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Hypomagnesemia has been reported to occur at an increased frequency among patients with type 2 diabetes compared with
their counterparts without diabetes. Despite numerous reports linking hypomagnesemia to chronic diabetic complications,
attention to this issue is poor among clinicians. This article reviews the literature on the metabolism of magnesium, incidence
of hypomagnesemia in patients with type 2 diabetes, implicated contributing factors, and associated complications. Hypo-
magnesemia occurs at an incidence of 13.5 to 47.7% among patients with type 2 diabetes. Poor dietary intake, autonomic
dysfunction, altered insulin metabolism, glomerular hyperfiltration, osmotic diuresis, recurrent metabolic acidosis, hypophos-
phatemia, and hypokalemia may be contributory. Hypomagnesemia has been linked to poor glycemic control, coronary artery
diseases, hypertension, diabetic retinopathy, nephropathy, neuropathy, and foot ulcerations. The increased incidence of
hypomagnesemia among patients with type 2 diabetes presumably is multifactorial. Because current data suggest adverse
outcomes in association with hypomagnesemia, it is prudent to monitor magnesium routinely in this patient population and
treat the condition whenever possible.
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T ype 2 diabetes accounts for approximately 90 to 95% of
all diagnosed cases of diabetes (1). In addition to hy-
perosmolar coma and ketoacidosis, patients with type 2

diabetes may have cardiovascular disease, nephropathy, reti-
nopathy, and polyneuropathy. With its associated complica-
tions, diabetes was reported to be the sixth leading cause of
death listed on US death certificates in 2000 (1). The treatment
of the patients with diabetes requires a multidisciplinary ap-
proach whereby every potential complicating factor must be
monitored closely and treated. In particular, although hypo-
magnesemia has been reported to occur with increased fre-
quency among patients with type 2 diabetes, it is frequently
overlooked and undertreated.

Magnesium and Cell Physiology
Magnesium is the fourth most abundant cation in the human

body and the second most abundant intracellular cation. It may
exist as a protein-bound, complexed, or free cation. It serves as
a co-factor for all enzymatic reactions that require ATP and as
a key component in various reactions that require kinases. It is
also an essential enzyme activator for neuromuscular excitabil-
ity and cell permeability, a regulator of ion channels and mi-
tochondrial function, a critical element in cellular proliferation

and apoptosis, and an important factor in both cellular and
humoral immune reactions (reviewed in references [2–6]).

Diagnosis of Hypomagnesemia
Traditionally, hypomagnesemia refers to a low serum mag-

nesium (Mg) concentration because this measurement has long
been readily available. Clinically, hypomagnesemia may be
defined as a serum Mg concentration �1.6 mg/dl or �2 SD
below the mean of the general population (7,8). However,
because Mg is mostly an intracellular cation, it has been ques-
tioned whether one can use measurements of serum Mg con-
centrations to study the impact of Mg on various physiologic
conditions. Some investigators, instead, have used measure-
ments of intracellular Mg concentrations. Clinically, it has been
suggested that in a patient with suspected Mg deficiency, a low
serum Mg concentration is sufficient to confirm the diagnosis.
If the serum Mg level is normal in the same patient, then other
more sensitive tests should be performed (reviewed in refer-
ences [5,9]). Although controversies still exist as to how hypo-
magnesemia is best gauged, our current understanding on the
clinical impact of hypomagnesemia in human is influenced by
studies that have relied predominantly on the measurements of
serum Mg concentrations.

Incidence of Hypomagnesemia among
Patients with Type 2 Diabetes

Hypomagnesemia, defined by low serum Mg concentrations,
has been reported to occur in 13.5 to 47.7% of nonhospitalized
patients with type 2 diabetes compared with 2.5 to 15% among
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their counterparts without diabetes (7,8,10–13). The wide range
in the reported incidence of hypomagnesemia most likely re-
flects the difference in the definition of hypomagnesemia, tech-
niques in Mg measurements, and the heterogeneity of the se-
lected patient cohort. In terms of gender difference, it is
interesting to note that independent studies have reported a
higher incidence of hypomagnesemia in women compared
with men, at a 2-to-1 ratio (7,14). In addition, men with diabetes
may have higher ionized levels of Mg (15).

Hypomagnesemia and Diabetes: Cause and
Effect

Not only has hypomagnesemia been associated with type 2
diabetes, but also numerous studies have reported an inverse
relationship between glycemic control and serum Mg levels
(7,10,16–19). Although many authors have suggested that dia-
betes per se may induce hypomagnesemia, others have reported
that higher Mg intake may confer a lower risk for type 2
diabetes (20–23). It is interesting that the induction of Mg
deficiency has been shown to reduce insulin sensitivity in in-
dividuals without diabetes, whereas Mg supplementation dur-
ing a 4-wk period has been shown to improve glucose handling
in elderly individuals without diabetes (18,24). In patients with
type 2 diabetes, oral Mg supplementation during a 16-wk pe-
riod was suggested to improve insulin sensitivity and meta-
bolic control (25). The mechanisms whereby hypomagnesemia
may induce or worsen existing diabetes are not well under-
stood. Nonetheless, it has been suggested that hypomag-
nesemia may induce altered cellular glucose transport, reduced
pancreatic insulin secretion, defective postreceptor insulin sig-
naling, and/or altered insulin–insulin receptor interactions
(26–29). Not all studies, however, observed a correlation be-
tween glycemic control and serum Mg levels or improvement
of diabetic control with Mg replacement (11,30–32). The con-
flicting data may reflect different study designs and popula-
tions studied.

Hypomagnesemia and Adverse Clinical
Associations in Type 2 Diabetes
Hypomagnesemia at the Cellular Level

There is considerable evidence to suggest that hypomag-
nesemia may adversely affect various aspects of cellular phys-
iology. Available data suggest that low Mg levels may promote
endothelial cell dysfunction and thrombogenesis via increased
platelet aggregation and vascular calcifications (33). Low Mg
levels also may lead to the induction of proinflammatory and
profibrogenic response (34–36), reduction of protective en-
zymes against oxidative stress (37), induction or augmentation
of vasoconstriction and hypertension (38–40), and stimulation
of aldosterone (41,42), among others. Moreover, because Mg is
crucial in DNA synthesis and repair (43), it is possible that Mg
deficiency may interfere with normal cell growth and regula-
tion of apoptosis.

Hypomagnesemia in the Clinical Setting
Clinically, there are significant data linking hypomag-

nesemia to various diabetic micro- and macrovascular compli-
cations.

Cardiovascular. In a study that involved 19 normotensive
individuals without diabetes, 17 hypertensive individuals with-
out diabetes, and 6 hypertensive individuals with diabetes,
Resnick et al. (44) documented the lowest mean intracellular Mg
concentration among the last group. Similarly, based on data
from the Atherosclerosis Risk in Communities (ARIC) Study, a
multicenter, prospective cohort study that lasted 4 to 7 yr and
involved 13,922 middle-aged adults who were free of coronary
heart disease at baseline, an inverse association between serum
Mg and the risk for coronary heart disease was observed
among men with diabetes (45).

Diabetic Retinopathy. The link between hypomagnesemia
and diabetic retinopathy was reported in two cross-sectional
studies that involved both “insulin-dependent” patients and
patients with type 2 diabetes. Not only did patients with dia-
betes have lower serum Mg levels compared with their coun-
terparts without diabetes, but also the serum Mg levels among
the cohort with diabetes had an inverse correlation with the
degree of retinopathy (46,47). A similar link, however, was not
observed when Mg was measured within mononuclear cells. In
a study that involved 128 patients with type 2 diabetes and
poor glycemic control (glycosylated hemoglobin �8.0%), in-
tramononuclear Mg concentrations were not observed to be
lower among those with diabetic retinopathy but rather among
those with neuropathy and coronary disease (11).

Foot Ulcerations. Given the link between hypomag-
nesemia and risk factors for the development of diabetic foot
ulcers (e.g., polyneuropathy, platelet dysfunction), Rodriguez-
Moran and Guerrero-Romero (48) suggested that hypomag-
nesemia may be associated with an increased risk of diabetic
foot ulcers. Indeed, they observed a higher incidence of hypo-
magnesemia among their patients with diabetic foot ulcers
compared with those without the condition (93.9% of the 33
patients with diabetic foot ulcers compared with 73.1% of the 66
patients without diabetic foot ulcers; P � 0.02).

Nephropathy. In a comparative study that involved 30
patients who had type 2 diabetes without microalbuminuria, 30
with microalbuminuria, and 30 with overt proteinuria, Corson-
ello et al. (49) observed a significant decrease in serum ionized
Mg in both the microalbuminuria and overt proteinuria groups
compared with the nonmicroalbuminuric group. Accordingly,
in a recent retrospective study, an association between low
serum Mg levels and a significantly faster rate of renal function
deterioration in patients with type 2 diabetes was reported (7).

Others. Finally, there also are data to suggest the associa-
tion between hypomagnesemia and other diabetic complica-
tions, including dyslipidemia and neurologic abnormalities (6).
Because hypomagnesemia has been linked to various micro-
and macrovascular complications, a better understanding of
Mg metabolism and efforts to minimize hypomagnesemia in
the routine management of diabetes are warranted.
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Normal Mg Metabolism
Gastrointestinal Metabolism

On an average American diet, 250 to 350 mg of Mg is con-
sumed daily. Twenty-five to 60% of dietary Mg is absorbed in
the gastrointestinal tract. Gastrointestinal absorption occurs
predominantly in the small intestines via paracellular simple
diffusion at high intraluminal concentrations and active trans-
cellular uptake via Mg-specific transporters at low concentra-
tions (reviewed in reference [50]). Active intestinal Mg absorp-
tion is presumed to involve transient receptor potential channel
melastatin 6 (TRPM6), which is expressed along the brush
border membrane of the small intestine (51). Mutations of
TRPM6 have been reported to be associated with hypomag-
nesemia with secondary hypocalcemia (52,53).

Renal Metabolism
Glomerular Filtration. Approximately 70 to 80% of plasma

Mg is ultrafilterable in the ionic form (70 to 80%) and com-
plexed with anions such as phosphate, citrate, and oxalate (20
to 30%) (54,55). The ultrafilterability of Mg depends on glomer-
ular filtration, volume status, various metabolic states that
would enhance the selection for ionized Mg (e.g., acidemia,
reduced serum content of negatively charged species), and the
integrity of the glomerular basement membrane.

Proximal Tubules. Once Mg is filtered through the glo-
merulus, 15 to 25% is reabsorbed in the proximal tubules (Fig-
ure 1). Reabsorption at the proximal tubule is mainly passive
and proportional to sodium and water reabsorption, although
at a lower rate (55).

Loop of Henle. Approximately 65 to 75% of the Mg filtered
load is reabsorbed via the paracellular pathway in the thick
ascending limb of the loop of Henle (TAL) (55) (Figure 1).
Paracellular Mg reabsorption at this nephron segment has been
suggested to be facilitated by claudin 6, also known as paracel-

lin 1. Paracellin 1 is a tight junction protein whose mutation is
associated with severe hypomagnesemia with hypercalciuria
and nephrolithiasis (56,57). Parathyroid hormone, calcitonin,
glucagon, and antidiuretic hormone have been suggested to
enhance Mg transport in the TAL via the second messenger
cAMP (55). Insulin also has been implicated to play a role at this
nephron segment by increasing the favorable transepithelial
potential difference for Mg reabsorption (58).

Distal Convoluted Tubules. The distal convoluted tubule
(DCT) reabsorbs approximately 5 to 10% of the filtered Mg via
an active and regulated transcellular pathway (Figure 1). Al-
though this is a low percentage of the filtered Mg load, it
represents 70 to 80% of Mg that is delivered from the TAL. In
addition, because a negligible amount of Mg is reabsorbed
distal to this segment, Mg reabsorption at the DCT is of great
importance because it determines the final urinary Mg concen-
tration (50).

Recently, Mg reabsorption at the DCT was shown to occur
via the transient receptor potential channel melastatin TRPM6
(Figure 2) (52,53,59,60). It has been postulated that upon entry
into the cells, Mg binds to divalent-binding proteins such as
parvalbumin or calbindin-D28K for transport across the cell to
the basolateral membrane, where Mg is taken into the intersti-
tium by a basolateral Na2�/Mg2� exchanger and/or ATP-
dependent Mg pump (51,61–63).

It is interesting that the regulation of magnesium reabsorp-
tion at the DCT was studied extensively before the actual
identification of TRPM6 (Figure 2) (62). Peptide hormones such
as parathyroid hormone (PTH), calcitonin, glucagon, and vaso-
pressin all have been implicated. The mediating mechanisms
are unknown but seem to involve, in part, stimulation of cAMP
release and activation of protein kinase A, phospholipase C,
and protein kinase C. Insulin also has been suggested to en-
hance intracellular Mg uptake, presumably via tyrosine kinase.
Moreover, insulin may stimulate the production of cAMP and

Figure 1. Renal magnesium (Mg) handling. After glomerular
filtration, ionized magnesium is reabsorbed passively in paral-
lel to sodium reabsorption at the proximal tubules (PT); para-
cellularly via claudin 6 (CLD16; paracellin 1) at the thick as-
cending limb of the loop of Henle (TAH); and transcellularly via
transient receptor potential channel melastatin (TRPM6) at the
distal convoluted tubule (DCT). CT, collecting tubules.

Figure 2. Regulation of Mg handling at the DCT. AVP, arginine
vasopressin; Ca2�/Mg2� SR, Ca2�/Mg2� sensing receptor; Gi,
inhibitory G protein; Gs, stimulatory G protein; MPB, Mg2�-
binding protein; PKA, protein kinase A; PKC, protein kinase C;
PLC, phospholipase C; PTH, parathyroid hormone. Adapted
from reference (62), with permission.
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potentiate Mg uptake via other cAMP-dependent hormones,
including PTH (62). In addition, the Ca2�/Mg2� sensing recep-
tor on the basolateral side may modulate hormone-stimulated
Mg transport through G-protein coupling (62). Finally, low
dietary Mg intake and estrogens have been shown to upregu-
late renal TRPM6 expression and reduce urinary Mg excretion
(64).

Possible Causes of Hypomagnesemia in
Type 2 Diabetes

Hypomagnesemia in the patient with diabetes may result
from poor oral intake, poor gastrointestinal absorption, and
enhanced renal Mg excretion (Table 1).

Gastrointestinal Causes
Diabetic autonomic neuropathies that may reduce oral intake

and gastrointestinal absorption include esophageal dysfunc-
tion, gastroparesis, and diarrhea (65). Whether gastrointestinal
Mg absorption via TRPM6 is reduced in the patient with dia-
betes is not known.

Renal Causes
Enhanced Filtered Load. In the patient with diabetes, the

ultrafilterable Mg load may be enhanced by glomerular hyper-
filtration, recurrent excessive volume repletion after hypergly-
cemia-induced osmotic diuresis, recurrent metabolic acidosis
associated with diabetic ketoacidosis, and hypoalbuminemia
(50). The last two conditions may increase the serum ionized
Mg fraction and, hence, ultrafilterable Mg load and subsequent

urinary loss. In addition, it is conceivable that significant mi-
croalbuminuria and overt proteinuria among patients with di-
abetic nephropathy may contribute to renal Mg wasting as a
result of protein-bound magnesium loss.

Enhanced Tubular Flow. Overly aggressive volume re-
expansion and glomerular hyperfiltration also may induce re-
nal Mg wasting at the proximal tubule and TAL, independent
of the filtered load. Because Mg reabsorption parallels sodium
reabsorption in the proximal tubules, volume expansion can
decrease both sodium and Mg reabsorption at this level. Simi-
larly, a high tubular flow through the TAL may reduce Mg
reabsorption at this segment (50).

Reduced Tubular Reabsorption. Because insulin has been
implicated in enhancing Mg reabsorption at the TAL, insulin
deficiency or resistance in the diabetic state can promote Mg
wasting at this nephron segment (58). The expression of para-
cellin 1 in TAL, however, has not been shown to be increased in
diabetic rats (66).

In the same diabetic rat model, Lee et al. (66) revealed that
TRPM6 expression in the DCT is not reduced but rather en-
hanced. This is thought to be a compensatory mechanism for
the increased Mg load that is delivered to the DCT or blunted
activity of the TRPM6 channel in the diabetic state. Accord-
ingly, despite the increase in TRPM6 expression, overall renal
Mg wasting is observed.

Metabolic Disturbances
Various metabolic disturbances that are associated with dia-

betes also have been suggested to promote urinary Mg excre-
tion (67–69).

Hypokalemia. At the TAL segment, hypokalemia may re-
duce Na�-K�-2Cl� co-transport activity, the associated potas-
sium extrusion through the potassium channel ROMK, and
resultant diminution of the favorable transmembrane voltage
that is required for paracellular Mg reabsorption. In addition,
there is evidence to suggest that cellular potassium depletion
may diminish Mg reabsorption at the DCT by yet unclear
mechanisms (67).

Hypophosphatemia. Both micropuncture studies in phos-
phate-depleted dogs and in vitro studies involving phosphate-
depleted mouse DCT cells have demonstrated reduced Mg
uptake (68,69). Phosphate-induced reduction in cellular uptake
of Mg is believed to be a posttranslational effect because the
alteration in Mg uptake could be observed within 30 min of
phosphate depletion.

Metabolic Acidosis. In addition to its role in increasing
serum ionized Mg concentration and, hence, ultrafilterable Mg
load for renal excretion, metabolic acidosis has been suggested
to enhance protonation of the Mg channel in the DCT and
subsequent inhibition of cellular Mg uptake (70). More recently,
Nijenhuis et al. showed (71) reduced expression of TRPM6 with
induced chronic metabolic acidosis in mice.

Insulin Deficiency and/or Resistance. As previously dis-
cussed, insulin deficiency or resistance may exacerbate renal
Mg wasting because insulin has been shown to have antimag-
nesiuric effects in both the TAL and the DCT (55,62).

Table 1. Possible causes of hypomagnesemia in patients
with type 2 diabetes

Decreased intake
poor oral intake
esophageal dysfunction
diabetic gastroparesis

Enhanced gastrointestinal loss
diarrhea as a result of autonomic dysfunction

Enhanced renal magnesium loss
enhanced filtered load

glomerular hyperfiltration
osmotic diuresis (glucosuria)
volume expansion as a result of excessive volume

replacement
metabolic acidosis (diabetic ketoacidosis)
hypoalbuminemia
microalbuminuria and overt proteinuria

reduced renal reabsorption
endocrinologic dysfunction: insulin deficiency or

resistance
metabolic acidosis (diabetic ketoacidosis)
electrolyte abnormalities: phosphate and potassium

depletion
diuretics
others
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Use of Diuretics
The common use of diuretics among patients with diabetes

also may contribute to magnesiuria. The degree of magnesiuria
is traditionally thought to be lower for thiazides compared with
loop diuretics (72–74). This difference has been explained by
the site of action of the two types of diuretics because a smaller
amount of intraluminal Mg is available for wasting at the DCT
compared with that at the loop of Henle. In addition, inhibition
of the Na�-Cl� co-transporter by thiazides has been suggested
to induce hyperpolarization of the DCT plasma membrane and,
hence, a more favorable transmembrane electrical gradient for
Mg reabsorption (67,75).

Despite these theoretical advantages of thiazides over loop di-
uretics, severe hypomagnesemia is observed more frequently with
Gitelman’s compared with Bartter’s syndrome, two syndromes
that have traditionally been equated to the administration of thia-
zides and furosemide, respectively. Recently, in support of this
observation, reduced TRPM6 expression and enhanced magne-
siuria were shown in mice given chronic thiazide therapy (76).
Given these observations and the lack of good direct comparative
data between the two classes of diuretics, it must be assumed that
significant magnesiuria may occur with either.

Others
Finally, the more common use of antibiotics and antifungals

such as aminoglycosides and amphotericin in patients with
diabetes may also contribute to renal Mg wasting (77).

Management of Hypomagnesemia in Type 2
Diabetes

Because the literature suggests adverse outcomes in asso-
ciation with hypomagnesemia in patients with type 2 diabe-
tes, measures to minimize this abnormality are warranted
(Table 2).

Optimization of Gastrointestinal Absorption
Dietary Mg intake may be optimized with the help of a

nutritionist. Poor dietary intake as a result of gastrointestinal
autonomic dysfunction must be controlled. Lifestyle modifica-
tion such as eating multiple small meals at a time instead of two
or three large meals a day; tight glucose control; and the use of
prokinetic medications such as metoclopramide, domperidone,
or erythromycin to improve gastric motility are indicated in
patients with diabetic gastroparesis associated with erratic
blood sugar control (65). In intractable cases, pyloric botulinum
toxin injection, enteric feeding, and gastric pacing may be ex-
plored (78–80). For those with severe and intermittent diarrhea
alternating with constipation, a trial of soluble fiber, gluten and
lactose restriction, and regular efforts to move the bowels are
recommended. Other measures including cholestyramine,
clonidine, somatostatin analog, supplemental pancreatic en-
zyme, and antibiotics such as metronidazole have been sug-
gested (65).

Table 2. Suggested management of hypomagnesemia in patients with type 2 diabetes

Increase Mg intake
dietary consult
high Mg-containing food types

soy products, legumes, and seeds such as almonds and cashews, whole grains, and fruits and vegetables
such as spinach, okra, Swiss chard, dried apricots, and avocados

Control of diabetic gastroparesis
eat multiple small meals instead of two to three large meals per day
tight glucose control
use of prokinetic medications to enhance gastric motility
others: pyloric botulinum toxin injection, enteric feeding, gastric pacing

Oral Mg supplementation
see Table 3

Decrease gastrointestinal loss (diarrhea)
trial of soluble fiber
regular effort to move bowels
trials of gluten-free diet, lactose restriction
others: cholestyramine, clonidine, somatostatin analog, supplemental pancreatic enzyme, and antibiotics such as

metronidazole
Decrease renal Mg loss

decrease filtered load
use angiotensin-converting enzyme and/or angiotensin receptor blockers
tight glycemic control
avoid excessive volume replacement during periods of hyperglycemia

Increase renal reabsorption
tight glycemic control; measures to decrease insulin resistance (exercise)
replacement of phosphate and potassium as needed
replacement of diuretic-induced magnesiuria (based on a 24-h urine collection)
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Minimization of Renal Mg Wasting
Tight glycemic control is recommended to minimize recur-

ring renal Mg wasting in association with osmotic diuresis and
metabolic acidosis. Excessive volume replacement after hyper-
glycemia-induced osmotic diuresis should be avoided. Associ-
ated hypophosphatemia and hypokalemia must be corrected.
When indicated, a 24-h urinary Mg measurement may be con-
sidered to assess diuretic-induced renal Mg wasting and re-
placement. Finally, control of glomerular hyperfiltration with
angiotensin-converting enzyme inhibitors or angiotensin recep-
tor blockers or both may offer additional benefits in reducing
renal Mg wasting. When hypomagnesemia persists despite all
measures, oral Mg supplementation is indicated (Table 3).

Target Serum Mg Levels
Although no study has ever documented an optimal serum

Mg concentration in patients with diabetes, we speculate that a
level between 2.0 and 2.5 mg/dl may be favorable. Our sug-
gestion is based on our previous findings that patients who had
serum Mg levels within this range had the least degree of renal
function deterioration and best glycemic control (7). Although
the correction of low serum Mg levels has never been proved to
be protective against chronic diabetic complications, interven-
tion is justified because hypomagnesemia has been linked to
many adverse clinical outcomes but, to our knowledge, never
physiologic benefits. In addition, Mg supplementation is inex-
pensive and, with the exception of diarrhea, a relatively benign
medication. Nonetheless, close observation must be given to
those with renal insufficiency.

Conclusions
Hypomagnesemia, defined herein as having low serum mag-

nesium concentrations, is common among patients with type 2
diabetes. Contributory mechanisms most likely are multifacto-
rial. Because available data suggest that adverse outcomes are
associated with hypomagnesemia, it is prudent that routine
surveillance for hypomagnesemia be done and the condition be
treated whenever possible.

Disclosures
None.
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