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FHypofrontality in schizophrenia: a meta-

analysis of functional imaging studies

Introduction

As it has become clear that structural brain
pathology in schizophrenia is modest, and with
neurochemical and other investigations remaining
inconclusive (1, 2), functional imaging has become
the most promising candidate for identifying dys-
functional brain systems in the disorder. The major
finding to emerge from these studies has been
hypofrontality, a loss of the normal pattern of
higher resting cerebral blood flow or metabolism in
anterior than posterior regions. Hypofrontality has
become one of the most widely cited and influential
findings in the literature on schizophrenia, which is
referred to in the introduction or discussion of
many biological research papers and which has led
most if not all contemporary theoretical approa-
ches to invoke some form of executive dysfunction
(3–7).

Hypofrontality was first documented in 1974 by
Ingvar and Franzen (8) who used the 133Xenon
technique to compare groups of schizophrenic

patients with short and long durations of illness
to a control group of abstinent alcoholics. The
finding was replicated in a number of subsequent
studies, some of which used the newly developed
technique of photon emission tomography (PET)
(9–12). From the outset, however, there were
negative reports (13–16), and conflicting findings
have continued to dog the field to the present day
(e.g. 17). In a recent review, Chua and McKenna
(18) found that hypofrontality was present in only
a third of studies selected on the basis of simple
methodological considerations, and in an editorial
entitled �Hypofrontality in schizophrenia: RIP�.
Gur and Gur (19) argued that the finding was a
shibboleth, which had only meagre experimental
support.

Partly in response to these inconsistencies,
Weinberger et al. (20) proposed that hypofrontality
in schizophrenia might be more easy to demon-
strate when cognitive demands were made on the
prefrontal cortex. They found that a group of
chronic schizophrenic patients showed only a trend
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towards hypofrontality at rest, but markedly failed
to activate the prefrontal cortex when they per-
formed a prototypical executive task, the Wiscon-
sin Card Sorting Test. Like resting hypofrontality,
however, task-related or activation hypofrontality
has not been consistently replicated. This applies
not only to studies using executive tasks (18, 21),
but also to those using memory and vigilance tasks
(17, 18), which also activate the prefrontal cortex
(22).

The most recent development in the functional
imaging of schizophrenia has been the use of voxel-
based image analysis techniques such as statistical
parametric mapping (SPM). Instead of measuring
the average activity across an anatomically defined
�region of interest�, these studies make voxel-by-
voxel comparisons across the entire brain, and
identify clusters of significant activation in
response to a cognitive task. Voxel-based tech-
niques have now largely replaced studies using the
region of interest approach. However, they have
brought their own problems, methodological, sta-
tistical (particularly how to correct for the large
number of comparisons), and even philosophical.
For example, a current area of controversy con-
cerns whether task-related hypofrontality in schi-
zophrenia reflects an intrinsic functional brain
abnormality or whether it merely indexes schizo-
phrenic patients� poor performance on frontal
tasks (21, 23).

Aims of the study

As a finding which is not well supported by �vote
counting� of positive and negative findings, hypo-
frontality in schizophrenia is a suitable candidate
for meta-analysis. This systematic review addresses
the questions of whether whole brain flow/meta-
bolism is reduced in the disorder, whether there is
resting hypofrontality, and whether hypofrontality
appears under conditions of neuropsychological
task activation. Not included in these analyses are
a considerable number of activation studies which
have used voxel-based techniques, which cannot be
meta-analysed in the conventional way because it is
not possible to derive effect sizes from them. These,
however, can be combined using a novel technique
which allows the pattern as opposed to the degree
of prefrontal activation to be examined in schizo-
phrenia.

Material and methods

Papers reporting functional imaging studies on
schizophrenic patients were searched electronically
from January 1974, the year of publication of

Ingvar and Franzen’s study (8) to July 2003.
Studies were identified through MEDLINE, PSY-
CHINFO and EMBASE using the key words
�schizophrenia�, �tomography, emission-computed�,
�magnetic resonance imaging�, �brain mapping�,
�cerebral cortex�, �frontal lobe�. The electronic
search was supplemented by checking of review
articles on functional imaging in schizophrenia and
the reference lists of all research papers obtained.
Hand searching of key journals was also carried
out from 1981, the year of the first replication of
Ingvar and Franzen’s (8) study. The journals
searched were Acta Psychiatrica Scandinavica,
American Journal of Psychiatry, Archives of Gen-
eral Psychiatry, British Journal of Psychiatry,
Biological Psychiatry, Psychiatry Research, Schizo-
phrenia Research and the Journal of Cerebral Blood
Flow and Metabolism.

When studies reported on overlapping groups of
patients or controls, the study with the largest
number of schizophrenic patients that provided
usable data was used. Studies published as brief
reports or letters were included, but findings in
abstracts from conference proceedings were not.
The small number of non-English-language papers
located in the search (approximately five) were
found not to contain usable data.

To be included, studies had to use diagnostic
criteria for schizophrenia, schizoaffective or schiz-
ophreniform disorder and compare adult patients
with normal controls. Studies reporting findings on
adolescents or only on patients aged over 65 were
excluded. Age and sex matching were not required
as inclusion criteria, as virtually all studies matched
patients and controls on these variables. Almost all
the studies also used prospectively ascertained
volunteer controls.

Data obtained from each study were converted
into an effect size d, the difference between the
mean for the patient and control groups divided by
their pooled standard deviation. Hedges� correc-
tion was used (24); this corrects for the tendency of
small studies to overestimate the population effect
size. Where mean and standard deviations were not
available t-values, F-values or P-values were used.
In several cases data were extracted from graphs or
scatter plots using a digitizing program (�Ungraph�,
http://www.biosoft.com). Authors were contacted
if effect sizes could not be extracted from any of the
published data. All effect sizes were extracted a
second time independently and differences
resolved.

Individual effect sizes were combined to produce
an overall effect size, with each d-value weighted by
the reciprocal of its variance. Analysis of moder-
ator variables was based on the weighted effect size
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for each study. The Q statistic was used for
categorical variables (24) and Rosenthal’s focused
comparison for continuous variables (25). As well
as technique (see below), variables included age,
treatment, duration of illness and year of publica-
tion. Analyses were carried out by means of
DSTAT 1.10 (26) which uses a fixed effects model.

Meta-analysis of functional imaging studies
presents a number of challenges. Perhaps the
most important of these is that three main
techniques have been used, 133Xenon inhalation,
single photon emission tomography (SPECT) and
PET. One way to proceed would be to carry out
separate meta-analyses for each of these tech-
niques. However, the methodological differences
within each technique – for example, the use of
measures of cerebral blood flow (15O2) or metabo-
lism (fluorodeoxyglucose, FDG) in PET studies,
and the use of different radiotracers in SPECT,
would make any decisions about how to divide the
studies difficult and ultimately arbitrary. Further-
more, meta-analysis is explicitly designed for the
purpose of combining heterogeneous sets of data.
We, therefore, chose first to meta-analyse all types
of study together and then to examine technique as
a moderator variable.

Other methodological issues relate specifically to
the meta-analyses of (a) whole brain blood flow/
metabolism, (b) resting hypofrontality, and (c)
activation hypofrontality.

Whole brain blood flow/metabolism

SPECT, as normally employed, is a relative tech-
nique – measures of blood flow are made relative to
some reference region which is typically the whole
brain or hemisphere. Although it cannot therefore
be used to provide a measure of whole brain blood
flow, a small number of studies were found which
did report findings for whole brain flow. For
example, these used the cerebellum as a reference
region, or employed a mathematical model to
derive absolute flow rates. The whole brain studies
were therefore meta-analysed first excluding these
studies and then including them.

Resting hypofrontality

Meta-analysis of these studies is complicated by
the use of both absolute and relative measures of
frontal blood flow/metabolism. Studies using the
former compare raw values for the frontal region
between patients and controls, whereas the latter
divide frontal values by those for a reference
region such as whole brain or hemisphere. A
preliminary analysis of 14 studies which reported

both absolute and relative values revealed that the
same study quite frequently produced widely
different effect sizes for hypofrontality, and so
the two sets of data were meta-analysed sepa-
rately.

Activation hypofrontality

One difficulty in combining these studies is the wide
variety of neuropsychological tasks used. For the
purposes of this meta-analysis, only studies
employing tasks known to activate the prefrontal
cortex in normal subjects were included. Decisions
were based on the reviews of Cabeza and Nyberg
(22) and Fletcher and Henson (27), and the tasks
included were executive, working memory, long
term memory and vigilance.

Voxel-based studies

As noted in the introduction, studies of activation
hypofrontality fall into two classes, those using
region of interest techniques, and those using
voxel-based methodologies. While voxel-based
studies commonly report findings on the degree
of activation in schizophrenic patients compared
with controls, the data they generate cannot be
used to generate effect sizes, and to the authors�
knowledge no other technique has been developed
for combining such findings across studies. What
can be meta-analysed is differences in the pattern of
activation found across these studies. Thus,
Duncan and Owen (28) plotted peak activation
foci activation in normal subjects from 20 studies
using a range of different tasks onto a rendered
brain. They then examined the homogeneity of
activated regions between tasks using a three-
dimensional version of the Kolmogorov–Smirnov
test (KS3) developed by one of us (29). Like the
original Kolmogorov–Smirnov test this examines
whether two distributions – in this case two three-
dimensional spatial distributions of peak activation
foci – differ significantly. The test is non-paramet-
ric and does not require assumptions of independ-
ence of observations, and so is not affected by the
fact that each of the combined studies gives rise to
more than one focus of activation. The algorithm
for KS3 can be described in spatial terms as
follows:

[A] A base point is chosen in xyz space and planes
parallel to x ¼ 0, y ¼ 0 and z ¼ 0 are drawn
through it dividing the space into eight cells
(octants).

[B] The percentage of each type of point on the
eight octants is calculated.

Hypofrontality in schizophrenia
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[C] The absolute value of the differences between
the two percentages is calculated for each
octant and the largest difference is noted.

[D] The base point is moved so that the difference
at [C] is maximized.

This maximized difference is KS3 and represents
the biggest discrepancy between the two samples
that can be achieved by such orthogonal cellular
partitions.

The significance of the observed KS3 statistic is
assessed using a bootstrap Monte Carlo resam-
pling method (30).

Results

The search yielded approximately 180 papers
reporting data on schizophrenic patients. Of
these, only 103 provided usable data. This was
primarily because of overlap between the studies
reported, but also to a lesser degree because of lack
of controls in a number of studies (or use of
inappropriate controls, such as patients with
depression).

Whole brain blood flow/metabolism

Studies were included which reported whole brain
or hemisphere data. Studies which reported on an
inclusive set of brain regions (e.g. frontal, tem-
poral, parietal, occipital) were not combined.
Studies were included where scanning was carried
out under resting conditions. Studies where ima-
ging was carried out during performance of neu-
ropsychological tasks, frontal or otherwise were
excluded. However, a small number of studies

which examined subjects during sensory stimula-
tion procedures such as mild electric shock to the
forearm were included.

Twenty-nine studies (9, 12, 16, 17, 31–54)
provided global or hemisphere data (in which
case left and right values were averaged). The
pooled effect size for these was )0.27 (CI )0.39 to
)0.15) with the negative sign indicating reduced
flow/metabolism in schizophrenia (see Table 1).
These studies consisted of 17 using 133Xenon and
11 using PET (plus one using a non-radioactive
technique, Xenon CT).

Four further studies (55–58) reported whole
brain findings using the relative technique of
SPECT (see above). Inclusion of these studies
changed the pooled effect size only slightly to )0.28
(CI )0.39 to )0.17).

The original 29 studies were not homogeneous
[Q(27) ¼ 72.46, P < 0.0001], but homogeneity
was achieved by exclusion of seven outliers (9, 31,
34, 40, 42, 45, 47) This reduced the effect size to
)0.26 (CI )0.40 to )0.11; Q ¼ 29.60, P ¼ 0.10).
Four of the seven outliers had large negative
values, but otherwise they showed no common
features.

A funnel plot of the original 29 studies is shown
in Fig. 1. This indicates skewing towards studies
with negative effect sizes and an absence of small
studies with a positive effect size. This in turn
suggests publication bias against studies failing to
find decreased whole brain blood flow/metabolism
in schizophrenia.

Findings for the moderator variables are sum-
marized in Table 1. Treatment was highly signifi-
cant. The effect size for 14 studies using untreated

Table 1. Pooled effect sizes and significant moderator variables for cerebral blood flow/metabolism in schizophrenia

No. of studies Total N Effect size (d) Confidence interval Moderators of effect size

Whole brain 22 795 )0.26 )0.40 to )0.11 Age (trend)

Duration

Neuroleptic treatment

Year of publication (trend)

Resting hypofrontality (relative) 38 1474 )0.32 )0.43 to )0.21 Age

Duration (trend)

Acute vs. mixed vs. chronic

Year of publication

Resting hypofrontality (absolute) 25 950 )0.55 )0.68 to )0.41 Age

Duration

Acute vs. mixed vs. chronic

Neuroleptic treatment

Year of publication

Activation hypofrontality

(relative)

17 685 )0.37 )0.53 to )0.22 Technique

Task performance (trend)

Activation hypofrontality (absolute) 10 347 )0.42 )0.65 to )0.20 –

No. of studies, total N and effect sizes are for the homogeneous subsets of the studies in each analysis.

Hill et al.
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patients was )0.08 compared with )0.63 in eight
studies using treated or mostly treated patients
[QB(1) ¼ 14.90, P ¼ 0.0001]. Technique did not
moderate effect size [ES for 17 Xenon and 11 PET
studies: )0.21 vs. )0.29, QB(1) ¼ 0.33, P ¼ 0.56].
Age showed a trend towards being a significant
moderator (Z ¼ )1.81, P ¼ 0.07) with greater
reduction in whole brain flow/metabolism in schi-
zophrenia with increasing age.

The moderating effect of chronicity was exam-
ined in two ways. Data on mean duration of
illness was recorded in 21 studies and was signi-
ficant when modelled as a continuous variable
(Z ¼ )2.42, P ¼ 0.01); compared with controls,
schizophrenic patients showed progressively lower
brain flow/metabolism with increasing duration of
illness. Additionally, the patient samples were
classified as acute (first episode patients or maxi-
mum duration of less than 2 years) chronic
(duration 2 or more years) and mixed; this could
be achieved in 26 studies [yielding 28 values – two
studies (39, 50) included separate groups of acute
and chronic patients compared with the same
control group]. This yielded progressively larger
effect sizes with increasing chronicity (ES ¼ )0.09
for five acute studies; )0.18 for eight studies on
mixed patients; )0.35 for 15 chronic studies);
however, the difference was not significant
[QB(2) ¼ 2.88, P ¼ 0.24].

Year of publication moderated effect size at
trend level (z ¼ )1.81, P ¼ 0.07).

Resting hypofrontality

Studies were included which reported comparisons
for the prefrontal cortex, or the entire frontal
cortex, or subregions thereof such as the dorsolat-
eral prefrontal cortex. Where studies reported
separate findings for different subregions, these
were averaged, as were findings for left and right
hemispheres. As with the whole brain analysis,
studies were included which were carried out
during procedures such as mild electrical shock
(and one where subjects dealt cards into piles), but
not where imaging was during performance of any
kind of neuropsychological task.

Forty-seven studies reported values for relative
frontal blood flow/metabolism (10–12, 14, 32, 33,
35, 40–43, 47, 50–55, 57, 58–86). The pooled effect
size for these was )0.24 (CI )0.34 to )0.15). These
studies were heterogeneous (Q ¼ 135.00, P <
0.0001), but homogeneity was achieved by exclud-

ing nine studies (33, 40, 43, 51, 59, 60, 65, 69, 79,
82); this increased the pooled effect size )0.32 (CI
)0.43 to )0.21; Q ¼ 51.70, P ¼ 0.10). The outliers
included 133Xenon, SPECT and PET studies and
had no other obvious features in common.

Twenty-nine studies reported absolute frontal
values (9, 11, 12, 13, 17, 31, 33, 35–37, 39–41, 45,
49–51, 53, 54, 56, 62, 63, 74, 80, 82, 83, 87–90) and
these gave a pooled effect size of )0.33 (CI )0.44 to
)0.21). These studies were also heterogeneous
(Q ¼ 63.77, P ¼ 0.0001) but homogeneity was
achieved by excluding four studies (11, 17, 40,
74). The increased the pooled effect size to )0.55
(CI )0.68 to )0.41; Q ¼ 32.73, P ¼ 0.11).

Funnel plots of the 47 relative and 29 absolute
studies are shown in Fig. 2. In both cases these
appear reasonably symmetrical and do not suggest
publication bias against studies failing to find
hypofrontality.

Analysis of moderator variables produced
broadly similar results in the relative and absolute
datasets. Therefore, except where there were dif-
ferences, only the results for the relative studies are
reported (the findings for both sets of studies are
summarized in Table 1). As in the whole brain
analysis, technique did not significantly moderate
effect size. The pooled effect size for 10 studies
using 133Xenon was )0.31; that for 19 studies using
SPECT was )0.11; and that for 18 studies using
PET was )0.33 [QB(2) ¼ 4.19, P ¼ 0.12].
Although not significant, SPECT studies as a
group tended to produce less hypofrontality than
the other two techniques (see Fig. 3).

Medication was not a significant moderator of
effect size in the relative studies [ES for 13 studies
on untreated patients: )0.15; ES for 24 studies of

–1.5 –1.0 –0.5 0.0 0.5 1.0

150

Combined N

Effect size (d )

Fig. 1. Funnel plot of 29 studies of whole brain blood flow/
metabolism in schizophrenia.
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treated patients: )0.32, QB(1) ¼ 1.62, P ¼ 0.20].
However, it did moderate effect size in the absolute
studies [ES for 14 studies of untreated patients:
)0.15; ES for 10 studies of treated patients ¼

)0.61, QB(1) ¼ 9.92, P ¼ 0.002].
Age was a significant predictor of effect size

(Z ¼ )2.53, P ¼ 0.01), with greater hypofrontal-
ity being found with increasing age. Duration of
illness, recorded in 33 of the 47 relative studies,
bordered on significance as a predictor of effect
size (Z ¼ )1.93, P ¼ 0.05), with increasing chro-
nicity being associated with greater hypofrontal-
ity. In order to examine this further, patient
samples were classified as acute, mixed and
chronic (as described above) in 42 relative studies
[including three (40, 50, 61) reporting separate
groups of acute and chronic patients]. This
revealed a significant difference: the effect size

for eight acute studies was +0.12; that for 14
mixed studies was )0.25; and that for 20 chronic
studies was )0.34 [QB(2) ¼ 9.66, P ¼ 0.008] (see
Fig. 4).

Year of publication was significant as a moder-
ator variable (Z ¼ 2.50, P ¼ 0.01). More recent
studies tended to find less hypofrontality.

Activation hypofrontality

Region of interest studies. As with resting hypofron-
tality, separate meta-analyses were carried out for
studies reporting relative and absolute data. The
pooled effect sizes were )0.45 (CI )0.60 to )0.30)
for 18 relative studies (20, 58, 62, 64, 65, 70, 71, 76,
78, 91–100) and )0.42 (CI )0.65 to )0.20) for 10
absolute studies (17, 20, 39, 56, 62, 99, 101–104).
The relative data were heterogeneous (Q ¼ 35.07,
P ¼ 0.006), but only one study had to be removed

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 –1.5 –1.0 –0.5 0.0 0.5 1.0

250

Effect size (d )

250

Combined NCombined N

Effect size (d )

Fig. 2. Funnel plots of 47 studies of
relative hypofrontality and 29 studies of
absolute hypofrontality in schizophre-
nia.

Xenon (n=10) SPECT (n=19) PET (n=18)
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2
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Fig. 3. Scatter plots of effect sizes for hypofrontality in schi-
zophrenia, by technique. Lines indicate pooled effect size.
Xenon studies include those designated as Xenon-SPECT. 1,
HMPAO SPECT; 2, Tc SPECT; 3, Imp SPECT; 4, FDG PET;
5, 11C PET; 6, 15O2 PET.

Acute (n =8) Mixed (n =14) Chronic (n =20)
–2

–1

0

1

2

Effect size
(d )

Fig. 4. Scatter plots of effect sizes for relative hypofrontality in
studies carried out on acute, mixed and chronic schizophrenic
patients. Lines indicate pooled effect sizes.
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to achieve homogeneity [the combined studies of
Weinberger et al. (20, 100) which used the same
control group]. This reduced the effect size to )0.37
(CI )0.53 to )0.22, Q ¼ 23.08, P ¼ 0.11). The
absolute data were homogeneous (Q ¼ 15.64, P ¼

0.07).
Of the above moderators of effect size, the

only one found to be significant was technique. In
the relative studies the pooled effect size was
significantly greater for the four 133Xenon studies
than for the eight SPECT and six PET studies
[)0.91 vs. )0.38, and )0.33, QB(2) ¼ 7.40, P ¼

0.02]. However, this difference disappeared
when the 133Xenon study of Weinberger et al.
(20, 100), which had a large outlying effect size of
)1.43, was excluded [QB(2) ¼ 0.61, P ¼ 0.74]. In
the absolute studies the pooled effect sizes for
six 133Xenon studies and three PET studies did
not differ [)0.37 vs. )0.35, QB(1) ¼ 0.01, P ¼

0.94].
Two new moderator variables were also exam-

ined, type of neurological task and task impair-
ment. Type of neurological task did not
significantly influence effect size in the relative
studies [ES for 10 studies using executive tasks,
four using vigilance tasks and four using memory
tasks: )0.54, )0.41, )0.21, respectively, QB(2) ¼
2.44, P ¼ 0.29]. Task impairment, as indexed
using the effect size of the difference between
patients and controls in cognitive test perform-
ance, revealed a trend to significance in the 14
studies which reported these data (Z ¼ 1.86, P ¼

0.06); poorer performance was associated with
greater hypofrontality. These findings are shown
in Fig. 5.

Activation hypofrontality, as measured by a
simple comparison between patients and controls,

is potentially confounded by resting hypofronta-
lity – it is possible that schizophrenic patients
could increase their prefrontal blood flow/meta-
bolism to the same degree as controls, but still
show comparatively lower activation by virtue of
their lower resting level. Therefore, effect sizes
were calculated for activation within each group,
i.e. the magnitude of the change from rest to
activation in schizophrenic patients and in normal
controls. Because only 14 studies reported both
resting and activation data (17, 20, 39, 56, 58, 62,
64, 65, 70, 71, 76, 96, 99, 103) the absolute and
relative studies were combined for this analysis.
Schizophrenic patients increased their blood flow/
metabolism insignificantly from rest: the pooled
effect size was +0.14 (CI ¼ )0.05 to +0.33),
which fell to +0.03 (CI )0.16 to +0.23) in a
homogeneous set of 12 studies [Q(12) ¼ 20.12,
P ¼ 0.06]. In contrast, the corresponding increase
for controls was greater and significant +0.24
(CI ¼ +0.03 to +0.46) These data were homo-
geneous (Q ¼ 17.23, P ¼ 0.19). Direct compar-
ison of the individual effect sizes in patients and
controls using Rosenthal’s (27) focused compar-
ison was significant at trend level (Z ¼ 1.87, P ¼

0.06).

Voxel-based studies. Studies were included if they
provided peak activation coordinates for schizo-
phrenics and controls separately and used execu-
tive, memory and vigilance or working memory
tasks. Following Duncan and Owen (28), differ-
ences in reference brains and significance thresh-
olds across studies were ignored.

Fourteen studies (105–118) were found (seven
PET and seven fMRI). A surprisingly large
number of studies had to be excluded, most
commonly because they only reported a significant
difference between patients and controls. Six stud-
ies used executive or working memory tasks (verbal
fluency, N-back, or random number generation);
seven used memory tasks (recall or recognition)
and one used a vigilance task (the Continuous
Performance Task). The total N for these studies
was 319.

Figure 6a,b show the combined peak activation
foci for schizophrenic patients and controls plotted
onto a rendered brain. In both cases wide areas of
the prefrontal cortex bilaterally showed significant
activation. Comparison of the two distributions in
the prefrontal cortex (including the anterior cingu-
late cortex) revealed no significant difference (KS3
statistic ¼ 0.16, P ¼ 0.94). There was also no
difference between the remaining non-frontal dis-
tributions of peak activation foci (KS3 statistic ¼

0.14, P ¼ 0.98).

–1.5 –1.0 –0.5 0.0 0.5 1.0
–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0.0

0.5

Effect size for hypofrontality

Effect size for

impairment

Fig. 5. Relationship between task impairment and hypofron-
tality in 14 activation studies.
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Discussion

In their pioneering functional imaging study
Ingvar and Franzen (8) found that whole brain
blood flow in schizophrenic patients was not
significantly different from that of controls, and
did not decrease as a function of duration of
illness, a finding which they considered to distin-
guish the disorder from organic dementia. Whole
brain blood flow/metabolism in schizophrenia has
attracted little further discussion in the literature,
but this meta-analysis tends to support the finding
of little overall abnormality. Pooling data from 29
studies resulted in an effect size which fell into the
�small� range and at )0.26 was indicative of only
approximately 20% non-overlap between groups.
Even this value may have been inflated by publi-
cation bias. However, in contrast to Ingvar and
Franzen (8), our meta-analysis did find some,
albeit not decisive evidence that whole brain blood

flow/metabolism decreases in schizophrenia as a
function of duration of illness.

Despite the fact that negative findings have been
found to equal or even outnumber positive ones
(17, 18), this meta-analysis provided robust evi-
dence for the reality of resting hypofrontality in
schizophrenia. Analyses of studies using both
absolute and relative measures of this revealed
effect sizes in the small-to-medium range, with the
homogeneous values of )0.32 (relative) and )0.55
(absolute) indicative of an approximately 25–33%
non-overlap between patients and controls. These
values are smaller than that of )0.65 found in the
meta-analysis of Heinrichs et al. (119–121); how-
ever, these authors excluded SPECT studies (120),
which we found to have a numerically although not
significantly smaller effect size than studies using
133Xenon and PET.

Neuroleptic treatment appeared to be respon-
sible for at least some of the reduction in whole

Fig. 6. Combined peak activation foci
for (a) schizophrenic patients and (b)
and normal controls from 14 voxel-
based studies.
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brain blood flow/metabolism in schizophrenia and
was also associated with significantly greater values
for hypofrontality in the absolute studies. How-
ever, it did not moderate effect size in the studies
using relative measures of hypofrontality. A simple
– and biological plausible – interpretation of this
pattern of findings is that neuroleptics exert a
general depressant effect on cerebral blood flow/
metabolism. Such a global reduction would tend to
increase values for hypofrontality in studies using
absolute measures, where flow/metabolism in the
frontal regions is simply compared between
patients and controls. However, there should be
little if any effect in studies using relative measures
of hypofrontality because any treatment-induced
reduction in frontal flow/metabolism would tend to
be cancelled out by the corresponding reduction in
whole brain flow/metabolism. Such a simple con-
clusion stands in contrast to the complex findings
in studies which have examined schizophrenic
patients before and after treatment with neurolep-

tics. These have found both reductions and no
change in whole brain blood flow/metabolism, and
reductions, increases, and most commonly no
change in frontal values (for a review see 122).
However, as well as using both absolute and
relative measures of hypofrontality, these studies
have sometimes based their findings on adminis-
tration of single doses of drug, and sometimes on
weeks or even months of treatment.

Technique did not significantly influence the
effect size for resting hypofrontality, although there
was a tendency for SPECT studies to produce
smaller values than those using 133Xenon or PET.
SPECT is often considered to be different from
133Xenon and PET in that, rather than providing a
dynamic measure of blood flow over seconds or
minutes, it employs radiotracers which become
trapped in the brain following initial uptake and
accumulate over periods of half an hour or longer.
However, FDG PET also shows �static� character-
istics (unlike ordinary glucose it is not rapidly

Fig. 6. (Continued)
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metabolized by neurones), yet as Fig. 3 indicates
there is little to suggest that this technique is
associated with obviously smaller values for hypo-
frontality than the remaining PET studies or the
133Xenon studies. Some authors have regarded
SPECT as being inaccurate (120) or semiquantita-
tive rather than quantitative (123), and while this is
not strictly true, as fully quantitative techniques
have been developed (124), this point may have
some force as most studies on schizophrenic
patients have not employed such models.

Heinrichs (120) commented on the marked
heterogeneity among the findings for resting hypo-
frontality in schizophrenia, with some studies
producing effect sizes of greater than )1 and
others finding small effects in the opposite direc-
tion. The examination of moderator variables in
our meta-analysis suggests a simple explanation for
some of this heterogeneity – that resting hypofron-
tality in schizophrenia is a function of chronicity of
illness. Thus, the pooled effect size in first-episode
patients and those with less than 2 years duration
of illness was if anything in the direction of
hyperfrontality, but as studies included greater
numbers of chronic patients hypofrontality became
increasingly apparent. If, as this finding suggests,
functional brain abnormality in schizophrenia is
progressive, it could have important implications
for the understanding of the nature of the disorder,
because most other biological findings point to
neurodevelopmental or at least static brain pathol-
ogy (2, 125). At the same time, it is important to
note that the association with chronicity is con-
founded by that found with age. Unfortunately,
these two variables are difficult to disentangle
because the statistical technique used, Rosenthal’s
focused comparison (27), can only examine one
predictor of effect size at a time. Standard multiple
regression techniques would also face difficulties
due to the high degree of colinearity between age
and chronicity, and anyway such techniques are
not optimal for meta-analysis as they cannot take
the sample size of the individual studies into
account.

Meta-analysis also supported activation hypo-
frontality, with a similar medium effect size to that
found in resting studies. At )0.37 in the relative
studies and )0.42 in the absolute studies, the effect
sizes were again smaller than that of )0.81 found
by Heinrichs et al. (119–121) in their meta-analysis.
However, as noted above, these authors excluded
SPECT studies, and they also included studies
using all forms of cognitive tasks, not just those
known to engage the prefrontal cortex. In our
meta-analysis, few potential moderator variables
emerged as significant predictors of effect size. This

failure could of course merely reflect the relatively
small numbers of studies (10, 18) in the two
analyses. Although numerous further studies have
examined the degree of activation of the prefrontal
cortex in schizophrenia (for a review see 126),
being voxel-based these could not be incorporated
into the meta-analysis. For these reasons, activa-
tion hypofrontality should probably be regarded as
less robustly supported than resting hypofrontality
in schizophrenia.

A current controversy in functional imaging
research is whether task-related hypofrontality in
schizophrenia represents an intrinsic functional
brain abnormality – in other words a subtle form
of biological lesion – or whether it is merely reflects
the fact that schizophrenic patients typically per-
form cognitive tasks more poorly than normal
subjects and so activate their frontal lobes to a
correspondingly lesser degree (21, 23). Supporting
the former possibility, patients with Huntington’s
disease (127) and Down’s syndrome (128) have
been found to show greater prefrontal activation
than schizophrenic patients while carrying out the
Wisconsin Card Sorting Test, despite being
impaired on the task. In favour of the latter
possibility, Frith et al. (103) found that when
patients and controls were matched for perform-
ance by the use of a paced form of verbal fluency
task no evidence of hypofrontality was found –
although the patients showed impairment on an
unpaced form of the task. Meta-analysis supports a
relationship between task impairment and activa-
tion hypofrontality in schizophrenia, but the find-
ing is not conclusive owing to the limited number
of studies and the trend level of significance.
Nevertheless, such a result suggests that at the
very least performance factors need to be taken
into consideration when interpreting functional
imaging findings in schizophrenia.

Our combination of voxel-based studies provi-
ded little support for the view that schizophrenic
patients show a different pattern of activation from
normal subjects when they perform of tasks
activating the prefrontal cortex. This finding is at
odds with that of one recent study (129), which
found that schizophrenic patients activated a wider
area of prefrontal cortex than normal subjects
when performing a working memory task. How-
ever, this difference in pattern was not found in
another otherwise similar study (130). More
broadly, this finding is in conflict with an implicit
goal of much current functional imaging research,
whose aim has been to demonstrate an altered
pattern of regional functional architecture in the
disorder. Our finding on this point has to be
regarded as provisional since the number of studies
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that could be included was small. It may also be
argued whether it is legitimate to pool findings
from studies using a range of different tasks.
However, this approach is defensible because, in
their meta-analysis of the pattern of activation in
normal subjects, Duncan and Owen (28) found no
evidence that different tasks recruited different
frontal cortical regions.
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