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The optic tectum of larval zebrafish is an important model for understanding visual

processing in vertebrates. The tectum has been traditionally viewed as dominantly

visual, with a majority of studies focusing on the processes by which tectal circuits

receive and process retinally-derived visual information. Recently, a handful of studies

have shown a much more complex role for the optic tectum in larval zebrafish, and

anatomical and functional data from these studies suggest that this role extends beyond

the visual system, and beyond the processing of exclusively retinal inputs. Consistent

with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify

direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish.

These projections ramify within the deepest laminae of the tectal neuropil, the stratum

album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata

distinct from those innervated by retinal projections. Using optogenetic stimulation of

the hypothalamic projection neurons paired with calcium imaging in the tectum, we find

rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results

suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory

inputs to the deep tectal neuropil.

Keywords: zebrafish, hypothalamus, tectum, superior colliculus, SPIM (selective plane illumination microscopy),

optogenetics

INTRODUCTION

In vertebrates, the superior colliculus, or optic tectum, is a highly laminated structure located

in the midbrain (Sparks, 1988; Robinson and McClurkin, 1989; Sparks and Hartwich-Young,

1989; Meek and Nieuwenhuys, 1998; May, 2006; Krauzlis et al., 2013). In mammals, the superior

colliculus receives afferent inputs from multiple sensory regions of the brain, and contains

intricate and overlapping topographic maps of the sensory world (Lane et al., 1973; Dräger

and Hubel, 1976; Knudsen, 1982; Druga and Syka, 1984; Jay and Sparks, 1987; Sparks, 1988;

Withington-Wray et al., 1990; King et al., 1996; Crish et al., 2003; Chabot et al., 2013). In contrast

to mammals, amphibians and fish lack a visual cortex (Lázár, 1973; Streidter and Northcutt,

1989). Instead, they have a proportionally larger tectum that is hypothesized to carry out some

of the visual processing that the cortex performs in mammals (Nevin et al., 2010; Orger, 2016).

In teleost fish, tectal afferents arrive in the tectal neuropil, which comprises (from dorsal to

ventral): the stratum fibrosum marginale (SM), which does not receive direct retinal inputs,

the stratum opticum (SO), stratum fibrosum et griseum superficiale (SFGS), stratum griseum

centrale (SGC) and the stratum album centrale and stratum griseum periventriculare (SAC/SPV;

Vanegas et al., 1974; Meek, 1983; Sas and Maler, 1986; Meek and Nieuwenhuys, 1998). The laminae
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spanning from the SO to the SAC/SPV are demarcated by robust

innervation from the axons of retinal ganglion cells (RGCs),

which convey visual information to the tectum (Fiebig et al.,

1983; Struermer, 1988; Streidter and Northcutt, 1989; Niell and

Smith, 2005; Corbo et al., 2012; Udin, 2012). In contrast, the

SM receives axonal projections from the torus longitudinalis

(Meek and Schellart, 1978; Perry et al., 2010), and lacks direct

retinal inputs. As in birds and mammals, this visual projection is

highly topographically organized, and in fish arises solely from

the contralateral eye (Struermer, 1988; Easter and Nicola, 1996;

Niell and Smith, 2005; Kita et al., 2015). In a variety of adult

fish, nonretinal tectal afferents have been described anatomically.

These have been shown to come from a variety of neural

structures including the pretectum, the anterior and ventro-

medial thalamic nuclei (Northcutt, 1982; Fiebig et al., 1983;

Meek and Nieuwenhuys, 1998), the hypothalamus (Amemiya,

1983; Fiebig et al., 1983; de Arriba and Pombal, 2007), the

torus longitudinalis, torus semicircularis and nucleus ruber

(Northcutt, 1982; Meek and Nieuwenhuys, 1998; Xue et al., 2001;

Fame et al., 2006; Folgueira et al., 2007), as well as from hindbrain

structures including the nucleus isthmi, reticular formation,

dorsal funicular nucleus, eurydendroid cells in the cerebellum,

and the trigeminal nuclei (Northcutt, 1982; Fiebig et al., 1983;

Meek and Nieuwenhuys, 1998).

In zebrafish, the tectum’s fundamental structure and cellular

composition form early in development. In larvae at 3 days

post fertilization (dpf), RGC axons begin arriving and the tectal

neuropil’s laminae have formed, as has the densely populated

periventricular layer (PVL; Struermer, 1988). Nonretinal

projections from the Raphe nucleus (Yokogawa et al., 2012;

Filosa et al., 2016) and cerebellum (Heap et al., 2013) also

innervate the neuropil. The tectal neuropil contains axons of

these afferent structures, the dendrites of PVL neurons, and the

axons of PVL interneurons. It is also sparsely populated with

GABAergic superficial inhibitory neurons (SINs) that are located

in the SO, and that have been described both anatomically and

functionally (Del Bene et al., 2010; Robles et al., 2011; Dunn et al.,

2016). PVL neurons are morphologically diverse, including both

tectal interneurons and projection neurons (Scott and Baier,

2009; Robles et al., 2011). The tectal circuits arising from these

cells are necessary for high-acuity vision (Gahtan et al., 2005),

and for distinguishing between small prey items and larger visual

features that may represent predators (Del Bene et al., 2010;

Preuss et al., 2014; Semmelhack et al., 2014; Bianco and Engert,

2015; Dunn et al., 2016). Anatomical and functional studies have

suggested that visual information principally enters the SO of

the neuropil, and is progressively filtered by SINs and then PVL

interneurons, before being relayed to other brain regions by the

PVL projection neurons, the dendrites of which occupy the deep

sublaminae of the neuropil (Scott and Baier, 2009; Del Bene

et al., 2010; Robles et al., 2011; Gabriel et al., 2012; Preuss et al.,

2014; Semmelhack et al., 2014; Barker and Baier, 2015; Temizer

et al., 2015).

Inputs from the Raphe and cerebellum notwithstanding, the

larval zebrafish tectum is viewed as a dominantly retinorecipient

structure that is involved almost exclusively in visual processing.

The list of described nonretinal inputs remains short in

comparison to the diverse inputs received by the tectum in

adult fish and the superior colliculus in mammals and birds.

Nonetheless, larval zebrafish show behaviors that imply the

integration of visual input with more complex state traits

such as hunger (Filosa et al., 2016), and tectal neurons

respond to auditory and water-flow stimuli (Thompson et al.,

2016; Vanwalleghem et al., 2017). This implies that the

larval zebrafish’s tectum has more numerous and diverse

inputs, and more nuanced circuitry, than has thus far been

described.

Decisions based on the metabolic state of an animal are

largely driven by the hypothalamus, a region of the brain that

controls the metabolic and endocrine processes through the

hypothalamic—pituitary—adrenal axis (Smith and Vale, 2006;

Ulrich-Lai and Herman, 2009). In mammals, the hypothalamus

has been shown to play a role in a multitude of such behaviors

(Kokoeva et al., 2005; Bolborea and Dale, 2013), and elements

of the underlying circuitry have been described. These include

inhibitory hypothalamic projections to the intermediate laminae

of the superior colliculus, which are hypothesized to assist in

the role that the superior colliculus plays in visual attention

tasks (Pityk, 1979; Rieck et al., 1986; Gandhi and Katnani,

2011).

Recently, contributions of the hypothalamus to behaviors

in larval zebrafish have been described. Populations of

dopaminergic hypothalamic neurons have been shown to

regulate light seeking and motor behaviors (Fernandes

et al., 2012; McPherson et al., 2016), feeding (Yokobori

et al., 2011, 2012) and sleep cycles (Chiu and Prober, 2013).

Additionally, serotonergic neurons in the Raphe nucleus, which

are targeted by hypothalamic neurons, have been shown to

work with visual information to mediate the classification

of visual stimuli as either appetitive or predatory based

on the feeding state of an individual animal (Filosa et al.,

2016).

In larval zebrafish, hypothalamic nuclei are not yet

spatially differentiated; instead, the expression of numerous

hypothalamic neuropeptides allow for the general identification

of hypothalamic nuclei (Herget et al., 2014). On this basis,

the homologs of mammalian hypothalamic nuclei have been

identified in larval zebrafish, including the paraventricular

nucleus and preoptic area (Herget et al., 2014), and the

dopaminergic A11 group and subpallial dopaminergic neural

populations (Tay et al., 2011).

Combined, the anatomical and functional connections that

have been described in adult fish, and tetrapods, the functions

that the hypothalamus plays in larval zebrafish, and the

flexibility of tectal responses to visual stimuli, suggest that

the hypothalamus may be influencing tectal activity directly

or indirectly in larval zebrafish. In this study, we have used

a transgenic Gal4 line with expression in the hypothalamus

to map previously undescribed projections into the tectal

neuropil of zebrafish larvae, and to identify the laminae and

sublaminae of the tectal neuropil in which these projections

terminate. We have then used optogenetics and sculpted

light to drive activity selectively in the hypothalamus while

performing calcium imaging in the tectal PVL, thus identifying
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the nature and magnitude of the hypothalamus’ influence on

tectal activity.

MATERIALS AND METHODS

Generation of Animals
All experiments were performed with approval from and in

accordance with the University of Queensland Animal Welfare

Unit (approval SBMS/378/16). Adult zebrafish (Danio rerio)

were housed in a commercial RAS aquarium (Tecniplast S.p.A.,

Varese, Italy), in 28◦C water (pH 7.5 ± 0.26, conductivity

992 ± 35 µS/cm2, Ammonia 0–0.25 ppm, GH 83 ± 25 ppm,

Ca2+ 76 ± 26 ppm) on a 14:10 h light:dark photoperiod, with

310,000 µJs/cm2 UV disinfection. Fish were fed twice daily with

amixed commercial diet of O.rangeWean andNRD at a 1:1 ratio,

with a dusting of Spirulina powder (100g/kg; INVE Aquaculture

Thailand) at a rate of approximately 5% body mass per day. Fish

were housed at a stocking density of 10 fish per liter. Larval

fish were reared in a 3 per-ml rotifer polyculture, based on the

method described in Best et al. (2010), before being weaned

to an exclusive dry food diet by 30 dpf. Adult zebrafish were

mated as previously described to generate larvae for experiments

(Westerfield, 2000). All experiments were performed in animals

homozygous for the nacremutation of the Tupfel long fin (TLN)

strain (Lister et al., 1999).

The ChR2(ET/TC)-mCherry plasmid (Berndt et al.,

2011) was provided by K. Deisseroth (Stanford University).

All subcloning for transgenesis was performed using the

Gateway Tol2 transgenesis system (Kwan et al., 2007).

pME-MCS (construct 237, Tol2kit v1.2) was altered to

include additional cloning sites with the forward primer

CCCGGGACCGGTAGATCTTGATCAGGATCC and the

reverse primer GGATCCTGATCAAGATCTACCGGTCCCGGG,

creating the plasmid pME-MCS_linker. ChR2(ET/TC)-mCherry

was cloned into the middle entry vector pME-MCS_linker using

a blunt ApaI and XbaI sites, creating PME_ChR2(ET/TC)-

mCherry. This was combined with a 10.5X UAS 5′ entry vector

(construct 327, Tol2kit v1.2), a 3′ polyA containing vector

(construct 302, Tol2kit v1.2) and a pDestTol2pA2 destination

vector (construct 394, Tol2kit v1.2) using LRClonase II Plus (Life

Technologies) in a multi-site Gateway reaction. This generated

the plasmid pDest_10.5XUAS:ChR2(ET/TC)-mCherry, which

was confirmed by sequencing (AGRF, The University of

Queensland, St. Lucia, QLD, Australia).

For transgenesis, plasmids were injected into single cell

embryos within 40 min of fertilization, with an injection mix

containing 75 ng/µL Tol2 transposase RNA and 100 ng/µL

plasmid DNA. Injections were carried out in embryos obtained

from crosses where a Gal4s1168t;UAS:Kaede (Scott and Baier,

2009) animal was mated to an animal homozygous for the

nacre mutation (Lister et al., 1999). Injected embryos were

screened for transient expression of the protein at 48 h post

fertilization, and were then raised to adulthood. Founders with

offspring containing the desired transgene were identified using

fluorescence microscopy, and were then outcrossed to TLN

animals to create stable transgenic lines.

Generation and Analysis of Averaged
Transgene Expression Data for the Z-brain
Atlas
Animals expressing UAS:Kaede under the control of the

Gal4s1113t transgene (Scott et al., 2007) were fixed, stained with

the tERK antibody (Cell Signaling, ID 4696), and imaged as

previously described (Randlett et al., 2015). Multiple tiles were

stitched using the Pairwise Stitching ImageJ plugin (Preibisch

et al., 2009). Image registration of Kaede expression was

performed against a model of anti-tERK expression in the

nervous system of larval zebrafish. This was performed with

CMTK1 using the command string -awr 010203 -T 8 -X 52 -C

8 -G 80 -R 3 -A ‘‘--accuracy 0.4’’ -W ‘‘--accuracy 1.6’’. Multiple

(n = 9) registered animals were combined to create an average

model of Kaede expression in Gal4s1113t;UAS:Kaede animals,

which was incorporated into a local version of the Z-Brain atlas.

Analysis of the location of expression of a given transgenic line

was performed using the Z-Brain toolbox (Randlett et al., 2015).

Confocal Microscopy
Animals expressing the desired fluorescent proteins, under the

control of theGal4s1113t were mated and raised as outlined above.

All Kaede photoconversion experiments were carried out in 6 dpf

animals, which were screened for desired fluorescence at 2 dpf

and raised in the dark to avoid unwanted photoconversion.

At 6 dpf, animals were mounted dorsal side down in 2% low

melt agarose (Progen Biosciences, Murrarie, QLD, Australia) in

50 mm glass bottom dishes (MatTek Corporation, Ashland, MA,

USA), which were then filled with E3 media.

Photoconversions were performed on an Olympus

BX61 upright confocal microscope, using 405 nm light focused

into a 10 µm region of interest (ROI), which was scanned

across the cell bodies of neurons expressing UAS:Kaede. After

conversions, animals were left for 1 h at 28.5◦C in the dark,

to allow photoconverted Kaede to diffuse from converted

somae into axons. Fish were then imaged on an inverted

Yokogawa 3i spinning disc confocal, using a 488 nm laser

to image unconverted (green) Kaede, and a 561 nm laser to

image converted (red) Kaede. Z-stacks were taken at 40×

magnification, with a 0.2 µm slice interval.

Other fluorescent microscopy of the Gal4s1113t line was

performed on a Zeiss-LSM 710 inverted confocal microscope,

using a 561 nm laser to image red fluorescence, and a 488 nm

laser to image green fluorescence, and using either 10× or 20×

objectives.

Deconvolution
Deconvolution of images acquired using the spinning disc

confocal was performed with Huygens Professional Plus

Deconvolution (Scientific Volume Imaging, Hilversum,

Netherlands). A theoretical point spread function (PSF)

was used, calculated from the parameters used for image

acquisition. The signal to noise ratio (SNR) was calculated

separately for each channel for each image by comparing the

fluorescence intensity of a ROI to the fluorescence intensity

1http://www.nitrc.org/projects/cmtk/
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of the background. Deconvolution was performed with a total

image change threshold of 0.01, with single block processing on

and a maximum iteration value of 60.

Spatial Analysis
Spatial analysis of neuropil laminae was performed using Imaris

v8.1 (Bitplane, Zurich, Switzerland). Surfaces of both the red and

green channels in the neuropil were created using the ‘‘surface

creation’’ plugin, where the neuropil was highlighted as a ROI.

To remove any out-of-focus light remaining after deconvolution,

a background subtraction of 0.2 µm was used. Thresholding of

the image was performed so that only axons in the neuropil

were included in the surface reconstruction. Once surfaces were

completed, clipping planes were used to section out a 20 µm

slice through the medial region of the rostral-caudal axis. To

calculate the average intensity of the red and green channels,

measurements of the fluorescence intensity was taken in three

evenly spaced points, which were averaged to get the mean

fluorescent intensity over the depth of the neuropil.

Optogenetic Experiments
Animals used for optogenetic experiments were generated

by crossing animals carrying Gal4s1113t to animals carrying

Gal4s1168t;UAS:ChR2-mCherry, HuC:H2B-GCaMP6s, creating

larvae with the genotype Gal4s1113t;UAS:ChR2-mCherry,

HuC:H2B-GCaMP6s. Animals were screened for the desired

fluorescent pattern at 2 dpf, and were raised until 6 dpf as

described above. Animals were mounted dorsal side up in 2%

low melt agarose and immobilized using 100 µM tubocurarine

(tubocurarine hydrochloride pentahydrate, Sigma-Aldrich).

Larvae were mounted in a custom built glass sided imaging

chamber and were allowed to acclimate for 30 min prior

to imaging on a house-built selective planar illumination

microscope (SPIM; Thompson et al., 2016). Optogenetic

experiments were performed by splitting a 488 nm laser

between a spatial light modulator (SLM; HOLOEYE Photonics,

Germany) and the illumination tube of the SPIM. To avoid

off target optogenetic activation of ChR2, a 0.975 neutral

density filter was added to the SPIM path upstream of the beam

expander.

Imaging was performed at 5 Hz, for 70 s (350 time points),

at a depth of 50 µm under the skin of the animal, with imaging

focused on the tectum. The activation of the hypothalamic

nuclei was performed at time points 50, 150 and 250, and with

pulses lasting for either 100 ms for ‘‘short’’ experiments, or

5000 ms for ‘‘long’’ experiments. The hologram displayed on

the SLM was iteratively calculated using the Gerchberg-Saxton

algorithm (Gerchberg and Saxton, 1972; Whyte and Courtial,

2005), resulting in a 2D illumination source at a chosen depth.

In relatively low-scattering medium we theorized that a 10 µm

disc would be very thin (Lutz et al., 2008), however by scanning

the 10 µm disc at the depth of the hypothalamus (125 µm below

the skin), we determined that the light spread in the z-plane was

approximately 15 µm above and below the focal point (Favre-

Bulle et al., 2015). Sibling controls not expressing ChR2 were

subjected to identical experimental conditions to control for

illumination.

Optogenetic Image Analysis
For movies taken during optogenetic experiments, we first

deleted all frames in which the SLM was active; this resulted

in movies containing frames 1–50, 77–150, 177–250 and

277–350 for long SLM experiments and frames 1–50, 53–150,

153–250 and 253–350 for short SLM experiments. This was done

to avoid artifacts produced by the reflected SLM light. Images

were then registered to eliminate drift in the X- and Y-axes

using the ‘‘Align_slices_in_stack’’ ImageJ plugin2. To create an

individual ROI for each cell in the PVL and neuropil, an average

Z-projection of the image sequence was generated and then

cropped to the border of the PVL and neuropil. A mask of this

image was created using the Morphological Segmentation Plugin

in ImageJ with a watershed function tolerance of 18 (Meyer

and Beucher, 1990; Legland et al., 2016). Oversegmenting was

tolerated, as the merging of erroneously split cells was performed

during subsequent MATLAB analysis of these data.

Analysis of all data was performed using a custom written

MATLAB code. Data were imported as a 16 BIT .tiff series,

which were then transformed into a 2-dimensional data matrix,

containing the gray values of every pixel in the 350-frame time

series. Using the mask created above, the mean values of all pixels

within each ROI were calculated for each time point. To measure

the activity of individual neurons, the baseline fluorescence for

each ROI was calculated by averaging the first ten time points for

each individual ROI (F0). The raw gray value of every time point

(FI) minus the baseline, was then divided by the baseline giving

us the fluorescent change over time, which was then multiplied

by 100 to give us percentage change over time:

1F/F = ((FI − F0)/F0) ∗ 100

After the ∆F/F of each ROI was calculated, ROIs with a

correlation coefficient of above 0.97 were removed from the

data using the corrcoeff MATLAB function. After duplicates

had been removed, for each ROI at each SLM event, neural

activity resulting from the SLM was identified by calculating

the correlation of four time points before the SLM, and six

time points after the SLM to three model profiles of GCaMP

events. These were calculated by averaging 50 individual GCaMP

signals over five separate movies (10 per movie) where cells were

qualitatively excited or inhibited by the SLM illumination. For

an ROI to be deemed either excited or inhibited, the minimum

Pearson’s correlation coefficient of all three SLM events to a

model GCaMP profile had to be greater than 0.6, and the

maximum probability value was required to be below 0.001.

Every ROI that passed the above criteria was included as either

an excited or an inhibited ROI, depending on which model spike

it was correlated to. ROIs that did not meet these criteria were

not included in the analysis. This analysis was performed on all

experimental and control data. To compare the number of active

cells between groups, an unpaired Student’s t-test was performed

(significance < 0.05), as data were normally distributed (one

sample t-test).

2https://sites.google.com/site/qingzongtseng/template-matching-ij-plugin
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RESULTS

The Transgenic Line Gal4s1113t Expresses
Gal4 in Rostral Hypothalamic Neurons with
Projections to the Tectal Neuropil
Through preliminary screening of an existing collection of

Gal4 enhancer trap lines (Scott et al., 2007; Scott and

Baier, 2009), we identified the transgenic line Gal4s1113t as

containing apparent projections into the tectal neuropil in 6 dpf

larvae. An initial assessment of the anatomy of the line was

performed using the transgenic line UAS:Kaede (Scott et al.,

2007). Animals with the genotype Gal4s1113t;UAS:Kaede were

used to create a model of the average expression pattern

of the Gal4s1113t transgenic line, which was then registered

against the annotated Z-Brain atlas of the zebrafish brain

(Randlett et al., 2015), and also compared with the the Atlas

of Early Zebrafish Development (Mueller and Wullimann,

2005). Assessment against the Zebrafish Brain Atlas suggested

expression within a small number of neurons in the vicinity of

the rostral hypothalamus (RH), with sparse labeling of neurons

in the rhombencephalon and telencephalon (Figure 1). Neurites

originating from the labeled neurons in the vicinity of the RH

were seen in the midbrain and hindbrain (Figure 1H). The

most notable concentration of neurites was found in the tectal

neuropil, where Kaede was concentrated toward the medial

(and therefore, deep) laminae. Outside of the vicinity of the

FIGURE 1 | Expression of Kaede in the Gal4s1113t ET line. (A–K) The mean intensity, resulting from registering and averaging the expression pattern across nine

animals, of the genotype Gal4s1113t;UAS:Kaede is shown in magenta, overlaid with a pan-neuronal (HuC) H2B-RFP label (green). (A–E) Whole brain images at five

dorsal-ventral depths separated by 15–21 microns. Arrows in (A,B) indicate expression in the spinal cord of these animals. (F) In the dorsal brain, Gal4s1113t axons

are present in the tectal neuropil (TN; red outline), tectal periventricular layer (PVL; cyan outline), valvula (Va) cerebellum (arrowhead) and hindbrain (Hb; arrow).

(G) Axonal expression in the tectal neuropil (red outline) and sparse expression is seen in tectal periventricular neurons (cyan outline). Axons are present in the

hindbrain (arrows). (H) Further ventral, expression is seen in the neuropil areas medial to the torus semicircularis (arrow) and in hindbrain neuropil (Hbn) regions (blue

outline). (I) Axonal expression in the diffuse nucleus of the intermediate hypothalamus (IH; gray outline), a hypothalamic Gad1b cluster (blue outline) and hypothalamic

Vglut2 cluster (red outline), and the migrated posterior tubercular area (M2; green outline). (J) Axonal labeling (arrow) of neurons with cell bodies located in the rostral

hypothalamus (RH; outlined in red in K). Scale bars equal 200 µm.
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RH, we observed labeled neurites in the valvula cerebellum

(Figure 1F), within neuropil regions of the hindbrain caudal

to the cerebellum, and also in a region medial to the torus

semicircularis (Figure 1H). Observations of Kaede expression

in individual Gal4s1113t; UAS:Kaede animals supported these

conclusions (Figure 2).

Overall, this analysis suggests that the majority of cell

bodies labeled within Gal4s1113t are located within the vicinity

of the RH, with additional sparse labeling in the forebrain

and hindbrain (Figures 2A,B). This, in turn, implies that

the neurites visualized in these animals likely belong to

these RH neurons. To confirm that the neurites observed

in the tectal neuropil are sending synapses to the neuropil,

we created Gal4s1113t; UAS:synaptophysin-GFP larvae (Heap

et al., 2013; Hines et al., 2015), in which the presynaptic

terminals of Gal4-positive neurons are labeled. Following

photoconversion of Kaede in the whole animal, we observed

dense GFP labeling of presynaptic terminals throughout the

deep laminae of the tectal neuropil (Figure 2C), suggesting

that these neurites are axons, and that they are forming

synapses in, rather than simply passing through, the tectal

neuropil.

Hypothalamic Output Targets Specific
Laminae of the Tectal Neuropil
The above data establish that neurons expressing Gal4 under

the control of Gal4s1113t transgene project axons into the tectal

neuropil, but they do not conclusively demonstrate that the

Gal4-positive RH neurons are the source of those axons. To

address this, we performed targeted photoconversion of Kaede

in the RH of Atoh7:Gal4; Gal4s1113t, UAS:Kaede larvae, which

express Kaede both in RGCs and throughout the Gal4s1113t

expression pattern (arrow, Figure 3A). Following targeted

photoconversion of RH neurons, red Kaede diffused down the

axons of these neurons, arriving in the deep sublaminae of the

tectal neuropil (Figure 3B). Kaede in RGC axons remained

unconverted, assuring that off-target photoconversion was

negligible (Figures 3B,C). Combined with the previous data,

this confirms that the Gal4-positive neurons in the RH are

the source of the observed presynaptic terminals in the tectal

neuropil.

In light of this, and since functionally distinct laminae

are an important part of tectal visual processing, we next

undertook a detailed analysis of the neuropil laminae

into which the RH axons project. The tectal neuropils of

Atoh7:Gal4; Gal4s1113t, UAS:Kaede larvae with targeted RH

photoconversion contain both the axons of RGCs (green,

labeling the SO, SFGS, SGC, and SAC/SPV), and the axons

of RH projection neurons (containing photoconverted red

Kaede). This provides a scaffold in green that allows us

to register our RH afferents against the retinorecipient

laminae of the neuropil. The strongest signal from RH

projection neurons was in the deepest neuropil lamina: the

SAC/SPV (arrows, Figures 3C–F). Other RH projections

were present in the SFGS (arrowhead, Figures 3C,D,F), and

a non-retinorecipient sublamina located between the SGC

FIGURE 2 | Gal4-positive hypothalamic neurons project axons to the tectal

neuropil. (A) Maximum projection of a 6 dpf Gal4s1113t;UAS:Kaede larva in

which expression is strongest in a small number of neurons in the ventral

diencephalon, located in the RH (arrow). (B) shows a closeup of the box in

(A). Neurites are evident in the tectal neuropil (arrowhead) suggesting that

hypothalamic projections may be targeting the tectum. (C) A coronal rotation

through an animal with the genotype Gal4s1113t;UAS:Kaede. The location of

labeled cell bodies is indicated with an arrow, and projections to the tectal

neuropil are labeled with an arrowhead. (D,E) Images from a

Gal4s1113t;UAS:Kaede, UAS:syn-GFP showing the cell bodies of the RH

neurons with photoconverted red Kaede (arrowhead, D) and the green

presynaptic terminals of their axons in the tectal neuropil (arrow, E). These

channels are merged in (F). Scale bars equal 100 µm.

and SAC/SPV (asterisks, Figures 3E,F). This shows that RH

projection neurons target multiple discrete depths of the tectal

neuropil, including both retinorecipient and non-retinorecipient

laminae (Figure 3G).

Functional Properties of Hypothalamic
Inputs to the Tectum
In order to gauge the functional relevance of these RH

projections, we next observed the calcium responses

that tectal neurons have to optogenetic RH stimulation.

To do this, we used larvae with the genotype

Gal4s1113t;UAS:Channelrhodopsin2(ET/TC)-mCherry, HuC:H2B-

GCaMP6s (Chen et al., 2013; Vladimirov et al., 2014). It is worth

noting that in these experiments, the imaging plane was

significantly more dorsal than the ChR2-expressing neurons

in the RH. The result is that the illumination plane, although

Frontiers in Neuroanatomy | www.frontiersin.org 6 January 2018 | Volume 11 | Article 135

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Heap et al. Hypothalamic-Tectal Projections in Zebrafish

it is at 488 nm, does not lead to any observable activation of

ChR2-expressing neurons on the RH.

To determine whether projections from the RH are excitatory

or inhibitory in the tectum, we performed experiments where

neurons expressing ChR2 were excited with a short (100 ms)

FIGURE 3 | Laminar structure of hypothalamic projections in the tectal

neuropil. By expressing UAS:Kaede under the control of Atoh7:Gal4 and

Gal4s1113t, we have identified the neuropil laminae targeted by hypothalamic

projection neurons. (A) Maximum intensity projection of a single larva at 20×

magnification, showing red photoconverted cells in the hypothalamus (arrow),

as well as their neurites in the tectal neuropil (arrowheads). (B) An expanded

view of the box in (A), showing the relative positions of the retinal ganglion

cells (RGC; green) and RH (red) axons. (C) A rotated view of the box in (B),

with the medial edge of the neuropil perpendicular to the field of view. The

arrow indicates hypothalamic axons in the stratum album centrale

(SAC)/stratum griseum periventriculare (SPV). (D) An Imaris 3D rendering of

(C). The solid line indicates the medial-lateral center point of the tectal

neuropil, and dashed lines show the boundaries that were used in creating the

coronal perspective in (E). The arrow indicates hypothalamic output to the

SAC/SPV, arrowhead indicates hypothalamic output in the stratum fibrosum et

griseum superficiale (SFGS). (E) A coronal perspective of the tectal neuropil

labeling all laminae formed by the RGC axons (green) and hypothalamic inputs

(red). To assess which sublaminae of the neuropil the hypothalamus targets,

the fluorescent intensities of retinal and hypothalamic inputs were sampled at

three evenly-spaced positions, indicated by dashed lines. (F) Hypothalamic

inputs specifically targeted regions of the SFGS (arrowhead) and SAC/SPV

(arrows) in the tectal neuropil. Additionally, hypothalamic projections frequently

targeted a lamina devoid of retinal input between the stratum griseum centrale

(SGC) and SAC/SPV (asterisks, E,F). Scale bar represents 100 µm.

(G) A schematic of the projection from the RH to the optic tectum in the

Gal4s1113t transgenic line.

FIGURE 4 | Hypothalamic projection neurons deliver inhibitory inputs to the

tectum. (A) Activation of ChR2-expressing neurons in the RH using sculpted

blue light (shaded blue) results in inhibitory responses (shaded red) and

excitatory visual responses (green) in tectal PVL neurons. (B) A raster plot of

these responses (n = 46 inhibited neurons across six larvae) shows the

z-scored ∆F/F of these inhibited neurons (top), and an average trace of these

neurons through the experiment is shown (bottom). (C) Similar proportions of

tectal cells were excited by a short pulse of blue light in ChR2+ larvae and

ChR2− controls, indicating that these are direct visual responses (green).

Significantly more tectal neurons were inhibited in ChR2+ larvae vs. ChR2−

controls (red) by a prolonged illumination of the RH, indicating a causative

effect of hypothalamic inputs. Dots represent individual larvae and

mean ± SEM is indicated, mean value is reported above each scatter plot.
∗p < 0.05. n = 6 experimental, n = 6 controls.
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pulse of blue light. Such stimulation excited a similar number

of tectal neurons both in our experimental larvae and in

controls not expressing ChR2, suggesting that the responses

in these experiments are simply tectal visual responses to the

flash of light from the SLM (Figures 4A,C). As a means of

probing for inhibitory effects, we extended our light pulse to

5 s in order to produce prolonged inhibition of postsynaptic

tectal neurons. If RH inputs are inhibitory, this should result

in a decrease in GCaMP signal in the postsynaptic cells

(Tian et al., 2009; Akerboom et al., 2012), followed either

by a return to baseline, or ‘‘rebound firing’’ in response to

the disinhibition of the postsynaptic neurons at the end of

hypothalamic stimulation (Bennett, 1966; Aizenman and Linden,

1999; Jay et al., 2015). Based on these expectations, a small

but significant proportion of tectal neurons appeared to be

inhibited by RH input (Figures 4B,C). These PVL neurons,

both as individuals and as a population, showed decreased

GCaMP fluorescence following the hypothalamic excitation, and

in most cases, rebound firing. Habituation of this rebound

firing occurred during the course of our three-trial experiment

(Figure 4B).

DISCUSSION

Nonretinal Projections to the Optic Tectum
of Larval Zebrafish
The tecta of various teleost species, including zebrafish, are

known to receive input from the retina, and from a host

of regions throughout the brain. Here, we demonstrate that

neurons within the RH project to the tectum in larval zebrafish.

These findings are similar to those described in numerous fish

species including the hagfish and lamprey, where numerous

hypothalamic clusters have been observed projecting in an

ipsilateral fashion to the optic tectum (Amemiya, 1983; Meek

and Nieuwenhuys, 1998; de Arriba and Pombal, 2007). In

inspecting these projections in more detail, we also show that

they specifically target the tectal neuropil’s deeper retinorecipient

laminae, as well as a non-retinorecipient lamina between the SGC

and SAC/SPV. This arrangement has several implications for the

overall structure of the tectal neuropil. It has previously been

shown that the broad laminae delineated by RGC axons each

comprise several sublaminae with distinct contributions to visual

processing (Xiao and Baier, 2007; Bollmann and Engert, 2009;

Xiao et al., 2011; Robles et al., 2013, 2014). The RH projections

that we have found in retinorecipient laminae, especially the

SFGS, occupy a sharp subset of the lamina, suggesting that they

may be restricted to specific sublaminae. This suggests a tight

coupling between retinal and nonretinal inputs to these laminae,

and potentially specific contributions from the RH to particular

types of visual processing. RH afferents also target one lamina,

between the SGC and SAC/SPV, that is not innervated by RGCs.

Two conclusions can be drawn from this observation. First, it

shows that this non-retinorecipient lamina is not exclusively

involved with secondary visual processing, since it is also

incorporating distinct nonretinal inputs. Second, since RH inputs

innervate a sharp subset of the space between the SGC and

the SAC/SPV, it appears that these non-retinorecipient laminae,

like their retinorecipient counterparts, may contain functionally

distinct sublaminae.

Functional Properties of the Tectum’s
Hypothalamic Inputs
Following the anatomical descriptions of these RH projections

to the tectum, it was important to determine their functional

contributions to tectal circuitry. This involved both short

pulses of optogenetic stimulation to the RH (designed to

elicit excitatory responses in tectal PVL neurons) and long

pulses of RH stimulation (designed to identify inhibited PVL

neurons). Short pulses of excitation in the RH led to tectal

activity, but this was not significantly higher in ChR expressing

animals than in ChR− controls. This result is consistent with

an absence of excitatory RH input to the tectum, or with

a low level of excitatory input that fell below the sensitivity

of our experiment. Long pulses of optogenetic stimulation to

the RH drove inhibitory responses in the tectal PVL. The

fact that there are apparently no tectal cells excited by RH

stimulation suggests that the inhibited PVL neurons are directly

post-synaptic to the projection neurons. Inhibition does not

appear to result, for example, from the activation of tectal

inhibitory neurons.

These experiments do not allow us to discriminate between

the effects of direct monosynaptic connections and those

resulting from more complex pathways. Therefore, it is possible

that RH activity drives responses in an intermediate structure,

which in turn inhibits PVL neurons. One candidate for

such an intermediate structure would be the precursor to

the preglomerular complex, the migrated posterior tubercular

area (M2 region), which innervates the tectum (Mueller

and Wullimann, 2005; Mueller, 2012). In the Gal4s1113t

line, this structure appears to receive neurites from RH

neurons expressing Gal4 (Figure 1I), supporting this possibility.

Given the direct anatomical projection from the RH to the

tectal neuropil in this line, however, the most parsimonious

explanation is that the RH projection neurons are feeding directly

into the tectal circuit.

Implications for Tectal Processing
The combined results of our anatomical and functional analyses

have implications for the roles that nonretinal inputs may

play in tectal processing. Given the diverse roles for the

hypothalamus including arousal (Prober et al., 2006; Chiu and

Prober, 2013), the detection of prey (Filosa et al., 2016) and

feeding (Yokobori et al., 2011, 2012; Nishiguchi et al., 2012) it

seems likely that these inhibitory signals may provide some sort

of modulatory effect, conceivably influencing approach/escape

decisions or other behavioral calculations being carried out

by tectal circuits (Barker and Baier, 2015; Bianco and Engert,

2015). Muto et al. (2017) have recently shown that visual prey

stimuli trigger hypothalamic activity in larval zebrafish, and

that this information is relayed through the pretectum prior

to arriving in the hypothalamus. Furthermore, expression of

toxins in the hypothalamus reduced prey capture behavior. This
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raises a possible role for the hypothalamus in gating predatory

behavior.

The anatomy of these projections appears to be similar

with those described by Kaslin et al. (2004), who show that

Orexin expression in the tectal neuropil is confined to the

SAC in adult zebrafish. This finding suggests that orexin-

expressing neurons within the hypothalamus of zebrafish may

project to similar laminae of the optic tectum as the RH

projections shown in this study. If our described projections

are those described by Kaslin et al. (2004), it suggests that

they could potentially be involved in controlling sleep and

wakefulness (Kaslin et al., 2004). That the responses in the

tectum are sparse and inhibitory further supports the idea

that the hypothalamus’ role is to influence or contextualize

the sensory signals, rather than to be a major driver of them.

Of course, the identity, morphology, and connectivity of the

tectal cells inhibited by the RH will be of interest as this

circuit is further explored, as would the activity of hypothalamic

projection neurons in the contexts of predation, sleep and other

behaviors.

More broadly, these results add to the direct evidence for

a larval zebrafish tectum that receives more numerous and

diverse inputs than had previously been recognized, more

in line with what has been described in adult fish and

tetrapods. The anatomical and circuit mapping experiments

in this study compliment and extend recent work showing

that the tectum and the Raphe, a structure known to target

of hypothalamus in both larval and adult zebrafish (Lillesaar

et al., 2009; Herculano and Maximino, 2014), work together

to drive behaviors based on the feeding state of larvae (Filosa

et al., 2016), and thus provides grounds to understand how the

visual and metabolic systems work together to drive behaviors.

Additionally, the results from the optogenetic studies presented

here complement previous work describing the neurotransmitter

profiles of neurons within the RH, showing in this context that

they have inhibitory effects on postsynaptic partners (Kaslin

et al., 2004). Combined, the facts that the tectum receives

direct afferents from several brain regions (Yokogawa et al.,

2012; Heap et al., 2013; Filosa et al., 2016), and responds to

multiple sensory modalities (Thompson et al., 2016), paint a

picture of a structure that is more completely homologous to

its mammalian counterpart, the superior colliculus, than has

previously been appreciated. They also suggest that the tectum

may be less of a self-contained visual processing center, and

more of an integrative locus for diverse information. While

RGCs remain, both in anatomical and functional terms, the

strongest single input to the tectum in larval zebrafish, it is

increasingly clear that tectal function is broader and more

nuanced than its traditional role as a visual processing center

would suggest.
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