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Introduction. We say an operator T on a Hubert space H is hyponormal if

|| Tx || St I T*x || for xeH, or equivalently T*T-TT* = 0. In this paperwe

will first examine some general properties of hyponormal operators. Then we

restrictour interest to hyponormal operators with "thin" spectra. The importance

ofthe topological nature ofthe spectrum is evident in our main result (Theorem 4)

which states that a hyponormal operator whose spectrum lies on a smooth Jordan

arc is normal. We continue with a general discussion of a certain growth condition

on the resolvent which obtains for hyponormal operators. We conclude with a

counterexample to a relation between hyponormal and subnormal operators.

The reader is advised that additional facts about hyponormal operators may be

found in [11].

We shall denote the spectrum and the resolvent set of an operator by cr(T) and

piT), respectively. The spectral radius Rsp(T) = sup {| z | : zeo(T)}. The

numerical range = closure {z: z = ( Tx.x) \\ x \\ = 1} is designated by W(T).

Throughout the paper the underlying vector space is always a separable Hubert

space H.

I. Lemma 1. If T is hyponormal and (T — zI)~i exists (as a bounded

operator) then (T — zl)'1 is hyponormal.

Proof. Since hyponormality is preserved under translation (see [11, Lemma 1]),

we may assume z = 0. Thus T*T - TT* = 0 and hence

0 < T~1(T*T — TT*) T*~1 = T~iT*TT*~1 — I

Now since A _ I implies A'1 g I we have

/ - T*T_1 T*_1 T St 0,

and   hence   (T*_1 T_1 - T"1 T*_1) = T*_1(7 - T*T~l T*'1 T)T~l  ^ 0

which completes the proof.

Theorem 1.   Let T be hyponormal with zepiT). Then

|| (T -ziylx\\^lldiz,aiT))

or, equivalently,   || (T — z/)x || St d(z, o-(T))    where    \ x | = 1,   xeH   and

diz, <t(T)) = min { | z - w \ : w e oCT)} .
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Proof. We recall that for T hyponormal, £sp(T):= || T ||. Thus for z e piT),

|x I = 1, we have

\\iT-zI)-lx\\ = WiT-zIT'W  =max{|w| :weo[(T-zl)'1]}

= l/min{| w\ : weo[(T-zl)~]}

= 1 /min { | w-z | :weo-(T)} = l/d(z,ff(T)).

The relation || (T - zl) x || ^ d(z, cr(T)) is now obvious.

It will be convenient to refer to the conclusion of the above theorem by stating

that T satisfies condition Gx ; i.e. the resolvent of T has exactly first order rate

of growth with respect to the spectrum of T.

We note that the resolvent of any operator satisfies a first order rate of growth

with respect to its numerical range, i.e. :

Remark.   For any operator T,

\\(T-zI)x\\^d(z,W(T)),       \\x\\ = l.

Proof.   ||(T-zl) xf«>| ((T-z«Q*, x) I = \(Tx, x)-z\^ min{| -z | : w e TF(T)} .
It is well known that, for any operator T on a Hubert space, W(T) 2 2(T),

the convex hull of o(T), and that equality does not hold in general.

Theorem. 2.   // T is hyponormal then W(T) = 2(T).

Proof. In view of the above comment we need only prove 1F(T) S 2(T).

Let L be a support line for 2(T). Since hyponormality is preserved under trans-

lation and multiplication by scalars, we may assume L is the imaginary axis and

2(T) lies in the left half plane. We now need only show that a g 0 for

a + bieW(T). If not there exists xeH, || x || = 1 and Tx = (a + bi)x + y,

(x, y) = 0, a > 0. Thus for c > 0, we have by Theorem 1,

c2 g | (T - ci) x ||2 = (a - e)2 + b2 + \\y ¡2 or 2ac %% a2 + b^ + || y \\2

which is absurd for c approaching oo .

II. In this section we will be concerned only with operators T where o(T)

lies on a simple closed rectifiable smooth curve. This, of course, does not imply

the spectrum separates the plane. By smooth, we understand the curve to have a

continuous second derivative at every point when parametrized with respect to

arc length. The curve may then be imbedded in a one-parameter family of simple

closed rectifiable curves. More explicitly, if z = g(s), a 5¡ s i% b, is the para-

metrization of the given curve with respect to arc length, then

fi(o) = g(s)+8ig'(s),      0<8<l,

fi(S) = gis) - 8 ig'(s)

yields the desired one-parameter family. We shall refer to a simple closed rectifiable
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smooth curve simply as an arc. The one-parameter imbedding will be used in the

proof of Lemma 2.

We now wish to extend the notion of resolvent set and spectrum. Let xeH,

then (T — z/)"|x = R(z, x) is an analytic vector-valued function for z e p(T). A

vector-valued function f(z) is called an analytic extension of R(z, x) if it is defined

and analytic on an open set D(f) containing p(T) and if (T — zl)f(z) = x for

z e D(f). It is very important for us to know R(z, x) possesses only single-valued

extensions, i.e., any two extensions coincide on the common domain. Since we

are only interested in operators T where o(T) is an arc and is thus nowhere

dense in the plane we may conclude that this is always the case. We may now

define a maximal single-valued extension of R(z, x) by taking the union of all

extensions of R(z, x). We shall designate this maximal single-valued extension of

R(z, x) by Re(z, x). We now define

p(T, x) = {z: Re(z, x) is analytic at z}

a(T, x) = \_p(T, x)]', the complement of p(T, x).

The definitions of Re(z, x), p(T, x), o(T, x) are due to Dunford [4] ; the reader

will also find a discussion of the properties of a(T, x) there.

Lemma 2. Let T be a hyponormal operator and a(T) an arc, then

u(T, x) 2 ff(T*, x). (The bar indicates complex conjugate.)

Proof. Let z0ep(T, x). Then Re(z, x) is analytic in J = {z: | z-z0 | ^ <5} for

some S > 0. Thus ((T — zl)'1 x, y) is bounded on J for each y and so

|| (T- zl)'1 x\\ g K for zeJ by the Banach-Steinhaus theorem. Since (T-zTf1

is hyponormal for zeJ\o(T) we may conclude that || (T* — zT)~ l x ¡I ̂  K for

zeJ\rriT). We know that (T*-z/)_1x is analytic for zeJ\oiT). We now

wish to extend VT* — zI)- 1x to be continuous on Jx n aiT) where

fx = {z:|z-z0| <<5/2}.

By the resolvent equation we have

||[(T*-Zl/)-i-(T*-z2/)-i]x \\=\zx-z2\-1| (r*-Zl/)-ix ||-1| (T*-z2J)-'x||

=: | zx -z21  K2 for zx,z2 e Jx n pVT) .

For weJxr\ oiT) we choose a sequence {z¡}, z¡e Jx n piT) with z¡ -* w. Since

the z¡'s form a Cauchy sequence, {(T* — zf)-1 x} is a Cauchy sequence and we

define (T* — wl)~lx as its limit. Consider the vector-valued function

//(z) = (T*-z/)_1x

defined on Jx n aiT) by this process. Clearly hiz) is continuous on Jx O <x(T) and

lim2 _ri iT* — zT)~1x = hizx) for zepiT). Thus by a well-known theorem (see

[7, p. 184]), (T* — zl)~1x may be extended to be analytic in Jx and so at z0. Thus
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z0ep(T*,x) and hence p(T,x) £ p(T*,x). Finally o(T, x) 2 o(T*, x) which

completes the proof.

Though it might appear to be of little consequence, the last lemma is one of

the key steps in the proof of the main theorem. It, in fact, ensures that the resolution

of the identity for our operator is countably additive. In general o(T, x)$ o(T*. x)

as the reader may easily verify for himself by considering the operator

1      1

0 -1

on a two-dimensional Hubert space. Among other things, o(T, x) 2 o(T*, x),

for all xeH, implies the eigenvectors of T corresponding to distinct eigenvalues

are perpendicular.

Theorem 3. If T is hyponormal and o(T) is an arc, then o(T, x) n o(T, y) = 0

implies (x, y) = 0.

Proof.   The function

fiz) = HT- zl)- ix,y) = (x,(T* - zl) - »>•) = «T*-z/)- -z,x)

is analytic for z £ o(T, x) and z £ o(T*, y). Now since o(T*,y) ç= o(T, y), we have

o(T, x) n o(T*, v) = 0 ; hence f(z) is analytic everywhere. Clearly /(z)

vanishes at infinity and therefore must be identically zero. However,

fiz) = Z„"0-(T"x, y) z~(d+1), hence all coefficients of z" must be zero, in

particular (x, v). This proof is similar to one by J. Schwartz for self-adjoint

operators.

Corollary. If Tis hyponormal and o(T) is an arc, then Tsatisfies Dunford's

boundedness condition B. More explicitly, o(T, x) O o(T, y) = 0 implies

I x I ^ K I x + y ||, K constant, for all x,yeH.

It is clear from Theorem 3 that K may be taken as 1, a fact we will use in the

main theorem.

Theorem 4.   // T is hyponormal and o(T) is an arc, then T is normal.

Proof. Under the hypothesis of the theorem, T must satisfy the growth condi-

tion Gt (Theorem 1) and the boundedness condition B (Corollary to Theorem 3).

We may thus invoke Theorems 15 and 18 of [5] to conclude that T is a scalar

type spectral operator. To show that this scalar operator is normal, one may

observe that the K we showed to be 1 is actually the bound of the norms of the

projections which constitute the resolution of the identity for our operator. For

the reader who prefers not to follow this argument through the proof in question,

we recall that any hyponormal scalar operator T, where area [rr(T)] = 0, is

normal (Theorem 4 of [11]).
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Corollary.   If T is hyponormal and a(T) is real, then T is self-adjoint.

Corollary. If T is hyponormal and a(T) lies on the unit circle, then T is

unitary.

Definition. An operator T is quasi-normal (see [2])if (T*T) T = TiT*T).

An operator T on a Hubert space H is subnormal if there exists a Hubert space

K, K 2 H, and a normal operator B defined on K with Tx = Bx for xeH.

Remark.   One has the following inclusion relation for classes of operators:

Normal Ç Quasi-normal Ç Subnormal s Hyponormal.

The inclusions are all proper. It is interesting to note that differing degrees of

spectral thinness or density imply normality for these operators.

If T is quasi-normal and cj(T) has no interior, then T is normal. (This result

does not appear in the literature but it is not difficult to verify.)

If T is subnormal and area [cr(T)] = 0 then T is normal (see[l]).

If T is hyponormal and a(T) is an arc, then T is normal.

III. We would now like to consider the implication of the growth condition

Öi, i.e., if || (T-z/)x || = d(z,a(T))- || x ||, what can one conclude? We first

mention two results which appear in the literature.

Theorem A (Nieminen [9]). If T satisfies condition Gx and a(T) is real, then

T is self-adjoint.

Theorem B (Donaghue [3]). If T satisfies condition Gx and aiT) lies on the

unit circle, then T is unitary.

As one might expect, we also have

Theorem C. If T satisfies condition G, and aiT) is a finite set of points, then

T is normal.

Proof. For z} e aiT) we choose R small enough to ensure that the points of

the circle I z—Zj | = R are far from the rest of aiT). Then

Ej = ~ f (T-zi)-idz
2/1/    J|  Z-Zj. | = R

is a projection which commutes with T and

•'l*¿J. (T-ziy
\z-Z,\mR

Thus Ej is self-adjoint. Now for x e EjH we have

dzg J_2»tÄ-J- = 1.
27t R

(T-Zjl)x || - Ü-f (z-Z;)(T-z/)-ixdz
1 ¿7tJ  J |z-rj | = R

< R.

Letting R -> 0 we have Tx = z¡x for xe EjH. Thus T = Z"=i zfEj and since

the £/s are self-adjoint, T is normal.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



474 J. G. STAMPFLI [May

Corollary   If T satisfies condition Gx and the underlying space is finite-

dimensional, then T is normal.

However, if T is completely continuous and satisfies condition Gl5 T need not

be normal. We will sketch a simple example to illustrate this. The operator

does not satisfy condition Gl at zero since

We will now define an operator T2 in such a manner that T = Ty ®T2 does

satisfy condition Gt and moreover is completely continuous. Let {/¡}¡°=i be

an orthogonal basis for H2. We now set T2/¡ = a;/¡ where the a/s are complex

numbers placed on circles concentric to the origin with sufficient density to

ensure that min¡ | z — a¡ [ ^ | z |2 for each z, 0 < | z | < 1. This can clearly be

done with zero as the only limit point of the a¡'s. The operator T = Ty ® T2

defined on Hx ® H2 is completely continuous and satisfies condition G. by

construction but it is obviously not normal. This example also illustrates that

if T satisfies condition G, and M is a reducing subspace of T then T | M may

not satisfy condition G,, a fact which makes life more difficult.

We close this section by posing one problem. If T satisfies condition G! and

o(T) is a smooth rectifiable convex arc must T be a normal operator? Since the

proof of Theorem 2 uses only the growth condition G, we may conclude that

for such a T, 2(T) = W(T). Combining this with [8] we observe that T has

no residual spectrum and that the point spectrum of T acts in the correct manner

(as that of normal operator) and can be factored out. The problem is thus

reduced to considering only those operators with continuous spectra.

Using a technique of Aronszajn, Dunford, and Schwartz (see [10]), we find

T has proper invariant subspaces and then there remains the task of piecing

these together to form a resolution of the identity.

IV. We will begin this section with a few results on subnormal and hyponormal

operators which will be helpful in clarifying a conjectured relation between them.

Lemma. 3 Let T be hyponormal on H; then || Tx || = || T*x| // and only

ifT*Tx = TT*x.

Proof. The proof of the sufficiency is obvious. If || Tx || = || T*x || then

((T*T -TT*)x, x) = 0 and hence for y e H,

|((T*T-TT*)x,y)|2 z% \HT*T-TT*)x,x)\-\iiT*T-TT*)y,y)\ = 0

by the generalized Schwarz inequality for positive operators. Since y is arbitrary

we have T*Tx = TT*x as desired.
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Lemma 4. Let T be hyponormal on H and set M = {xeH: || Tx || = || T*x || };

then M is a closed subspace of H.

Proof.   Obvious from Lemma 3.

The subspace M defined above need not be invariant if T is simply hyponormal.

However, for subnormal operators, M is invariant as we shall show and this fact

is sometimes useful in distinguishing between the two classes.

Lemma 5.   // T is subnormal on H and B the normal extension of T, then

|| Tx || = || T*x || if and only if B*x = T*xeH.

Proof. Since || T*x || = || Tx || = || Bx || = || B*x || the proof is obvious for

|| Tx I = || T*x || and the argument is reversible.

Theorem 5. // T is subnormal on H with normal extension B and

M = {xeH: \\ Tx || = || T*x ¡}, then M is a closed invariant subspace of T.

Proof. In view of Lemma 4 we have only to prove M is invariant, that is,

I Tx2 || = || T*Tx || for xeM. From Lemma 5 we know T*x = B*xeH for

xeM and hence

|| T2x || = I B2x || = || B*Bx || = || ßß*x || = || BT*x || = || TT*x

which completes the proof.

Corollary.   // T is subnormal on H and there exists xeH,

that || Tx || = || T I, then T has a proper invariant subspace

Proof. Since || Tx \\ = \\ T || there exists y e H, \\ y || = 1, such that

|| T*y || = || T || (this is true for arbitrary operators). Then

I T || z% || T*y || è i Tv I ^ || T||

which implies the subspace M is not empty. Now if M # H we are done. If M = H,

then T is normal, and invariant subspaces abound.

In [6], Halmos exhibited a hyponormal operator whose square was not

hyponormal. S. Berberian has asked (mimeographed University of Michigan

seminar notes) whether an operator must be subnormal if all its powers are

hyponormal. We are now prepared to give a negative answer to that question. Let

{/¡K^-oo be an orthonormal basis for H and define

f/i+i,    <^o
Tft = \

l2/í+„  i>0

Then Tkf¡ = bikfi + k where | blk \z%\ bi+x>k \ so Tk is hyponormal for k = 1, 2, —.

Since || T/0 || = || T*/0 || but \\T*Tf0 || # j| T2fc \\ we must conclude that T is

not subnormal.

=    T*Tx

x =1 such
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