
placing Z>, = (l/V^T )d/dti by t,., and DZj = (1/V^T )9/3zy by A,, "
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(6.2) P(t, D„ Dz) is semielliptic. That is, the order of P(t, D„ Dz) as a
differential operator is m, the integer appearing in (6.1), and P(t, D„ Dz) is
elliptic when t =£ 0.

For A G R* - {0}, let P(t, D„ X) he the partial Fourier transform of
P(t, D„ Dz), obtained by replacing Dz by X¡. Let HlmS)(R") be defined as in
Definition 4.1. Under the assumptions (6.1), (6.2) Grusin is able to prove the
following additional properties.

(6.3) For every A G R* - {0} the operator P(t, D,, A), viewed as an opera-
tor from H,mtS)(R") to L2(R"), is Fredholm, i.e., is bounded, has finite-dimen-
sional kernel and cokernel, and has closed range.

(6.4) Let A G R* - {0}, and let v(t) he a tempered distribution. Then if
P(t, D„ X)v lies in L2(R") (respectively, S(R")), v lies in H(mS)(Rn) (respec-
tively, S (RB)).

As an immediate corollary of (6.3) and (6.4) one obtains
(6.5) Let AGR*-{0}. Then the equation P(t,D„X)v = 0 has no

nontrivial solution t> in S(R")<=>P(t, D„ X) has a bounded left-inverse L:
L2(R")^Hlm,S)(R").

We can now state Grusin's hypoellipticity theorem:
(6.6) Let P(t, D„ Dz) satisfy (6.1) and (6.2). Then P(t, D„ Dz) is hypoellip-

tic <=> for every A G R* - {0}, P(t, D,, X) satisfies the equivalent conditions
in (6.5).

It is easily seen that if P(t, D„ Dz) satisfies (6.1), and (6.2) then so does
P*(t, D„ Dz), the formal adjoint. Applying (6.4) to P*(t, D„ Dz) and using the
fact that S(R") is dense in H,mS)(R"), we see that if P(t, D„ X) is viewed as
an unbounded operator on L2(R") with domain HlmyS)(Rn), then its Hilbert-
space adjoint [P(t, D„ A)]* has domain #(#Bi4)(R"). Hence it follows that
[P(t, D„ A)]* = P*(t, D„ A), the partial Fourier transform of P*(t, D„ Dz). In
particular, we have

(6.7) Ker P*(t, D„ X) = [Range P(t, D„ Dz)]*~
and so

(6.8) dim Ker P*(t, D„ X) = dim Coker P (/, D„ A).

We shall see that Lemma 4.3 is an immediate consequence of the following.

Lemma 6.1. Let P(t, Dt, Dz) satisfy (6.1) and (6.2), and let A G R* - {0}.
Then the following are equivalent.

(1) Neither of the equations P(t, D„ X)v = 0, P*(t, D„ X)v = 0 has a
nontrivial solution v E S (R").

(2) P(t, D„ X) has a bounded two-sided inverse L, i.e., a bounded operator L:
L2(R") -> L2(R") such  that  L  maps   §(R")  into   S(R"),  and such  that
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P(t, D„ X)L = I on §(R") and LP(t, D„ X) = I on S(R"). (Clearly such an
L, if it exists, is unique)

If the equivalent conditions (1), (2) hold then L satisfies the following
additional properties:

(6.9) L maps L2(R") into H(m S)(R") and is bounded as an ODerator from
L2(R")intoH(mß)<&>).

(6.10) P(t, D„ X)L = Ion L2(R").
(6.11) LP(t,D„X) = I on H(m<S)(Rn).
(6.12) /// G L2(R") and Lf G S (Rn), thenf E S (R").
Proof. The second equation in (2)=>P(r, D„ X)v = 0 has no solution

v =•= 0 in §(R"). Moreover, the first equation in (2) => L*P*(t, D„ X) = I on
S (R"), and this in turn => P*(t, Dt, X)v = 0 has no solution v =£ 0 in § (Rn).
Thus(2)=>(l).

Suppose (1) holds. Then, in view of (6.3), (6.4), and (6.8), we see that
P(t, D„ X) has a bounded two-sided inverse L: L2(Rn) -» H(mS)(Rn), i.e., an
operator satisfying (6.9)—(6.11). To show that (2) holds it suffices to prove that
L maps S(R") into S(R"). But this follows from (6.10) and (6.4). Hence
(1)^(2).

Finally, (6.12) follows from (6.10) and the fact that P(t, D„ X) maps §(R")
into S (Rn).   □

To discuss the equivalence result it is convenient to introduce some
notation. The algebra (over Q of differential operators in n + k variables
with polynomial coefficients in the first n variables and constant coefficients
in the last k variables can be thought of as

A„(C[DZi,..., D2k]) = An(C) ®c C[DZi,..., DZk],

where A„(C) is the Weyl algebra, consisting of all differential operators on R"
with polynomial coefficients, and where C\DZ,..., DZt] is the ring of
polynomials in Dz,..., DZk.

Now consider the case k = 1 and 5 = 1. Let i: %(h„) -^A„(C[DZ^ be the
homomorphism determined by the Lie algebra homomorphism: hn -»
An(C{Dz]) given by

(6.13) Xi\^d/dti,   Yi\^itiDz,   Z\*iDz.

Proposition 6.2. The map i: %(A„)->/l„(C[Z)z]) satisfies the following
properties:

(1) P G %(An) is homogeneous of degree m <s=> i(P) is quasi-homogeneous of
degree m.

(2) Let P E %(/»„) be homogeneous. Then 7r(£^(P) =j= 0 for every (|, tj) G
R2n - {0} «=> i(P) is semielliptic.

(3) For any A G R — {0} let ttx denote the irreducible unitary representation
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ofH„ defined by (3.9) and (3.10). Then for any P E %(h„), ttx(P) = the partial
Fourier transform ofi(P) evaluated at X.

(4) The map i is infective, and range i contains all operators in An(<C[Dz])
which are quasi-homogeneous (with 5=1) and semielliptic.

Proof. Using multi-index notation we can express P G %(/j„) as

(6.14) P-        2        aaßyYaXPZ\      aaßyEC.

We can, of course, assume that for some aßy with \a\ + \ß\ + y = k,
aaßy =£ 0. It follows from (6.14) that

(6.15) P is homogeneous of degree m «=» \a\ + | ß\ + 2y = m for every aßy
such that aaßy =£ 0.

But

(616) ¡(P) =     2      (ir+w+\ßyt"DfDM+y,
K        J \a\ + \ß\ + y<k

and so the total symbol of i(P) is given by

(617) PV> T'K)~        2j        (>) aaßyt T A

It follows immediately from (6.17) that
(6.18) i(P) is quasi-homogeneous of degree m (with 8 = l)<=> -\a\ +

| ß | + 2(| a | + y) = m for every aßy such that aaßy ̂ = 0.
But this is precisely the condition in (6.15). This proves (1).
Suppose next that P, given by (6.14), is homogeneous of degree m. Arguing

exactly as in the proof of Lemma 3.8 we see

77({i1))(P) 7¿ 0   for every (|, rj) G R2" - {0} <=> k = m   and
(6.19)

2       ^olV^O    forevery(£r,)GR2"-{0}.
\a\ + \ß\ = m

But by the definition, (6.2), of semiellipticity, and from (6.16), we get
(6.20) i(P) is semielliptic <¿> k = m and

2      (0H+l/\/8<A/îAH =¿ 0   for every / G R" - {0},
\«\ + \ß\ = m

(t,A)GR"+1- {0}.

Noting that \a\ + \ ß\ = m for every aaß0 occurring in the above, we see that
we can rewrite the above condition as

2      aaß0(Xt)aT^ ¥= 0   for every t E R" - {0},
\a\ + \ß\**m

(6.21)
(t,A)GR"+1- {0}.
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It then follows immediately that the conditions given by (6.19) and (6.20) are
identical. This proves (2).

(3) is obvious from the definition of i. Also, the injectivity of / is obvious
from (6.16). The surjectivity asserted in (4) follows easily from the fact
(contained in (6.2)) that the order of a semielliptic, quasi-homogeneous
differential operator is equal to its homogeneity degree.   □

Since ttx = ttx and tt_x = tt_x, we see that Lemma 4.3 follows immediately
from Lemma 6.1 via the equivalence given by Proposition 6.2.

We next wish to place the above equivalence in the framework of Gabriel
and Nouazé [19]. Let G be a simply-connected nilpotent Lie group of
dimension N. Let %(g), Z(g), n, q be as defined in Theorem 2.7. We can
think of Z(g), the center of the enveloping algebra, as consisting of the
bi-invariant, i.e., commuting both with left and right translation, linear
differential operators on G. Let Fract Z(g) denote the field of fractions of
Z(g), and consider the ring %(g) ®z(g) Ffact Z(g). This can be thought of
as all formal fractions P/Q, where P is a left-invariant and ß a bi-invariant
differential operator on G. It is possible to view the fractions P/Q as actual
analytic objects, in fact as distributions on G. In fact, by a theorem of Raïs
[20], every bi-invariant Q has a fundamental solution vQ E ^'(G), the
dependence of vQ on ß being very regular. In particular, the map P/Q |->
(P8) * vQ is well-defined.

Let C(Dz,... ,DZ) denote the ring of rational functions in the commuting
indeterminates Dz¡,... ,DZ, and let An(C(Dz,... ,DZ)) denote the ring
A„(Q ®c C(DZi,.. ., DJ. Gabriel and Nouazé show

(6.22) %(g) ®Z(g)Fract Z(g) is isomorphic to A„(C(DZt,..., DZJ¡), where
n and q are the integers occurring in Theorem 2.7.

Let / be a two-sided prime ideal in ^i(g). Let %(g; I) denote %(g)/I,
Z(g. I) the center of %(g. I), and Fract Z(g. I) the field of fractions of
Z(g. I). Then Gabriel and Nouazé show further that

(6.23) %(g. 7) ®Z(g 7)Fract Z(g. I) is isomorphic to Am(C(DZ{,..., Dz))
for some integers m, I.

In the case G = H„ we noted in the remarks following (3.10) that Z(g)
consists precisely of the polynomials in Z, so that q—\. We thus obtain the
diagram

qi(h„)--*AH(C[DM])

(6.24) |
^K) ®Z(hn) Fract Z(hn)^An(C(Dz))

where the vertical arrows denote inclusion maps, and the bottom horizontal
arrow denotes the isomorphism in (6.22). The map i of Proposition 6.2
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appears here as the (unique) map which fills in the top line. Thus the Grusin
operators with n arbitrary, k = X, and 5 = 1 can be related naturally to
homogeneous operators on H„ via the equivalence of Proposition 6.2 and the
Gabriel-Nouazé isomorphism in (6.22).

It is interesting to observe that the situation can become more complicated
for other Grusin operators. Indeed the lowest dimensional nilpotent Lie group
analogously related to the Grusin operators with n = 1, k = 2, 8 = 1 is of
dimension 5 rather than 4 = 2n + k, and the more general Gabriel-Nouazé
isomorphism, given by (6.23), is needed. Since the results treat only a special
example we shall omit the proofs and merely sketch the pertinent facts. The
source of the example is Dixmier's exhaustive treatment [3] of the simply-
connected nilpotent Lie groups of dimension < 5.

The Lie algebra g52 of the group in question, Gi2, has generators Xx, X2,
X3, X4, X5 whose only nonzero commutation relations are

(6.25) [XX,X2] = X4,    [XX,X3]=X5.
Thus it has a natural family of dilations given by

(6.26) Sr {Xx ) = rXx'8'(*2} = rX* 8r {X>) = r*3'

8r(X4) = r2X4,   8r(X5) = r%.

The center of ^(gs^) is given by

(6.27) Z(g5¡2) = C[X4, X5, X2X5 - X3X4],

the three generators being algebraically independent.
Let /: ^(gsJ -> Ax(C[DZi, DZJ) be the homomorphism determined by the

Lie algebra homomorphism: g5 2 -» Ax(C[DZi, DZJ) given by
(6 28) XxV+d/dt,   X2\^itDZi,   X3^itDZi,

X4 h» iDZt,   Xs H iDZj.
Notice that i maps the third generator X2X5 - X3X4 of Z(g52) to 0. The
following results are easily proved:

(6.29) The kernel, /, of /', which is a prime ideal in %(g5>2), is the
(two-sided) ideal in %(g5i2) generated by X2X5 — X3X4.

(6.30) For this ideal / the isomorphism of (6.23) takes the form

^Usa I) ®z(*,2;/)Fract Z(g5<2; I) m Ax(C{DZt, DZi)),
and the diagram

^5,2; P) - -m~ -*   ^.(Ctf>2l, Dl7\)

(6.31)

^fes,2; P) ®z0r5>2;/) Fract Z(gs,2; P) —=—* A^CÇD^, D22))
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commutes, where [/] is the quotient through I of i.
The analogue of Proposition 6.2 holds, but, as one might expect from

(6.29), we do not need to consider all the irreducible unitary representations
of G5a, but only those which map X2XS — X3X4 to 0. As is shown in [3], G5¿
has a generic family ttx of irreducible unitary representations acting on
L2(R), parametrized by (À, p, v) E (R2 - {0}) X R, which map X4 to /A, Xs
to ip, and X2XS - X3X4 to v, and a "degenerate" family of 1-dimensional
representations which map all of Z(g52) to 0. The representations which map
X2X5 - X3X4 to 0 clearly give representations of %(g5>2; I)- Notice also that,
since X2X5 - X3X4 is homogeneous with respect to the dilations {5r}, each 8r
maps I into I, and so induces an automorphism of ^(g^; I), and similarly
for multiplication by r E R+. It is therefore meaningful to say that a given
element of %(g5j2; /) is homogeneous of degree m. Letting [P] denote the
equivalence class in %(g5>2; I) of P E ^(g^, we can state the following
analogue of Proposition 6.2.

Proposition 6.3. The map [/]: %(g5a.I)^Ax(C[DZi,DZ2]) satisfies the
following properties :

(1) [P] G ^(gî^; I) is homogeneous of degree m «=> [/]([P]) is quasi-homo-
geneous of degree m.

(2) Let [P] G %(g5>2; /) be homogeneous. Then tt([P]) == 0 for every
"degenerate" representation tt of G5¿ (except the trivial, identity representation)
«=>[/]([P]) is semielliptic.

(3) For every (A, ,i)£R2- {0} and for any P E %(g5)2), îta>/1i0([PD = the
partial Fourier transform of[i]([P]) evaluated at (A, p).

(4) The map [i] is infective, and the range contains all operators in Ax(C[DZt,
Z)ZJ) which are quasi-homogeneous (with 0=1) and semielliptic.

As we stated earlier, the proof will be omitted.
Returning for a moment to the equivalence provided by Proposition 6.2, we

see that Grusin's hypoellipticity theorem (6.6) "translates" to the following
statement on the Heisenberg group:

(6.6') Let P G %(An) be homogeneous, and suppose that w({>l)(P) =£ 0 for
every (|, tj) G R2" - {0}. Then P is hypoelliptic if and only if for every
A G R — {0} the equation ttx(P)v = 0 has no nonzero solution cE§ (R").

I do not know whether (6.6') states a true result, though I suspect that it
does. The Grusin operators and the group operators live on manifolds of
different dimensions, and I do not see how to show that passage from one
domain to the other preserves hypoellipticity.

I shall conclude this section with a sketch of a possible method for proving
a variant of Lemma 4.3 directly in the group-theoretic setting. The method
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may be useful in trying to prove Theorem 1.2 for other simply-connected
nilpotent Lie groups G with dilations.

The hypothesis of Lemma 4.3 is that P G ^(AJ is homogeneous, and that
wit.v)(P) ̂  0 f°r every (£, r/) G R2n - (0). As we saw earlier (see, for
example, Proposition 3.7) this allows us to assume, without loss of generality,
that there exists T E Z(h„) such that P + T is elliptic, though not homo-
geneous.

We pass now to the general context of a simply-connected nilpotent Lie
group G with dilations, and shall freely use the results and notations of §2.
Recall (see the remarks preceding Lemma 2.1, and Note 1 following
Proposition 2.6) that the Girding subspace of t7a, A G T, is defined as the
subspace of L2(R") spanned by {7rA(9)t>|9 G C"(C7), v E L2(R")}. It is
contained in §(R"), is dense in L2(R"), and is preserved by tix(u) for any
u E &'(G). In what follows we could actually work with any irreducible
unitary representation of G, not just the generic representations, but we shall
restrict attention to these.

We assume that P G %(g) and that there exists T E Z(g) such that
P + T is elliptic. (In practice, P will be homogeneous, and T will be obtained
as in the case of G = Hn above.) Fix A G T. Since tta is irreducible and
T E Z(g),Tix(T)isa scalar, i.e., 7rA(r) = cx for some cx E C.

Letting Q = P + T - cx, we see that Q (hence, Q') is elliptic, and that
^a(Ô) = v\(P)- Since Q' is elliptic there exists ux E &'(G) (C" away from
e) and/, G C0°°(G) such that

(6.32) Q'ux = 8+fx.
Applying 77A to both sides we obtain

(6.33) ^(KiKCW + M/,)-
Working with Q* instead of Q we obtain u2,f2 such that

(6.34) Vx("2>x(P)* = 1 + "a(/2 )•
Equations (6.33) and (6.34) can be viewed as equations between operators on
the C "-vectors, §(Rn), or on the Gârding subspace.

A result of Nelson and Stinespring (see [18, Theorem 2.2]) applied to
7TA(Ô), and hence to t7a(P), shows

(6.35) If 77A(P) and irx(P)* are viewed as densely-defined operators on
L2(R") with domain the Gârding subspace, then the Hilbert-space closure of
77A(P) is the Hilbert-space adjoint of tta(P)* and vice versa. Since both irx(P)
and 77A(P)* are differential operators with polynomial coefficients it is easy to
see that § (R") is contained in the domains of the closures.

Let H denote the domain of the closure of 7rA(P). It is a Hubert space with
respect to the norm defined by

(6.36) UHU - ||o|| + IK(P)t>||, where || || is the L2-norm.
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Applying (6.35) we obtain the following analogue of (6.4).
(6.37) If o G L2(R") and ttx(P)v E L2(R"), then vEH.

Since/, G C0"(C7), Tix(fx) maps L2(R") into the Gârding subspace. Hence it
follows from (6.33), (6.37), and Note 6 following Proposition 2.6 that

(6.38a) If o G L2(R") and ttx(P)v E S(R"), then o G S(R").
(6.38b) If v E L2(R") and 7rA(P)t> G Gârding subspace, then v G Gârding

subspace. In particular, Ker ttx(P) Q Gârding subspace, a fortiori in S(R").
Now, since/, G C0"(G), 7rA(/i) is °f trace-class, in particular, compact, and

so I + Trx(fx) is Fredholm. Hence from (6.33) and the above it follows that
(6.39) Ker ttx(P) is a finite-dimensional subspace of the Gârding subspace.
Working with (6.34) we find
(6.40) [Range tta(P)]x is a finite-dimensional subspace of the Gârding

subspace.
By the definition of H we know that the map ttx(P): //->L2(R") is

continuous. If we could show that it has closed range then it would follow
from (6.39) and (6.40) that ttx(P) is Fredholm. To prove the range is closed it
would, for example, suffice to show that the inclusion map: H -» L2(R") is
compact rather than just continuous. We have not succeeded in proving this,
but we suspect that it is true, since the norm on H is defined in terms of
it\(P) = wA(ß), where ß is elliptic. Furthermore, since ß is elliptic, the
parametrices ux, u2 have strong boundedness properties as maps between
Sobolev spaces, and so it may be possible, in view of (6.33) and (6.34), to
prove the following analogue of Lemma 4.2.

(6.41) Suppose that P given above is homogeneous of degree m. Then for
any R E Gll(g) homogeneous of degree < m, ttx(R) extends to a bounded
map: /7-> L2(R").

(6.35) implies that if P = P*, then the formally self adjoint operator ttx(P)
has a unique self adjoint extension, namely the Hilbert-space closure of ttx(P).
In particular, if P G ^(AJ is formally selfadjoint and homogeneous of
degree m, and satisfies (3.57) and (3.59), it follows, in conjunction with the
remarks preceding (6.7), that H = 7f(m>I)(R"). At least for m even, when we
know such operators P exist, this provides a type of abstract characterization
0f7Y(m)1)(R").

7. A class of examples. As an illustration of Theorem 1.2 we present the
following variant of Proposition 1.3:

Proposition 7.1. Let G be a simply-connected nilpotent Lie group, with Lie
algebra g. Let X„ ..., Xk be elements of g whose repeated commutators span g,
and let R E ^l(g) be skew-adjoint, i.e., R* = - R. Then for any positive
integers m¡,i = 1,..., k, all even or all odd, the operator
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(7.1) P = 2   X?*+ R
i-l

satisfies the following property:
(7.2) For every irreducible unitary representation it of G (except the trivial,

identity representation) tt(P)v ¥= 0 and tt(P)*v ¥* 0 for every nonzero C"-
vector v of the representation it.

Notice, in particular, that any X0E g could be taken as R.

Proof. Since P* = 2/»1A^2"* — R, and since —R is also skew-adjoint, it is
enough to show that 7r(P)o ¥= 0 if v ¥= 0. Since ir(X)* = — tt(A') for every
X E g and since all the m¡ have the same parity, it follows that

(7.3)     <77(P)0,0> = (-1)""2    («(X^TT^V) + (<TT(R)v,Vy
i-l

for every C "-vector v. The first term on the right-hand side of (7.3) is real.
But since R* = - R it follows from (2.12) that

(7.4) <77(P)v, v) = (v, ir(R*)v) = -(v, tt(R)v) = - (it(R)v,v) .

Thus <77(P)t>, o> is imaginary, and so, by (7.3), if tt(P)v = 0, then
2*_!< wCA^y^'t?, ir(X¡Pv) = 0. Each summand is nonnegative. Hence
(-¡r(X¡Pv, irW"1»} = 0 for every i=\,...,k, and so
(7.5) •n(X¡)""v = 0   for every i - I,..., k.
If m¡ is even, then (7.5) yields
(7.6) 0 = <*(*,)%, v) = (-l)m>'2(«(Xl)m>/2v, «(X^v),

and so ^(X/p^v = 0. If m¡ is odd we work with m¡ + 1. Since m¡ + Í < 2m,
unless m¡ = 1, we can iterate this process to obtain
(7.7) ff(*i)o = 0   for every i=\,...,k.
Since 77 is a Lie algebra homomorphism, and since the repeated commutators
of Xx,..., Xk span g, it follows from (7.7) that
(7.8) m(X)v = 0   for every X E g.
If the irreducible unitary representation 77 of G is infinite-dimensional then we
know from [15] that, up to unitary equivalence (which takes C "-vectors to
C "-vectors), we may assume that 77 acts on L2(R") for some n, that the space
of C "-vectors is S(R"), and that the range of 77 as a representation of %(g)
is A„(C), the algebra of all differential operators on R" with polynomial
coefficients. Hence it follows from (7.8) that for every Q E A„(C) there is a
constant c E C such that (Q - c)v(t) = 0. In particular, there exist constants
c¡, i = 1,..., n, such that
(7.9) 9t>(')M = c,v(t).
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Hence

(7.10) (8/3/,) expí - 2  cA • v(t)   =0,       / = 1,..., n,

and so v(t) = C exp(2"_,c,{,) for some constant C. Since v E §0*") it
follows that o = 0.

If the irreducible unitary representation tt is finite-dimensional (and there-
fore, by [15], 1-dimensional), it follows that if (7.8) holds for some u^O,
then tt(X) = 0 for every X E g. Hence, since exp: g -» G is bijective and
since 7r(exp X) ■ exp tt(X) for every X E g, it follows that tt is the 1-dimen-
sional identity representation.   □

At least in the case of G = H„ it follows from Theorem 1.2 that such P, if
homogeneous, are hypoelliptic. In particular, this proves Corollary 1.4.

8. Open problems. We would like to conclude this paper by briefly discus-
sing a few open problems.

One very interesting open question is whether Theorem 1.2 is valid in the
case of a general simply-connected nilpotent Lie group G with dilations {8r},
and, if not, what restrictions on G or {Ô,} are necessary. As is apparent from
the treatment given here, much of the apparatus of the proof for G = Hn is
quite ready to be carried over to the general context. There are, however,
substantial difficulties in the general case. We give two. (1) The lower-dimen-
sional subvarieties of "degenerate" representations in g* may be troublesome.
For example, the unit "ball" in T, the space of generic orbits, will in general
not be compact (unlike the case of H„, where it consists of two points). (2)
One cannot expect the analogue of Proposition 3.7 with Z2"1 replaced by
some T E Z(g) to hold generally. For example, take G = H„ with the
nonstandard choice of dilations 8r: X¡ h» r3X¡, Y¡ \-> r^Yi, Z h> r5Z, and let
P = 2?= XX? + Y¡3. Of course, there are cases where the analogue of Propo-
sition 3.7 does hold, for example G = R" with any choice of dilations, and all
simply-connected nilpotent Lie groups of dimension < 5, as listed in [3], if we
make the simplest choices of dilations for these groups. We note also that
Theorem 1.2 holds for G = R" with general dilations (see [13, Theorem
4.1.8]).

Another interesting question concerns the case of nonhomogeneous P G
%(A„). Certainly any P G %(A„) can be expressed uniquely as P = Pm +
Pm_, + • • • + Pq, where Pj E %(A„) is homogeneous of degree/ for each
integer/. The analogue of ellipticity for P would be the assumption that Pm,
the top-order part, satisfies hypothesis (1.2) of Theorem 1.2. Is it true that if P
is "elliptic" in this sense, then P is hypoelliptic and locally solvable? Can one
construct a parametrix? Preliminary indications appear to be affirmative, and
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a procedure involving "symbols" with asymptotic expansions seems like it
can be carried through. It is too early, however, to report further on this.

A third question concerns the local solvability, as opposed to hypoellip-
ticity, of homogeneous P G %(AJ. for P to be locally solvable is it sufficient
that P satisfy hypothesis (1.2), but now only for the generic representations?
Is it possible, for example, by making use of (3.17)—(3.19) in conjunction with
the Plancherel formula, to prove this by methods analogous to those used by
Bernstein [1] to obtain fundamental solutions for constant-coefficient opera-
tors on R"?

One of the main reasons for studying homogeneous operators on nilpotent
Lie groups is the hope that these operators might be used to approximate
locally or microlocally, i.e., locally in the cotangent space, more general
"variable-coefficient" differential or pseudo-differential operators on a mani-
fold M. (See, for example, [6], [7], [21], [22].) We wish to discuss the results in
[21] from this standpoint. Roughly speaking, the situation is as follows. P is a
pseudo-differential operator on a manifold M such that the characteristic
variety 2 of P is nondegenerate with respect to the symplectic form w on
T*M \ 0, and such that the principal symbol of P vanishes exactly to second
order on 2. For each (x, £) G 2, let iV(2)(xi) denote the fiber over (x, £) of
the conormal bundle N(Z) of 2. The 2« + 1-dimensional vector space
N(Z\x() © R can be canonically identified with h„ if we define a Lie bracket
by [(vx, r,), (v2, r2)] = (0, w(oi, v^). Using this identification we can obtain
from the principal and subprincipal parts of P an element of S(hn), the
symmetric algebra. Applying the symmetrization map: S(hn) -» %(h„) we get
a homogeneous operator P(x£) on Hn. The remarkable fact is that P is
hypoelliptic with loss of 1 derivative (a sharp form of hypoellipticity) if and
only if P,x f) is hypoelliptic for every (x, £) G 2. Especially in light of
Theorem 1.2, it would be extremely interesting to know whether an analogous
result can be formulated and proved for operators P vanishing to order > 2
on 2. Even in the case of second-order vanishing we would very much like to
have a more fundamental understanding of this group-theoretic "approxi-
mation" process.

Added in proof. Since this paper was written some further progress has
been made:

(1) For the Heisenberg group itself, we have found it is possible to avoid
reference to the results of Grusin in §6 and to work completely in the context
of representation theory, by using the "lattice realizations" of the represen-
tations (see Cartier [27]). This has also been observed, independently, by L.
Corwin and R. Goodman, I believe.

(2) The necessity part of Theorem 1.2 (in the sharper form (6.6')) is true for
arbitrary simply-connected nilpotent Lie groups G with dilations (see Beals
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[25]). We have also proved this independently.
(3) Theorem 1.2 (in the sharper form (6.6')) is true for any two-step

simply-connected nilpotent Lie group G with the standard dilations. This has
been shown by Helffer [28] and Beals [26], each using a different symbol-
calculus. They also treat nonhomogeneous P, as discussed in §8, and
construct parametrices. Their methods are quite different from those of the
present paper, however, and do not make use of the Plancherel formula.
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