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Abstract

Hypertension is a major health problem with great consequences for public health. Despite its role 

as the primary cause of significant morbidity and mortality associated with cardiovascular disease, 

the pathogenesis of essential hypertension remains largely unknown. The central nervous system 

in general, and the hypothalamus in particular, are intricately involved in the development and 

maintenance of hypertension. Over the last several decades, the understanding of the brain’s role 

in the development of hypertension has dramatically increased. This brief review is to summarize 

the neural mechanisms of hypertension with a focus on neuroendocrine and neurotransmitter 

involvement, highlighting recent findings which suggest that hypothalamic inflammation disrupts 

key signaling pathways to affect the central control of blood pressure, and therefore suggesting 

future development of interventional strategies that exploit recent findings pertaining to the 

hypothalamic control of blood pressure as well as the inflammatory-sympathetic mechanisms 

involved in hypertension.

Keywords

central nervous system; hypothalamus; hypertension; inflammation

Introduction

Hypertension is characterized by a chronic elevation in arterial pressure and is a major risk 

factor for many common causes of morbidity and mortality including stroke, myocardial 

infarction, congestive heart failure, and end-stage renal disease in many segments of the 

population (1). In the United States alone, high blood pressure affects an estimated 65 

million individuals (2, 3) and contributes to the deaths of as many as 360,000 Americans 

every year. Globally, hypertension is the biggest contributor to disease burden and mortality 

in the world, accounting for 9.4 million deaths each year (4). Over the next decade, the 

global prevalence of hypertension is predicted to increase by 60% (5), despite advancements 

in awareness, antihypertensive therapy, and control of high blood pressure (6). For this 

reason, preventive strategies for those at risk and methods to both identify the undiagnosed 

and manage uncontrolled hypertension are urgently needed. Resolving these issues requires 
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a deeper understanding of the physiology of blood-pressure regulation, the genetic traits that 

contribute to hypertensive phenotypes, and the identity of environmental factors that confer 

risk in susceptible individuals. Pertinently, attempts to study the pathogenic mechanisms of 

hypertension increasingly point to alterations in central nervous system (CNS) regulation of 

arterial pressure as a critical modulating factor (7). Many of these functional changes are 

concentrated in the hypothalamus (8), an area of the brain consisting of several nuclei that 

acts as the interface between the nervous and endocrine systems. The hypothalamus plays a 

crucial role in coordinating and integrating the activity of neural networks that control 

central blood pressure (9, 10). The intent of this brief review is to highlight recent findings 

that implicate the nervous system and the hypothalamus in particular in the pathogenesis and 

maintenance of hypertension. Particular emphasis is placed on recent findings that point to 

hypothalamic inflammation as a potential driver of pathogenic hypertension and therefore 

likely to inform new translational advances in the field.

Brief overview on pathophysiology of blood pressure regulation

Hypertension is broadly categorized as primary or secondary depending on the underlying 

pathogenic mechanism (11). Primary or essential hypertension represents the majority of 

cases, typically arising in middle or old age as a result of the interaction between non-

specific genetic and environmental factors. A genetic link is supported by high heritability of 

blood pressures, elevated sibling recurrence-risk ratio, and higher concordance of blood 

pressures among monozygotic twins in comparison to dizygotic twins (12). Although rare 

mendelian hypertensive phenotypes are associated with mutations in a single gene (13–17), 

the genetic risk seems to be more commonly derived from variations in at least 65 distinct 

loci affecting blood pressure, each of modest effect size (18–22). Progression from a 

normotensive to hypertensive phenotype among genetically-predisposed individuals is likely 

to be influenced by a combination of environmental, behavioral and dietary factors. 

Common determinants of primary hypertension include aging, obesity, insulin resistance and 

excessive intake of salt, calories, and alcohol (11). Other potential risk factors that have 

garnered attention in recent years include sedentary lifestyle, stress, depression, low 

potassium intake, low calcium intake, intrauterine programming and early life events. In 

contrast to essential hypertension, secondary hypertension affects far fewer patients, 

develops at an earlier age, and is linked to an identifiable cause such as renal or endocrine 

disorder and oral contraceptive use. Notwithstanding the insights into the multi-factorial 

nature of hypertension, the precise cellular and molecular mechanisms that influence 

physiology to raise blood pressure remain poorly understood.

Unraveling the etiology of hypertension requires consideration of different systems that 

contribute to short-term blood pressure control. These include the well-characterized 

interactions between the vasculature, the kidney, and the central and sympathetic nervous 

systems (SNS), mediated by various, often shared, receptors and ligands. Mechanisms that 

maintain normotensive arterial pressure include baroreceptors that sense acute changes in 

blood vessel pressure and decrease or increase sympathetic nervous system (SNS) activity; 

activation of the renin-angiotensin system (RAS) due to a fall in renal perfusion pressure; 

adrenergic receptors (or adrenoceptors) that bind catecholamines and increase heart rate; 

factors produced by endothelial cells that cause vasodilation (e.g. nitric oxide) or 
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vasoconstriction (e.g. endothelin); secretion of natriuretic peptides in response to increased 

pressure; and the kinin-kallikrein system, which influences vascular tone and renal salt 

handling (Figure 1). Many of these systems function autonomously to locally regulate blood 

flow (via alterations in cardiac output and blood volume), resistance (via arterial contraction 

and relaxation) and ultimately blood pressure.

At the same time, the nervous system integrates signals from peripheral organs and helps to 

coordinate homeostatic responses (23, 24). The contributions of central pathways are 

perhaps best exemplified in the pathophysiological hallmarks of “neurogenic” essential 

hypertension. This form of hypertension is due to autonomic nervous system abnormalities 

originating in the afferent arm (e.g. baroreceptors, chemoreceptors and renal afferents) or in 

the central circuitry without a primary vascular or renal defect (10). Studies in animals – in 

which the contribution of causal factors and pathways underlying hypertension can be 

studied in a more systematic manner – reveal that circumventricular organs (CVOs), the 

hypothalamus, and the brain stem are critical regulatory regions. Some of the earliest studies 

in experimental models found that damage to the brain stem or the afferent components of 

the baroreceptor reflex pathway that terminate within the nucleus tractus solitarius (NTS) 

produce short-term (25) and long-term elevations in arterial pressure (26–28). 

Mechanistically, the increased arterial pressure is caused by increased regional vascular 

resistance (29) as a result of enhanced sympathetic tone (30) that is normally suppressed by 

inhibitory baroreceptor input. Thus, activation of carotid baroreceptors (31) or chemical 

stimulation of the NTS with adrenaline, noradrenaline and dopamine (32) decreases arterial 

pressure and heart rate. These early studies were instrumental in documenting neural 

mechanisms that could lead to enhanced central sympathetic outflow in hypertension.

Central modulation of blood pressure also involves the RAS. As mentioned above, it is well 

studied that peripheral RAS activation controls fluid and electrolyte balance when renal 

blood flow is reduced. However, components of the RAS (i.e. renin, angiotensinogen, 

angiotensin, angiotensin converting enzyme, angiotensin II, and angiotensin II receptor 

subtypes) are also found in the brain (33) and compelling evidence suggests the RAS can 

contribute to hypertension by modulating cardiovascular effects through the CNS (34, 35). 

In particular, angiotensin II (Ang II) stimulates the organum vasculosum and the subfornical 

organ, CVOs surrounding the anterior part of the third ventricle (36). Both sites are highly 

vascularized and lack a blood-brain barrier (BBB) making them responsive to both locally-

produced (37) and circulating Ang II (38). Indeed, high levels of circulating Ang II induce 

the development of hypertension, which is mediated by increased production of reactive 

oxygen species (ROS) in the subfornical organ (39, 40). Most of the known actions of Ang II 

are mediated by angiotensin II type 1 (AT1) receptors. Their activation in hypertension is 

likely to have an effect on multiple brain structures in the network that controls SNS outflow 

including the paraventricular nucleus (PVN) in the hypothalamus, the median preoptic 

nucleus, and the rostral ventrolateral medulla in the brain stem (24, 41–43). Consistent with 

this point, several studies suggest that oxidative stress in the rostral ventrolateral medulla is a 

potent factor in the dysregulation of sympathetic outflow that accompanies the spontaneous 

development of hypertension (44–46). Ang II derived from the brain’s RAS (as opposed to 

circulating Ang II) is likely to play similar roles in the development of hypertension (47), but 

the factors that regulate this pathway’s activity remain unknown.
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Salt sensitivity is one such factor that is likely to affect this pathway. High salt intake acutely 

reduces circulating renin-angiotensin activity and aldosterone concentration (48, 49). A third 

of essential hypertension patients with high-sodium consumption have lower plasma renin 

activity (50, 51), but are responsive to RAS inhibitors (52). One hypothesis to reconcile this 

apparent discrepancy is that the brain’s RAS response to salt intake may differ from the 

body’s RAS response (50, 53). High sodium intake in rats leads to a sustained increase in 

renin gene expression in the hypothalamus, despite reduced renal renin expression (54). In 

line with this evidence, angiotensin-converting enzyme (ACE) and AT1 expression in the 

hypothalamus and brain stem are elevated in salt-sensitive hypertension, particularly 

following activation of sodium channels in the brain (55). Blocking these sodium channels 

reduces blood pressure and SNS hyperactivity induced by hypertonic saline loading in the 

brain (56, 57). These results suggest high sodium loading increases brain RAS activity 

locally, which in turn increases sympathetic outflow to promote hypertension.

Central hypertensive regulation is also tightly coordinated by mineralocorticoid receptor 

(MR) expression and ligand responsiveness. Upon ligand binding, neuronal MRs enter the 

nucleus, forming dimers that complex with transcription factors to activate or repress target 

gene expression that culminates in increased SNS activity (58–60). Importantly, they have 

similar affinity to physiologic mineralocorticoids (aldosterone) and glucocorticoids (cortisol 

and corticosterone). However, aldosterone-targeted cells express both the MR and localized 

11-β-hydroxysteroid dehydrogenase 2 (11βHSD2), an enzyme which converts cortisol and 

corticosterone into inactive metabolites; this increases relative aldosterone concentrations in 

close proximity to MRs (61). 11βHSD2 utilizes NAD+ as a cofactor, producing NADH and 

depleting MR-proximal concentrations of NAD+ (62). In the brain, 11βHSD2 is expressed at 

low levels apart from aldosterone-target neurons in the BBB-deficient zone of the NTS that 

influences sodium appetite (62–64). With sodium intake, these neurons quiesce resulting in 

decreased sodium appetite (64). However, NADH generated from 11βHSD2 activity limits 

the transcriptional activity of glucocorticoid-bound MRs. In the absence of 11βHSD2, 

increased NAD+ is thought to change the conformation of glucocorticoid-bound MR 

allowing it to have similar transcriptional activity to aldosterone-bound MR (62). Oxidative 

stress mimics this NADH-depleted state by redox imbalance, impairing normal MR function 

and activating glucocorticoid-bound MRs (65). Additionally, plasma levels of 

glucocorticoids are 1000 fold (total) or 100 fold (free) higher than that of aldosterone, and 

brain levels of these hormones have been shown to be similar (61, 62). Thus, neuronal MRs 

are bound and activated by basal glucocorticoids in normal physiological conditions.

MRs also work in congruence with AT1 receptors in the brain to drive SNS activity and 

subsequent hypertensive drive in the presence of excess mineralocorticoid (66). Both MR 

and the AT1 receptor in the subfornical organ increase Ang II-induced ROS production in 

the PVN and rostral ventrolateral medulla (67). Ang II activates NADPH oxidase to drive 

ROS production (68, 69), potentiating SNS hyperactivity (70). ACE mRNA and AT1 

receptor mRNA are upregulated by aldosterone in hypothalamic tissue, further increasing 

Ang II production and subsequent ROS formation to drive hypertension (71).

Interestingly, the glucocorticoid receptor (GR) has only 1/10 the affinity to glucocorticoids 

that the MR does. Despite their widespread expression in the brain, GRs are thought to only 
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be occupied with ligand during stress or the zenith of the circadian cycle for this reason (62, 

72). The highest concentration of MRs is localized to the hippocampus, and activated GRs 

help to regulate the MR-mediated non-genomic stress response (73, 74) as well as 

hippocampal explicit memory formation (75). Imbalance between MR and GR function and 

expression contributes simultaneously to psychopathological disorders such as anxiety and 

PTSD and loss of cognitive function by dysregulating the hypothalamic-pituitary-adrenal 

axis (HPA axis) (75, 76). Increased GR increases HPA axis activity, while decreased GR 

decreases HPA axis activity. Due to the diurnal levels of glucocorticoids, the MR regulates 

HPA axis activity basally, and the GR during stressed conditions (77). In the hippocampus, 

MR and GR signal to inhibit or stimulate respectively secretion of corticotropin-releasing 

hormone (CRH) and arginine vasopressin (AVP) from the PVN of the hypothalamus (78). 

Taken together, these studies demonstrate the complexity of action and signaling of 

glucocorticoids, mineralocorticoids, and their respective receptors in the nervous system.

Hypothalamic mechanisms of hypertension

Regulation of vasopressin secretion in hypertension

Accumulating evidence implicates increased AVP signaling in the pathogenesis of 

hypertension. AVP is produced by magnocellular neurons in the PVN and supraoptic 

nucleus (SON) of the hypothalamus and stimulates water reabsorption in the kidney to help 

maintain blood pressure. The concentration of circulating AVP is normally too low to have a 

measureable effect on blood pressure, but the AVP neuronal activity is dysregulated (79) 

fairly early in the development of hypertension (80). This effect on AVP neurons may be 

attributable, at least in part, to reduced inhibitory GABAergic input from baroreceptors in 

response to high salt intake (81). More recent findings suggest that such impairments in 

inhibitory signaling are mediated by brain-derived neurotrophic factor leading to increased 

excitability of hypothalamic AVP-secreting neurons. This in turn drives excess AVP release, 

which elevates arterial pressure (82, 83). Indeed, increased AVP expression is critical in the 

maintenance of hypertension in several experimental models involving RAS hyperactivity 

(79, 84–86). Although the precise mechanisms by which excess AVP secretion drives high 

blood pressure remain an ongoing topic of discussion, several pathways may be implicated 

including sympathoexcitation via V1a receptors in the PVN (87), brain RAS hyperactivity 

via V2 receptors (88), and peripheral vasoconstriction via V1 receptors (Figure 2) (82).

Hypertensive effect of steroid hormones in hypothalamus

Although the mechanisms underlying the centrally-mediated hypertensive responses to 

aldosterone have been well studied (89), the central effects of glucocorticoids are less 

understood. For example, intracerebroventricular injection of hydrocortisol increases SNS 

activity and induces hypertensive responses that are reversible with pretreatment using an 

Ang II antagonist or ACE inhibitor (90). As discussed previously, under normal conditions, 

cortisol can be converted to inactive metabolites by 11βHSD2 before acting on MRs (50, 

91). While MRs are expressed in the hypothalamus, 11βHSD2 is barely detectable (92, 93), 

suggesting that circulating cortisol can act on the hypothalamus directly through the third 

ventricle, to increase sympathetic activity and blood pressure. Recent findings suggest that 

MR stimulation by cortisol may also modulate RAS activity downstream (91, 94). Thus, 
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hypothalamic MRs sit at a delicate interface between glucocorticoid and mineralocorticoid 

stimulation.

Leptin-induced SNS activity in hypertension

Leptin is a hormone produced by adipose cells that helps to regulate energy balance by 

inhibiting hunger. Leptin levels are increased in obese humans (95) and have been shown to 

drive hypertension in rats (96). In addition, peripheral administration of an anti-leptin 

antibody decreases blood pressure and SNS activity in obese mice fed with a high fat diet 

(97). Although the leptin receptor (LepR) is expressed in multiple sites in the brain, leptin’s 

effects on SNS activity prominently involve the ventromedial hypothalamus, arcuate nucleus 

(ARC), and dorsomedial areas in the hypothalamus (97, 98). LepR deletion in the ARC 

attenuates leptin-induced increases in renal sympathetic discharge and resolves increased 

arterial pressure in diet-induced obese mice (99). In fact, ablation of LepR specifically in 

proopiomelanocortin (POMC) neurons, a major type of neuron in the ARC, can effectively 

reduce blood pressure (100). Recent evidence suggests that leptin-evoked increases in SNS 

activity are mediated by intracellular AMP-activated protein kinase (101) and mammalian 

target of rapamycin (mTORC1) signaling pathways (102), thus offering potential therapeutic 

targets to treat obesity-associated hypertension in the future.

Melanocortin receptor 4 (MC4) signaling in hypertension

MC4 is a member of the G-protein coupled receptor family and is activated by alpha-

melanocyte-stimulating hormone (α-MSH). POMC neurons in the ARC send projections to 

the PVN and lateral hypothalamus where they release α-MSH. Thus, MC4 expression in 

POMC neurons is a critical component in the melanocortin system’s actions on feeding 

behavior, regulation of metabolism, SNS activation, and blood pressure homeostasis (103). 

Microinjection of a MC4 agonist into the PVN increases renal SNS activity and blood 

pressure in rats (104), while pharmacological blockade of MC4 in the PVN attenuates 

lumbar sympathetic nerve activity due to hyperinsulinemia (105). Intracerebroventricular 

injection of an MC4 antagonist markedly reduces blood pressure in spontaneously 

hypertensive rats in an SNS-dependent manner, irrespective of body weight fluctuations 

(106). Renal SNS activity due to central leptin and insulin administration on can be 

attenuated and abolished in heterozygous and homozygous MC4 knockout mice, 

respectively (107). Taken together, MC4 in POMC neurons plays a key role in several forms 

of hypertension.

Hypertension caused by circadian rhythm in the hypothalamus

It is well-known that cardiovascular functions, including blood pressure, show diurnal 

oscillation. Incidences of life-threatening cardiovascular events, such as stroke and acute 

myocardial infraction, also display a diurnal pattern, with increased incidence during the 

morning (108). The suprachiasmatic nucleus of the hypothalamus is the “central clock” that 

regulates physiological functions through the autonomic nervous system and humoral 

mediators. Clock genes are expressed in a circadian manner in the SCN; circadian variations 

associated with blood pressure are related to modifications in clock gene-regulated 

endogenous sleep-wake rhythms (109). Indeed, acute changes in blood pressure brought on 

by morning or sleep surge can modify cardiovascular risk (110). The underlying mechanism 
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is hypothesized to involve multiple components including increased circulating blood 

volume due to salt sensitivity, excessive salt intake, autonomic nervous dysfunction, 

abnormal clock genes, and/or altered secretion of melatonin (109). The generation and 

maintenance of circadian rhythms involves two flavoproteins: cryptochrome-1 (Cry1) and 

cryptochrome-2 (Cry2) (111). Cry1 and Cry2-deficient mice are prone to salt sensitive 

hypertension due to increased activity of the adrenocortical aldosterone-producing enzyme, 

3 beta-hydroxyl-steroid dehydrogenase (111). Recent studies also suggest that melatonin has 

multiple beneficial effects on the cardiovascular system; melatonin administration at bedtime 

reduces blood pressure in hypertensive patients (112). Thus, it is possible that alterations in 

circadian rhythm may affect melatonin levels resulting in autonomic nervous dysfunction, 

increased aldosterone, and subsequent hypertension.

Hypothalamic inflammatory mechanisms of hypertension

As detailed above, the hypothalamus acts as the central regulator of energy homeostasis – it 

senses metabolic cues and in turn modulates neurohormonal and neurotransmitter systems 

via endocrine signaling, inflammatory signaling, and neuronal plasticity (113–115). POMC 

and neuropeptide Y/agouti-related peptide (AGRP) neurons are the two major cell types in 

the mediobasal hypothalamus that play a vital role in energy balance. They reciprocally 

regulate energy homeostasis via anorexigenic and orexigenic effects, respectively. In 

addition, both POMC and AGRP neurons are regulated by leptin in opposite manners to 

affect energy homeostasis via negative and positive energy balance (116–119). Mounting 

evidence from experimental and clinical studies unequivocally has shown overnutrition is an 

important environmental factor capable of promoting neuroinflammation (120, 121). 

Obesity-associated hypertension is associated with the activation of pro-inflammatory 

signaling pathways (122) that promote the development of metabolic syndromes in several 

tissues (123–127). Metabolic inflammation chronically and negatively impacts neuronal 

regulatory functions including leptin and insulin signaling. This results in altered 

regulations, including central leptin and insulin resistance, that can drive increased blood 

pressure and energy imbalance (97, 128). Over activity of the hypothalamic IKKβ/NF-κB 

pathway has been recently shown to be as a critical modulator of hypothalamic 

inflammation (Figure 3). In particular, IKKβ/NF-κB driven hypothalamic inflammation 

induces blood pressure imbalance and insulin resistance in an obesity-independent manner 

(129–133). This inflammation seems to originate from the network of neurons, astrocytes 

and microglia, representing a new perspective on central inflammatory metabolic disorders 

(134, 135). The following describes the hypothalamic mechanisms of hypertension from a 

few bases that have been consistently connected with hypothalamic inflammation.

Hypothalamic cytokines in hypertension

Cytokines orchestrate all phases of the immune response and function in highly complex 

networks to maintain homeostasis. A dynamic balance between pro and anti-inflammatory 

cytokines is required, and this contributes to changes in CNS physiology that promote 

hypertension. Circulating pro-inflammatory cytokines can pass through leaky blood vessels 

in CVOs or in areas where the BBB is disrupted. Alternatively, neuroactive cytokines 

including tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) can increase the 
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activity of cyclooxygenase-2 in perivascular macrophages to generate prostaglandin E2. This 

chain of events results in increased discharge from PVN neurons, which regulate 

adrenocorticotropic hormone release, sympathetic outflow, and ultimately blood pressure 

elevation (136–138). Increased expression of pro-inflammatory cytokines in the 

hypothalamus is also associated with hypertension, including RAS-mediated blood pressure 

increases in rats (139). Bilateral NF-κB inhibition within the PVN attenuates Ang II-induced 

hypertensive response by reducing pro-inflammatory cytokines and ROS (140). Central 

administration of the ROS scavenger tempol attenuates Ang II-induced hypertension by 

decreasing the expression of pro-inflammatory cytokines in PVN (141). These findings 

highlight how pro-inflammatory signal transduction involving ROS drives central RAS-

mediated hypertension.

Several pathways have been implicated in this response. Inhibiting the P44/42 mitogen-

activated protein kinase (MAPK) signaling pathway in the PVN lessens Ang II-induced 

hypertension by reducing SNS activity (142). However, the expression of pro-inflammatory 

cytokines in this study failed to decrease after disruption of PVN P44/42 MAPK signaling, 

suggesting an alternative source for these cytokines. Possible cytokine-secreting cell types 

that contribute to the development of hypertension include glia and neurons (143–145). 

Supporting this, overexpression of anti-inflammatory IL-10 reduces both activated microglia 

and blood pressure in rats (146). Interestingly, Ang II can directly pass through the BBB to 

affect neuronal circuits (147, 148), or alternatively, increase BBB permeability, further 

contributing to baroreceptor reflex dysfunction and hypertension (149). IL-1β and TNF-α 
can also increase BBB permeability via disruption of tight junctions (150, 151). This finding 

is particularly intriguing considering that prorenin can increase the expression of TNF-α and 

IL-1β in the NTS via the NF-κB complex (152). TNF-α stimulation of the NF-κB pathway 

in POMC neurons leads to increased blood pressure by increasing SNS outflow (131, 132). 

Taken together, Ang-II and prorenin increase the expression of pro-inflammatory cytokines 

(IL-1β, IL-6 and TNF-α) and decrease the expression of anti-inflammatory cytokines in the 

hypothalamus. Subsequent activation of NF-κB signaling augments the pro-inflammatory 

response and increases permeability of BBB in the Ang-II-induced hypertension. This 

results in further inflammation and SNS activity further increasing blood pressure.

Hypothalamic endoplasmic reticulum (ER) stress in hypertension

The ER is a cellular organelle that regulates protein synthesis and secretion. The unfolded 

protein response (UPR) is an intracellular stress response to a buildup of newly synthesized, 

unfolded proteins in the ER. Several inflammatory signaling systems, including JAK-AP1 

and NF-κB pathways, interact with the three prototypical branches of the UPR that regulate 

metabolism and SNS activity (153–158). Overnutrition-related ER stress in the 

hypothalamus activates NF-κB and is sufficient to cause insulin and leptin resistance, which 

increases SNS outflow and hypertension (131, 132). Similarly, reduced ER capacity in the 

hypothalamus of mice on a high-fat diet results in severe leptin resistance and leads to 

increased obesity (159). Intracerebroventricular injection of the ER stress inducer 

thapsigargin induces systemic insulin resistance and hypertension (132), while blocking ER 

stress induces leptin sensitization (159) and reduces obesity-related hypertension (132). In 

line with these findings, acute induction of hypertension by hypothalamus ER stress can also 
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be abrogated by NF-κB inhibition (132). In summary, brain ER stress is likely involved in 

some form of hypothalamic inflammation and certain aspects of neurogenic hypertension 

involving increased SNS activity.

Hypothalamic oxidative stress in hypertension

As mentioned above, ROS help to drive hypertension both locally and systemically. 

Mitochondrial oxidative stress is frequent in overnutrition conditions and high levels of ROS 

in the PVN can modulate SNS activity as well as hypertension (160). Chronic Ang II 

infusion into the PVN leads to membrane mobilization of p47phox, a cytoplasmic NADPH 

oxidase subunit required to initiate ROS production (161). ROS reduce nitric oxide signal 

transduction in the PVN and increase glutamatergic signaling, which can contribute to 

neural dysfunction. However, enhanced nitric oxide signaling reduces blood pressure, 

decreases SNS activity, and shows anti-hypertensive effect via adrenomedullin receptors 

(162). Anti-oxidative treatments, such as overexpression of superoxide dismutase 1 (SOD1), 

or bilateral infusion of the radical scavenger tempol into the PVN inhibit ROS-driven SNS 

activation and hypertension (163). Regarding the mechanisms involved, inflammation is 

likely involved in the mitochondrial dysfunction (164). Mitochondrial dysfunction itself can 

also directly lead to the overexpression of pro-inflammatory cytokines, resulting in a 

feedforward loop characterized by increasing neuronal dysfunction. Notably, NF-κB 

inhibition in the PVN also abrogates the ROS production, which reduces inflammation in the 

hypothalamus and attenuates Ang II-dependent hypertension (140).

Hypothalamic pro-inflammatory IKKβ/NF-κB signaling in hypertension

Hypothalamic inflammation is frequently observed in overnutrition or obesity and is 

associated with IKKβ/NF-κB signaling pathway activation in the brain (131). Besides 

various cytokines and various intracellular stress responses that lead to activation of 

hypothalamic NF-κB, it can also be activated by excess leptin (165). Thus, while leptin’s 

anorexic effects are blunted in obese mice (166), the resultant chronic elevation of leptin 

levels may contribute to activating the NF-κB pathway in the hypothalamus. Activation of 

the NF-κB complex is a critical modulator for the expression of the suppressor of cytokine 

signaling 3 (SOCS3), which plays an important role in the development of leptin and insulin 

resistance in feeding dysregulation (167), as indeed SOCS3 deficiency in the hypothalamus 

causes elevated leptin sensitivity and resistance to diet-induced obesity (168–170). 

Activation of IKKβ/NF-κB pathway is also responsible for the upregulation of protein 

tyrosine phosphatase 1B (PTP1B), which further inhibits leptin and insulin signaling in a 

manner similar to SOCS3 (170). Therefore, there appears to be a vicious cycle consisting of 

inflammation, leptin resistance and pathological increase in leptin release. Of interest, while 

leptin resistance caused by hypothalamic IKKβ/NF-κB activation leads to impaired function 

in controlling appetite, the action of leptin in elevating blood pressure is abnormally 

augmented under this inflammatory condition of obesity. The underling divergence remains 

puzzling, but possibly involves different downstream molecular events and neural circuitries 

in the hypothalamus and brain.
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Control of hypertension via targeting inflammatory-sympathetic 

mechanism

As hypothalamic and neuroinflammation related hypertension continues to attract more 

attention by researchers, treatments targeting central mechanisms of hypertension may be 

promising in the near future. The animal studies discussed above support the potential for 

novel pharmacological therapies and lifestyle modifications. Given that high sodium-

mediated activation of RAS leads to expression of pro-inflammatory cytokines (55, 56), one 

promising option includes local inhibition of epithelial sodium channels in the CNS to 

prevent hypertension (171). Inhibition of RAS by renin inhibitors, ACEIs, angiotensin 

receptor blockers or MR blockers already shows benefit in clinical practice and treatment 

with such drugs can prevent future cardiovascular complications (171). Animal studies 

indicate that systematic administration of an angiotensin receptor blocker has anti-

hypertensive effects that also prevent the SNS hyperactivity (172). Additionally, a leptin 

antagonist was recently shown to reduce blood pressure independent of body weight changes 

(97). ROS scavengers and immunosuppressive agents can also reduce blood pressure and 

have shown promise in both experimental models and humans (173, 174). Finally, 

epigallocatechin-3-O-gallate is a polyphenol present in green tea that is currently being 

tested for its antioxidant and anti-inflammatory properties. It has been shown to prevent 

hypertension and sympathetic outflow (175).

Conclusion

Over the last several decades, the understanding of the brain’s role in the development of 

hypertension has dramatically increased. Current understanding postulates that neurogenic 

hypertension involves dysregulation of different neural cell types and signaling pathways. As 

outlined in this review, hypothalamic inflammation is one such signaling pathway that can 

result in cellular dysfunction that is detrimental to blood pressure homeostasis. Future 

studies should be aimed at delineating hypothalamic inflammatory pathways and their cross 

talk as it pertains to neurogenic hypertension. Further recognition of the underlying 

mechanisms of hypertension will help generate more therapeutic targets for further treatment 

of human hypertension.
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Acronyms

11βHSD2 11beta-hydroxy steroid dehydrogenase 2

α-MSH Alpha-melanocyte-stimulating hormone

ACE Angiotensin converting enzyme

ACEI Angiotensin-converting enzyme inhibitor
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AGRP Agouti-related peptide

Ang II Angiotensin II

AP-1 Activator protein-1

ARC Arcuate nucleus

AT1 Angiotensin II type 1

AVP Arginine vasopressin

BBB Blood-brain barrier

CNS Central nervous system

CVO Circumventricular organ

ER Endoplasmic reticulum

GABA Gamma-amino butyric acid

GR Glucocorticoid receptor

HPA Hypothalamic-pituitary-adrenal

IKKβ Inhibitor of nuclear factor-kappa B kinase subunit beta

IL-1β Interleukin-1β

IL-10 Interleukin-10

JAK Janus kinase

MC4 Melanocortin receptor 4

MR Mineralocorticoid receptor

NF-κB Nuclear factor-kappa B

NTS Nucleus tractus solitarius (solitary nucleus)

PVN Paraventricular nucleus

PTSD Posttraumatic stress disorder

POMC Proopiomelanocortin

PTP1B Protein tyrosine phosphatase 1B

RAS Renin-angiotensin-system

ROS Reactive oxygen species

SCN Suprachiasmatic nucleus

SOCS3 Suppressor of cytokine signaling 3
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SON Supraoptic nucleus

SNS Sympathetic nervous system

TNF-α Tumor necrosis factor-alpha

UPR Unfolded protein response
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Figure 1. Systemic responses to blood pressure change
The body responds to changes in blood pressure by activating multiple homeostatic 

mechanisms. In response to decreased blood pressure, baroreceptors immediately sense 

decreased tension and signal for increased SNS outflow and decreased PNS outflow, 

effectively increasing heart rate. Concurrently, endothelial cells secrete endothelin, which 

constricts blood vessels. Renin released from juxtaglomerular cells of the kidney activates 

the RAS. In response to increased blood pressure, baroreceptors detect stretching and signal 

increased PNS outflow and decreased SNS outflow, effectively decreasing heart rate. 

Endothelial cells secrete nitric oxide, which dilates blood vessels. Cardiac muscle secretes 

natriuretic peptides in conjunction with activation of the kinin-kallikrein system to promote 

natriuresis and vasodilatory effects.
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Figure 2. Hypothalamic mechanisms of hypertension
The hypothalamus activates the SNS and other pathways contributing to the pathogenesis of 

hypertension. Dysregulated AVP neurons in the SON and PVN produce excess AVP, which 

activates hypothalamic V1a, brain V2, and peripheral V1a receptors, thus activating the 

SNS, RAS, or endothelial cells, respectively. Circulating cortisol activates MRs in the 

hypothalamus to simultaneous stimulate the SNS and RAS. Leptin binds to the LepR to 

activate AMPK and the SNS. The ARC produces α-MSH, which binds to the MC4 in the 

hypothalamus to increase SNS outflow. Dysregulated clock gene expression promotes 

aldosterone production leading to salt-sensitive hypertension.
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Figure 3. Pro-inflammatory hypertensive signalling in the hypothalamus
In response to overnutrition states, pro-inflammatory signalling including IKKβ/NFκB is 

activated in certain hypothalamic neurons such as POMC neurons in the ARC. NFκB 

activation triggers a variety of molecular reactions, such as increased levels of SOCS3 and of 

PTP1b, contributing to SNS activation and subsequent increased blood pressure. In addition, 

POMC neurons bind TNFα, which further stimulates SNS activation. Also, TNFα and 

IL-1β activate perivascular macrophages that produce prostaglandin E2, which signals 

through the PVN to activate the SNS and subsequent hypertension. Central RAS activation 

and Ang II production stimulates IKKβ/NFκB activation and ROS production in PVN 

neurons. Subsequent release of pro-inflammatory cytokines further contributes to ROS 

production, mitochondrial dysfunction, neuroinflammation and sustained increase in blood 

pressure leading to pathological hypertension.
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