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Abstract

This study has constructed a fully automated multidisciplinary and many-objective evolutionary design optimization

system independent of computer environments to evaluate objective functions; the research applied it to a geometric design

problem of a flyback booster for next-generation space transportation. In optimization involving objective functions to

appraise the aero-/structural-dynamic performance with high fidelity, spatial discretization hinders the overall automation.

This research has facilitated an efficient optimal design by wholly automating high-fidelity assessments, which designers

had to implement manually, and has accomplished optimizations that directly contribute to real-world design problems.

Moreover, this study would accumulate design knowledge for space transportation that the market is reviving. The total

automated system yielded the embedding of geometric trait lines to ensure the discretization even for large curvature

surfaces; the system innovated a robust automatic error-checking mechanism in the system’s preprocess. Consequently, the

entirely automatized optimization procured nondominated solution sets for more precise data analyses in a pragmatic

execution period. Design informatics, a framework combining optimization and data analysis, functioned usefully in real-

world design on flyback-booster geometry by materializing smooth deriving and verifying a design hypothesis; eventually,

the research gained a new design principle.

Keywords Entire automatization system � Multidisciplinary and many-objective evolutionary optimization �

Real-world pragmatic design � Computational fluid dynamics with unstructured mesh methods � Hypothesis derivation and

its verification

1 Introduction

Design informatics (DI) is a methodology for efficiently

coping with real-world design problems; DI composes three

perspectives: problem definition, optimization, and data

analysis [5]. There are numerousmethods for optimization as

the second viewpoint. However,multiobjective evolutionary

computations (ECs) that exhaustively explore objective-

function space must be proper ways for facilitating the

significance of data analysis as the third viewpoint ofDI [52].

Surrogate models, such as the radial basis function [4] and

the Kriging model [42], which are remarkably attracting

attention in recent years [31], have the substantial benefit of

handling uncertainties [40]. Nevertheless, the number of

individuals that assure the model’s accuracy boosts with the

number of design variables [47]. Since they are still

approximate models, ECs are more reasonable alternatives

for large-scale problems with enormous numbers of objec-

tive functions and design variables [36].

Designers should assess objective functions with high-

fidelity modes based on physics to gain results worthy of

use in practical problems [43]. However, past studies have

often shunned such problem definitions and have chosen

simple evaluations such as mathematical modeling or

estimation from a database due to system complexity and

& Kazuhisa Chiba

kazchiba@uec.ac.jp

1 The University of Electro-Communications, 1-5-1,

Chofugaoka, Chofu, Tokyo 182-8585, Japan

2 Tokyo Metropolitan University, 6-6, Asahigaoka, Hino,

Tokyo 191-0065, Japan

123

Neural Computing and Applications

https://doi.org/10.1007/s00521-021-05786-1 (0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7034-2159
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-05786-1&amp;domain=pdf
https://doi.org/10.1007/s00521-021-05786-1


computational cost [2]. In aerospace vehicles, aerody-

namics stipulates outer geometries of bodies; structural

dynamics assures their feasibility; problem definitions

cannot withdraw their design requirements generally.

Although the problem with a simple geometry already

accomplished full automation [38], spatial discretization

for intricate geometries is a bottleneck for an entirely

automated optimization covering aerodynamic/structural

performances [34]; no research has resolved this issue. Any

researchers desire to optimize efficiently regardless of

geometric complexity and that optimizations directly con-

tribute to designing real-world objects.

High-frequency and price reduction of space trans-

portation are urgent priorities by the recent growth in small

satellites’ demands. Under this circumstance, reusable

launch systems (RLSs) are one of the realizability in sev-

eral aspects to attain the purposes as a successor of the

Space Shuttle. Hence, studies have recently activated reu-

sable space transportation, mainly in China [53], Russia

[32], the E.U. [46], and the USA [16]. Meanwhile, Japan is

currently conducting collaborative research on a two-stage

RLS among some universities. Launch experiments of a

prototype model are underway to establish a control law for

launching an actual body [12]. The project is designing its

trajectory and geometry simultaneously; the authors are

studying the conceptual design on an RLS [48].

This study creates a wholly automated multidisciplinary

and many-objective evolutionary optimization system for

large-scale problems independent of computer surround-

ings to evaluate objective functions. The research would

apply it to designing a flyback booster to amass design

knowledge next-generation space transportation whose

demand revives.

This treatise is composed as follows. Section 2 explains

related researches on automated design optimizations and

the present entirely automated optimization system. Sec-

tion 3 expresses the definition of the real-world problem to

which the study applies the present approach; also, the

paper concisely outlines the utilized optimizers and data-

mining techniques. Section 4 reviews the application

results. Section 5 verifies the obtained design hypothesis by

investigating fluid physical mechanisms. Section 6 con-

cludes this article.

2 Wholly automated multiobjective
evolutionary design optimization system

Previous studies regarding automated preprocess had some

trial and error: to automate the definition of geometries

using parts of the CATIA
TM

package [9] and the generation

of surface meshes from stereolithography data (*.stl) to

create 3D geometries [13]. The study by a structured mesh

method on these extensions already earned an automated

process for wing-fuselage geometry [44]. However, no

research has still accomplished complete automatizations

in unstructured mesh methods for highly expressive

geometry representation.

The authors implemented the design optimizations so far

(on a flyback booster [6], a regional jet airplane [7], and a

supersonic demonstrator [5]) which was the challenge of

automatizing the whole flow in the preprocess. Hence,

there is no choice but to intervene in some human hands.

Thus, an optimum aerodynamic design is an inefficient

work that must be tougher (because designers have to

perform the task that inevitably involves any people’s

hands for all individuals made by ECs). Automated exe-

cution of all processes for evolutionary design optimiza-

tions, including preprocess to post-process of

computational fluid dynamics (CFD) analysis, is one of the

goals of researchers who perform optimum aerodynamic

design utilizing ECs for this way efficiently.

The following outlines the completely automated design

optimization system constructed in this study. The essence

of the entire automatization is in the following three points:

1. Embedding shape feature lines: since the system draws

only one sideline, the next challenge is to improve the

degree of freedom on making feature lines.

2. Automatic inspection in preprocess in CFD: the system

implements an existence inspection of all the output

files.

3. Executing CFD analysis on external computers:

(a) Check for communication errors using exit codes

of ssh and scp commands.

(b) Eliminating dependency on external computer

environments: a system should be ready to

enable the use with minimum software prepara-

tion like the following:

(i) Job management system: Grid Engine,

Slurm, and Workload Manager.

(ii) Commands required for shell script

execution (for instance, bash, send,

and greg).

(iii) A CFD solver.

Since system construction on LinuxOS is ordi-

nary, to install a CFD solver is only crucial.

The rest portion will describe the details of the system.

The system adopts Eclipse1. developed by IBM� in the

integrated development surrounding (it is only a develop-

ment environment, so it does not affect any program

1 ‘‘Eclipse Foundation’’ available online at https://www.eclipse.org/

[retrieved 5 Dec. 2018]
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executions); it constructs an optimization system using the

MOEA Framework.2. It provides available ECs as open-

source Java libraries. The following will proceed with the

story with the content in line with this research’s problem

definition, assuming aerodynamic performance evaluation.

As shown in Fig. 1, when the system is activated, the

MOEA Framework commences generating individuals. If

an individual conflicts geometric constraints, the MOEA

Framework repeats the creation until it obtains individuals

that satisfy them for the population size. Then, it activates

the parallel processing system (red boxes in Fig. 1); it

processes each individual in parallel. The contents of this

process are as follows:

(i) the preprocess for assessing objective functions

(ii) analyzing flow field by CFD

(iii) the post-process for calculating objectives’ value

The system makes a folder /G#_Ii / with generation

number # and personal identification number i to evaluate

in standalone for each individual.

What is vital for efficiently running the system is

computing environments that perform CFD analyses. It

constitutes an integrated development surrounding the

terminal at hand, but CFD analyses drive the job to

appropriate computers. This study employed the computers

in the laboratory (Intel Xeon E5-26xx series: 9 nodes 156

cores, the parallel number is twice the number of cores)

and the integrated supercomputation system AFI-NITY.3.

As described below, this research performed three

optimizations. The present study has accomplished a time

saving by achieving complete automation. However, 3rd

optimization took roughly eight hours for one generation,

even with the latest computing environment. The 1st and

2nd optimizations, which served as trial calculations for the

30 generations, took about 20 days each; the 3rd opti-

mization by a more sophisticated system took around 50

days for the 150 generations. Although the proposed

approach and methodology have no limitations, they pos-

sess a temporal limit due to the time necessitated evalu-

ating objective functions.

This study uses a surface/volume mesh generator

MEGG3D (which involves the technical realms: surface

triangulation with stereolithography data [21], surface tri-

angulation with computer-aided design data [22], hybrid

volume meshing [23], reliable isotropic tetrahedral mesh-

ing [25], multiple marching direction for hybrid mesh [29],

hexahedral meshing [26], automatic local re-meshing [19],

adaptive meshing [24], efficient hybrid surface and volume

meshing [20], automatic local re-meshing for plural-type

hybrid meshes [28], and hybrid meshing with an embedded

surface [27]) and a CFD solver FaSTAR [17] developed by

Japan Aerospace Exploration Agency to solve the com-

pressible Navier–Stokes equations for each condition

defined in the objective functions. A code based on HASA

[15] generated by National Aeronautics and Space

Administration for the Space Shuttle is modified to coor-

dinate hybrid wing bodies; it estimates the empty structural

weight.

2.1 Preprocess

For an aerodynamic analysis that adequately captures fluid

phenomena, a geometry has to be defined accurately, dis-

cretize the surface of its airframe appropriately (surface

mesh generation), spatially discretize the flow field suitably

(volume mesh generation). The preprocess, including these

works, is the most obstacle portion for automatization. The

system delivers the following description according to the

preprocess flowchart exhibited in Fig. 2.

2.1.1 Generating point sequence of geometry surface

The system stocks dv_j .txt with the information

regarding all of the defined design variables; a geometry

generator makes an input file geom_info_j .set to

form a point sequence data for a body surface. Then, it

generates a point sequence structurally arranged in the

direction of x, y, and z with the name j .p3d to express the

outline of a body surface. Finally, the system converts the

j .p3d’s format to an arrangement for a provisional

unstructured surface mesh and stocks j .uns with it.

2.1.2 Creating unstructured surface/volume meshes

The system generates a ridge point sequence for boundaries

at each surface region (zone) described in j .uns. It makes

an unstructured surface mesh together with the j .uns

information (in other words, the system prepares the part

where it produces the ridgeline for zone borders). In this

way, the system automatically creates the symmetric plane

and the outer boundary surface; the computational space

shuts. After that, the system forms an unstructured volume

mesh using this surface mesh. To precisely capture the

boundary layer, the volume mesh involves prism layers (1st

layer of yþ � 1, at least 41 layers are laminated) in the

vicinity of the wall surface—the data of a volume mesh

retain within j .unv. Finally, the system converts j .unv

to j .fsgrid in conjunction with the solver format.

2 ‘‘MOEA Framework’’ available online at http://moeaframework.

org/ [retrieved 5 Dec. 2018]
3 ‘‘Advance Fluid Information Research Center, Institute of Fluid

Science, Tohoku University’’ available online at http://www.ifs.

tohoku.ac.jp/*afirc/afirc_eng/supercomputer/index.html [retrieved

19 Mar. 2020].
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2.1.3 Parameterizing body characteristics

The system makes files (PARAMDAT_j and SPDAT_j) of

geometric feature data (projected area, span length, body

surface area, body volume, and center of gravity position)

required for CFD analyses and post-process.

2.2 Post-process

Post-process has fewer intricacies in automation than the

preprocess and already accomplished in our past resear-

ches, so there are no noteworthy points. As shown in

Fig. 3, the system first combines a computational result

divided on parallel computers into j .rslt. The system

assesses each objective function using j .rslt and creates

objs_pop_j .txt, which describes objective-function

values. The MOEA Framework reads objs_pop_j .txt

of all the individuals in the population and (1) finishes if it

reaches the stipulated number of generations or (2) gen-

erates individuals of the next generation if it does not

attain.

3 Application of the system to a real-world
problem

At present, several Japanese universities promote research

on RLSs; one of the universities develops a fully reusable

launch vehicle, WIRES [12]. The project is attempting to

create a flyback booster for next-generation two-stage

space transportation based on the optimized trajectory of

WIRES. The optimal path fundamentally varies with the

change in geometry. However, it is challenging to produce

the database of aerodynamic performances required for

start

generating individuals/population

fulfilling
geometric constraints?

No

Yes

· · ·

· · ·

(i) pre-process for evaluation

(ii) evaluating objectives

(iii) post-process for evaluation

· · ·

k = K?
No

k = k + 1
Yes

end

Fig. 1 Flowchart of the MOEA Framework. k denotes the present

generation number; it inputs 1; 2; . . .. K describes the upper limit of

generation number in an EC

an individual (a set of design variables) satisfied with
geometric constraints
dv j.txt: (design-variable information)
geom info j.set: (geometry information)

$ geomgen

generate point sequence for 3D geometry
input: geom info j.set
output: j.p3da

a *.p3d: point sequence data for 3D geometry

$ p3duns

convert point sequence into unstructured meshes
input: j.p3d
output: j.unsa

a *.uns: unstructured surface mesh data

$ megg3d

generate surface mesh, and then volume mesh
input: j.uns
output: j.unva

a *.unv: unstructured volume mesh data

$ convert fsgrid

convert format for FaSTAR computation
input: j.unv
output: j.fsgrida

a *.fsgrid: FaSTAR-formatted grid (mesh) data

$ calc spec

calculate specifications as projected area and spanwise
length from j.p3d
calculate specifications as surface area, volume, and
center of gravity from j.fsgrid
input: j.p3d
input: j.fsgrid
output: PARAMDAT j (FaSTAR input file; parameter
data)
output: SPDAT j (HASA input file; spacecraft parame-
ter data)

Fig. 2 Flowchart of the preprocess for CFD analyses. j denotes the

serial number of each individual in an EC, which the paper names

with generation number # and the individual number i in a generation
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trajectory optimization for each individual that a geometry

optimization handles, so this is an issue for the future.

The trajectory considered in this study supposes an

injection of 10 t payload from the Tanegashima Space

Center into a circular orbit at an altitude of 350 km. The

present optimization problem defined three objectives on

aerodynamic performance: transonic, supersonic, and

hypersonic speeds based on the trajectory. A booster

should earn ranges as long as possible under the transonic

and supersonic conditions for fly back to the launch site. A

body should take a sequence with heaving the altitude to

secure the range margin at the hypersonic design point

where a booster and an orbiter separate. In an extension of

aerodynamic performance, the problem determined the

other three objective functions for structural weight and

aerodynamic heating.

3.1 Problem definition

This problem defines six objective functions: three for

aerodynamics (maximizing the lift-to-drag ratio L/D at the

Mach number M ¼ 0:65, 2.3, and 6.8), one for the struc-

tures (minimizing empty weight), and two for aerodynamic

heating (minimizing highest body surface temperature and

body surface area where thermal protection system (TPS)

attaches).

As shown in Fig. 4, the system generates six cross-

sectional shapes for the x-axis direction. The treatise uti-

lizes section numbers �1 and �6 to satisfy later-described

constraint conditions; the cross-sectional shape change in

optimization is four locations with �2 to �5 . Although the

definition differs only in the �2 cross-section, the one

cross-section uses ten design variables, as shown in Fig. 5,

so the total design variables are 40. Table 1 explains the

definition of each design variable.

The problem defines constraints on the geometry; no

regulation provides for the objective functions. The popu-

lation size supposes to be ten. Considering the paral-

lelization efficiency of computers that use the time to

evaluate a single individual, the research adopted a strategy

to suppress the population size and grow the number of

generations.

3.2 Optimizer

Since one of the information desired by the multiobjective

design optimization is the executable structure of the

objective function space, the system chose ECs as meta-

heuristic optimizers, which perform global searches.

Although many beneficial ECs endure, this study adopted

two ECs. One is the strength Pareto evolutionary algorithm

2 (SPEA2) [54] for the 1st [8, 48] and the 2nd [18] opti-

mizations. The other is a parallelized [37] multiobjective

evolutionary algorithm based on decomposition (MOEA/

D) [51] for the 3rd optimization to gain nondominated

solutions comprehensively.

Much research proposes new algorithms for meta-

heuristics; many methods have undergone various transi-

tions and created the current state of affairs. Hence, this

paper would not impart an exhaustive review of them here.

However, reference [14] comprehensively assesses both

single- and multi-objective algorithms and proffers a reli-

able overview of the current metaheuristics state.

Real-world problems typically hold multiple design

requirements, i.e., numerous objective functions; they often

prefer multi-objective algorithms. The current research

topic is how to handle constraints [1] and deal with the

growing number of objective functions. The latter problem,

the many-objective problem [39], causes an extreme

deterioration of convergence. Thus, decomposition-based

methods are the most prevalent ones [49], but they abandon

the exhaustive search design variable space.

To evaluate the performance of fluid phenomena gen-

erally solving the Navier–Stokes (NS) equation, the Mil-

lennium prize problems contain the NS equation; no one

has yet proven existing its analytical solution. The flow

field that the NS equation represents is complex and

$ convert

convert CFD result on parallel computation
output: j.rslta

a *.rslt: FaSTAR-formatted CFD result data

$ evaluate mass

calculate empty
weight

$ evaluate aero

calculate the lift,
the drag, and the
L/D

$ evaluate temp

calculate the high-
est surface tem-
perature and TPS
area

$ make objs pop

generate a file to retain objective-function values
objs pop j.txt

Fig. 3 Flowchart of the post-process for calculating objective-

function values. L/D denotes lift-to-drag ratio, and TPS is the

abbreviation of thermal protection systems

Fig. 4 Left: cross-sectional positions, right: tail surface. The dotted

line represents a fuel tank with a fixed geometry
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strongly nonlinear, calculating gradient information extre-

mely difficult. Optimization of airplane aerodynamic

geometry by the adjoint method, a mathematical opti-

mization approach using gradient information of objective

functions, has been attained [35]. Still, it is incapable of

adopting this study, where the airframe geometry trans-

forms drastically.

Meanwhile, the engineering realm often employs sur-

rogate models, not to mention ECs, because it requires no

gradient information of objective functions [33]. However,

to guarantee the precise response surface, it is vital to

prepare initial samples five to ten times larger than the

number of design variables [47], which is also unsuit-

able for the present study with many design variables.

3.3 Data-mining techniques

A scatter plot matrix (SPM) is one of the oldest, most

straightforward, but most adaptable and accessible scatter

plots [11]. SPM visualizes a multidimensional dataset by

allocating data axes to graphical axes and describing data

samples as points in Cartesian space stipulated by the axes.

The traits of SPM visualization are to be able to use 3D

graphics as well as color, shape, and size of points. This

study utilizes iSPM [50].

Functional analysis of variance (ANOVA) quantifies the

contribution rates to the variance of a model [30]. ANOVA

decomposes the model’s total variance into that of each

design variable and their interactions to estimate their

impact quantitatively. Furthermore, there are various

techniques for visualizing information as sturdy devices for

knowledge discovery [41]. The filtering techniques,

including triangular matrix representations (TMR) [3],

Table 1 Definition of design variables

Section number Design variable S/N number Parameter sense Symbol (refer to Fig. 5) Applicable range [–]

Lower Upper

` 1, 3, 5, 7, 9 y-direction increment Vy1, Vy2, Vy3, Vy4, Vy5 0 0.073

2, 4, 6, 8, 10 z-direction increment Vz1, Vz2, Vz3, Vz4, Vz5 0 0.087

´ 11, 13, 15, 17, 19 y-direction increment Vy1, Vy2, Vy3, Vy4, Vy5 0 0.073

12, z-direction increment Vz1 0 0.218

14, 16, 18, Vz2, Vz3, Vz4 @@0.218 0.218

20 Vz5 @@0.218 0

ˆ 21, 23, 25, 27, 29 y-direction increment Vy1, Vy2, Vy3, Vy4, Vy5 0 0.35

22, z-direction increment Vz1 0 0.218

24, 26, 28, Vz2, Vz3, Vz4 @@0.218 0.218

30 Vz5 @@0.218 0

˜ 31, 33, 35, 37, 39 y-direction increment Vy1, Vy2, Vy3, Vy4, Vy5 0 0.35

32, z-direction increment Vz1 0 0.218

34, 36, 38, Vz2, Vz3, Vz4 @@0.218 0.218

40 Vz5 @@0.218 0

Fig. 5 Relationship among

design variables Vn and control

points Pm
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have proven to be serviceable for tasks where visual rep-

resentations can find relationships, clusters, outliers, gaps,

and other patterns [45].

4 Hypothesis derivation via optimization
and data-mining results

This section describes consecutive flow to derive a design

hypothesis for a target vehicle using the design informatics

approach. Essential knowledge for practical designers is

the latent design information in a high-dimensional prob-

lem space composed of objective functions and design

variables. The combination of optimization and data anal-

ysis is useful for the discovery and is an inseparable

complementary relation.

4.1 Review of the results of two optimizations

This subsection concisely reviews the knowledge that the

optimizations already indicated, which is crucial for

interpreting the data-mining results. The system used the

identical optimization algorithm (SPEA2) for the 1st and

the 2nd optimizations, with the same problem definitions

except for the ditch-related design variables, with the

equivalent generation, identical initial population, and the

same computing environment.

4.1.1 Knowledge from the optimization results

A ditch should bring a positive effect in the lift and a

negative influence on the drag. As a result of the opti-

mizations shown in Fig. 6, the research anticipates that a

ditch will positively impact the low-speed L/D. Therefore,

this study focuses on improving the L/D at M ¼ 0:65; it

does not discuss how to grow the L/D at M ¼ 6:8.

Difference of design strategies: optimal geometries of

each objective function for the L/D explicate the following

diversity in design strategies.

• L/D at M ¼ 0:65 grows by raising the lift.

• L/D at M ¼ 6:8 rises by reducing the drag. The

optimization makes bodies slender to decline the drag

in the hypersonic range. Since slim bodies concomi-

tantly enable to diminish the surface temperature, they

simultaneously improve three of the six objective

functions; it must stipulate the evolutionary trend.

• The strategy for raising the L/D at M ¼ 2:3 is related to

that for the L/D at M ¼ 6:8, but with scope for gaining

the lift.

Influence of ditch:

• Positive effect on the lift: since a ditch facilitates vortex

form, it grows vortex lift.

• Negative influence on the drag: the induced drag rises

due to the vortex lift; the friction drag first increases

with the expansion of the wetted area.
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Fig. 6 SPM of nondominated solutions for 30 generations by SPEA2

in the objective-function space. The size/color of the plots reflects the

values of the L/D at M ¼ 0:65/M ¼ 2:3. Red lines/triangles signify

regression lines/optimum directions. Numbers on lower triangular

matrices specify correlation coefficients
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4.1.2 Design information from scatter plot matrix

The 1st and the 2nd optimization results shown in Fig. 6

present the effect of the presence or absence of a ditch on

the transonic/supersonic L/D as follows:

• To eliminate a ditch deteriorates the L/D at M ¼ 0:65,
approximately 5.4%.

• To delete a ditch worsens the L/D at M ¼ 2:3,

approximately 1.9%.

• The L/D atM ¼ 6:8 also declines, but it links to the L/D

at M ¼ 2:3.

Initially, to gain the L/D at M ¼ 0:65 is more reliant on the

lift than that at M ¼ 2:3, so to add a ditch must produce a

more effect on gaining the lift than an impact on increasing

the drag.

4.2 Results by data mining

Data mining aims to verify whether the accidentally cre-

ated ditch on the back of a booster contributes to improving

the L/D. So, data-mining results have to prove the fol-

lowing two perspectives: (1) the dataset from the 1st

optimization that considers a ditch affects design variables

involved in ditch generation, (2) the dataset from the 2nd

optimization that excludes a ditch does not impact on

design variables required for ditch representation. Note that

the ANOVA results for each objective function quantify

each design variable’s contribution, assuming that the total

influence on an objective function is 100%. The present

ANOVA results cannot quantitatively discuss the relative

effects among objective functions.

4.2.1 Result for dataset with ditch

L/D at M ¼ 0:65: TMR in Fig. 7a indicates that the design

variables with substantial influence are dv34, dv37, and

dv40; the design variables with weak effect are dv12, dv20,

dv22, and dv27. The beneficial design variables register

that the design strategies for improving the L/D at M ¼

0:65 are (a) spreading the body in the spanwise direction

and making the bottom as flat as possible, and (b) providing

a ditch. To prolong the wetted area, to stretch the body in

the spanwise direction is the most valuable for raising the

lift, which affects improving the L/D at M ¼ 0:65. There-

fore, the design variable’s influence (dv20, dv27, dv37,

dv40) for expanding a body in the spanwise direction and

flattening the bottom surface is relatively more massive

than the design variables (dv12, dv22, dv34) for providing a

ditch. However, the provision of a ditch is undoubtedly

useful in improving the L/D.

1. dv34 (V˜

z2)
4: to raise the difference from Vz1 boosts the

curvature of the B-Spline curve from P1 to P3, resulting

in a deeper ditch; the ditch affects the low-speed L/D.

Note that Vz1 tends to be significant to serve the

constraint of securing the tank volume, so Vz2 inclines

to be small.

2. dv37 (V˜

y4): decreasing this value widens the flat bottom

region in the spanwise direction; growing the pressure

on the bottom of a body gains the lift.

3. dv40 (V˜

z5): by reducing the bottom thickness and

flattening body in the z-direction, the base matures a

(a) (b)

Fig. 7 TMR of ANOVA results for the dataset of the 1st optimization, which accidentally deals with ditches, for a the L/D atM ¼ 0:65 and b the

L/D at M ¼ 2:3

4 For example, dv34 symbolizes the design variable Vz2 of the �5

cross-section displayed in Table 1 and Fig. 5, so this paper expresses

it as V˜

z2 .
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flat geometry. The identical design concept as dv37

contributes to lift repair.

L/D at M ¼ 2:3: TMR in Fig. 7b indicates that the design

variables with substantial influence are dv14, dv17, dv22,

and dv40. Since drag alleviation helps to improve the L/D

at M ¼ 2:3, unlike optimizing the L/D at M ¼ 0:65, no

geometry widens horizontally and tends to be elongated.

Hence, the impact of the design variables (dv17, dv40) that

expand the body horizontally and the design variables

(dv14, dv22) that supplement a ditch to the lift is relatively

robust in the latter.

4.2.2 Result for dataset without ditch

L/D at M ¼ 0:65: since all design variables indicated by

TMR shown in Fig. 8a are irrelevant to a ditch, it does not

affect on the L/D. The abilities of the design variables that

have direct and indirect effects are abstracted below.

• design variables with direct effects:

1. dv10: V`

z5 has the effect of gaining the lift by

making the bottom of a body nose as flat as

possible.

2. dv35: V˜

y3 extends the area near a body tail in the

spanwise direction and creates a stabilizer to

enhance the lift.

• design variables with indirect effects:

1. dv11, dv23: V´

y1 and Vˆ

y2 widen a body sideways and

gain the lift.

2. dv40: V˜

z5 raises the lift by flattening the bottom

near a body tail.

L/D at M ¼ 2:3: as all design variables indicated by TMR

shown in Fig. 8b are independent of a ditch, the impact of a

ditch faded away in the L/D at M ¼ 2:3 as well as in the L/

D at M ¼ 0:65. The capabilities of design variables that

affect the L/D at M ¼ 2:3, as shown by TMR, are as

follows.

• design variables with direct influences:

1. dv10: V`

z5 is a variable that ultimately transforms

the L/D because it is useful in raising the lift by

flattening the bottom of a body nose and in

diminishing the drag by making the curvature.

• design variables with indirect effects:

1. dv8, dv20, dv40: V`

z4, V´

z5, and V˜

z5 have effects

comparable to dv10.

2. dv22 (Vˆ

z1): the direct effect is weak; the result is

more robust when combined with dv10, which

implies that the cross-sectional shape transforma-

tion in the flow direction affects the L/D. In the

supersonic range, the distribution of the cross-

sectional area of a body in the flow direction

generally desires alteration monotonically from the

sonic boom theory [10]. The combination of dv10

and dv22 must deviate from a monotonic increase,

leading to a rise in the wave drag, resulting in the L/

D deterioration. In particular, since dv22 represents

the �4 cross-section, its cross-section is likely to

disturb area distribution because there commences

forming a stabilizer. In any case, dv22 does not

affect the lift.

5 Hypothesis verification

Since the data mining inferred the correctness of the design

hypothesis in the previous section, this section will declare

the fluid physical mechanism of the theory that a ditch on

the back of a booster body raises the L/D in the transonic

speed. The two optimizations mentioned in Sect. 4 have

insufficient individuals because the system suspended the

optimizations without abundant evolution, partly because

this research implemented them as the 1st and the 2nd trials

of the system. These two experiments revealed that the

system could execute regardless of computational envi-

ronments used to evaluate objective functions. Hence, the

3rd fully automated optimization using a parallelized

MOEA/D performed again for three months. As a result of

evolving 152 generations with a population of ten indi-

viduals, the optimization procured 407 nondominated

solutions. The 3rd optimization supposes under the iden-

tical condition as the 2nd optimization, filling any ditch on

a body back.

Figure 9 visualizes the obtained nondominated solutions

by SPM in the objective-function space. Compared to

Fig. 6, the 3rd optimization more widely distributes non-

dominated solutions; SPM represents the surface shape of

them more appropriately. The following will add a ditch to

the best/worst three individuals with the L/D at M ¼ 0:65
extracted from the result; the treatise would scrutinize the

fluid physical mechanism that a ditch effects on the L/D

growth.

Figure 10 compiles the L/D change rates, the lift, and the

drag when the system modification deliberately appends a

ditch to the six respective individuals. This figure indicates

the rest information:

• The aerodynamic performances of the three best

geometries deteriorate in the opposite direction. Since

the best three bodies already improve the L/D at M ¼

0:65 via the optimization, a ditch reduces the L/
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D adversely. The drag diminishes, but the lift also

decreases, so the L/D worsens eventually.

• In the case of three worst geometries, although the lift

rises, the drag also grows, so there are two cases where

the L/D improves and deteriorates.

To add a ditch harms the L/D performance for bodies

that the L/D at M ¼ 0:65 is optimized explicitly. Still, it

improves for many nondominated solutions compromised

concerning other objective functions. Besides, since the

ditch shape joined this time is obscure, there is room to

investigate an appropriate ditch design.

best2/worst1 has the highest change rate in the lift

among the best/worst three; Fig. 11 illustrates the distinc-

tion in the flow field with and without a ditch. In this way,

the study scrutinizes the fluid physical mechanism that a

ditch effects on the lift. In best2, adding a ditch decelerates

the flow near itself and extends the high-pressure field to

the rear of the body, which directly participates in dimin-

ishing in the lift. Conversely, worst1 attributes the lift

growth to the event that the ditch’s addition accelerated the

flow near itself and shifted the high-pressure region to the

front of the body. This case appended the ditch irrespon-

sibly, but if a ditch is duly made at the back of a body to

accelerate the flow, it would assuredly enhance the lift.

(a) (b)

Fig. 8 TMR of ANOVA results for the dataset of the 2nd optimization, which solves the inverse problem to eliminate a ditch, for a the L/D at

M ¼ 0:65 and b the L/D at M ¼ 2:3
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Fig. 9 SPM of 407 nondominated solutions for 152 generations by a

parallelized MOEA/D in the objective-function space. The size/color

of the plots reflects the values of the L/D at M ¼ 0:65=M ¼ 2:3. Red
lines and red triangles signify regression lines and optimum

directions, respectively. Numbers on lower triangular matrices specify

correlation coefficients (Color figure online)

Fig. 10 Change rates in the L/D, the lift, and the drag for the three

individuals with the best and the worst L/D at M ¼ 0:65, respectively,
when the system modification appended a ditch to each body

intentionally
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6 Conclusion

This study has developed a wholly automated multidisci-

plinary and many-objective evolutionary design optimiza-

tion system independent of computer surroundings to

assess objective functions; the research applied it to the

geometric design problem of a flyback booster for next-

generation space transportation. No fully automated opti-

mization with precisely evaluating aero-/structural-dy-

namic performance had accomplished for intricate

geometries due to the bottleneck spatial discretization.

Efficient optimizations should be imperative for direct

contributions to the design of actual industrial products.

Besides, designers must accumulate design principles for

space transportation, which are in resurgent demand. The

entire automation resulted from the system constructed by

facilitating the discretization of surface topography by

preparing geometric feature lines, providing a robust pro-

grammed error-checking mechanism in the preprocess to

assess objective functions, and eliminating the dependence

on computer environments.

Consequently, because the system improved the real-

world design problem’s efficiency using evolutionary

computations, it brought nondominated-solution sets to the

data analyses required for the post-process of optimizations

in a pragmatic execution period. Likewise, the created

system derived a new design hypothesis on the flyback-

booster geometry because of gaining the quality of data

analyses. Case studies based on the hypothesis verified the

theory and gained a new design principle.
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