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HYPONORMALITY AND SPECTRA OF

TOEPLITZ OPERATORS

DOUGLAS R. FARENICK AND WOO YOUNG LEE

Abstract. This paper concerns algebraic and spectral properties of Toeplitz
operators Tϕ, on the Hardy space H2(T), under certain assumptions concern-
ing the symbols ϕ ∈ L∞(T). Among our algebraic results is a characterisation
of normal Toeplitz opertors with polynomial symbols, and a characterisation of
hyponormal Toeplitz operators with polynomial symbols of a prescribed form.
The results on the spectrum are as follows. It is shown that by restricting the
spectrum, a set-valued function, to the set of all Toeplitz operators, the spec-
trum is continuous at Tϕ, for each quasicontinuous ϕ. Secondly, we examine
under what conditions a classic theorem of H. Weyl, which has extensions to
hyponormal and Toeplitz operators, holds for all analytic functions of a single
Toeplitz operator with continuous symbol.

Introduction

An elegant and useful theorem of C. Cowen [7] characterises the hyponormality
of a Toeplitz operator Tϕ on the Hardy space H2(T) of the unit circle T ⊂ C
by properties of the symbol ϕ ∈ L∞(T). This result makes it possible to answer
an algebraic question coming from operator theory – namely, is Tϕ hyponormal?
– by studying the function ϕ itself. In a recent paper [18] of T. Nakazi and K.
Takahashi, Cowen’s method is carried out to obtain substantial new information
about hyponormal Toeplitz operators and their symbols. In the present paper we
study the hyponormality of Tϕ in the cases where ϕ is a trigonometric polynomial

ϕ(eiθ) =
∑N
−m ane

inθ; the goal here is to find conditions on the coefficients an that
are necessary and sufficient for Tϕ to be hyponormal. This problem is still rather
complicated in general; however, in §1 we are able to offer necessary and sufficient
conditions for the normality and hyponormality of Tϕ in the cases where the Fourier
coefficients of ϕ satisfy certain extremal and symmetry properties.

In 1909 H. Weyl examined the spectra of all compact perturbations A+K of a
single hermitian operator A and discovered that λ ∈ σ(A +K) for every compact
operator K if and only if λ is not an isolated eigenvalue of finite multiplicity in
σ(A). Today this result is known as Weyl’s theorem, and it has been extended
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from hermitian operators A to hyponormal operators and to Toeplitz operators by
L. Coburn [4], and to seminormal operators by S. Berberian [1]. In §3 of this paper
we determine properties of continuous functions ϕ that imply that Weyl’s theorem
holds for all analytic functions of the Toeplitz operator Tϕ. This analysis entails an
interesting new fact, which seems to be absent from the literature, concerning the
continuity of the spectrum: when restricted to the linear manifold of all Toeplitz
operators, the spectrum is a continuous (set-valued) function at every Toeplitz
operator Tϕ with quasicontinuous symbol ϕ. In fact, somewhat more general results
are true, and these form the basis of our work in §2 of this paper.

Let L(H) and K(H) denote the algebra of bounded linear operators and the
ideal of compact operators on a complex Hilbert space H, and let π denote the
canonical map L(H) → L(H)/K(H). If T ∈ L(H) is a Fredholm operator, that
is if π(T ) is invertible in L(H)/K(H), then kerT and kerT ∗ are finite-dimensional
and the index of T is the integer

indT = dim kerT − dim kerT ∗ .

The subset of σ(T ) that is stable under compact perturbations is denoted by w(T )
and is called the Weyl spectrum of T . Those Fredholm operators that have in-
dex zero are called Weyl operators. The essential spectrum σe(T ) and the Weyl
spectrum w(T ) are described succintly as follows [14], [15]:

σe(T ) = {λ ∈ C : T − λ1 is not a Fredholm operator},
w(T ) = {λ ∈ C : T − λ1 is not a Weyl operator} .

Evidently σe(T ) ⊆ w(T ) ⊆ σ(T ), although unlike σe and σ, the Weyl spectrum
of T need not satisfy the spectral mapping theorem. The most general result in
this direction [12] states that if f is an analytic function on an open set containing
σ(T ), then

w(f(T )) ⊆ f(w(T )) ;(0.1)

but if T is hyponormal, then [17]

w(f(T )) = f(w(T )) .(0.2)

It is of interest to know which classes of operators T satisfy (0.2), and for some
time it was thought that the Toeplitz operators with continuous symbols may be
one of these classes. In §3 we will show that this conjecture is false; conditions on
ϕ ∈ C(T) will then be sought so that w(f(Tϕ)) = f(w(Tϕ)) for every function f
analytic on an open neighbourhood of σ(Tϕ). We arrive at our results in §3 by
comparing the spectra of the operators Tf◦ϕ and f(Tϕ).

We review here a few essential facts concerning Toeplitz operators with continu-
ous symbols that we will need to begin with, using [8] The Hilbert space L2(T) has a
canonical orthonormal basis given by the trigonometric functions en(z) = zn, for all
n ∈ Z, and the Hardy space H2(T) is the closed linear span of {en : n = 0, 1, . . . }.
An element f ∈ L2 is referred to as analytic if f ∈ H2 and coanalytic if f ∈ L2	H2.
If P denotes the projection operator L2 → H2, then for every ϕ ∈ L∞(T), the op-
erator Tϕ on H2 defined by

Tϕg = P (ϕg) for all g ∈ H2(0.3)
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is called the Toeplitz operator with symbol ϕ. Every Toeplitz operator has con-
nected spectrum and essential spectrum, and by [4],

σ(Tϕ) = w(Tϕ) .(0.4)

The sets C(T) of all continuous complex-valued functions on the unit circle T and
H∞(T) = L∞ ∩H2 are Banach algebras, and it is well-known that every Toeplitz
operator with symbol ϕ ∈ H∞ is subnormal. The C∗-algebra A generated by
all Toeplitz operators Tϕ with ϕ ∈ C(T) has an important property which is very
useful for spectral theory: the commutator ideal of A is the ideal K(H2) of compact
operators on H2. As C(T) and A/K(H2) are ∗-isomorphic C∗-algebras, then for
every ϕ ∈ C(T),

Tϕ is a Fredholm operator if and only if ϕ is invertible,(0.5)

indTϕ = −wn(ϕ) ,(0.6)

σe(Tϕ) = ϕ(T) ,(0.7)

where wn(ϕ) denotes the winding number of ϕ with respect to the origin. Finally,
we make note that if ϕ ∈ C(T) and if f is an analytic function defined on an open
set containing σ(Tϕ), then f ◦ ϕ ∈ C(T) and f(Tϕ) is well-defined by the analytic
functional calculus.

1. Hyponormality of Toeplitz operators with

trigonometric polynomial symbols

An operator T is said to be hyponormal if its selfcommutator [T ∗, T ] = T ∗T −
TT ∗ is positive (semidefinite). Normal Toeplitz operators were characterised by
a property of their symbol in the early 1960’s by A. Brown and P.R. Halmos [3],
and so it is somewhat of a surprise that 25 years passed before the exact nature of
the relationship between the symbol ϕ ∈ L∞ and the positivity of the selfcommu-
tator [T ∗ϕ, Tϕ] was understood (via Cowen’s theorem [7]). As Cowen notes in his
survey paper [6], the intensive study of subnormal Toeplitz operators in the 1970’s
and early 80’s is one explanation for the relatively late appearence of the sequel
to the Brown-Halmos work. The characterisation of hyponormality in [7] requires
one to solve a certain functional equation in the unit ball of H∞ (see below); in
this section we solve this functional equation for trigonometric polynomials ϕ under
certain assumptions about the coefficients of ϕ. Very recently K. Zhu has studied
the same problem from a different point of view [27]; in his work he reformulates
Cowen’s theorem, in the case of a polynomial ϕ, so that the hyponormality of Tϕ
can be decided by applying Schur’s algorithm to the Schur function ΦN . Our results
here are more readily applicable, but they apply to only a subclass of all possible
trigonometric polynomials ϕ inducing hyponormal Toeplitz operators. The case
of arbitrary trigonometric polynomials ϕ, though solved in principle by Cowen’s
theorem or Schur’s algorithm, is in practice very complicated. Indeed it may not
even be possible to find tractable necessary and sufficient conditions for the hy-
ponormality of Tϕ in terms of the Fourier coefficients of a trigonometric polynomial
ϕ unless certain assumptions are made about ϕ.

For each ϕ ∈ L∞ let E(ϕ) = {k ∈ H∞ : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞}. Cowen’s
theorem can be stated as follows (see [18, Lemma 1]): a Toeplitz operator Tϕ is
hyponormal if and only if the subset E(ϕ) of H∞ is nonempty. Suppose that ϕ is
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the trigonometric polynomial ϕ(eiθ) =
∑N
n=−N ane

inθ, where aN 6= 0. If a function
k ∈ H∞ satisfies ϕ− kϕ ∈ H∞, then k necessarily satisfies

k
N∑
n=1

ane
−inθ −

N∑
n=1

a−ne
−inθ ∈ H∞ .(1.0)

From (1.0) one computes the Fourier coefficients k̂(0), . . . , k̂(N − 1) of k to be

k̂(n) = cn, for n = 0, 1, . . . , N − 1, where c0, c1, . . . , cN−1 are determined uniquely
from the coefficients of ϕ by the recurrence relation

c0 =
a−N
aN

,

cn = (aN )−1
(
a−N+n −

n−1∑
j=0

cjaN−n+j

)
, for n = 1, . . . , N − 1 .

(1.1)

Therefore if k1, k2 ∈ E(ϕ), then cn = k̂1(n) = k̂2(n) for all n = 0, 1, . . . , N − 1,

and kp(z) =
∑N−1
j=0 cjz

j is the unique (analytic) polynomial of degree less than N

satisfying ϕ − kϕ ∈ H∞. Conversely, if kp is the polynomial kp(z) =
∑N−1
j=0 cjz

j,

where c0, c1, . . . , cN−1 are determined from the recurrence relation (1.1), then for

every integer n > 0, the Fourier coefficients ϕ̂− kϕ(−n) of ϕ− kϕ satisfy

ϕ̂− kϕ(−n) = a−n −
N−n∑
j=0

cjan+j

=
(
a−n −

N−n−1∑
j=0

cjan+j

)
− cN−naN

= 0 ,

which implies that ϕ − kpϕ ∈ H2. But since ϕ − kpϕ is a polynomial, it follows
that ϕ − kpϕ ∈ H∞. However despite the fact that the recurrence relation (1.1)
can always be solved uniquely to produce an analytic polynomial kp satisfying
ϕ − kpϕ ∈ H∞, the polynomial kp need not be contained in the set E(ϕ), even
if E(ϕ) is known to be nonempty; the problem here is that it is possible for the
norm ||kp||∞ > 1. Consider, for example, the trigonometric polynomial ϕ(eiθ) =
e−i2θ + 2e−iθ + eiθ + 2ei2θ. Solving the recurrence relation (1.1) produces the
polynomial kp(z) = 1

2 + 3
4z, which has norm ||kp||∞ = 5

4 > 1, making kp ineligible
for membership in E(ϕ). On the other hand, a straightforward calculation shows
that the linear fractional transformation

b(z) =
z + 1

2

1 + 1
2z

satisfies ϕ− bϕ ∈ H∞; as b maps the unit circle onto itself, b has norm ||b||∞ = 1.
Thus b ∈ E(ϕ) and so Tϕ is hyponormal. We note here that the Fourier series of b,
namely

b(eiθ) ∼ 1

2
+

3

4
eiθ − 3

2

∞∑
j=2

(
−1

2
)neinθ

= kp(e
iθ) + h(eiθ) ,
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converges uniformly on T to b, and that b is a finite Blaschke product. (The
existence of a such a Blaschke product in E(ϕ) is predicted by Theorem 10 of [18].)

The discussion above views the solution c0, . . . , cN−1 to the recurrence rela-
tion (1.1) as the Fourier coefficients of every possible candidate k for membership
in E(ϕ). In [27], Zhu applies the Schur functions ΦN to the N complex num-
bers c0, . . . , cN−1 to obtain his formulation of Cowen’s theorem (for trigonometeric
polynomials).

Before continuing further, we record here a condition that ϕ must necessarily
satisfy in order for Tϕ to be a hyponormal operator.

A Condition Necessary for Hyponormality. Suppose that ϕ is a trigonomet-

ric polynomial of the form ϕ(eiθ) =
∑N
n=−m ane

inθ, where a−m and aN are nonzero.
If Tϕ is hyponormal, then m ≤ N and |a−m| ≤ |aN |.

Proof. Proofs that m ≤ N can be found in [18, Cor. 5] and [27, Cor. 2]. Let
c0, . . . , cN−1 be the solution to the recurrence relation (1.1); because |aN | 6= 0, we
have |cN−m| = |a−m|/|aN |. There is a function k ∈ E(ϕ) such that

k̂(N −m) = cN−m; thus 1 ≥ ||k||∞ ≥ |cN−m| = |a−m|/|aN |, which implies that
|a−m| ≤ |aN |.

The necessary condition above shows that the cases where |a−m| = |aN | are, in
some sense, extremal among all possibilites for hyponormality. Theorem 1.4 treats
such cases, and the result will show that one further feature, namely a symmetry
property, is also present.

Proposition 1.1 shows that under strong enough conditions, the polynomial kp
will be an element of E(ϕ).

Proposition 1.1. If ϕ(eiθ) =
∑N
n=−N ane

inθ, where aN 6= 0, and if c0, c1, . . . ,
cN−1 ∈ C are obtained from the coefficients of ϕ by solving the recurrence relation
(1.1), then the Toeplitz operator Tϕ is hyponormal whenever

N−1∑
j=0

|cj | ≤ 1 .(1.1.1)

Proof. As we know, the polynomial kp(z) =
∑N−1
j=0 cjz

j satisfies ϕ − kpϕ ∈ H∞.

From ||kp||∞ ≤
∑N−1
j=0 |cj | ≤ 1 we have that kp ∈ E(ϕ), and so Tϕ is hyponormal.

Remark 1.2. If ϕ(eiθ) =
∑N
n=−N ane

inθ, where |aj | ≤ |aN |, for all j = 2, . . . , N−1,
then from the recurrence relation (1.1) we have that

N−1∑
j=0

|cj | ≤ |c0|+ |aN |−2
N−1∑
n=1

2n−1|Dn| ,

where Dn = det

(
a−n a−N
an aN

)
. Therefore if

N−1∑
n=1

2n−1|Dn| + |a−NaN | ≤ |aN |2 ,(1.2.1)

then by Proposition 1.1, Tϕ is hyponormal. Because the left-hand side of (1.2.1)
depends on a−N and aN and the right-hand side depends on |aN |2, it follows that
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Tϕ is hyponormal whenever |aN | is sufficiently large. In particular, the Toeplitz
operator with symbol ϕ+ λeiNθ is hyponormal whenever λ ∈ C is such that

|λ| ≥
N−1∑
n=1

2n−1(|a−n|+ |an|) + |a−N |+ |aN | .

Remark 1.3. If a−N = · · · = a−2 = 0, then the solution to the recurrence relation
(1.1) is c0 = · · · = cN−2 = 0 and cN−1 = a−1/aN ; thus the analytic polynomial
kp ∈ H∞ is kp(z) = (a−1/aN)zN−1. Therefore the norm of every k ∈ H∞ that
satisfies ϕ− kϕ ∈ H∞ is such that

||k||∞ ≥
∣∣∣∣a−1

aN

∣∣∣∣ = ||kp||∞ .

Therefore, Tϕ is hyponormal if and only if |a−1| ≤ |aN | (which was shown earlier
in [11]).

The following theorem and its corollary concern the extremal cases: |a−m| =
|aN | 6= 0. Equations (1.4.1) and (1.5.1) below emphasize the symmetry underlying
the hyponormality and normality of these operators.

Theorem 1.4. Suppose that ϕ(eiθ) =
∑N
n=−m ane

inθ, where m ≤ N and |a−m| =
|aN | 6= 0, and let E(ϕ) ⊂ H∞ be the subset of all k ∈ H∞ for which ||k||∞ ≤ 1 and
ϕ− kϕ ∈ H∞. The following statements are equivalent.

1. The Toeplitz operator Tϕ is hyponormal.

2. For all k = 1, . . . , N − 1, det

(
a−(m−k) a−m
a(N−k) aN

)
= 0.

3. The following equation in Cm holds:

aN



a−1

a−2

...

...
a−m


= a−m



aN−m+1

aN−m+2

...

...
aN


.(1.4.1)

4. E(ϕ) = {a−m(aN )−1zN−m}.
Moreover, if Tϕ is hyponormal, then the rank of [T ∗ϕ, Tϕ] is N −m.

Proof. Let c0, . . . , cN−1 be the solution to the recurrence relation (1.1); because
|a−m| = |aN | 6= 0, we have |cN−m| = 1. Note that if m < N , then c0 = · · · =
cN−m−1 = 0.

If a function k ∈ H∞ satisfies ϕ − kϕ ∈ H∞, then the Fourier series expansion
of k is

k =
N−1∑
j=0

cje
ijθ +

∞∑
n=N

bne
inθ for some set of bn ∈ C .

From the fact that ||k||∞ ≥ ||k||2 we have that ||k||∞ ≥ |cN−m| = 1; if for some
j > (N −m) or n ≥ N there is a nonzero Fourier coefficient cj or bn of k, then

||k||∞ ≥ max

{√
|cN−m|2 + |cj |2,

√
|cN−m|2 + |bn|2

}
> 1 .
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Thus ||k||∞ = 1 if and only if cN−m is the only nonzero Fourier coefficient of
k. Therefore E(ϕ) can have at most one element: namely cN−mz

N−m. Hence,
statements (1) and (4) are equivalent. We now proceed to prove the equivalence of
statements (1) and (2); obviously (2) and (3) are the exact same statement.

Suppose that Tϕ is hyponormal. Then there exists k ∈ E(ϕ) and by the discussion
above, k(z) = cN−mz

N−m. Hence, for every k = 1, . . . ,m− 1,

0 = |cN−m+k| =
∣∣∣∣ 1

aN
(a−(m−k) − cN−maN−k)

∣∣∣∣
=

∣∣∣∣ 1

aN

∣∣∣∣2 ∣∣∣∣det

(
a−(m−k) a−m
a(N−k) aN

)∣∣∣∣ .
Conversely, if det

(
a−(m−k) a−m
a(N−k) aN

)
= 0 for all k = 1, . . . , N − 1, then

|cN−m+1| =
∣∣∣∣ 1

aN
(a−(m−1) − cN−maN−1)

∣∣∣∣ = ∣∣∣∣ 1

aN

∣∣∣∣2 ∣∣∣∣det

(
a−(m−1) a−m
a(N−1) aN

)∣∣∣∣ = 0

and hence

|cN−m+2| = |
1

aN
(a−(m−2) − cN−maN−2 − cN−m+1aN−1)|

=

∣∣∣∣ 1

aN

∣∣∣∣2 ∣∣∣∣det

(
a−(m−2) a−m
a(N−2) aN

)∣∣∣∣ = 0 .

Inductively, we obtain ck = 0 for all k = 1, . . . , N − m − 1. As c0 = · · · =
cN−m−1 = 0 if m < N , and |cN−m| = 1, we have that the analytic polynomial

kp(z) =
∑N−1
j=0 cjz

j is of the form kp(z) = cN−mz
N−m and therefore kp ∈ E(ϕ).

This completes the proof that statements (1) and (2) are equivalent.
Lastly, if Tϕ is hyponormal, then E(ϕ) = {a−maN zN−m}. Because the selfcommu-

tator [T ∗ϕ, Tϕ] has finite rank, Theorem 10 of [18] states that there exists a finite
Blaschke product b ∈ E(ϕ) of degree equal to the rank of [T ∗ϕ, Tϕ]. In our case there

is only one element in E(ϕ): b(z) = a−m
aN

zN−m, which is a finite Blaschke product
of degree N −m.

The following necessary and sufficient condition for normality is to be expected,
given that every normal Toeplitz operator is a translation and rotation of a her-
mitian Toeplitz operator [3].

Corollary 1.5. If ϕ(eiθ) =
∑N
n=−m ane

inθ, then Tϕ is normal if and only if m =
N , |a−N | = |aN |, and

aN



a−1

a−2

...

...
a−N


= a−N



a1

a2

...

...
aN


.(1.5.1)
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Proof. If m = N , |a−m| = |aN |, and det

(
a−(m−k) a−m
a(N−k) aN

)
= 0 for all k =

1, . . . , N−1, then by Theorem 1.4, Tϕ is hyponormal and rank [T ∗ϕ, Tϕ] = N−m = 0;
that is, Tϕ is normal. Conversely, if Tϕ is normal, then by the Brown-Halmos the-
orem [3], there are scalars α, β ∈ C and a real-valued ψ ∈ L∞ such that Tϕ =
αTψ +β1. As Tψ is a hermitian Toeplitz operator, the Fourier coefficients of ψ sat-

isfy ψ̂(n) = ψ̂(−n) for all n; in particular |α| |aN | = |ψ̂(N)| = |ψ̂(−N)| = |α| |a−N |,
showing that |a−N | = |aN |. Thus, N = m and (1.5.1) holds.

Remark 1.6. For trigonometric polynomials ϕ satisfying the assumptions of The-
orem 1.4, the question of whether or not the Toeplitz operator Tϕ is hyponormal
is completely independent of the values the coefficients a0, . . . , aN−m of ϕ. This
interesting fact does not appear to be a coincidence, for it is noted as well by Zhu
[27] under weaker assumptions.

Example 1.7. Consider the following two trigonometric polynomials:

ϕ1(e
iθ) = e−i2θ + ei3θ + ei4θ,

ϕ2(e
iθ) = e−i2θ + e−iθ + ei3θ + ei4θ.

Intuition suggests that ϕ2 is less likely than ϕ1 to induce a hyponormal Toeplitz
operator, as ϕ2 is “less analytic” in that the (coanalytic) term e−iθ is present in
ϕ2 but not in ϕ1. However the opposite is true: Theorem 1.4 shows that Tϕ2 is
hyponormal (with rank-2 selfcommutator) whereas Tϕ1 is not.

With the following result, we relax the condition that |a−N | = |aN |, however
we retain some symmetry. In the case where N = 2 below, the result reduces to
Theorem 1 of [10].

Theorem 1.8. Suppose that ϕ(eiθ) =
∑N
n=−N ane

inθ, where N ≥ 2, |aN | 6= 0, and
the coefficients of ϕ satisfy

aN



a−2

a−3

...

...
a−N


= a−N



a2

a3

...

...
aN


.(1.8.1)

Then we have that

|aN |2 − |a−N |2 ≥
∣∣∣∣det

(
a−1 a−N
a1 aN

)∣∣∣∣
⇒ Tϕ is hyponormal(1.8.2)

⇒ |aN |2 − |a−N |2 ≥

√∣∣∣∣det

(
a−1 a−N
a1 aN

)∣∣∣∣2 + d2 − d,

where d = 1
2 (1− |a−N |2|aN |−2)

∑N−1
n=2 |an|2 and d is taken to be 0 if N = 2.

Proof. To begin with, assume that the first inequality (1.8.2) holds; we are to prove
that Tϕ is hyponormal. Solving the recurrence relation (1.1) under the condition
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(1.8.1) produces the analytic polynomial kp(z) = c0 + cN−1z
N−1, where

c0 = a−N/aN and cN−1 = (aN )−2 det

(
a−1 a−N
a1 aN

)
.

The first inequality (1.8.2) implies that

1− |c0|2 ≥ |cN−1|.(1.8.3)

The right-hand side of (1.8.3) is nonnegative, and so |c0| ≤ 1. Now if |c0| = 1, then
|cN−1| = 0 and Tϕ is normal; assume, therefore, that |c0| < 1. Let k ∈ H2 be the
function with Fourier series expansion

k = kp(e
iθ) + cN−1

∞∑
n=1

(−1)n
(
cN−1c0
|cN−1|

)n
ei(N−1)(n+1)θ .

As k̂(n) = cn for n = 0, . . . , N − 1, it remains only to prove that k is in the unit

ball of H∞. Let α = cN−1c0
|cN−1| , which is a complex number of modulus |α| = |c0| < 1.

Then

k(z) = c0 + cN−1z
N−1 + cN−1

∞∑
n=1

(−1)n
(
cN−1c0
|cN−1|

)n
(zN−1)n+1

=
cN−1

1− |c0|2

(
c0cN−1

|cN−1|
+ (1− |c0|2)zN−1

)
+

(
1− |cN−1|

1− |c0|2

)
c0

+
cN−1

1− |c0|2
∞∑
n=1

(
−cN−1c0
|cN−1|

)n
(1− |c0|2)(zN−1)n+1

=
cN−1

1− |α|2

(
−α+

∞∑
n=0

αn(1− |α|2)(zN−1)n+1

)
+

(
1− |cN−1|

1− |α|2

)
c0

=
cN−1

1− |α|2

(
zN−1 − α
1− αzN−1

)
+

(
1− |cN−1|

1− |α|2

)
c0 .

Because the function w 7→ (w−α)(1−αw)−1 is a linear fractional transformation,
mapping T onto itself, we obtain the estimate

||k||∞ ≤
|cN−1|
1− |α|2

∣∣∣∣ zN−1 − α
1− αzN−1

∣∣∣∣+(1− |cN−1|
1− |α|2

)
|c0|

≤ |cN−1|
1− |α|2 +

(
1− |cN−1|

1− |α|2

)
= 1 ,

which proves that k ∈ E(ϕ).
Suppose now that Tϕ is hyponormal. With repsect to the orthonormal basis

{zn : n = 0, 1, . . .} of H2, the selfcommutator of Tϕ is a matrix with (µ, ν)-entry
given by

αµ ν =
∞∑
j=0

(aj−µaj−ν − aµ−jaν−j) , where µ, ν = 0, 1, 2, . . . .
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Thus, in particular,

α0 0 =
N∑
n=1

(|an|2 − |a−n|2),

αN−1N−1 = |aN |2 − |a−N |2,
α0N−1 = αN−1 0 = aNa1 − a−Na−1 .

The operator [T ∗ϕ, Tϕ] is positive and, therefore, so is its 2× 2 principal submatrix(
α0 0 α0N−1

αN−1 0 αN−1N−1

)
.

Hence α0 0 and αN−1N−1 are nonnegative and

0 ≤ det

(
α0 0 α0N−1

αN−1 0 αN−1N−1

)
= α0 0αN−1N−1 − |α0N−1|2

=

(
N∑
n=1

(|an|2 − |a−n|2)
)

(|aN |2 − |a−N |2)− |aNa1 − a−Na−1|2 .

The symmetry condition (1.8.1) yields |a−n| = |a−N/aN | |an| for n = 2, . . . , N − 1.
Direct computation reveals that

(|a1|2 − |a−1|2)(|aN |2 − |a−N |2) + |aNa−1 − a−Na1|2 = |aNa1 − a−Na−1|2 ,
and so

0 ≤ det

(
α0 0 α0N−1

αN−1 0 αN−1N−1

)
≤ (|aN |2 − |a−N |2)2 + (|a1|2 − |a−1|2)(|aN |2 − |a−N |2)

− |aNa1 − a−Na−1|2 + (|aN |2 − |a−N |2)
N−1∑
n=2

(|an|2 − |a−n|2)

= (|aN |2 − |a−N |2)2 − |aNa−1 − a−Na1|2

+ (|aN |2 − |a−N |2)(1−
∣∣∣∣a−NaN

∣∣∣∣2)N−1∑
n=2

|an|2 .

Therefore,

|aN |2 − |a−N |2 ≥

√∣∣∣∣det

(
a−1 a−N
a1 aN

)∣∣∣∣2 + d2 − d ,

where d = 1
2 (1− |a−N |2|aN |−2)

∑N−1
n=2 |an|2.

Theorem 1.8 can be applied to show that the Toeplitz operator with symbol

ϕ(eiθ) = e−i5θ − e−i4θ + e−i2θ + e−iθ + 2ei2θ − 2ei4θ + 2ei5θ ,

whose coefficents satisfy the symmetric relation (1.8.1), but for which there is no
symmetry involving a−1 and a1, is hyponormal. However with full symmetry, mean-
ing that a−1 and a1 are related as well, we obtain the following interesting necessary
and sufficient condition for hyponormality, which is, in some sense, dual to Theo-
rem 1.4 but comparable to Corollary 1.5. The result is a generalisation of the fact
that U∗ + λU , where U is the unilateral shift operator, is hyponormal if and only
if |λ| ≥ 1.
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Corollary 1.9. If ϕ(eiθ) =
∑N
n=−N ane

inθ is such that

aN



a−1

a−2

...

...
a−N


= a−N



a1

a2

...

...
aN


,(1.9.1)

then Tϕ is hyponormal if and only if |a−N | ≤ |aN |.

2. Spectral variation within the manifold T

of Toeplitz operators

Let K denote the set, equipped with the Hausdorff metric, of all compact subsets
of C. The spectrum can be viewed as a function σ : L(H) → K, mapping each
operator T to its spectrum σ(T ). It is well-known that the function σ is upper-
semicontinuous and that σ does have points of discontinuity. Of interest, therefore,
is the identification of points of spectral continuity, as in [5], and of classes C

of operators for which σ becomes continuous when restricted to C. Perhaps the
most accessible result in the latter direction is the one of J. Newburgh [19]: when
restricted to the set of normal operators, σ is a continuous function. As noted in
Solution 104 of [13], Newburgh’s argument uses the fact that normal operators have
normal resolvents and that normal operators are normaloid (i.e., the spectral radius
is the same as the norm). Although Toeplitz operators are normaloid, their inverses
need not, in general, be normaloid. Of course, if ϕ is analytic or coanalytic, and if
Tϕ is invertible, then its inverse T−1

ϕ is also a Toeplitz operator T 1
ϕ

[25, Theorem

II] and, hence, normaloid. In this case, the arguments of Newburgh apply to show
that σ is continuous when restricted to the manifolds of analytic Toeplitz operators
and co-analytic Toeplitz operators.

Let T denote the subset of L(H2) consisting of all Toeplitz operators. In this
section we study the continuity properties of σ as a function σ : T → K; that is,
we restrict σ to the set of Toeplitz operators. Although it is open in regards to
whether or not the function σ : T → K is continuous, we are able to establish
points of spectral continuity at Toeplitz operators with quasicontinuous symbols.
In fact we shall demonstrate that under fairly general assumptions on ϕ ∈ L∞, the
operator Tϕ is a point of continuity for the spectral function σ : T→ K.

We require the use of certain closed subspaces and subalgebras of L∞(T), which
are described in further detail in [9] and Appendix 4 of [20]. Recall that the subspace
H∞(T)+C(T) is a closed subalgebra of L∞. The elements of the closed selfadjoint
subalgebra QC, which is defined to be

QC =
(
H∞(T) + C(T)

)
∩
(
H∞(T) + C(T)

)
,

are called quasicontinuous functions. The subspace PC is the closure in L∞(T) of
the set of all piecewise continuous functions on T. Thus ϕ ∈ PC if and only if it
is right continuous and has both a left- and right-hand limit at every point. There
are certain algebraic relations among Toeplitz operators whose symbols come from
these classes, including

TψTϕ − Tψϕ ∈ K(H2) for every ϕ ∈ H∞(T) + C(T) and ψ ∈ L∞(T) ,(2.0.1)
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and

the commutator [Tϕ, Tψ] is compact for every ϕ,ψ ∈ PC .(2.0.2)

We add to these relations the following one.

Lemma 2.1. If Tϕ is a Toeplitz operator with quasicontinuous symbol ϕ, and if f
is an analytic function on an open set containing σ(Tϕ), then Tf◦ϕ − f(Tϕ) is a
compact operator.

Proof. Assume that ϕ ∈ QC. Recall from [8, p. 188] that if ψ ∈ H∞ + C(T),
then Tψ is Fredholm if and only if ψ is invertible in H∞ + C(T). Therefore for

every λ 6∈ σ(Tϕ), both ϕ − λ and ϕ− λ are invertible in H∞ + C(T); hence,
(ϕ − λ)−1 ∈ QC. Using this fact together with (2.0.1) we have that, for ψ ∈ L∞
and λ, µ ∈ C,

Tϕ−µTψT
−1
ϕ−λ − T(ϕ−µ)ψ(ϕ−λ)−1 ∈ K(H2) whenever λ /∈ σ(Tϕ) .

The arguments above extend to rational functions to yield: if r is any rational
function with all of its poles outside of σ(Tϕ), then r(Tϕ)−Tr◦ϕ ∈ K(H2). Suppose
that f is an analytic function on an open set containing σ(Tϕ). By Runge’s theorem
there exists a sequence of rational functions rn such that the poles of each rn lie
outside of σ(Tϕ) and rn → f uniformly on σ(Tϕ). Thus rn(Tϕ) → f(Tϕ) in the
norm-topology of L(H2). Furthermore, because rn ◦ ϕ→ f ◦ ϕ uniformly, we have
Trn◦ϕ → Tf◦ϕ in the norm-topology. Hence, Tf◦ϕ − f(Tϕ) = lim

(
Trn◦ϕ − rn(Tϕ)

)
,

which is compact.

Lemma 2.1 does not extend to piecewise continuous symbols ϕ ∈ PC, as we
cannot guarantee that Tnϕ − Tϕn ∈ K(H2) for each n ∈ Z+. For example, if

ϕ(eiθ) = χT+−χT−, where χT+ and χT− are characteristic functions of, respectively,
the upper semicircle and the lower semicircle, then T 2

ϕ − I is not compact.

Corollary 2.2. If Tϕ is a Toeplitz operator with quasicontinuous symbol ϕ, then
for every analytic function f on an open set containing σ(Tϕ),

(1) w(f(Tϕ)) = σ(Tf◦ϕ), and
(2) f(Tϕ) is essentially normal and is unitarily equivalent to a compact perturba-

tion of f(Tϕ)⊕Mf◦ϕ, where Mf◦ϕ is the operator of multiplication by f ◦ ϕ
on L2(T).

Proof. Because the Weyl spectrum is stable under the compact perturbations, it
follows from Lemma 2.1 that w(f(Tϕ)) = w(Tf◦ϕ) = σ(Tf◦ϕ), which proves state-
ment (1). To prove (2), observe that because QC is a closed algebra, the composi-
tion of the analytic function f with ϕ ∈ QC produces a quasicontinuous function
f ◦ ϕ ∈ QC. Moreover, by (2.0.1), every Toeplitz operator with quasicontinuous
symbol is essentially normal. The (normal) Laurent operator Mf◦ϕ on L2(T) has
its spectrum contained within the spectrum of the (essentially normal) Toeplitz
operator Tf◦ϕ. Thus there is the following relationship involving the essentially
normal operators f(Tϕ) and Mf◦ϕ ⊕ f(Tϕ):

σe
(
f(Tϕ)⊕Mf◦ϕ

)
= σe(f(Tϕ)) and SP(f(Tϕ)) = SP

(
f(Tϕ)⊕Mf◦ϕ

)
,

where SP(T ) denotes the spectral picture of an operator T . (The spectral picture
SP(T ) is the structure consisting of the set σe(T ), the collection of holes and
pseudoholes in σe(T ), and the Fredholm indices associated with these holes and
pseudoholes.) Thus it follows from the Brown-Douglas-Fillmore theorem [23] that
there exists a unitary operator W and a compact operator K such that
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W
(
f(Tϕ)⊕Mf◦ϕ

)
W ∗ +K = f(Tϕ).

Corollary 2.2 (1) can be viewed as saying that σ(f(Tϕ)) \ σ(Tf◦ϕ) consists of
holes with winding number zero.

Continuity modulo the compact operators will be a key to our study of spectral
variation. The first result is an easy application of a theorem of Newburgh.

Lemma 2.3. ([19, Theorem 4]) If {Tn}n is a sequence of operators converging to
an operator T and such that [Tn, T ] is compact for each n, then limσe(Tn) = σe(T ).

Proof. Newburgh’s theorem is stated as follows: if in a Banach algebra A, {ai}i is a
sequence of elements commuting with a ∈ A and such that ai → a, then lim σ(ai) =
σ(a). If π denotes the canonical homomorphism of L(H) onto the Calkin algebra
L(H)/K(H), then the assumptions give that π(Tn)→ π(T ) and [π(Tn), π(T )] = 0
for each n. Hence, lim σ(π(Tn)) = σ(π(T )); that is, limσe(Tn) = σe(T ).

Theorem 2.4. Suppose that T, Tn ∈ L(H), for n ∈ Z+, are such that Tn converges
to T . Suppose that f is any analytic function whose domain is an open set V
containing σ(T ). If [Tn, T ] ∈ K(H) for each n, then

lim w(f(Tn)) = w(f(T )).(2.4.1)

Remark. Because Tn → T , by the upper-semicontinuity of the spectrum, there is a
positive integer N such that σ(Tn) ⊆ V whenever n > N . Thus, in the left-hand
side of (2.4.1) it is to be understood that n > N .

Proof of Theorem 2.4. If Tn and T commute modulo the compact operators then,
whenever T−1

n and T−1 exist, Tn, T, T
−1
n and T−1 all commute modulo the compact

operators. Therefore r(Tn) and r(T ) also commute modulo K(H) whenever r is a
rational function with no poles in σ(T ) and n is sufficiently large. Using Runge’s
theorem we can approximate f on compact subsets of V by rational functions r
whose poles lie off of V . So there exists a sequence of rational functions ri whose
poles lie outside of V and ri → f uniformly on compact subsets of V . If n > N ,
then by the functional calculus,

f(Tn)f(T )− f(T )f(Tn) = lim
i

(
ri(Tn)ri(T )− ri(T )ri(Tn)

)
,

which is compact for each n. Furthermore,

||f(Tn)− f(T )|| = || 1

2πi

∫
Γ

f(λ)
(
(λ− Tn)−1 − (λ− T )−1

)
dλ||

≤ 1

2πi
`(Γ) max

λ∈Γ
|f(λ)| ·max

λ∈Γ
||(λ− Tn)−1 − (λ− T )−1|| ,

where Γ is the boundary of V and `(Γ) denotes the arc length of Γ. The right-hand
side of the above inequality converges to 0, and so f(Tn) → f(T ). By Lemma
2.3, lim σe(f(Tn)) = σe(f(T )). The arguments used by J.B. Conway and B.B.
Morrel in Proposition 3.11 of [5] can now be used here to obtain the conclusion
lim w(f(Tn)) = w(f(T )).

We now are ready to prove the main result in this section.

Theorem 2.5. The restriction of σ to the manifold T of all Toeplitz operators is
continuous at every Toeplitz operator with quasicontinuous symbol. Moreover, if
ϕ ∈ QC, ϕn ∈ L∞, and ||Tϕn − Tϕ|| → 0, then lim w(f(Tϕn)) = σ(Tf◦ϕ).
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Proof. Suppose ϕ ∈ QC, ϕn ∈ L∞, and ||Tϕn − Tϕ|| → 0. Then by (2.0.1),
[Tϕn , Tϕ] ∈ K(H2). Therefore by Theorem 2.4, limw(Tϕn) = w(Tϕ), and hence
limσ(Tϕn) = σ(Tϕ). Also, because f ◦ ϕ ∈ QC and f ◦ ϕn → f ◦ ϕ, it follows from
Lemma 2.1 that limw(f(Tϕn)) = limσ(Tf◦ϕn) = σ(Tf◦ϕ).

The argument of Theorem 2.5 is limited to quasicontinuous symbols, as we need
to ensure that [Tϕn , Tϕ] is compact for every n. If one imposes more requirements
on the functions ϕn ∈ L∞, then Theorem 2.5 can be made more general. This
occurs, in particular, if each ϕn is an element of PC.

Corollary 2.6. The restriction of σ to TPC is continuous, where TPC is the set of
all Toeplitz operators having symbols that are uniform limits of piecewise continuous
functions.

Proof. This follows from (2.0.2) and Theorem 2.4.

With a piecewise continuous function ϕ, one can obtain a continuous curve ϕ#

by joining ϕ(ei θ−0) and ϕ(ei θ) (0 ≤ θ < 2π) by the line segment [ϕ(ei θ−0), ϕ(ei θ)].
Widom [25] showed that for every ϕ ∈ PC, σe(Tϕ) = ϕ#(T) and σ(Tϕ) consists
of ϕ#(T) together with some of its holes. This work is described in [8] and [20] as
well. In a footnote on page 23 of his monograph [9], R.G. Douglas observes that
the results he had been developing for Toeplitz operators with piecewise continuous
symbols in fact hold, more generally, for symbols ϕ ∈ L∞(T) having the property
that

Vλ0(ϕ) =
⋂
ε>0

cl
[
ϕ(λ0 − ε, λ0 + ε)

]
(2.7.1)

is contained in some line segment Lλ0 for each λ0 ∈ T. In this case,

σe(Tϕ) =
⋃
λ0∈T

convVλ0(ϕ).(2.7.2)

We shall call functions ϕ satisfying (2.7.1) Douglas functions; let D(T) denote the
set of all Douglas functions in L∞(T). Our aim is to extend Corollary 2.6 so that
TPC is replaced by a more general class in which every Toeplitz operator with
symbol ϕ ∈ D(T) is a point of spectral continuity (see Theorem 2.11). This general
class of operators will be the Toeplitz operators whose symbols are pseudo-piecewise
continuous functions.

Definition 2.8. Let ˆ: L∞ → C(∂̃H∞) denote the Gelfand transform, where ∂̃H∞

is the S̆ilov boundary of H∞(T) (i.e. ∂̃H∞ is the maximal ideal space of L∞). If

ϕ ∈ L∞, then by the Gelfand theory, ϕ̂(∂̃H∞) is the spectrum of ϕ, as an element of

L∞; namely, ϕ̂(∂̃H∞) is the essential range ess-ranϕ of ϕ. Now given ϕ ∈ L∞(T),

let Vλ0(ϕ) be as in (2.7.1). If ϕ has the property that ∂ convVλ0(ϕ) ⊆ ϕ̂(∂̃H∞),
or that ∂ convVλ0(ϕ) is contained in some line segment Lλ0 , for each λ0 ∈ T,
then ϕ will be called pseudo-piecewise continuous. Write PPC for the set of all
pseudo-piecewise continuous functions in L∞.

For every λ0 ∈ T and ϕ ∈ D(T), convVλ0(ϕ) = ∂convVλ0(ϕ), and so D(T) ⊆
PPC. If ϕ ∈ PPC, then (2.7.2) (together with the fact that Tϕ is not a Fredholm
operator whenever ϕ cannot be inverted in L∞(T)) gives⋃

λ0∈T
∂ convVλ0(ϕ) ⊆ σe(Tϕ) .(2.8.1)
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The following example shows that the inclusion D(T) ⊆ PPC is proper.

Example 2.9. There exists ϕ ∈ L∞(T) such that ϕ ∈ PPC \D(T).

Proof. Set

ϕ(ei θ) =


ei π(1+ 1

2 sin 1
θ ) (0 < θ < 2

3π ),

( 1
π + i) + 1

π e
i 3π2

6π2−8
(2π− 2

π−θ) ( 2
3π ≤ θ ≤ 2π − 2

π ),

2π − θ + i sin 1
2π−θ (2π − 2

π < θ < 2π).

At λ0 = 0, the graphs of ϕ(T) and V0(ϕ) are in Figure 1. Therefore convV0(ϕ) is
contained in no line segment and hence ϕ /∈ D(T). But evidently, ∂ convVλ0(ϕ) =
Vλ0(ϕ) for each λ0 ∈ T. In fact,⋃

λ0∈T
Vλ0(ϕ) = {ϕ̂(γ) : γ ∈ ∂̃H∞} .

Therefore ϕ ∈ PPC.

Theorem 2.10. If ϕn ∈ PPC,ϕ ∈ D(T) and ‖Tϕn − Tϕ‖ → 0, then

∂σ(Tϕ) ⊆ ∂(lim inf σ(Tϕn)).

Proof. Since lim inf σ(Tϕn) ⊆ σ(Tϕ) and hence int(lim inf σ(Tϕn)) ⊆ intσ(Tϕ), it
suffices to show that ∂σ(Tϕ) ⊆ lim inf σ(Tϕn). Assume λ /∈ lim inf σ(Tϕn). Then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4168 DOUGLAS R. FARENICK AND WOO YOUNG LEE

there exists a neighborhood N1(λ) of λ that does not intersect in finitely many
σ(Tϕn). Thus we choose a subsequence {ϕni} of {ϕn} such that Tϕni−µ is invertible

for each µ ∈ N1(λ), which says that ϕni(T) ∩ N1(λ) = ∅ for each ni. Since
‖ϕn − ϕ‖∞ = ‖Tϕn − Tϕ‖ → 0, there exists a neighborhood N2(λ) of λ such that
ϕ(T) ∩N2(λ) = ∅ and N2(λ) ⊆ N1(λ). We now claim that

λ /∈
⋃
λ0∈T

convVλ0(ϕ).

On the contrary, we assume that λ ∈ convVλ0(ϕ) for some λ0 ∈ T. Since ϕ(T) ∩
N2(λ) = ∅, and ϕ ∈ D(T), λ must lie in some line segment Lλ0(ϕ) such that
Lλ0(ϕ) ∩ ϕ(T) 6= ∅. Since ||ϕni − ϕ|| → 0, we have Vλ0(ϕni) → Vλ0(ϕ) and
hence ∂ convVλ0(ϕni) → ∂ convVλ0(ϕ). But since ∂ convVλ0(ϕ) is contained in a
line segment and, by (2.8.1), ∂ convVλ0(ϕni) ⊆ σe(Tϕni ), if follows that for each

neighborhood N (λ), there exists a µ ∈ N (λ) such that Tϕni − µ is not Fredholm,
which gives a contradiction. Therefore λ /∈

⋃
λ0∈T convVλ0(ϕ). Thus by (2.7.2),

Tϕ − λ is Fredholm. Now because for every T ∈ L(H), ∂σ(T ) \ σe(T ) consists of
isolated points of σ(T ), we can conclude λ /∈ ∂σ(Tϕ) because σ(Tϕ) is connected.
This completes the proof.

We now have our extension of Corollary 2.6 with the following result.

Theorem 2.11. The restriction of σ to the set of all Toeplitz operators with
pseudo-piecewise continuous symbols is continuous at each Toeplitz operator with
Douglas symbol.

Proof. Suppose ϕn ∈ PPC, ϕ ∈ D(T) and ||Tϕn − Tϕ|| → 0. By Theorem 2.10

σ(Tϕ)∧ =
(
lim inf σ(Tϕn)

)∧
,

where K∧ denotes the polynomial-convex hull of K. Consequently, the passage
from lim inf σ(Tϕn) to σ(Tϕ) is the filling of some holes of lim inf σ(Tϕn). Thus if
lim inf σ(Tϕn) has no holes, then evidently σ(Tϕ) = lim inf σ(Tϕn). Suppose now
lim inf σ(Tϕn) has a hole Ω. Since

⋃
λ0∈T ∂ convVλ0(ϕn) →

⋃
λ0∈T ∂ convVλ0(ϕ),

we see that for sufficiently large n, ϕn behaves like a Douglas function locally on
T. Thus we can conclude that ∂Ω can be regarded as a “local closed curve” (see
[9]) determined by ∂ convVλ(ϕ). Since ∂ convVλ(ϕ) = convVλ(ϕ), we have that

∂Ω =
⋃
λ0∈S

convVλ(ϕ) for some subset S of T.

Thus the index theory for continuous symbols can be applied for this local closed
curve ([9]). But ||ϕn − ϕ||∞ → 0 and so, for sufficiently large n,

−ind (Tϕ − λ) = wn (ϕ− λ) = wn(ϕn − λ) = −ind (Tϕn − λ) for each λ ∈ Ω .

Hence σ(Tϕ) \ lim inf σ(Tϕn) has no hole with non-zero winding number, and con-
sequently σ(Tϕ) = lim inf σ(Tϕn).

We were unable to decide whether or not, in Theorem 2.11, D(T) can be replaced
by PPC. (If we could have equality in (2.8.1), then the answer would be yes.) More
interesting still is the the following open problem.

Problem A. Is the restriction of σ to the set of all Toeplitz operators continuous?
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3. Weyl’s theorem for analytic functions of Toeplitz operators

We follow [4] in saying that Weyl’s theorem holds for T if

w(T ) = σ(T ) \ π00(T ) ,

where π00(T ) is the set of isolated points of σ(T ) that are eigenvalues of finite
multiplicity. The set of operators for which Weyl’s theorem holds includes all
seminormal operators and all Toeplitz operators [1], [4], [21]. The following old
question of K. Oberai [22] led to the work in this section: if Tϕ is a Toeplitz
operator, then does Weyl’s theorem hold for T 2

ϕ ?
To answer the Oberai’s question, we begin with a spectral property of Toeplitz

operators with continuous symbols.

Lemma 3.1. Suppose that ϕ is continuous and that f is an analytic function de-
fined on some open set containing σ(Tϕ). Then

σ(Tf◦ϕ) ⊆ f(σ(Tϕ)) ,(3.1.1)

and equality occurs if and only if Weyl’s theorem holds for f(Tϕ).

Proof. By Corollary 2.2, σ(Tf◦ϕ) = w(f(Tϕ)) ⊆ σ(f(Tϕ)) = f(σ(Tϕ)). Because
σ(Tϕ) is connected, so is f(σ(Tϕ)) = σ(f(Tϕ)); therefore the set π00(f(Tϕ)) is
empty. Again by Corollary 2.2, w(f(Tϕ)) = σ(Tf◦ϕ) and so

w(f(Tϕ)) = σ(f(Tϕ)) \ π00(f(Tϕ)) if and only if σ(Tf◦ϕ) = f(σ(Tϕ)).

Remark 3.2. If ϕ is not continuous, it is possible for Weyl’s theorem to hold for
some f(Tϕ) without σ(Tf◦ϕ) being equal to f(σ(Tϕ)). One example is as follows.

Let ϕ(ei θ) = e
i θ
3 (0 ≤ θ < 2π), a piecewise continuous function. The operator Tϕ

is invertible but Tϕ2 is not; hence 0 ∈ σ(Tϕ2) \ {σ(Tϕ)}2. However w(T 2
ϕ) = σ(T 2

ϕ),

and π00(T
2
ϕ) is empty (see Figure 2); therefore Weyl’s theorem holds for T 2

ϕ.

We can now answer Oberai’s question: the answer is no.

Example 3.3. There exists a continuous function ϕ ∈ C(T) such that σ(Tϕ2) 6=
{σ(Tϕ)}2.

2π
3

4π
3

σ(T ) = w(T )ϕ ϕ σ(T  ) = w(T  )ϕ ϕ
2 2

Figure 2
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Figure 3

Proof. Let ϕ be defined by

ϕ(ei θ) =

{
−e2i θ + 1 (0 ≤ θ ≤ π),

e−2i θ − 1 (π ≤ θ ≤ 2π) .

The orientation of the graph of ϕ is shown in Figure 3. Evidently, ϕ is continuous
and, in Figure 3, ϕ has winding number +1 with respect to the hole of C1; the
hole of C2 has winding number −1. Thus we have σe(Tϕ) = ϕ(T) and σ(Tϕ) =
convϕ(T). On the other hand, a straightforward calculation shows that ϕ2(T)
is the cardioid r = 2(1 + cos θ). In particular, ϕ2(T) traverses the cardioid once
in a counterclockwise direction and then once in a clockwise direction. Thus
wn(ϕ2 − λ) = 0 for each λ in the hole of ϕ2(T). Hence Tϕ2−λ is a Weyl oper-
ator and is, therefore, invertible for each λ in the hole of ϕ2(T). This implies that
σ(Tϕ2) is the cardioid r = 2(1 + cos θ). But because {σ(Tϕ)}2 = {convϕ(T)}2 =
{(r, θ) : r ≤ 2(1 + cos θ)}, it follows that σ(Tϕ2) 6= {σ(Tϕ)}2.

Remark 3.4. It is instructive to observe that Lemma 3.1 gives a necessary condition
for Tϕ to be hyponormal. We recall [17] that if T ∈ L(H) is hyponormal, then
Weyl’s theorem holds for every f(T ). In conjunction with Lemma 3.1, this is to say
that if Tϕ is hyponormal, then σ(Tf◦ϕ) = f(σ(Tϕ)). But this necessary condition
is not sufficient, for a slight extension of Theorem 1 in [17] shows that Weyl’s
theorem holds for f(Tϕ), where Tϕ is the cohyponormal Toeplitz operator with
symbol ϕ(ei θ) = e−i θ; hence σ(Tf◦ϕ) = f(σ(Tϕ)).

We conclude our work by studying continuous symbols ϕ that have the property
that Weyl’s theorem holds for f(Tϕ), for every analytic function f on a neigbour-
hood of σ(Tϕ).

Theorem 3.5. If ϕ ∈ C(T) is such that σ(Tϕ) has planar Lebesgue measure zero,
then σ(Tf◦ϕ) = f(σ(Tϕ)) for every analytic function f defined on an open set
containing σ(Tϕ).

Proof. As ϕ is continuous, so is f ◦ ϕ, and thus σe(Tϕ) = ϕ(T) and σe(f(Tϕ)) =
σe(Tf◦ϕ) = f ◦ ϕ(T). The planar measure of σ(Tϕ) is zero; because σ(Tϕ) is a
compact connected set consisting of ϕ(T) and some of its holes, it follows that
∂σ(Tϕ) = σe(Tϕ) = σ(Tϕ), which is just a continuous curve. Furthermore, as
analytic functions map open connected sets onto open connected sets, we have that
∂σ(f(Tϕ)) = σe(f(Tϕ)) = σ(f(Tϕ)). Thus σ(f(Tϕ)) ⊆ σ(Tf◦ϕ), which together
with (3.1.1) gives the result.

Remark 3.6. We note here that Toeplitz operators whose symbol satisfies the hy-
pothesis of Theorem 3.5 are essentially normal of the type “normal + compact.” To

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TOEPLITZ OPERATORS 4171

see this, let D be a diagonal operator whose spectrum is ϕ(T). Because Tϕ and
D are both essentially normal and SP(Tϕ) = SP(D), it follows from the Brown-
Douglas-Fillmore theorem that Tϕ and D are compalent; that is, Tϕ = N + K
for some normal operator N on H2 and some K ∈ K(H2). This observation is of
interest because if σ(Tϕ) has planar Lebesgue measure zero and, further, if Tϕ is
hyponormal, then by Putnam’s inequality Tϕ is normal and ϕ(T) must be a line
segment.

Theorem 3.7. If the winding number of ϕ ∈ C(T) with respect to each hole of
ϕ(T) is nonnegative (or is nonpositive), then σ(Tf◦ϕ) = f(σ(Tϕ)) for every analytic
function f defined an an open set containing σ(Tϕ).

Proof. Suppose that the holes of ϕ(T) have only nonnegative winding numbers.
Since ϕ is continuous, it follows that σe(Tϕ) = ϕ(T) and

σe(Tf◦ϕ) = σe(f(Tϕ)) = f(σe(Tϕ)) .(3.7.1)

If ϕ(T) has no holes or has holes of winding number zero only, then σ(Tϕ) = σe(Tϕ);
thus

f(σ(Tϕ)) = f(σe(Tϕ)) = σe(f(Tϕ)) = σe(Tf◦ϕ) ⊆ σ(Tf◦ϕ) ,

which together with (3.1.1) gives σ(Tf◦ϕ) = f(σ(Tϕ)). Now assume that there
exists at least a hole Ω of ϕ(T) such that wn(ϕ − λ) 6= 0 for all λ ∈ Ω. Namely,
wn(ϕ − λ) = w > 0 for all λ ∈ Ω. In view of (3.7.1), it suffices to show that
f(σ(Tϕ))\f(σe(Tϕ)) ⊆ σ(Tf◦ϕ)\σe(Tf◦ϕ). Thus the proof is completed by showing
that if λ ∈ Ω, then f(λ) ∈ σ(Tf◦ϕ). Suppose that λ ∈ Ω; thus Tϕ − λ is Fredholm
with ind (Tϕ − λ) = −wn(ϕ− λ) = −w < 0. Write

f(z)− f(λ) = (z − λ)(z − µ1)
α1 · · · (z − µn)αnF (z) ,

where αi ∈ Z+, µi ∈ σ(Tϕ) (1 ≤ i ≤ n) and F (z) is analytic and has no zeros in
σ(Tϕ). We have

f ◦ ϕ− f(λ) = (ϕ− λ)(ϕ − µ1)
α1 · · · (ϕ− µn)αnF ◦ ϕ .

From (3.7.1), Tf◦ϕ−f(λ) is Fredholm and hence f ◦ ϕ − f(λ) is invertible on T. So
each ϕ−µi (1 ≤ i ≤ n) and F ◦ϕ vanish nowhere on T. Therefore Tϕ−µi and TF◦ϕ
are all Fredholm. By assumption, wn(ϕ− µi) ≥ 0, and because F ◦ ϕ has no zeros
in σ(Tϕ), wn(F ◦ ϕ) = 0. Thus

ind (Tf◦ϕ−f(λ)) = −wn{(ϕ− λ)(ϕ − µ1)
α1 · · · (ϕ− µn)αnF (ϕ)}

= −wn(ϕ− λ) −
n∑
i=1

αi wn(ϕ− µi) < 0 ,

which shows that Tf◦ϕ−f(λ) is not a Weyl operator and hence is not invertible.
We conclude that f(λ) ∈ σ(Tf◦ϕ). The proof in the case of nonpositive winding
numbers is similar.

Example 3.8. If ϕ is of the form p(az+bz), where a, b ∈ R and p is any polynomial,
then σ(Tf◦ϕ) = f(σ(Tϕ)).

Proof. If a = b, then Tϕ is hermitian and the desired conclusion is evident. If a 6= b,
set ψ = a

z + bz. Then

ψ(T) = {(u, v) ∈ C : (
u

b+ a
)2 + (

v

b− a )2 = 1} ,
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ϕ1

ϕ2

Figure 4

which is a circle or an ellipse. Thus ϕ(T) = (p ◦ ψ)(T) = p(ψ)(T), which has no
holes or has exactly one hole (because polynomials map continuous curves onto
continuous curves and open sets onto open sets). The conclusion nows follows from
Theorem 3.7.

Remark 3.9. Lemma 3.1 and Theorems 3.5, 3.7 hold for a quasicontinuous symbol
ϕ. In this case, if Tϕ is Fredholm, then the index of Tϕ is the negative of the
winding number with respect to the origin of the curve ϕ̂(reiθ) for 1 − δ < r < 1,
and

σe(Tϕ) =
⋂

0<δ<1

cl {ϕ̂(reiθ) : 1− δ < r < 1} ,

where ϕ̂ is the harmonic extension of ϕ to the open unit disk D (cf. [8]).

Remark 3.10. The index of a hyponormal opertor is always nonpositive and there-
fore, in general, the holes of the essential spectrum of a hyponormal operator cannot
have negative winding numbers. This fact may lead one to believe that if ϕ(T) has
no hole with negative winding number (in particular, if ϕ is a trigonometric poly-
nomial), then Tϕ is hyponormal. But such is not the case. For example, if

ϕ1(e
i θ) = e−2iθ + eiθ + e2iθ and ϕ2(e

iθ) = e−2iθ − e−iθ + eiθ + e2iθ ,

then ϕ1(T) has just one essential hole whose winding number is +1, and ϕ2(T) has
no hole, as shown in Figure 4. But by Theorem 1.4, Tϕ1 and Tϕ2 both fail to be
hyponormal.

Remark 3.11. Recall [23] that an operator T ∈ L(H) is quasitriangular if there
exists an increasing sequence {Pn} of projections of finite rank in L(H) that con-
verges strongly to the identity and satisfies ||PnTPn − TPn|| → 0. By the work of
Apostol, Foias, and Voiculescu, it is known that T is quasitriangular if and only
if SP(T ) contains no hole or pseudohole with negative winding number. Rewrite
Theorem 3.7 as follows: if Tϕ or (T ∗ϕ) is a quasitriangular Toeplitz operator with
continuous symbol ϕ, then σ(Tf◦ϕ) = f(σ(Tϕ)). In Remark 3.10 we showed that
even if T ∗ϕ is a quasitriangular Toeplitz operator (with trigonometric polynomial
symbol ϕ), Tϕ may fail to be hyponormal. In spite of this, it would be interesting
to have a method by which one could determine the winding numbers of curves
given by trigonometric polynomials with respect to the various holes these poly-
nomials produce. We expect the solution will make extensive use of Theorem 3.7.
The following open problem is of particular interest in operator theory.
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Problem B. If ϕ is a trigonometric polynomial, find necessary and sufficient con-
ditions, in terms of the coefficients of ϕ, for the Toeplitz operator T ∗ϕ to be quasi-
triangular.
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