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ABSTRACT 

The Hypoexponential distribution is the distribution of the sum of n ≥ 2 independent Exponential random variables. 
This distribution is used in moduling multiple exponential stages in series. This distribution can be used in many do-
mains of application. In this paper we consider the case of n exponential Random Variable having distinct parameters. 
Using convolution, some properties of Laplace transform and the moment generating function, we analyse this case and 
give new properties and identities. Moreover, we shall study particular cases when i  are arithmetic and geometric. 
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1. Introduction 

The Random Variable (RV) plays an important role in 
modeling many events [1,2]. In particular the sum of 
exponential random has important applications in the 
modeling in many domains such as communications and 
computer science [3,4], Markov process [5,6], insurance 
[7,8] and reliability and performance evaluation [4,5,9, 
10]. Nadarajah [11], presented a review of some results 
on the sum of random variables.  

Many processes in nature can be divided into sequen-
tial phases. If the time the process spends in each phase 
is independent and exponentially distributed, then the 
overall time is hypoexponentially distributed. The service 
times for input-output operations in a computer system 
often possess this distribution. The probability density 
function (pdf) and cummulative distribution function (cdf) 
of the hypoexponential with distinct parameters were 
presented by many authors [5,12,13]. Moreover, in the 
domain of reliability and performance evaluation of sys-
tems and software many authors used the geometric and 
arithmetic parameters such as [10,14,15]. 

In this paper we study the hypoexponential distribution 
in the case of n independent exponential R. V. with dis-
tinct parameters ji 

, n

 for  written as  ,i j
 1 2hypoexp , ,    . We use in our work the prop- 

erties of convolution, Laplace transform and moment 

generating function in finding the  derivative of the 
pdf of this sum and the moment of this distribution of 
order k. In addition, we deduce some new equalities re-
lated to these parameters. Also we shall study the case 
when the parameters form an arithmetic and geometric 
sequence considered by [10,14,15] and find some new 
results. 

thk

2. Definitions and Notations  

Let 1 2, , , nX X X  be independent exponential random 
variables with different respective parameters i , 

1,2, ,i n  , written as  ExpiX i . We define the 
random variable  

1

n

n ii
S X


   

to be the Hypoexponential random variable with pa-
rameters i , 1, 2, ,i n  , written as  

 1 2hypoexp ,n nS , ,    

Some notations used throughout the paper. 

iX :  Exp .i   

nS :  1 2, , , .n  Λhypoexp  

Xf : The pdf of the random variable X. 

XF : The cdf of the random variable X. 
 k : The derivative of thethkXf  pdf  Xf . 
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L Therefore,  : Laplace-Stieltjes Transform. 

1  : Laplace Inverse. L
 tX : The moment generating function of X. 

kE X   : The moment of order k of the RV X. 

 : 
1

n

ii



 product of all parameters. 

iP : 
1,

1 .i 
    

n

j j i
j 

 


i :  1,
.

n

j ij j i
 

 
  

kE :   1 01
, , 0 ; ;1 , 0

n

n i ii
l l l k l k i n E


     Λ . 

3. Applications on pdf and cdf Using Laplace 

Th f the hypoexponential with distinct pa-

Transform 

e pdf and cdf o
rameters were presented by many authors [2,7,11-13]. 
We shall state in thoerem 1 and propostion 1 these results 
and provide another proof using Laplace transform. Next, 
we give some new properties of its pdf, where new iden-
tities are obtained.  

Theorem 1. Let 2n   and 0.t   Then 

 
 

1
i

n

n X
S i

i

f t
t

P

and 

f    

     0,1

e
1

i

n

x
n

S i
i

F x I
P




  .x  

Proof. We have  

  i

i
X

i

f x
s







L , 

where  max is    for 1,2, ,i n Λ . Since iX  are 
indepen  dent then 

nSf t  is the co lutions o
iXnvo f f , 

1, 2, ,i n Λ  written

   1nS X

 as  

n
 

2X Xf t f f f t  Λ  

and the Laplace transform of convolution of functions is 
the product of their Laplace transform, thus  

     1n i

n

S Xi
f t f t

1 1

1n ni
i i

i is s

 
  

 




  
    (1) 

where 

L L

 max .is  
eorem [16], for

 However, by Heaviside Expan-
sion Th  distinct poles gives that  

   1
,

n i
Sn i

i

A
f t 

s  
where  

 L  

 1,

1
i n

j ij j i

A
 

 




. 

 

   

1
1

0,1
e .

n

i

n i
S i

i

n t
ii

A
f t

s

A I t












 
  

 







L
 

i
i

i

A
P


 But . Thus  

 
 

1
in X

i
i

f
nS

t

P . 

On the other hand we have 

f t 

   

 

10nS i
i

1 1

d

1 1 e
.

i

i

i

x n X

x
n n

Xi i
i i

f t t
F x

F x
P P



 




 



 
 

But 

P

 then 
1

1
1

n

i
iP
 lim 1,

nS
x

F x


  and we con-

clude that  

     en

0,1
1

i

n

x

S i
i

F x I x
P






Next we shall discuss the  derivative of

 .           

thk   
nS

ning iP  form 
f t  

and many equalities are ob ed concer
and some similar forms. 

re  

tain

We start by noting from the p vious proof that 

1

1
1

n

i P
i

 . Here, we shall state another simp  proof  le

us
Proposi
ing Laplace transform. 

tion 1. Let 2n  . Then  

1

1
1.

n

i
iP
  

Proof. We have from Equation (1), 



   1nS i s
n i

i

f t

 

 
  


L  

where  max , 1,2, ,is i n   Λ . But from Theorem 1,  

   
1

i

n

n X
S i

f

i

t
f t


   

and  

P

     

     

1

0,1
.

i

n

Xn

S i
i

n i
i

i i

f t
f t

P

I t
P s

















L
L

 

 11

n ni i
ii

i is P s

 

i 

 
   
 . For 0,sHence,  
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 11

n i
i


.

n i
i

i i iP


 


 


 

Therefore, 


 
  1

1n

P
1

i
i

 .    

Lemma 1. Let  The

 

2.n  n  

     1n

nk k i
S i

s
i

f t
s


L

 
   

 

for .
Proof. The proof is done by induction. F  

0 1k n    
or 0,k   we 

 from Equati (1) have on 

   1n

n i
Sf t


i

is   

However, by Initial Value Theorem, we ave  

 
  L . 

 h

    
0 n nt s

n 
 

   

1

lim lim

lim 0

S S

i
is

i

f t s f t

s
s 



   


L

and for  we have  1k 
         

  

1

1

0

.

n n n

n

S S S

n i
S i

k

f t s f t f

s f t s
s








 

 
    



L L

L
 

Moreover 

n

k

 in the same manner till the  de-
rivative, we obtain the result.               

that

             1 0
n n

k k
S S Sf t s f t f  L L  

Continuing  1
th

n
        

In the following propostion we shall prove  the 
first  2

th
n  derivative of the pdf of nS  are zeros, 

which verifies the fact that the coefficient of variation of 
the hypoexponential distribution is less than one unlike 
the hyperexponential distribution that have the coeffi-
cient of variation greater than 1. 

Proposition 2. Let 2.n   Then  

   

Proof. Let , we have from Lemma 1,

  

0 , if  nS
t k n 

0, if 0 2
lim k k n

f t
  

 
1 

 

2n 

     1n i
i

s
s

nk k i
Sf t




   
  

 
L

fo and from Initial Value Theorem, we 
have  

r 0 1k n    

        
1

li lim lim
k

k

nt

s
s f t 




 L

0

1

m

0, if 1 11
lim

, if 1 0

n n

k
S S

s s

n ks

f t
s

n k

n ks




 

 

  
     

 

Corollary 1. Let Then  

  

2n  . 

  11

0, if 1 1

1 , if

k
n i

ni
i

k n

P k n




   
 

  

Proof. We have      0,e i

i

t
X if t I t 



i

. Then the 
 derivative ofthr  Xf  is  

    1 i
rr tr

iXf t       0,1 e
i

I t  . 

However, from Theorem 1,  

 
 

1
i

nSf
n X

i
i

f t
t

P
  , 

then  

 
       

1

0,  1
i

n

n nXr
S i i

f t
P 1

e
1

i
r tr

r i

i i

f t
I

P

  

 
     

and  

     
1

10
lim 1 .

n

r
r nr i

S it
i

f t
P

 


             (2) 

By Proposition 2, we obtain that  

 

1

1

0, if 0 2

1 , if 1

r
n i

ri
i

r n

P r n








   
  

  

1r By replacing  with we obtain

4. Applications on pdf and cdf Using  
Moment Generating Function 

In the previous section we saw the use of Laplace prop-
erties in the proofs of the theorems and propositions. In a 
si in th n n-
rating function to obtain more new related results. A new 

the 
mo re , we de-

k   the result.    

milar manner, is sectio  we use the moment ge

form of the moment generating function of nS  and 
ment of nS  of order k is given. Mo over

duce more new related equalities concerning iP  and 
higher order derivatives of pdf of nS . 

Proposition 3. Let 2.n   Then

  
 

 
1

i

n

n X
S i

i

t
t

P


   . 

Proof. We have  

  e ntS
St E f


      tx x x   e

nS 
d

n

and from Theorem 1,  

 
 

1
i

n

n X
S i

i

f t
f t

P
  , 

then  

   
 

1nS i 1i

1
e d i

i

n ntx
X

X

i i

t
x x

P

 
 .    t f

P 
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Proposition 4. Let and Then  2n   0k  . 

1

!nk
n ki

i i

k
E S

P
      

Proof. We have from Proposition 3,  

 
 

1n

n

S i
  . iX

i

t
t

P




Then  

   
1d d

n iS X

k ki
iPt t

 
d d1

k k
nt t 

 

and  

   
1

0 0

d d1

d d
n i

k k
nS X

k ki
it t

t

Pt t

 

 
   

t

which gives 
1

k
ink

n i
i

E X
E S

P

       . But 
!k

i k
i

k
E X


    . 

Thus we obtain the result.                       
Next, we shall use the Proposition 3 and 4 to ind other 

identities on and higher orders for 

  
 f

iP     
n

k
Sf t

 taking 
. We start 

by noting t  and byhat  0 1
nS  0t   in 

Proposition 3, the resu on 1,   we again obtain lt in Propositi

that is 
1

1
1

n

i
iP  . 

Proposition 5. Let 2n   and 0k  . Then  

1 21
1 2

1 1
.

n
k

n

k ll li
Ei i nP    

Λ
 

where  

  1 1
, , 0 ; ;1

n

k n i ii
E l l l k l k i n


    Λ . 

Note that we may write  

1 2
1 2 31 2

1 1
n

k k k

ll l
E I i i i in      

 
ΛΛ

,      (3) 

where  

  1, , 1k k 1 2 .kI i i Λ i i i n   Λ  

However  and kE kI  are equivalent representing a  

set of combination with repetition having 
1n k

k

  

 

   

ies and , thus the above summation 
(3) shall be 1. 

Proof. Let  and . We have  

and using multinomial expansion formula, we obtain  

possibilit 0 0 0E I 

0k  2n 

 1 2
          

kkE S E X X Xn n 

 1 2
1 2

1 2! !
kE l l

!

! n
n

k
E X X X

l
nll lk

nE S
 

     
 
 Λ

Λ
. 

Knowing that expectation is linear and iX ,  
1,2, ,i n   are independent with  

!
i

i

l i
i l

l
E X

i
    , 

then  

1 2
1 2

!
.k k

E S
n

k

n ll l
E n    Λ

m Proposition 4,  

              (4) 

Since fro

1

!nk
n ki

i i

k
E S

P
     . 

efore,  Ther

1 21
1 2

1 1
n

k

n

k ll li
Ei i nP   

 
Λ

.           

The following corollary is direct consequence of 
Proposition 5 and Equation (4), tak  and 2 
respectively. 

Let Then 

1) 

ing 0,1k  

Corollary 2. 2n  . 

1

1
1.

n

i
iP
  

2) 
1 1

1 1n n

i i
i i iP  

   and   1

1
.

n

n i
E S

i


   

3) 21
1

i
i ji iP

1n 1

j n i 
 

   and  2

1

2!
n

i j n i j

E S
   

     . 


In Pr  2, 
e of 

oposition we found the first  deriva- 
tiv

 1
th

n 

nSf  
 Equati

at 0, However to find high vaties 
we recall on (2), that shows a direct ween  

the th  derivative 

er order deri
 relation bet

 and 
1

k
n i
i

iP


k

nSf . Hence, in the  

ne opostion we shall u ostion 5, to find an  

eq

xt pr se Prop

uation for 
1

n i
i

iP

k
  by finding a r between elation 

 hypoexp , , ,1 2 n  Λ
 

and 
1 2 n  

1 1 1
hypoexp , , , .

 
   

 
Λ

Proposition 6. Let and Then  2n   k n . 

  1 2
1

1 21 .
k n

ni
E

1
nl li

iP

k
nn l
   


  Λ  

 

Proof. Let 
1

2, ,
i

1, 2, ,in i n   Λ  and  

 ,C 1 2hypoexp , , .n n   Λ
 

The Theorem 1
f of nC  is  

n by , the 
pd

 
 

1
i

n

n Y
C i

i

f t
f t

B
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w ihere ExiY  p   and 
1,

1 in

i j j i
j


B

 
  .  

, w  find in 

 
  
 

Next e shall terms of B . We have  iP  i
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Replace 1k   with we obtain the first case and ,k  
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the case when here 1,k n  w 1 2
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Thus in the resu t.                   we obta l      
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and by the Lemm 2 and 
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6.2. Case of Arithmetic Parameters 
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We may also note that the equalities obtaine for 
represent here a special case and worth mentioning s
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7. Conclusion 

The pdf and cdf and some related properties of he 
hypoexponential distribution with distinct parameters 
w ng

Also with the help of some known computational 
theorems as Heaviside expansion theorem and multino-
mial expansion formula the kth order der ative of 

 t

ere established. The proofs have been done by usi  
Laplace transform and moment generating function tech-
nique. 

iv
nSf  

es-
lities. 

i

and the moment of this distribution of order k were 
tablished, in addition for some new related equa

f for models when the parameters Eventually, the pd   
are arithmetic and geometric were presented. However 
the other two cases for hypoexponential distribution 
when the parameters are equal or not all equal can be 
studied and observed for future studies. It may be 
checked if they have the same properties as in this paper. 
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