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Hypomethylation coordinates
antagonistically with hypermethylation in
cancer development: a case study of
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Abstract

Background: Methylation changes are frequent in cancers, but understanding how hyper- and hypomethylated

region changes coordinate, associate with genomic features, and affect gene expression is needed to better

understand their biological significance. The functional significance of hypermethylation is well studied, but that of

hypomethylation remains limited. Here, with paired expression and methylation samples gathered from a patient/

control cohort, we attempt to better characterize the gene expression and methylation changes that take place in

cancer from B cell chronic lymphocyte leukemia (B-CLL) samples.

Results: Across the dataset, we found that consistent differentially hypomethylated regions (C-DMRs) across

samples were relatively few compared to the many poorly consistent hypo- and highly conserved hyper-DMRs.

However, genes in the hypo-C-DMRs tended to be associated with functions antagonistic to those in the hyper-

C-DMRs, like differentiation, cell-cycle regulation and proliferation, suggesting coordinated regulation of methylation

changes. Hypo-C-DMRs in B-CLL were found enriched in key signaling pathways like B cell receptor and p53

pathways and genes/motifs essential for B lymphopoiesis. Hypo-C-DMRs tended to be proximal to genes with

elevated expression in contrast to the transcription silencing-mechanism imposed by hypermethylation. Hypo-

C-DMRs tended to be enriched in the regions of activating H4K4me1/2/3, H3K79me2, and H3K27ac histone

modifications. In comparison, the polycomb repressive complex 2 (PRC2) signature, marked by EZH2, SUZ12, CTCF

binding-sites, repressive H3K27me3 marks, and “repressed/poised promoter” states were associated with hyper-

C-DMRs. Most hypo-C-DMRs were found in introns (36 %), 3′ untranslated regions (29 %), and intergenic regions

(24 %). Many of these genic regions also overlapped with enhancers. The methylation of CpGs from 3′UTR exons

was found to have weak but positive correlation with gene expression. In contrast, methylation in the 5′UTR was

negatively correlated with expression. To better characterize the overlap between methylation and expression

changes, we identified correlation modules that associate with “apoptosis” and “leukocyte activation”.

Conclusions: Despite clinical heterogeneity in disease presentation, a number of methylation changes, both

hypo and hyper, appear to be common in B-CLL. Hypomethylation appears to play an active, targeted, and

complementary role in cancer progression, and it interplays with hypermethylation in a coordinated fashion in the

cancer process.
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Background
Loss of DNA methylation, also known as hypomethyla-

tion, in cancer cells relative to normal cells was one of

the first-described epigenetic changes in human cancers.

Hypomethylation has been detected at both a global

level and on a local scale [1] in cancer genomes. Many

cancer types have been reported to have global loss of

methylation like glioblastoma [2], ovarian epithelial car-

cinoma [3], prostate metastatic tumors [4], B cell

chronic lymphocytic leukemia [5, 6], hepatocellular car-

cinoma [7], cervical cancer [8], colon adenocarcinoma

[9], and Wilms’ tumor [10]. However, the biological sig-

nificance of DNA hypomethylation remains understud-

ied owning to its unclear role in carcinogenesis, in

contrast to hypermethylation, which is commonly

viewed as a transcription silencing mechanism [11, 12].

Yet, hypomethylation of DNA, despite its unclear role,

has been linked to tumor progression [8, 13] in different

tumor types and in individual specimens [3, 14]. Also,

some experiments have indicated the importance of in-

duced DNA hypomethylation in oncogenesis by using

DNA methylation inhibitors in vivo and in vitro [15, 16].

However, the role of hypomethylation is not clearly

understood. Hence, it is critical to analyze hypomethyla-

tion data in depth to achieve a better understanding of

its biological roles in carcinogenesis.

DNA hypomethylation in cancer is often seen in satel-

lite DNAs, Arthrobacter luteus (ALU) repeats, and long

interspersed nuclear elements (LINEs) [17, 18], etc.

These DNA repeats comprise approximately half of the

genome. Hence, DNA hypomethylation is generally con-

sidered a global phenomenon not suitable for use as a

biomarker. One advantage of the global hypomethylation

phenomenon (as it pertains to its genome composition)

is that it is often considered a technique to balance focal

and conserved hypermethylation in the promoter re-

gions of key genes. Also, it is believed that these hypo-

methylated genomic regions are randomly spread over

the genome, mostly in repetitive regions whose func-

tions, if any, are unclear. Again, this reported disadvan-

tage might actually be an advantage due to recent

findings indicating that ALU elements can act as en-

hancers [19], which further emphasizes the need for de-

fining the role of hypomethylation in cancers.

As part of our study of hypomethylation patterns, we

used B cell chronic lymphocytic leukemia (B-CLL) as an

example case. This B-CLL cancer type has a predomin-

ant global hypomethylation as its characteristic feature

[5, 6], and it is the most common form of blood cancer.

It is a clinically heterogeneous disease, with some pa-

tients experiencing rapid disease progression and others

living for decades without requiring treatment [20]. Al-

though a number of cellular and molecular prognostic

markers, i.e., surface markers ZAP70 and CD38,

cytogenetic abnormalities, and IGHV mutational status

[21–23], have been identified to help classify CLL into

molecular and clinical subgroups and to predict their

course of progression, they do not provide clear insight

into the underlying biology necessary to develop better

targeted and more effective treatments.

In addition to various molecular and genetic changes,

several genome-wide DNA methylation studies have

identified many aberrantly methylated genes in CLL

samples [24]. Initially, DNA hypermethylation in CLL

patients was found to affect 4.8 % of CpG islands on

average [25]. Furthermore, hypermethylation in the pro-

moters of tumor suppressor genes such as DAPK1 [26],

SFRP1 [27], and ID4 [28] genes involved in apoptosis,

cell cycle regulators p16 and p15 [29], and prognostic

markers ZAP70 [21] and TWIST2 [30] were identified.

DNA methylation changes were also found to be associ-

ated with disease progression in the Eμ-TCL1 transgenic

mouse model of CLL [28]. In addition to hypermethyla-

tion, hypomethylation of proto-oncogenes has also been

observed particularly in liver tumors and leukemia such

as the c-fos, c-myc, ras, Erb-A1 [31], and the bcl-2 gene

[32]. Along with this, many studies have indicated wide-

spread hypomethylation compared to instances of hyper-

methylation, particularly in the CLL cancer type.

However, a detailed account on the genome-wide hypo-

methylation pattern and its contributing role towards

cancer development has not been conducted for CLL.

Hence, it is clear that an in-depth methylation analysis

focusing more on hypomethylation can be very helpful

to unveil the underlying mechanism regulating the

disease.

Here, we studied the genome-wide DNA methylation

pattern in CLL and investigated whether hypomethyla-

tion is also consistent at some locations like hyperme-

thylation across multiple CLL patients. We also

investigated the biological role of consistent hypomethy-

lation towards tumor initiation and progression; and

finally, we compared instances of consistent hypomethy-

lation to that of consistent hypermethylation. We char-

acterized the epigenetic context of hyper- and

hypomethylated regions in CLL and further investigated

association of hypomethylation with change in expres-

sion of the neighborhood genes along with their poten-

tial mechanism of influence.

Results

Methylation data analysis

In order to study genome-wide methylation changes in

the CLL genome, we computed differentially methylated

regions (DMRs) from genome-wide methylation data of

30 samples from publically available CLL samples in

GEO (http://www.ncbi.nlm.nih.gov/geo/). DMRs of size

1000 bp were obtained by comparing each patient
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sample against each control normal sample individually

using Fisher’s exact test. False discovery rate (FDR) was

used to correct for multiple testing errors with a q value

threshold of 0.01. Hence, three sets of DMRs were ob-

tained by comparing all 30 CLL samples against each of

the three control samples.

Entropy and permutation analysis

Having obtained a list of all hypo- and hyper-DMRs for

each CLL against each control sample, we first plotted

the distribution of the number of samples in which each

DMR (hypo and hyper) existed. Figure 1a shows that the

majority of hypo-DMRs are present in less than 50 % of

samples. Out of the DMRs present in 20 or more sam-

ples, hyper-DMRs outnumbered hypo-DMRs. This

showed that overall hypomethylated regions are less

conserved than hypermethylated regions across samples.

Next, in order to check randomness in contrast to

conservation of methylation change in each 1000 bp re-

gion across all CLL samples, methylation entropies were

calculated using a probability distribution of methylation

changes for each region. Figure 1b shows this opposite

pattern of entropy and average methylation change. This

plot shows that a high percentage methylation of spe-

cific regions is more consistent across all patients;

however, as the average methylation goes down, their

conservation tends to fluctuate, thereby leading to an

increase in entropy (Fig. 1b). After comparing these

methylation entropies for each region against the

average methylation change across 30 CLL samples,

we observed a negative correlation (Pearson correl-

ation = −0.22, p value <0.05) in each of the 3-control

sample tests.

Identification of consistent differentially methylated regions

(C-DMRs)

In order to obtain consistent DMRs, a binomial test

was used to check the significance of each DMR with

the probability of being hypo/hypermethylated in 25

or more CLL samples (q value <0.01). Hence, three

lists of significant DMRs were obtained for each con-

trol sample. Next, 658 hypo- and 982 hypermethy-

lated regions that were found common in all three

lists and referred to as C-DMRs (see Tables S1–S4 in

Additional file 1 and Additional file 2 for lists and

details).

To further check the statistical significance of our lists

of hypo- and hyper-C-DMRs, we performed two permu-

tation tests, one by permuting samples and the other by

permuting methylation values for 1000 bp regions (see

Methods in Additional file 1 for more details). The sam-

ple permutation test helped in detecting whether we ob-

served hyper/hypo-C-DMR patterns by chance if there

was no difference among cancer vs. normal samples. On

the other hand, the methylated region permutation test

detected whether hyper/hypo-C-DMR pattern can occur

by chance if there is no difference between regions. In

both permutation tests, all of our obtained C-DMRs had

q values <0.05, showing the statistical significance of

hyper- and hypo-C-DMRs in cancer samples against

normal and non-DMRs.

Differences in positional genomic location analysis of

hyper- and hypo-C-DMRs

By checking the genomic-location distribution of C-

DMRs, we found that a higher number of hyper-C-

DMRs mapped to promoters (64 %) and 5′UTRs (43 %)

as compared to hypo-C-DMRs (14 % for promoters and

12 % for 5′UTR) and genomic background regions

(30 % for promoters and 29 % for 5′UTRs). A higher

percentage of promoter and 5′UTR hypermethylation

confirmed their role in interfering with transcription

factor binding (Fig. 2a, b). However, hypo-C-DMRs out-

numbered both hyper-C-DMRs and background gen-

omic regions for 3′UTRs (29 % in hypo-C-DMRs, 8 % in

hyper-C-DMRs, and 7 % in background) and introns

(36 % in hypo-C-DMRs, 4 % in hyper-C-DMRs, and

15 % in background). There were also more hypo-C-

DMRs (24 %) in the intergenic regions than hyper-C-

DMRs (18 %), but comparable with genomic background

regions (26 %). CpG sites from hypo- and hyper-C-

DMRs were also checked against “weak/strong enhancer

regions” chromatin states as defined by chromHMM

[33] and were found coming mostly from intronic and

intergenic regions on a genome. (Figure S6 in Additional

file 1). Strong enhancers were overlapped more by hypo-

C-DMRs in comparison to hyper-C-DMRs. Genes over-

lapping with hypomethylated strong enhancers were

ELN, GTF2I, KLC1, MIF4GD, MIR6821, MOB2, PTBP1,

RGS3, SH3BGRL3, TBC1D14, TCIRG1, and VASH2.

Across each sample data, we found 25–30 % of all

DMRs as hypomethylated, and only 10–15 % hyper-

methylated, as shown in Figure S1 in Additional file 1.

However, they were not targeted for any specific

chromosomal region (Figure S2 in Additional file 1).

Also, only 100 hypo-C-DMRs (15.2 %) co-localized with

CpG islands, while 955 out of 982 hyper-C-DMRs

(97.2 %) co-localized with CpG islands. Hypo-C-DMRs

were mostly present in regions outside CpG islands and

shores (Fig. 2c). Next, Fig. 2d shows that almost half of

hypo-C-DMRs (46 %) were present on non-repeat re-

gions along with ones mapped on the repeat regions.

Overall, hypo-C-DMRs were found more in 3′UTR,

intronic, and intergenic regions, mostly outside CpG

islands and overlapping both repeat and non-repeat

regions over enhancers. Additional file 3 lists the

genes with genic-regions overlapped by these C-

DMRs.
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Fig. 1 Overall representation of methylation. a Distribution of hyper/hypo-DMRs (tiles) over number of samples. This illustration shows that a

higher proportion of hypo-DMRs (compared to hyper-DMRs) are consistent in small subsets of samples. It also shows the presence of few hypo-

DMRs present in all 30 samples. b Relationship between average methylation difference across all CLL patients against control samples (SC1, SC2,

and SC4_1) and methylation entropy per 1000 bp region
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Enrichment of KEGG pathways, GO annotations and

phenotypes

For our obtained lists of hypo- and hyper-C-DMRs, we

performed enrichment analysis of genes overlapped by

C-DMRs (Additional file 3) for gene ontology (GO) [34]

categories and KEGG [35] pathways. The most signifi-

cantly enriched KEGG pathways in hypo-C-DMRs were

“B cell receptor (BCR) signaling pathway” (adjusted p

value (p.adj) = 2.21E-02), “p53 signaling pathway”

(p.adj = 3.69E-02), and “pathways in cancer” (p.adj =

3.69E-02), along with a few other signaling pathways

and pathways involved in cancer. In contrast, hyper-

C-DMRs were not enriched for any leukemia-related

pathway such as BCR signaling. Hyper-C-DMRs were

enriched for “neuroactive ligand-receptor interaction”

(p.adj = 7.29E-05) and for the “calcium-signaling path-

way” (p.adj = 9.86E-03) (Fig. 3). See Additional file 4

for complete enrichment results.

Among the GO annotations, the most important and

significantly enriched biological processes for hypo-C-

DMRs were “negative regulation of transcription” (p.adj =

4.28E-02), “chromatin modification” (p.adj = 3.92E-02),

Fig. 2 Distributions of C-DMRs. a, b Over different genic parts. c Over CpG islands. d Over genomic repeats and non-repeat regions
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“regulation of signaling” (p.adj = 3.92E-02), “histone

methylation” (p.adj = 3.92E-02); “positive regulation of his-

tone H3-K9 methylation" (p.adj = 4.29E-02), “protein

alkylation” (p.adj = 4.28E-02), “programmed cell death”

(p.adj = 4.30E-02), “negative regulation of cell prolifera-

tion” (p.adj = 4.40E-02), and “negative regulation of

Fig. 3 GO annotation and KEGG pathway enrichment for C-DMRs
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leukocyte differentiation” (p.adj = 3.04E-02), “leukocyte ac-

tivation” (p.adj = 4.28E-02), and “cell morphogenesis in-

volved in differentiation” (p.adj = 4.29E-02). On the other

hand, hyper-C-DMRs were enriched for processes which

are antagonistic to the processes enriched in hypo-C-

DMRs. Hyper-C-DMRs were enriched for processes like

“positive regulation of transcription” (p.adj = 4.81E-12)

and “positive regulation of cell differentiation” (p.adj =

1.99E-07), “positive regulation cell proliferation” (p.adj =

4.75E-06), “regulation of signaling” (p.adj = 3.53E-05) with

more processes related to “cell-fate commitment” (p.adj =

6.09E-13), “cell morphogenesis involved in differentiation”

(p.adj = 7.69E-08), and similar processes like “protein and

cell localization” (p.adj = 4.77E-06). Also, hypo-C-DMRs

were enriched for “H3K9 methylation” but hyper for “H3-

K27 methylation.”

Molecular functions (Fig. 3) showed a strong enrichment

for binding functions like “protein binding” (like integrin,

p.adj = 1.92E-02), “SH3 domain binding” (p.adj = 1.92E-02),

“p53 binding” (p.adj = 1.92E-02), “histone-arginine N-

methyltransferase activity” (p.adj = 2.20E-02), “tumor necro-

sis factor-activated receptor activity” (p.adj = 3.20E-02),

GTPase regulator activity (p.adj = 3.20E-02), and “transcrip-

tion factor binding” (p.adj = 3.40E-02) in hypo-C-DMRs. In

comparison, hyper-C-DMRs were specifically highly enriched

for “sequence-specific DNA binding” (p.adj = 5.49E-32), tran-

scription factor (or regulator, p.adj = 3.86E-25), and trans-

membrane transporter activity (p.adj = 6.58E-03), along with

also metal/ion (calcium, p.adj = 6.72E-07) and “enhancer

binding” (p.adj = 5.47E-05). In summary, both C-DMR

types (hypo and hyper) affected similar processes but

in different directions, with hypomethylation focusing

on transcription and leukocyte activation and hyperme-

thylation focusing on transcription suppression through

transcription factors and cell-fate commitment.

We did not observe any differences in enriched pheno-

types between hypo- and hyper-C-DMRs. Specific associa-

tions with the hematopoietic system, homeostasis/

metabolism, mortality/aging, immune system, and growth/

size phenotype were enriched in both types of C-DMRs,

except embryogenesis (or related terms like differentiation),

which was specific to hypermethylation. Genes falling

under each enriched top attribute are listed in Additional

file 5. These results suggest the importance of both hypo-

and hyper-C-DMRs in CLL, and emphasize the functional

significance of hypo-C-DMRs.

Enrichment of TFBS, histone modifications, and chromatin

states

Next, in order to identify epigenomic signatures associ-

ated with both C-DMRs, we systematically tested for en-

richment in transcription factor binding sites (TFBSs),

histone modification marks, and chromatin states pro-

vided by ENCODE project [36].

TFBS enrichment analysis identified EZH2 as strongly

associated with hyper-C-DMRs (p.adj = 1.70E-23), in

contrast to hypo-C-DMRs (p.adj = 4.27E-05, Fig. 4a). On

the contrary, EBF1, POL2, CHD2, WHIP, and TBLR1

were strongly associated with hypo-C-DMRs (p.adj =

2.53E-37, 1.06E-30, 2.17E-22, 6.024E-22, and 5.78E-19,

respectively), in contrast to hyper-C-DMRs (p.adj = 1.65E-

09 and 3.50E-07) (Fig. 4). Other than these, the HAIB data-

set in ENCODE showed additional B lymphopoiesis-

related enriched TFBS like RUNX3 (p.adj = 3.58E-31),

TCF3 (p.adj = 4.04E-14), PU.1 (p.adj = 7.42E-11), and PAX5

(p.adj = 7.43E-11). Both hyper- and hypo-C-DMRs were

enriched in ZNF143, CTCF, MAZ, and MXI1 TFBSs

(Fig. 4a). These findings were confirmed by using TFBS

data from all cell lines provided by the ENCODE project

(Figure S3 (a), S4 in Additional file 1 and Additional file 6).

Among histone modification marks, we found

H3K27me3 to be highly enriched in hyper-C-DMRs

(Fig. 4b, p.adj = 2.31E-40). On the contrary, hypo-C-

DMRs were strongly enriched in H3K4me1 (p.adj =

1.11E-54), H3K27ac (p.adj = 1.22E-38), and H3K79me2

(p.adj = 1.44E-34) histone modification marks (Fig. 4b).

Both C-DMRs were enriched in H3K4me2, H3K4me3,

and H2AZ histone modification marks (Fig. 4a). The

specificity of the H3K27me3 mark for hyper-C-DMRs

was confirmed by using histone modification data from

all cell lines provided by the ENCODE project (Figure

S3 (b) in Additional file 1 and Additional file 6).

Furthermore, hyper-C-DMRs were significantly enriched

for homeobox, E2F and TATAbox/promoter motifs, and

hypo-C-DMRS for ETS, IRF4, EGR, ZFX, RUNX1, PU.1,

Pax5, BATF, Erra, and bZIP motifs (Table S5 in Additional

file 1). All motifs enriched for hypo-C-DMR have been

shown to contribute to cell proliferation, B cell develop-

ment and pathogenesis of lymphomas [37–39].

Using chromatin state annotations from multiple cell lines

(Figure S3 (c) in Additional file 1 and Additional file 6), we

found hyper-C-DMRs to be enriched in “repressed”

(p.adj = 5.63E-182) and “poised promoters” (p.adj =

1.24E-69) chromatin states (Fig. 4c). In contrast, hypo-C-

DMRs were consistently enriched in both “strong/weak

enhancers” (p.adj = 6.73E-36 for both) and “weak tran-

scription” (p.adj = 2.73E-24). Both C-DMRs were similarly

enriched in “weak promoters” (p.adj = 1.70E-19 and 2.93E-

15 for hyper- and hypo-C-DMRs, respectively). These re-

sults suggest that distant enhancer regions tend to be

hypomethylated in cancer whereas regions associated with

repressed or poised transcription are hypermethylated.

Also, 17,811 hyper- and 15,599 hypo-differentially

methylated regions (DMRs) were obtained from pooled

CLL and control sample comparison (Table S2 in

Additional file 1). Each of these region lists exhaustively

included all hyper- and hypo-C-DMRs, respectively.

KEGG and GO annotation enrichment analysis of
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pooled sample DMRs also showed a strong enrichment

of similar terms (Additional files 1 and 4). Results from

pooled sample analysis show that C-DMRs are more

specific and significant subset of DMRs that are consist-

ently present in all samples.

Expression data analysis

Expression profiles in relation with methylation

Next, we looked at the association between gene expression

changes and methylation differences. For this, expression

values of all transcripts from 19 matching CLL samples

were divided into four expression quartiles and referred to

as lowest to highest expression groups. Methylation profiles

for genes in each of these quartiles were then extracted for

comparison. Figure 5a shows a significant reduction of

methylation at gene boundaries for all expression quartile

groups. At the peripheral region, methylation in the highest

expression genes is reduced the most. Towards the center,

methylation of CpGs and expression has an inverse rela-

tionship, with the lowest expression genes having the lowest

percent methylation. Overall, average methylation for whole

gene regions for all genes had a negative correlation (Pear-

son correlation = −0.07; p value = 3.1E-09) with expression.

Next, we looked for expression (transcript FPKM

values) and methylation (for overlapped CpG sites) rela-

tionship in exons and introns individually (Fig. 5d, e).

We observed that among exons (Fig. 5d), transcripts in

the lowest expression quartile had the highest and most

distinct methylation pattern. Overall, all exons combined

from transcripts in all expression quartiles had a nega-

tive correlation (corr = −0.13; p value <2.2E-16). For

introns (Fig. 5e), this relationship appeared to be oppos-

ite with the highest expression quartile transcripts show-

ing the highest methylation but almost no correlation

Fig. 4 Enrichment of C-DMRs in the regulatory regions. The ENCODE genome annotation datasets for Gm12878 lymphoblastoid cell line from

Broad and Stanford/Yale/USC/Harvard were used for transcription factor and Histone enrichment analyses (a, b). Broad datasets were used for

chromatin states enrichment (c). See Figures S3, S4 in Additional file 1 for the results for all cell lines. The vertical axis shows –log10-transformed

enrichment p values, FDR corrected. Left/right parts of the bar-plots show top 10 most significant enrichments for hyper/hypo-C-DMRs, respectively.

a Transcription factor binding sites enrichment. b Histone modification sites enrichment. c Chromatin states enrichment

Kushwaha et al. Human Genomics 2016, 10(Suppl 2):18 Page 90 of 109



Fig. 5 Association between DNA methylation and expression in CLL samples. a Local regression showing methylation levels of whole genes

stratified by expression quartiles in CLL samples. b Local regression showing methylation levels within 5′ and 3′UTRs for different transcripts

stratified by expression quartiles. c Methylation levels within exons and introns for transcripts in different expression quartiles. d Methylation levels

at exon boundary in different expression quartiles. e Methylation levels at intron boundary in different expression quartiles
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(corr = −0.02; p value = 6.2E-2). Also, we identified a very

clear distinction in methylation patterns from different ex-

pression quartiles in exons specifically from 5'UTRs

(Fig. 5b). Overall, 5'UTRs had a negative correlation be-

tween methylation and expression (corr = −0.2; p value

<2.2E-16). Conversely, exons from 3'UTRs had the opposite

methylation pattern (Fig. 5c). 3'UTR exons from the highest

expression quartile genes had the highest methylation

(Fig. 5d, Figure S8 in Additional file 1) and overall, they had

weak but positive correlation (corr = 0.1; p value = 2.4E-3).

In summary, we observed different methylation effects on

expression for different genic regions, particularly within

exons from 5'UTR and 3'UTR that related to methylation

changes at widespread genomic locations in CLL.

Correlation module analysis

In order to further investigate the role of 3'UTR methy-

lation change on expression, we used both expression

and methylation data to construct co-expression and co-

differential methylation network modules, respectively.

These modules were generated using the weighted gene

correlation network analysis (WGCNA) framework [40].

For this, we selected 1780 transcripts from 19 matching

CLL samples, from which both expression and average

3'UTR methylation data were available.

WGCNA identified 21 co-expression modules with

sizes ranging from 41 to 181 transcripts from the ex-

pression data and 17 co-differential methylation modules

with sizes ranging from 37 to 284 transcripts from the

methylation data (average of all CpGs within 3'UTRs).

Methylation values of transcripts in each CLL sample

were compared against methylation of transcripts from

one common control sample, individually. Differential

methylation values for all transcripts in all CLL samples

were thus obtained. Correlation network modules in

each dataset were obtained using hierarchical clustering

of pairwise gene correlation structures using WGCNA.

WGCNA does not use gene ontology information but

clusters the interconnected genes defined as branches of a

hierarchical cluster tree. Hence, modules are initially la-

beled by arbitrary integers and then coded by colors for

each dataset. Since clustering for module generation has

no gene annotation or functional information, functional

interpretation for each module in each dataset was further

obtained by conducting a GO enrichment analysis. GO en-

richment analyses revealed unique and significant enrich-

ment of various GO terms, providing evidence of a

functional role for each module as a whole (Additional

file 7; Tables S2, S3, S8, and S9 in Additional file 1). Over-

all, different biological processes for different modules im-

plied biological significance of clustering transcripts in

separate modules in both expression and methylation data.

Next, to investigate the relationship between expres-

sion and methylation modules, these modules were

matched by pairwise comparison of each methylation

module to each expression module using two methods.

First, they were compared to measure a statistically sig-

nificant overlap of genes in each pair. Second, we used

network-based statistics to assess whether the density

and connectivity patterns of genes were also preserved

in a two-paired set of modules with significant gene

overlaps. The second method generated a composite

statistic value, i.e., Zsummary, using a permutation test to

measure the strength of methylation module and expres-

sion module preservation. Also, knowing the Zsummary

statistic bias towards a module with a large size, a rank-

based statistic medianRank was used in the second

method to measure their relative preservation irrespective

of module size. The medianRank is the statistic calculated

from observed preservation values and does not conduct

any permutation test against background gene modules.

From network preservation tests, we found that ex-

pression and differential methylation modules in general

exhibited relatively few overlapping genes (Additional

file 7) although some of the overlaps were statistically

significant. The most significant overlaps (p.adj < 0.05)

were observed between large co-expression modules and

co-differential methylation modules, enriched for same

GO terms (Table 1 and Additional file 7; Table S4 in

Additional file 1). Figure 6a reports the number of com-

mon genes resulting from pairwise module overlap analysis.

The statistical significance of each pair as shown by a color

scale was computed to see if the numbers of common

genes were obtained according to an iterative pattern and

not by chance. WGCNA arbitrarily color-code modules for

visual identification, so all color-module associations de-

scribed here do not have any additional meaning outside of

this specific analysis. The most significant overlap as shown

in Fig. 6a was for “turquoise” color-coded expression mod-

ule with “magenta,” “yellow”, and “midnight blue” methyla-

tion module. The turquoise expression module also had the

highest Zsummary (Zsummary = 28) and median rank from

network-based statistic method (Fig. 6b). GO enrichment

analysis of the turquoise expression module showed enrich-

ment of “TNFR,” “cell adhesion,” “leukocyte proliferation,”

and “apoptosis/cell death.” All the overlapping methylation

modules which were color-coded in magenta (enriched for

“EGF” p.adj = 1.60E-02), yellow (enriched for “focal adhe-

sion and kinases”), midnight blue (enriched for “cofactor

and ion binding”) were enriched for growth factor and

regulation of “Ras protein signal transduction,” “kinase ac-

tivity,” and “ion binding.” Hence, we see that the most sig-

nificantly overlapping and preserved modules in CLL

samples were the ones involved in cancer development.

This also indicates the regulatory role of 3′UTR methyla-

tion on expression change in cancer.

Also, “green,” “pink,” “blue,” “black,” and “grey60”

color-coded expression modules were the other top
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modules showing a strong preservation (Zsummary >10)

and low median rank (Fig. 6b). All these four modules

were again enriched for “zinc ion binding,” “regulation

of transcription,” and “apoptosis”. They overlapped with

“light cyan,” “midnight blue,” “black,” and “turquoise”

methylation modules. Biological processes like “cell div-

ision,” “chromosome partitioning/cytoskeleton,” and

“GTPase regulator activity” were enriched in both

“grey60” (second least rank = 5, Zsummary = 13) expres-

sion module along with its overlapping red methylation

module (Additional file 7). An additional network analysis

was carried out using expression and average methylation

of whole genes (not just 3′UTRs) that are non-coding (i.e.,

transcripts that do not encode a protein product) along

with 3′UTR methylation. Results from this analysis can be

accessed in Additional file 7. This non-coding RNA analysis

also gave results similar to the 3′UTRs, including overlap

of modules enriched for similar cancer-related terms.

Hence, we see that significantly preserved expression and

methylation modules were enriched for similar cancer-

related biological processes like leukocyte proliferation,

apoptosis, signal transduction, and cell-cycle regulation.

Our observation from network preservation of expression

and 3′UTR methylation change provides clues for a better

understanding of the contribution made by the regulatory

role imposed by 3′UTR methylation overexpression.

Next, a correlation analysis between methylation and

expression modules was conducted using module eigen-

gene (aka eigennode) that is intuitively understood as a

weighted average of the variable profiles in a module. Al-

though the composition of co-expression and co-

differential methylation modules can vary, we observed

multiple strong Pearson correlations between many ex-

pression and methylation module eigengenes as shown

in Fig. 7, and Tables S6 and S12 in Additional file 7. For

example, in our non-coding gene analysis, eigengenes of

“red” methylation module was highly negatively correlated

(corr = −0.97, p value = 5.75E-12) to a “brown” expression

module. The red methylation module was enriched for

“regulation of cell cycle” and “intracellular signal cas-

cade” and “brown” expression module for apoptosis

and leukocyte proliferation as per GO analysis, show-

casing complimentary functional annotations involved

in cancer regulation (Tables S8 and S9 in Additional

file 7). Similarly, eigengenes of the blue methylation

module were significantly and positively correlated

(corr = 0.95, p value = 1.22E-09) to the “dark red” ex-

pression module, both of which were enriched for

“protein localization” or “intracellular transport”

(Figure S6 in Additional file 7). Also, we saw both

significantly positive and negative correlations in 3′

UTR methylation to expression modules and occa-

sionally for the same module. For example, red ex-

pression module (enriched for “kinases and nucleotide

binding”) was negatively correlated with “green”

(enriched for “nucleotide binding” and “positive regulation

of apoptosis”) and positively correlated with “midnight

blue” and “tan” (both enriched for “nucleotide binding”)

Table 1 Significant overlap and preserved modules in WGCNA of 3′UTR methylation and expression

Methylation
module (size)

Expression
module (size)

Overlap count
(p value)

Zsummary Median
rank

Functional annotation Gene symbols

Magenta (79) Turquoise (181) 20 (6.17E-05) 28 6 Regulation of Ras
protein signal transduction

ABCC3,ALS2CL,ATG16L2,COG8,DNASE1,
DOCK9,ESPL1,PDE4D,TMEM63C,TNFAIP2,
TNFRSF4,TTLL1,UQCC1,ZNF385A

Red (101) Grey60 (52) 9 (2.04E-03) 13 19 Cell division and chromosome
partitioning/cytoskeleton

CHID1,FDXR,HERC2,HERC6,MYO9B,
SEPT5,UBXN7

Yellow (165) Turquoise (181) 28 (3.18E-03) 28 6 Kinases ATG16L2,BMP1,C1orf159,CLUH,COL6A2,
CRTC1,DAGLA,DNAH3,ENTHD2,EPHA10,
FAM101B,FAM53A,GPR56,IGF1R,LAMC3,
NLRP2,NR3C2,OPLAH,PITPNM2,PPP2R2B,
PRKCA,PTPRK,RASGRF1,STK32C,THNSL2

Turquoise (284) Blue (176) 41 (4.83E-03) 13 18 Signaling and apoptosis,
cell cycle checkpoint

ACOXL,ANKH,ARHGEF18,B3GAT3,CCAR1,
CCDC137,CKB,CREM,DDX39A,DFFB,DNAJB12,
FAIM3,HUS1,ITPK1,KIAA0930,LRPAP1,MGRN1,
MRPS24,NADK,NRARP,NUBPL,NUP155,
OSBPL7,PHF14,PIP5K1A,PPFIA3,PSTPIP1,
PTMA,RALBP1,RIN3,RPS6KB2,SH3BP2,SH3TC1,
TP53I3,TRAF4,TRIB2,TSSC1,USP42

Brown (197) Light green (49) 12 (5.48E-03) 9.8 9 Apoptosis/cell death UEVLD,UNC13B,DTNB,BANP,IRF7,CCNL2,
INTS9,FNTA,RBM19,DNASE1,GRB7

Midnightblue (45) Turquoise (181) 10 (1.24E-02) 28 6 Ion binding ABLIM2,ACE,COMMD1,ELFN2,GLT1D1,
HAUS7,TOM1

Turquoise (284) Midnight blue (55) 15 (2.11E-02) 12 2 Nucleotide binding ADCY9,AGTRAP,BSDC1,INO80E,MCHR1,
MTHFSD,NADK,P4HB,PDE8A,POR,RAB3A,
RPS19BP1,SMUG1,SOX12,STX8
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Fig. 6 (See legend on next page.)
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3′UTR methylation modules. All together within the

3′UTR methylation correlations, we observed a ma-

jority of positive correlated modules of lower signifi-

cance compared to negative correlated modules of

high significance. Correlation in different directions

can be assumed to be due to location of methylation

differences within exons or introns, as we saw in our

previous analysis and the direction of methylation

change. Overall, we observed significant correlations

in modules enriched for cancer-related terms, giving

evidence of the role of methylation change in 3′UTRs

towards tumorigenesis.

(See figure on previous page.)

Fig. 6 Module preservation. a Table showing gene overlap between each pair of methylation and expression modules. Each row of the table

corresponds to one methylation module (labeled by color as well as text), and each column corresponds to one expression module. Numbers in

the table indicate gene counts in the intersection of the corresponding modules. Coloring of the table encodes − log(p), with p being the Fisher’s

exact test p value for the overlap of the two modules. The stronger the red color, the more significant the overlap is between a methylation

module for 3′UTR and an expression module. b Plot showing statistical analysis results for module preservation test to check preservation of 3′

UTR methylation modules against expression modules based on the density and connectivity patterns of genes in each module. The left panel

shows the medianRank of the observed preservation statics and the right panel shows the distribution of Zsummary statistics obtained from a

permutation analysis for each methylation module. A module with a lower median rank tends to exhibit stronger observed preservation statistics

than a module with a higher median rank. The Zsummary statistic of a given module summarizes the evidence that the network connections of

the module are more significantly preserved than those of random set of genes of equal size. The significance thresholds for Zsummary are

Zsummary < 2 implies no evidence that the module is preserved, 2 < Zsummary < 10 implies weak to moderate evidence, and Zsummary > 10 implies

strong evidence for module preservation between co-expression module and 3′UTR methylation module

Fig. 7 Pairwise correlation between each methylation module to each expression module. Plot showing correlation between eigengenes of each 3′

UTR methylation and expression modules. X-axis shows all 17 differential methylation modules, and Y-axis shows the module eigengene correlation

value for each of the 21 different color-coded dots representing 21 expression modules. Statistical significance of each correlation was calculated and

represented by dot size for each corresponding methylation module
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Interplay between hypo- and hypermethylation

Also, while describing the importance of hypomethyla-

tion in CLL, we described the overall interplay among

hyper/hypomethylation and gene expression change.

Figure 8 shows both methylation and expression change

information together for key cancer and cell cycle-

regulating genes. Genes are marked as hypo- or hyper-

methylated if any of the respective C-DMRs overlap on

them. As observed from all our enrichment analyses,

Fig. 8 shows that growth and proliferation is dominated

by hypomethylation whereas hypermethylation blocks

cell-cycle exiting and differentiation. We can see many

instances where opposite methylation changes target

genes in the same process but still coordinate with each

other towards cancer development. Both hyper- and hy-

pomethylation changes were found within the same net-

work based on functional role or direction of target gene

in the network. For instance, although, all genes involved

in cell growth and proliferation are targeted by hypome-

thylation and have activated transcription, PF4—which is

known to be involved in inhibition of hematopoiesis and

PTEN, is hypermethylated. PF4 negatively regulates the

PI3K-AKT/PKB signaling pathway and acts as a tumor-

suppressor and hence, hypermethylated and repressed.

Similarly, in order to drive the cell cycle forward to pro-

gress through subsequent phases of cell cycle and escape

cell-cycle exit, Fig. 8 shows much complementary coord-

ination of opposite methylation changes. We can see

how the FOS gene, which is involved in cell-cycle exit is

repressed in CLL samples but CyclinD1 and its other

genes, which are required for G1-S phase transition in

cell-cycle progression are hypomethylated. Hypomethy-

lation of genes involved in G1-S transition, thereby en-

ables uncontrolled cell division. Also, all genes involved

in inhibiting apoptosis are hypomethylated leading to

their transcription activation. These examples show how

hypo- and hypermethylation coordinate with each other

to impose a double negative effect towards the same goal

of cancer development in CLL.

Discussion
Role of hypomethylation in cell-cycle regulation, histone

modification, and transcription activation in CLL

Hypermethylation at the promoter region of tumor sup-

pressors and their subsequent silencing is a well-studied

mechanism of tumorigenesis. In contrast, hypomethyla-

tion, potentially leading to upregulation of oncogenes, is

not fully understood. Also, genic hypomethylation is

often considered as a random and non-consistent

process due to a particularly predominant de-

methylation process in mature B cells in CLL samples.

In this study, we showed that consistent hypomethylated

Fig. 8 Coordination of hypo- and hypermethylation in cell-cycle regulation in cancer. Plot showing coordination between direction of methylation

and expression change in cancer regulation. Each gene is colored showing their methylation change along with up or down arrow showing how their

expression changes. Genes that are not marked by color or arrow shows no corresponding data recorded
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regions (referred to here as hypo-C-DMRs) account for

a significant pattern of methylation changes in CLL with

a distinctive pattern of gene expression and regulatory

associations.

In particular, we observed that both hypo- and hyper-

C-DMRs were enriched for similar biological processes

but in an opposite direction. For example, hyper-C-

DMRs were enriched for “positive regulation of cell dif-

ferentiation”, but hypo-C-DMRs were enriched for

“negative regulation of cell differentiation.” We also ob-

served a significant enrichment of BCR signaling associ-

ated with hypo-C-DMRs. This further strengthens the

importance of hypomethylation in CLL since BCR is a

central pathogenic mechanism in B cell malignancies, in-

cluding CLL [41]. In addition, GO annotations relate to

transcription regulation, chromatin modification, apop-

tosis, cell proliferation, leukocyte differentiation, and sig-

nal transduction were enriched for hypo-C-DMR, which

also defines their functional role in cancer development.

Also, the most significantly enriched TFBS for hypo-

C-DMRs was EBF1, which is a transcription factor that

is critical for both B lymphopoiesis and B cell function

[42]. EBF1, in collaboration with a hierarchy of partner

proteins, including E2A, Runx1, and Pax5 (also enriched

in motif analysis) activates the B cell transcriptome and

represses programs of alternate hematopoietic lineages.

DNA binding by EBF1 has also been linked to changes

in epigenetic marks on their target genes. Binding of

EBF1 and other factors including E2A have also been

correlated with H3K4me1 at target genes, which is also

the most enriched histone modification mark in our ana-

lysis. H3K4me1 is in fact known to facilitate additional

epigenetic modifications necessary for transcription [43].

RUNX3, TCF3, PU.1, and PAX5 are also key transcrip-

tion factors in B lymphopoiesis and cell proliferation.

Other TFBS enriched for hypo-C-DMRs were POL2,

CHD2, WHIP, and TBLR1. CHD2 is a DNA-binding heli-

case that specifically binds to the promoter of target

genes, leading to chromatin remodeling and promoting

their expression [44]. WHIP is a protein that binds to

DNA polymerase delta and increases the initiation fre-

quency of DNA polymerase delta-mediated DNA syn-

thesis [45]. TBLR1 is a key regulator of different

properties of the BCL-3 [46] that acts as an oncogenic

protein through multiple mechanisms that include the

induction of cyclin D1 expression and also inhibits cell

apoptosis through induction of the E3 ligase of p53,

MDM2 [47, 48]. Among other enriched histone modifi-

cations, H3K79 di-methylation is known for regulating

the initiation of DNA replication [49], and H3K36me3 is

found in actively transcribed gene bodies of genes in-

volved in G1/S transition in a cell cycle [50]. Presence

of hypo-C-DMR overlapping enhancers and weak pro-

moters further emphasize their role in activation of

transcription. Overall, both enriched TFBS and

histone modifications are known to relate to B lym-

phopoiesis, transcription activation, and cancer

development.

In contrast to hypo-C-DMRs, hyper-C-DMRs, which

are known to regulate the expression silencing mechan-

ism, were implicated by the enrichment of EZH2. EZH2

contains a histone methyltransferase SET domain that

methylates histone tails on gene promoters to repress

their transcription initiation, and this domain is an

important component of the polycomb repressive

complex 2 (PRC2). The PRC2 protein EZH2 is also

known to preferentially methylate Lysine 27 on histone

3 (H3K27) [51] and also H3K9 under certain conditions.

H3K27me3 and H3K9me3 were both enriched for

hyper-LSDMRs in our analysis as well. H3K4me3,

H3K9me3, and H3K27me3 co-localizes with most poly-

comb target proteins like SUZ12, CTBP2, and EZH2-

binding sites enriched in hyper-C-DMRs (Additional file

1; Figure S5). Several other studies [51, 52] have re-

ported DNA methylation and tumor suppressors in can-

cers marked with polycomb proteins enriched with

EZH2 and H3K27me3. This study also elucidates the

known mechanism of hyper-C-DMR in gene silencing

and promoting cancer development. Further, enrichment

of repressor chromatin region for hyper-C-DMRs con-

firms their role in silencing the expression of target

genes.

Our motif enrichment analysis showed hypermethyla-

tion enriched for motifs like homeobox and TATAbox,

which are usually present in promoter regions and thus

silence many key genes. In contrast, hypomethylation

was enriched in motifs of transcription activator binding

genes, such as ETS [38], ZFX [37], cMYC [39] (Table 1),

which are again involved in cell growth, apoptosis, and

metabolism, processes necessary for tumor progression.

Enriched transcription factor motifs like Ikaros (IKZF)

and PU.1 govern B cell lineage priming, which involves

changes in histone modifications and chromatin struc-

ture of genes encoding molecules important for the es-

tablishment of a B cell program [53]. Other significant

classes of motifs enriched in hypo-C-DMRs were motifs

containing ETS domain in genes like Elk1 and Fli and

RHD domain in genes like NFAT and NFkB-p65. These

genes are downstream nuclear targets of Ras-MAP kin-

ase signaling and are also known as oncogenic transcrip-

tion activators, specific to [54] cell survival and

proliferation.

Methylation pattern in exons, introns, and 3′UTRs

In addition to evidence of transcription activation, we

observed that hypomethylation in CLL mostly targets

intronic, intergenic, and 3′UTR regions. Regarding

the relationship between methylation and expression
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change with respect to genic locations, we found

negative correlation for methylation in exons and

whole transcript expression within 30 CLL samples.

But, this correlation within exons was inconsistent in

UTRs. Exons in 5′UTRs seem to act more like pro-

moters, but exons in 3′UTRs had the opposite effect

on expression. Hence, these findings suggest that in

contrast to a gene expression-inhibiting role of in-

creasing methylation associated with 5′UTR exons,

methylation in 3′UTR exons is in fact required in the

normal transcription process.

Regulation of expression by 3′UTR methylation pattern

Our co-expression and co-methylation network ana-

lysis revealed that both transcriptome and methylome

can be organized into modules. Genes in co-

methylation and co-expression modules were found

highly enriched for specific gene ontology categories,

underscoring their functional importance. Many 3′

UTR modules associated with methylation changes

were found to have moderate to strong preservation

with expression modules. Also, the most preserved

module had functional annotations related to signal-

ing and growth and proliferation. Hence, preserved 3′

UTR methylation and expression modules revealed

the ability of 3′UTR methylation to dictate their ex-

pression. The regulatory behavior of methylation

change could, therefore, be detected—not only in 5′

UTR, promoters, and gene bodies—but also in 3′

UTRs in CLL. Also, significantly correlated 3′UTR

methylation and expression modules were enriched

for biologically important pathways involved in signal-

ing cascade, apoptosis, and cell proliferation. These

results provide a fine-grained look at the interaction

among 3′UTR co-methylation and co-expression

modules altered in CLL.

In summary, we report that hypomethylation of DNA

appears to facilitate the aberrant expression of proto-

oncogenes/oncogenes, potentially stimulating cell prolif-

eration in CLL. We observed that apart from global hy-

pomethylation of repeat sequences, there also exists site-

specific hypomethylation of certain genes and genic re-

gions, especially in genes linked with signaling pathways

(e.g., BCR, LYN RAB8A, NFKBIB), chromatin modifica-

tions (e.g., CHD2, CHD3, SMARCB1), cell growth and

development (e.g., EBF1, EGR1, EGFR, ERBB2, MYC),

apoptosis inhibition (e.g., BCL2, TRAF1), and promoting

cell proliferation (e.g., CCND1, LYN, BCL3). We ob-

served 3′UTRs to possess a high percentage of hypo-

DMRs consistent in the majority of our test samples.

We report genes with 3′UTR consistent hypomethyla-

tion in CLL like LIF and PIM3. Along with that, we also

report genes with consistent hypermethylation in CLL in

3′UTRs like HMX2 and other genic regions. We also

observed that methylation changes at 3′UTR had signifi-

cant correlation with expression along with overlapping

network modules in both datasets. Our findings, thus,

suggest that hypomethylation in different genic regions

might exhibit a significant deleterious effect on gene ex-

pression that results in malignant transformation and/or

tumor progression.

Conclusions

We observed that hypomethylated regions were less

consistent over the genome among different samples, in

contrast to hypermethylation loci. However, some hypo-

methylated regions were highly consistent in most of the

samples, and their functional analysis revealed their po-

tential biological significance in CLL.

We observed hypomethylation at many genes con-

taining key TFBS involved in cell growth and devel-

opment, histone remodeling, apoptosis, and cellular

proliferation. We found hypomethylation in many

key signaling regulators consistent in majority of

samples, which do not appear to be random events

or a non-specific part of global hypomethylation. In

addition, this study contributes to our understanding

about the relationship between methylation and ex-

pression levels in CLL samples. Results from pos-

itional analyses for genic location indicate that the

conventional model of methylation regulating ex-

pression in an antagonistic manner is most com-

mon. However, we also uncovered an interesting and

conflicting relationship between methylation and ex-

pression for methylation occurring in exons of 3′

UTRs. Specifically, we found evidence of a loss of

DNA methylation that not only causes genomic in-

stability but also potentially activates many genes

mainly in signaling pathways like BCR in CLL.

Finally, we showed that 3′UTR methylome and

transcriptome are organized into biologically mean-

ingful modules with significant correlations and

strong-to-moderate preservation of their density and

connections between two datasets. The preserved

modules were also found as functionally related in-

dicating the role of 3′UTR methylation in expres-

sion regulation.

Methods

Data sources

Publicly available reduced representation bisulfite se-

quencing (RRBS) methylation for 30 CLL and three

control samples were obtained from the GEO website

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GS

E66121). Control samples were CD19+ B cells isolated

from peripheral blood of normal controls. Human

genome annotation data from the UCSC genome

browser (hg19 genome assembly), such as Refseq and

Kushwaha et al. Human Genomics 2016, 10(Suppl 2):18 Page 98 of 109

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66121
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66121


UCSC genes, CpG islands, Vista Enhancers, ENCODE

Transcription Factor ChIP-Seq, and RepeatMasker

Tracks, were used to annotate differentially methyl-

ated regions of interest. For genes with multiple iso-

forms, the longest one was used as the reference.

Promoter regions were selected from −2 kb upstream

to the transcription start site of each gene.

Read mapping and % methylation

The bisulfite-treated sequencing reads in DNA methyla-

tion data for CD19+ B cells were mapped to bisulfite-

converted human genome using Bismark [55] (using

Bowtie). Bismark was used also to obtain the genome-

wide cytosine methylation calls at a base resolution in

the CpG context. Additional file 8 provides read map-

ping count tables for each sample.

Sequencing reads from RNA-seq experiments were

mapped using Bowtie with known ENSEMBL tran-

scripts as gene models. After mapping, FPKM values

for each gene/transcript were calculated by Cufflinks

[56] and differentially expressed (DE) genes were de-

fined by abs(ln(fold-change)) > 1.5. FDR-corrected p <

0.05 for all DE genes were calculated by Cuffdiff [57].

Next, the over enriched GO categories were obtained

based on a .05 FDR cutoff using the GO-seq R

package.

DMR calculation

Considering the high correlation between methylation of

adjacent CpGs, the methylation information obtained

from RRBS data was summarized on 1000 bp tiling win-

dows (step-size 1000 bp) with minimum 3 CpGs and

minimum 10 reads mapped on each CpG using the R

package, methylKit [58]. For DMR calculation, pairwise

comparison of 1000 bp tiles in each of the 30 tumor

samples against each control normal sample was per-

formed using Fisher’s exact test. From each such test,

differential methylation values were obtained only for

the regions that were common between CLL and control

sample. Thirty such tests were conducted for each con-

trol sample. Next, in order to ensure comparable statis-

tics, only those regions that had differential values from

each of the 30 tests were used. This gave us 41,421 com-

mon regions obtained from the first control sample

comparison tests. Similarly, 39,327 and 41,359 regions

were obtained from each of the other two control

samples.

Entropy calculation

Also, the methylation entropy across all CLL samples

was calculated in order to see probability distribution of

methylation changes for each 1000 bp region across all

samples. Entropy for each sample was computed as

follows:

The methylation vector mr of region r across N sam-

ples was defined as,

mr¼mr;1;mr;2;…;mr;5;…;mr;N

where mr,s represents the methylation level in sample s.

The sum of methylation levels of region r in samples

(∑S = 1
N mr,s) was treated as a total methylation value. The

ratio of methylation level of region in sample relative

to the total value was defined as the relative methyla-

tion probability, ps/r =mr,s/∑S = 1
N mr,s. The original

Shannon entropy of the region can be calculated as

Ho ¼ −

XN

S¼1
ps

r
log2 ps=r

� �

.

Enrichment analysis

Enrichment analysis of genes overlapped by C-DMRs for

GO categories and KEGG pathways was performed

using GOStats R package [59]. Gene set enrichment for

gene symbols overlapping hypo-C-DMRs was also per-

formed using GeneDecks [60] to highlight shared de-

scriptors between pairs of genes based on annotations

within the GeneCards compendium of human genes.

The epigenomic enrichment analysis of C-DMRs was

performed using Genome Runner [61]. Briefly, genomic

coordinates of hyper- and hypo-C-DMRs were collected

and tested for co-localization with three groups of gen-

ome annotation datasets: (1) chromatin state segmenta-

tion by HMM from ENCODE/Broad, (2) histone

modifications by ChIP-seq from ENCODE/Broad Insti-

tute and ENCODE/Stanford/Yale/USC/Harvard, and (3)

experimentally validated transcription factor binding

sites from ENCODE/Broad Institute and ENCODE/

Stanford/Yale/USC/Harvard. Genomic regions annotated

by the ENCODE with any functional/regulatory informa-

tion (~80 % of the whole genome) were used as a “back-

ground” to estimate co-localizations that can occur by

chance. p values were calculated using Chi-square test

and corrected for multiple testing using FDR.

Motif analysis was also carried out using Homer [62]

software after retrieving sequences around each DMR

CpG along with those around non-DMR CpGs randomly

chosen as a background.

Expression in relation to methylation analysis

To associate gene expression changes with methylation

differences, all CpG average methylation values were

paired with the average expression of transcripts they

overlap in all CLL samples. Estimated expression profiles

of all transcripts were divided into four expression quar-

tiles and referred to as lowest to highest expression

groups within all transcripts. The positional enrichment

analysis for each gene region was performed using

Homer, and R scripts were used to calculate and plot

smoothened density estimates. Locfit library was used
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for fitting local regression, likelihood models, and related

smoothing procedures.

Correlation of whole transcript expression to methyla-

tion of CpGs within each specific gene region was calcu-

lated by using the Pearson correlation coefficient. For

correlation calculation average methylation of CpGs

(across all CLL samples) in a specific gene region and

average expression of the whole transcript corresponding

to these CpGs were used.

Correlation module analysis

From 19 matching CLL samples from both methylation

and expression data, we obtained differential methyla-

tion and differential expression (FPKM) for 3′UTRs of

1780 transcripts. For this, whole transcript expression

and average methylation for all CpGs in each of its 3′

UTRs were used. Differential expression and 3′UTR

methylation for each transcript was then computed by

comparing each CLL sample individually against one

common control sample.

We then used differential expression and methylation

value matrices to identify co-expression and co-

differential methylation network modules through the

WGCNA R package (see Additional file 7 for more de-

tails), individually on each dataset. WGCNA computes

networks by calculating each gene-to-gene pairwise cor-

relation and interconnection strength by checking num-

ber of shared neighbors. It then finally generates

modules using hierarchical clustering. Tables S1 and S2

in Additional file 7 provide a list of 10 top hub genes

(genes with most significant module membership) in

each module, and Additional file 9 consists of module

membership values for all genes in each expression and

methylation module.

After constructing modules in each dataset, we

checked to see if any of the modules in one dataset were

preserved in any of the modules from the other data set

using two approaches: cross tabulation and network-

based statistics. In cross tabulation, overlaps of the con-

stituent genes in each pair of modules from the two data

sets were calculated and Fisher’s exact test was used to

assign a p value to each overlap. In the second method,

we used network module preservation statistics (NP) de-

scribed in and implemented in [63] the WGCNA R

package. The NP method not only assesses the signifi-

cant overlap of genes, but also whether the density and

connectivity patterns of modules defined in a reference

data set are preserved in a test data set. We considered

expression data as reference data and methylation data

as test data. This NP statistic test calculates statistic

values based on density and connectivity preservation

within reference and test modules. From calculated stat-

istic values, the NP test in the WGCNA package module

was used to obtain two values, (1) the median rank,

which is the rank for the average of the observed preser-

vation static values and (2) a composite module preser-

vation statistic referred to as Zsummary using a

permutation test. Thus, we reported a Zsummary for each

expression module in the methylation modules.

Also, since WGCNA groups together highly corre-

lated variables to generate modules, we summarized

the variable profiles in each module to a single repre-

sentative, i.e., the module eigengene. The module

eigengene, which is defined as the first principal

component of the standardized matrix containing var-

iables in the module was used to calculate the correl-

ation between expression and methylation within

non-coding genes and 3′UTRs.

Also, since non-coding genes do not translate and do

not undergo post-transcription changes (i.e., stripping 3′

UTRs) with no defined UTR or a gene body region (or

in other words—whole portion can be identified as

UTR), we also conducted the same network analysis by

including non-coding genes.

Additional files

Additional file 1: Additional Figures, Tables and Methods. This is a

“docx” file, which includes various additional figures, tables and

methods that are referred in the main text supporting this research.

(DOCX 3304 kb)

Additional file 2: List of C-DMRs. This is an “xls” file providing coordinates

for hyper- and hypo-C-DMRs common across all control tests in separate

excel sheets, respectively. (XLS 117 kb)

Additional file 3: Gene lists for C-DMRs. This is an “xls” file providing

a list of genes overlapped by common hyper and hypo-C-DMRs in

separate excel sheets, respectively. It also consists of excel sheets for

genes overlapping different gene regions for hypo- and hyper-C-

DMRs, respectively. (XLS 56 kb)

Additional file 4: KEGG and GO enrichment analysis results. This is an

“xls” format file that provides enrichment test results from GOStats

package for KEGG pathways and GO biological processes for both hyper-

and hypo-C-DMRs and DMRs from pooled sample analysis in separate

excel sheets, respectively. (XLS 916 kb)

Additional file 5: Phenotype enrichment analysis results. This is an “xls”

format file that provides enrichment results for phenotype with different

phenotype descriptors, their enrichment p values along with their count

and names of their corresponding genes sharing that descriptor for both

hypo- and hyper-C-DMRs in separate excel sheet, respectively. (XLS 81 kb)

Additional file 6: ENCODE enrichment results. This is an “xls” file that

provides the ENCODE epi-genomic mark enrichment analysis results from

Gm12878 cell line with the name and the description of the datasets,

enrichment p values that are adjusted for multiple testing using FDR, for

hypo/hyper-C-DMRs in separate excel sheets, respectively, along with the

name of the regulatory mark. It also consists of enrichment analysis

results from all ENCODE cell lines for each regulatory mark in hypo- and

hyper-C-DMRs. (XLS 117 kb)

Additional file 7: WGCNA. This is a “docx” file that describes correlation

modules in details, together with the step-by-step description of WGCNA

analysis. WGCNA description includes data cleaning and preprocessing,

adjacency topological overlap matrix construction, module detection,

calculation of various module measures, and description of preservation

statistics methods used. It includes tables and figures for both 3′UTR

methylation and non-coding gene data, and their relation with

expression of genes analysis. (DOCX 1555 kb)
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Additional file 8: Read mapping details. This file provides the mapping

statistics for all the samples in both RRBS and RNA-seq datasets. Table S1

lists the number of RRBS reads obtained, their % that is uniquely mapped

on human genome (hg19) along with total number of CpGs analyzed

from each sample. Table S2 lists the number of RNA-seq reads obtained

and their % that is uniquely mapped on human genome (hg19) for each

sample. (DOCX 124 kb)

Additional file 9: Gene module membership. This is an “xls” file that

provides the matrix for transcript’s module membership or eigengene-

based connectivity measure of each transcript for each methylation and

expression module for 3′UTRs in separate excel sheet, respectively.

(XLS 1395 kb)
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