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Abstract

Investigation of the role of hypothesis formation in complex (business) problem solving has
resulted in a new approach to hypothesis generation. A prototypical hypothesis generation
paradigm for management intelligence has been developed, reflecting a widespread need to

support management in such areas as fraud detection and intelligent decision analysis.

This dissertation presents this new paradigm and its application to goal directed problem
solving methodologies, including case based reasoning. The hypothesis generation model,
which is supported by a dynamic hypothesis space, consists of three components, namely,

Anomaly Detection, Abductive Reasoning, and Conflict Resolution models.

Anomaly detection activates the hypothesis generation model by scanning anomalous data
and relations in its working environment. The respective heuristics are activated by initial
indications of anomalous behaviour based on evidence from historical patterns, linkages

with other cases, inconsistencies, etc.

Abductive reasoning, as implemented in this paradigm, is based on joining conceptual
graphs, and provides an inference process that can incorporate a new observation into a
world model by determining what assumptions should be added to the world, so that it can
explain new observations. Abductive inference is a weak mechanism for generating expla-
nation and hypothesis. Although a practical conclusion cannot be guaranteed, the cues pro-

vided by the inference are very beneficial.

Conflict resolution is crucial for the evaluation of explanations, especially those generated

by a weak (abduction) mechanism.The measurements developed in this research for expla-
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nation and hypothesis provide an indirect way of estimating the “quality” of an explanation
for given evidence. Such methods are realistic for complex domains such as fraud detection,

where the prevailing hypothesis may not always be relevant to the new evidence.

In order to survive in rapidly changing environments, it is necessary to bridge the gap that
exists between the system’s view of the world and reality.Our research has demonstrated the
value of Case-Based Interaction, which utilises an hypothesis structure for the representa-
tion of relevant planning and strategic knowledge. Under the guidance of case based inter-
action, users are active agents empowered by system knowledge, and the system acquires its

auxiliary information/knowledge from this external source.

Case studies using the new paradigm and drawn from the insurance industry have attracted
wide interest. A prototypical system of fraud detection for motor vehicle insurance based on
an hypothesis guided problem solving mechanism is now under commercial development.

The initial feedback from claims managers is promising.
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CHAPTER 1

Overview of the Thesis

1.1 Introduction: From Holmes to Einstein

All problem solvers generate hypotheses [118]. In so far as hypotheses go beyond the exper-
imental observations, all our empirical knowledge about the world may be said to consist of
hypotheses. Hypotheses represent a form of plausible explanation derived from previous
knowledge and new facts. In the processes of human problem solving, hypothesis serves as
purposive guidaﬁce. There is strong evidence (loc cit) for the view that hypothesis genera-

tion is a basic requirement in complex problem solving.

The origins of hypothesis as a guidance mechanism for reasoning lies in antiquity. It is
mostly recorded in detective novels and scientific legends. Hypothesis based problem solv-
ing as a detective methodology is exemplified by Sherlock Holmes, who was a genius at
generating hypotheses, and described the process as reasoning “backwards”{39]. On their
first meeting, Holmes hypothesises that Dr. Watson had just recently came back from

Afghanistan. Dr. Watson naturally supposed that someone had told hirm.

“You were told, no doubt.”



2 Querview of the Thesis

“Nothing of the sort. I knew you came from Afghanistan. From
long habit the train of thoughts ran so swiftly through my mind that
I arrived at the conclusion without being conscious of intermediate
steps. There were such steps, however. The train of reasoning ran,
“Here is a gentleman of a medical type, but with the air of a mili-
tary man. Clearly an army doctor, then, he has just come from the
tropics, for his face is dark, and that is not the natural tint of his
skin, for his wrists are fair. He has undergone hardship and sick-
ness, as his haggard face says clearly. His left arm has been
injured. He holds it in a stiff and unnatural manner. Where in the
tropics could an English army doctor have seen much hardship and
got his arm wounded? Clearly in Afghanistan.” The whole train of
thought did not occupy a second. I then remarked that you came

from Afghanistan,...”[31]

In the detection process, Holmes demonstrated a masterful ability to link observation and
deduction in hypothesis generation. In the story of “The Lauriston Garden Mystery{31]”
Holmes generated an hypothesis based on first-hand evidence such as the ruts made by a
cab, the marks of horse’s hoofs, the cigar ash, et. al. The hypothesis which astonished Dr.

Watson was:

“There has been murder done, and the murderer was a man. He
was more than six feet in height, wore coarse, square-toed boots
and smoked a Trichinopoly cigar. He came here with his victim in
a four wheeled cab, which was drawn by a horse with three old
shoes and one new one on his off fore-leg. In all probability the
murderer had a florid face, and the fingernails on his right hand

were remarkably long.”

Great scientists appear to emulate the genre of Sherlock Holmes, for they are all appar-
ently masters in abductively generating hypotheses. In the history of science, Newton gen-
erated the hypothesis of Absolute Space and Time from the evidence of an apple falling to

the ground. Einstein developed his hypothesis of Theory of Relativity by imagining what
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would happen and what would the person see in travelling at the speed of light.

These examples show that the methods of experimental science have much in common
with the methods of detectives. A fundamental issue, which we address in the thesis,
besides the psychological aspects, is the nature of the logic involved. When Einstein and
Holmes solved problems, they felt (afterwards) compelled to give reasons {explanations)
for correct hypotheses. Similarly, whenever a scientist proposed & hypothesis to account
for some facts, peer review ensured that the derived explanations were scientifically
sound. The selection of a candidate hypothesis is presumed to be a logical matter, decid-
able on a rational basis. A natural conclusion is that between scientist and detective there
are common elements for experimental investigation and a common process for hypothe-

sis generation.

In developing a computational paradigm for hypothesis generation, the notion of hypothe-
sis as a knowledge (conceptual) structure has been developed, and a reasoning process
investigated for hypothesis selection. The philosopher Charles Sanders Peirce names three

main considerations that should guide our choice of a hypothesis[118]:
1. A hypothesis must explain the facts at hand,
2. It must be capable of experimental confirmation, and

3. It must be guided by economic considerations.

It follows that the presumption of hypothesis as derived knowledge can be restated as an

axiom suitable for experimental verification.

AXIOM 1: Hypothesis verification is amenable to experimental study of
its supporting propositions (facts) and validity of derived

explanations.

The underlying structure of an hypothesis thus requires consideration of a set of non-con-
flicting explanations to a collection of evidence, together with implied/embedded strate-
gies for self-verification. Any hypothesis has a truth value defined by searching supporting
evidence. We should adrmit that on the basis of the supporting evidence actually available,

some hypotheses will be quite credible, some will be quite unlikely, but others will have
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intermediate degrees of credibility. Empirical knowledge provides a method for correctly
assigning various hypotheses a degree of credibility appropriate to each on the basis of the

actual evidence.

In study of novices and experts in complex problem solving, experts were found to gener-
ate hypotheses more effectively and efficiently. However, once the hypothesis is generated
the process of testing can proceed, and is done by deducing from the hypothesis, conse-
quences which can be tested experimentally or by observation. This is what is known as
the hypothesis-deduction method. We also expect differences in the breadth and depth of

search due to the level of expertise.

The modern concept of a hypothesis in the field of artificial intelligence was exemplified
by Charles Morgan in his writing on Hypothesis Generation by Machine{104]. Recently
researchers in artificial intelligence have begun to notice the importance of hypothesis in
problem solving[21][291{50][771[129]. Most of this research, however, has been restricted
to the construction of hypothesis instead of hypothesis generation [76]. One of the more
significant differences between hypothesis assembly and hypothesis generation is the
capability to discover some new significance, the ability to exercise creativity. This
research demonstrates that hypothesis generation is a basic requirement of reasoning pro-

cesses and will provide a new paradigm for complex problem solving in the real world.

1.2 Hypothesis from the View of Philosophy

The Baconian doctrine of the origin of scientific hypotheses as a kind of distiliation from
innumerable factual observations, altogether devoid of theoretical bias, is seen by both

Kneale [85]and Popper [123] to be futile in practice and untrue of science.

“The advance of science is not due to the fact that more and more
perceptual experiences accumulate in course of time.... Out of un-
interpreted sense-experience science cannot be distilled, no matter

how industrious we gather and sort them.”[123]

Hypothesis generation was sometimes thought of as an almost mystical process, where a



Overview of the Thesis . 5

creative act produces something out of nothing. Under the influence of this mystery, it was
believed that experts reach hypothesis by guess, and implying there is no method of dis-
covery. The production of a scientific hypothesis remains in a mystery. It seemed only psy-
chologists could reveal the intuitive process of inspired guesswork. However, there
appeairs to be a fundamental flaw in any attempt to consider hypothesis generation as
something that transcends current knowledge. No Human discovery occurs in a vacuum: If
we really accepted that creative acts must build something out of nothing, we would be

hard-pressed to demonstrate that human creativity exists[145}].

It seems obvious that to generate a hypothesis, we must start with existing knowledge and
past experience. New hypothesis comes from retrieving knowledge that is not routinely

applied to a situation, or to give a different explanation to an old situation.

Hypothesis is described by Peirce as an argument “which proceeds upon the assumption
that a character which is known necessarily to involve a certain number of others, may be
probably predicated of any object which has all the characters which this character is
known to involve” [118]. Explanatory hypotheses may be of widely different kinds and

Peirce points out at least three{39]:

1. The kind which refers to facts unobserved when hypotheses are made,

but which are capable of being observed.

2. There are hypotheses which are incapable of being observed This is the

case of historical facts.
3. Finally, hypotheses may refer to entities which in the present state of

knowledge are both factually and theoretically unobservable.

In order that the process of making an hypothesis should lead to a probable result, Peirce

lists three rules which must be followed:

1. The hypothesis should be distinctly put as a question, before making
the observations which are to test its truth. In other words, we must try

to see what the result of predictions from the hypotheses will be.

2. The respect in regard to which the resemblances are noted must be
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taken at random. We must not take a particular kind of prediction for

which the hypothesis is known to be good.

3. The failure as well as the success of the predictions must be honestly

noted. The whole proceeding must be fair and unbiased.

Although they were used interchangeably at an early stage, hypothesis and induction are
separate forms of inference according to the present theory. “The essence of an induction
is that it infers from one set of facts to another set of similar facts, whereas hypothesis

infers from facts of one kind to facts of another[2]”.

AXIOM 2: Hypothesis Generation based solely on induction constrains

the hypothesis space.

1.3 Hypothesis and Its Role in Human Problem Solving

Questions about the origins of scientific reasoning have been posed by developmental psy-
chologists many times in the past 60 years(32}. A number of broad questions about the
nature of scientific reasoning require contextual knowledge. Within psychology, one
approach to these questions has been to consider science as a form of problem solving.
The science-as-problem-solving view is stated most explicitly in Herbert Simon’s charac-
terization of scientific discovery as a form of search and in his elucidation of many of the
principles that guide this search[148]. For instance, he has used the notion of search in a
problem space to analyze what science is, how scientists reason, and how scientists should

rcasoil.

From cognitive psychology, it is well known that one’s ability to process information (per-
ceiving, coding, storing, recognizing, retrieving etc.) is a function of past experience and
can be improved through learning. The manner in which information is processed is a
function of the structure and organization of the human mind, which is dynamic and adap-

tive in nature[8].

The relationship between hypothesis and discovery was pointed out by Herbert Simon

when making comments on his own research program:
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The hypothesis that drives this research is that scientific discovery
is a problem solving activity like other problem solving activities
that human beings engage in, using the same basic information-
processes. This hypothesis rests, in turn, on the belief that the sci-
entist does not stand outside the lawful scheme of Nature; he is part
of that scheme, and it is an important goal of scientific research to
understand his mental processes, just as it is to understand the pro-

cesses of a star, an atom, or a cell[148].

The research conducted by psychologists at Camegie-Mellon University[32] identified
three major differences between aduits and children. First, children proposed hypotheses
for that were different from adults. Second, the children did not abandon their current
frame (hypothesis space) and search the hypothesis space to form a new frame, or use the
results of experimental (space) search to induce a new frame. Third, the children did not
attempt to check whether their hypotheses were consistent with prior data. From their
results, we can conclude that the hypothesis generated reflects the experience and maturity

of the individual.

According to the research conducted by psychologists in Germany{87], novice-expert
comparisons in ‘semantically rich domains’ revealed that in diagnostic reasoning, experts
show more flexibility in the interpretation of data and in the modification of diagnostic
hypothesis. Flexibility in problem solving also encompasses the selection and application
of search strategies. It was also identified that novices, after having selected a single diag-
nostic category, would retain the assumption for a longer time than experts would. We
would also expected differences in the breadth and depth of search due to the level of

expertise.

The same source also showed that experts verify hypotheses in a more limited search
space. This points to a depth-first search strategy of experienced diagnosticians compared
to the breadth first approach of novices. Confronted with very unspecific symptoms, the
experts’ set of hypotheses is comparatively small. It suffices by using efficiency criteria in

finding the cause of a malfunction.
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Hypothesis gnided problem solving is the essence of how human reasoning appears to
work. People generate hypotheses from experience! They use their own experiences if rel-
evant, or they make use of the experience of others to the extent that they can obtain infor-
mation about such experiences. An individual’s knowledge may well be the collection of
personal experiences or that he has access to. People’s ability to generate hypotheses is

grounded in the accumulation of experience.

In essence, problem solving is a two part process. There is a data-driven side, where mak-
ing observations, filtering them, and generating hypotheses from them is important. There
is also another side, that is essentially goal driven: evaluation of hypotheses against new

data can, and does, lead to reformulation or even rejection of preliminary hypotheses[68].

The functions of hypothesis in complex problem solving are seen to be:

1. Hypothesis bridges the difference between human cognition and real

world reality.

2. Hypothesis provides an inference engine to perform deductive reason-
ing, and to focus inference strategy on interesting aspects of problem

solving.

3. Hypothesis serves as an heuristic device to assist the user test the
strengths, weaknesses, ramifications of an analysis or argument by
exploring and augmenting the space of known cases and indirectly, the

attendant requirements for explanation and conflict resolution.

4, Problem solving ability is dependent upon the ability to constitute a

suitable hypothesis from the facts available.

S. The difference in complicated problem solving (non-routine) lies in the

different requirements for hypothesis generation.

Tn order to improve the machine assisted problem solving capability, it is necessary to
investigate possible paradigms for hypothesis generation. Although there is still room for
debate. the dimension for productive experimentation lies in our study and understanding

of such paradigms.
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1.4 The Importance of Hypothesis Generation

If hypotheses do not spring from the brain of Zeus, where then do they come from? A
plausible answer is that they stem from some hypothesis generation processing[148].
However, a convincing experimental framework for elucidating the nature of this process

1s, as yet, undefined.

AXIOM 3: The goal of an hypothesis generation paradigm is to model
possible processes whereby hypotheses, whether fully formed

or incomplete, may be generated.

Smdies of the contemporary literature on scientific reasoning has identified two main
approaches. The first is by searching memory for a hypothesis space that could be used to
generate an hypothesis. The second is by conducting experiments and evaluating prototyp-
ical knowledge structures from the results of these experiments. Once a hypothesis has
been generated, values must be assigned to the objects so that a speciftc hypothesis can be

generated.

Based on Simon and Lea’s Generalized Rule Inducer (GRI)[150], Dunbar and Klahr pro-
posed a model of Scientific Discovery as Dual Search (SDDS)[32]. The fundamental
assumption is that scientific reasoning requires search in two related problem spaces: an
hypothesis space, consisting of the hypotheses generated during the discovery process,
and an experimental space, consisting of all possible experiments that could be conducted.
Search in hypothesis space is guided both by prior knowledge and by experimental resuits.
Search in the experimental space may be guided by the current hypothesis, and it may be

used to generate information to formulate new hypotheses.

These researchers have recognized that an hypothesis guided deductive process is a psy-
chologically plausible cognitive model [132] of human expertise. The author has distin-

guished the following ways of applying hypothesis by human experts:

1. as a knowledge frame, in which problem selving is the process of
knowledge instantiation using knowledge either from previous experi-

ence, or from new observations.
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2. as an inference strategy which will invoke the desired inference pro-

cesses using appropriate inference engines with condition branches.

3. as aproblem solving benchmark using high level primitives and related

actor modeis [95].

4. as adiscovery tool (e.g. logic programming) for probing the real world

state.

Tt shouid also be noted that modern approaches to management intelligence requirements,

including data mining, appear to use all four ways of applying hypothesis directed search.

1.5 Management Intelligence Systems and Hypothesis
Generation

Advancements in computational paradigms have had a significant impact on how humans
and their organizations are able to improve performance. In recent years, the business
community has become aware of the need for Management Intelligence Systems
(MINTS){7]1(813[48][161]. This is in large part the result of increasing global competition,
which makes the availability of machine (assisted) intelligence more important in manag-
ing the complexity of contemporary business and society in a timely and efficient manner.
The advent of global telecommunications networks for electronic trading, for example,
has eliminated manual options for management control and audit. The price, power and
usability of computers now makes them indispensable tools for business and govern-

ments.

A management intelligence system is intended by the organization it serves to scan the
organization’s environment so that management can better assess its position with a view

to enhancing the value of the organization and its services.

When discussing the role of intelligence systems M. Kochen commented:

Contemporary intelligence systems rely far more on overt, public
sources than on covert espionage missions. They must screen,

evaluate, correlate, interpret, analyze and synthesize vastly more
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information. These activities require judgment, hypothesis-forma-
tion, reasoning, and a great deal of knowledge, understanding, and
intelligence. They are performed by persons with the help of com-

puters[80].

But it takes them a long time. It often demands more talented people than can be mobi-
lized and paid to produce high-quality intelligence. The timing and complexity of what an
organization must accomplish to prosper in a highly competitive environment are becom-
ing critical. If the capabilities of human inteliigence analysts and managers in an organiza-
tion can be amplified to produce higher quality intelligence much more quickly, and in the
face of vast quantities of data, then new opportunities for market leadership and profitabil-
ity may be discovered, while recognising that ultimately, a superior management intelli-

gence capability is necessary to beat competitors.

A concluding statement from M. Kochen is worth considering in development of strategic

information systems:

Therefore, the management intelligence systems required by com-
peting organizations in government and business will be the best
they can obtain. The best likely to make good use of advanced
technclogy, such as artificial intelligence. The purpose of such
man-machine MINTSs is to support professional strategists, plan-
ners, and researchers as would a good semi-automated research
assistant, enabling the strategists to produce better plans, more

quickly and at lower cost[80].

1.6 Themes of the Research

Development of a management intelligence system employs all the procedures used in
developing any computerized information system, such as requirements analysis, rapid
prototyping, feasibility studies and implementation [80]. It also requires some unique

functions such as environmental scanning and hypothesis generation.
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Throughout this research, four fundamental research themes involved in management
intelligence systems have been identified. They are an hypothesis generation model,
abductive inference engine, anomaly detection, and human-computes interaction each
making a unique contribution to the success of the ensuing management intelligence sys-

terml.

1.6.1 Hypothesis generation model

In management intelligence systems, the most important function is carried out by an
hypothesis generation model (HGM). The kernel of this model is an hypothesis space
(HS), which is a dynamic knowledge structure, including a lattice consisting of nodes and

relations.

The nodes in my hypothesis space represent evidences, facts, and conclusions. The nodes
are connected by various relations. Two new forms of relations have been identified in this
research, they are; explanation relations, and executable relations. This unique relation
classification provides the hypothesis space with an ability to employ executable knowl-
edge, and more importantly, the flexibility to perform abductive reasoning, generating

explanations and hypotheses.

Existing hypotheses are concealed in hypothesis space in the idle state. All hypotheses are
linked and overlap each other in the hypothesis space. A summary of the key features 1s

given below:

1. hypothesis is a set of nodes in the hypothesis space connected by rela-

tions, and is a part of the total hypothesis space.

2. when there is new evidence which cannot be matched by hypothesis
space, the system has the ability to create a new relation to connect the

(apparentty related) evidence into the existing hypothesis space.

3. an hypothesis will be activated from hypothesis space by an evidence

indexing mechanism.

4. when all the index evidence can be matched to the hypothesis space,

the system defaults to a case based reasoning system.
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Case-based Explanation[143][145][79], which is a parallel research topic, replaces expla-
nation by chaining with a memory-based approach: It builds a new hypothesis by retriev-
ing stored explanations for prior cases, evaluating their appticability and usefulness for the
new situation, and adapting them as needed. By comparison, the main contribution of the
hypofhesis generation model lies in its attempt to use the knowledge from a generalised

hypothesis space instead of selection and repair of packaged explanations.
In this model of hypothesis generation, there are three components supporting each other
to empower the hypothesis generation ability. They are as shown in FIGURE 1.1.

1. Abduction,

2. Inference strategies, and

3. Abstraction (conceptual hierarchical structures).

Inference
Strategy

Abduction Abstraction

FIGURE 1.1 Hypothesis Generation Model

An hypothesis is generated from a combination of all relevant evidences and domain
knowledge in long-term memory. Hypothesis is regarded as new knowledge which is pre-
sumed to enhance previous knowledge (consistent with previous evidence), and represents
a kind of possible knowledge (subject to further evaluation), or may be adopted as new

knowledge on validation with new findings.
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Once the hypothesis is generated, the intelligence analysis process can proceed, by deduc-
ing from the hypothesis, predictions which can be tested experimentally or by observation

(hypothesis-deduction method) of known situations.

1.6.2 Anomaly detection

As described earlier, the main function of management intelligence systems is to scan
database or on-line information sources, and then provide an intelligence report for high
level decision support. It is obvious that anomaly detection is a vital step for hypothesis
generation. In our Anomaly Detection Model (ADM), the detection process is divided into

two stages: anomalous data detection and anomalous relattons detection.

Theoretically, anomaly (data) detection may be simplified in terms of statistical deviations
from other data in the samples. There are various methods to deal with such detection
requirements[3]{97](84]. This function can be partially automated with the help of an
expert system if criteria for data evatuation or judgement can be expressed in the form of

ruies.

Although scanning anomalous data in a structured environment is easy to perform, the
search for anomalous relationships among the data is complicated. One idea is to detect
anomalous patterns that fail to correspond to any known pattern or exhibits unusual varia-

tions from known patterns[143].

In our research, the main interest was focussed on detecting anomalous relations. The
methods can be seen as hypothesis guided detection, which attempts to establish new rela-
tions in the data set. The respective heuristics are activated by initial indications of anom-

alous behavior, based on evidence from:

® historical pattern of suspicious events (e.g. fraund patterns known to

insurers);
® linkage with other (suspicious) circumstances;

® facts determined in the course of verifying explanations;
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® inconsistencies, as determined by reference to other knowledge

sources; and’

®  model-directed discovery of new methods for verifying the information

provided.

The ability to combine knowledge from muitiple sources in hypothesis generation is an

essential requirement for the success of the process.

1.6.3 Case based interaction

In this thesis, cooperative problem solving, which refers to the cooperation between a user
and a computer system, facilitates the process of solving complex problems by utihzing
knowledge from both sides of the interface, namely user and system. In such cooperative
systems, users are active agents empowered by the systems’ knowledge, and auxiliary
(expanded) knowledge sources are identified by the user. Cooperative problem solving
enables the strengths of both partners to be exploiied to the full through interaction

between the user and the computer.

The communication module plays a key role in information or knowledge interchange
through critiquing of user and computer responses in facilitating HCI metaphors[34].
Computers provide external memory for the user, insure consistency, hide irrelevant infor-
mation and summarize and visualize information {44]. And humans work itke an extra
knowledge base from the point of view of systems. The communication module brings the

power of both sides together.

A satisfactory environment for creative decision support should ideally satisfy the follow-
ing:
* An adaptive interface to the user capable of accepting input in free form

(natural language) and delivering information output that is compre-

hensible and acceptable to the decision maker.

® Provision of the necessary information required by the user without any

constraints on user behavior or the decision process.
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® The support must be “intelligent” in directing the decision maker to

appropriate decision models{46].

1.7 Overview of the Thesis

The thematic purpose of hypothesis and its historical development have been reviewed
from the viewpoint of psychology and artificial mtelligence. The aims of my research

were then outlined with the requisite axioms for experimental study.

An overview of contemporary information systems and knowiedge engineering tech-
niques relevant to hypothesis generation is provided in Chapter 2. This review spans the
main areas of research interest from artificial intelligence to information systems, such as
conceptual graphs for knowledge representation, case based reasoning, knowledge acqui-
sition. abductive reasoning, executable knowledge structures, on-line information

retrieval, strategic information systems, and human computer interaction.

Chapter 3 addresses the architecture and design of management intelligence systems
focussing on the analysed requirement for a novel conceptual framework accommodating

expanded anomaly detection and hypothesis generation capabilities.

The details of my hypothesis generation model are discussed in chapter 4, which outlines
the design, including data structures, for the representation of hypothesis and the hypothe-
sis space. The design of declarative and procedural knowledge for use within the hypothe-

sis structure is then demonstrated.

In Chapter 5, the computational issues in implementing the new constructs are discussed.
In this implementation, an hypothesis can be considered as an autonomous, intelligent
agent, which will be called upon to perform a varied range of tasks under a wide range of
circumstances. From the view of object-oriented design, hypothesis can be seen as a

Superobject, which contains both data and related procedures (actor model).

Chapter 6 describes an abductive reasoning model, and presents an improved algorithm
for a conceptual graph based abductive reasoning engine, combining the advantage of a

generalized set covering model and maximal-join operation, with the aim of generating a
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suitable hypothesis.

Chapter 7 concentrated on the topic of hypothesis evaluation and conflict resolution. The
acceptability of explanation and hypothesis is proposed for technical evaluation to deter-
mine the quality of the hypothesis generation process. A set of strategies for conflict reso-

lution is then proposed.

In chapter 8, the principle of case based interaction [35][49] and the basic requirements for
management intelligence systems are linked to enhance cooperative problem solving

through utilization of knowledge from both sides of the interface: user and systems.

In chapter 9, an anomaly detection model has been developed for incorporation in man-
agement intelligence systems to monitor user environments. This model is novel and
mutually compatible with the hypothesis generation model described in chapter 4. Finally,

a case study on fraud detection is presented.

Chapter 10 provides a summary of conclusions, and expands on the basis for evaluation of
hypothesis generation model. The ideas for extension and direction of future research are

also inciuded.

1.8 Significance of the Research

There is ample evidence supporting the view that hypothesis plays an important role in
scientific discovery and in complex problem solving [39][118]. This view is of increasing
interest to psychologists{32][148]. The research results presented here are seen to offer a
novel and original modetl for studying cognitive processes of human experts in complex

problem solving.

The generalised hypothesis generation paradigm provides complementary reasoning capa-
bilities to other problem solving paradigms and, in particular, extends the power of anom-
aly detection processes through hypothesis guided search. The hypothesis guided process
elaborated here is believed to provide a psychologically plausible cognitive model for

human reasoning {(deductive) process
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More generally, hypothesis generation can be used to make better use of existing knowl-
edge, to make novel (intelligent) use of new facts/relations and to improve the nature of
intelligent interaction in HCI[52], Anomaly detection{50], Diagnostic analysis of prob-

lems, Case based explanation, and Naturai language understanding etc. (FIGURE 1.2)

Inteiligent

Interface

Case Based

Diagnostics ~

Hypothe_si’é

Generation

Plannin
& Detection

Natural Language
Understanding

FIGURE 1.2 Potential Use of hypothesis generation

The achievement in developing and applying this hypothesis generation model has impli-

cations for four of the fundamental research areas in artificial intelligence.

Case Based Explainer theoretically solves the problem of building new explanations from
old ones and relies on having explanations available in memory[145]. One of the more
serious problems remaining is the capability to deal with unfamiliar situations. The capa-
bility to generate an hypothesis is most appreciated when, in problem solving, there is no
existing solution, which can be adapted to explain the evidences. These kinds of problems
will arise when knowledge gaps between computer systems and the real world exist or
dynamic changes are occurring in complexity. My framework is partially based on the
Case Based Interaction principle[35}[49] to perform the new hypothesis generation, and,

thereby, overcome the limitations encountered in Explanation Generation mechanisms.

The key features of the research that distinguishes it from previous contributions may be
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summarized as:

® An unifying hypothesis space representation can be developed to store
and process both declarative and procedural knowledge. Two types of
relations have been identified in the hypothesis space. They are explan-

atory relations and executable relations.

®* An abductive inference engine, based on the theory of conceptual
graphs[151], is original. The generalized set covering model{132] is
used to reduce the combinatorial explosion of abductive inference,

which is a central problem in abductive reasoning.

* An anomaly detection model, which is mutually complementary to and
integrated with the hypothesis generation model, can be used to dis-
cover not only anomalous data, but also anomalous relations between
normal data. This is a great advantage over contemporary anomaly

detection techniques.

®* The principle of case based interaction provides a sophisticated inter-
face for cooperative probiem solving, which refers to synergistic utili-
zation of knowledge from users and computer systems. Under the
guidance of this interaction mode, the users are active agents empow-
ered by the system knowledge, and the systems get their auxil-

iary(extended) information/knowledge sources from the user.

Finaily, it should be recognized that the experimental framework has been validated in
complex commercial situations, specifically fraud detection in the insurance field. The
author has considerable confidence in the theoretical and practical utility of the new con-

structs.
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CHAPTER 2

Background to the Research

2.1 Current Problems: The Need for MINTS

Firms today are experiencing rapidly changing markets, massive technological change and
an increasingly global and competitive climate with problems in access to skilled labour,
capital, land and knowledge. The timing of business decisions, sourcing of expertise
requirements [70] and prevention/detection of fraudulent activity are now critical for busi-

ness prosperity.

Despite the fact that companies are engaged in a dynamic, and continuous struggle with
their competitors for market share, customers, profits, and capital, few companies study
their competitors as closely as they study internal manufacturing variances or new product
proposals. The current information systems of modern corporations are primarily designed

to monitor internal operations, to facilitate management control and to manage assets.

More recently, however, business strategist have recognised the value of scanning their
working environment, tracking the activities of their competitors, and seeking competitive

intelligence.The rational for such interest in strategic intelligence, lies in;
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1. Contemporary intelligence systems rely far more on overt, public

sources than on covert espionage missions;
2. The public availability of useful information about companies| 58],

3. Growing appreciation of the role of information in business planning.

A common response to the increased need for business intelligence has been to create for-
mal intelligence units for monitoring and interpreting information from different sectors
of the environment. In fact, there are very few, if any, large corporations that do not have a
unit devoted full time to the tasks of acquiring, interpreting, and circulating mformation
internally on their external environments. Therefore, the management intelligence systems
required by competing organizations in government and business will need continual

review and upgrading.

Despite their presence, such units have often proved to be singularly ineffective. There are
a number of probiems that impede the effectiveness of formal intelligence units in a large
corporation. Simply creating a formal intelligence unit 18 rarely an effective means {0 meet
the diverse needs of the total organisation. What is required is that an organization, be cul-
turally sensitive to its environment and to the social impact of its activities, and thus com-
mit itself to establishing an holistic approach to the development of corporate intelligence.
Clearly, intelligence is the primary resource that will heip management improve product

and service, and will lead to improved productivity in competitive environments.

More and more people have accepted the requirement for business intelligence. As evi-
dence of this, many of the Fortune 500 companies have already established an intelligence
department and begun to build databases dedicated to competitor (market) intelligence

[61].

2.2 The Definition of MINTS

Management Intelligence Systems (MINTSs} are computer syétems that were developed
in response to corporate planning (innovation) requirements and are intended by the orga-

pization they serve to scan the organization’s environment and monitor its activities, so
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that management can better assess its opportunities for competitive advantage, with a view
to enhancing the position of the company vis-a-vis its compeltitors and to managing loyalty
marketing initiatives. Better management control and loss prevention (e.g. fraud preven-

tion) may also result.

Manfred Kochen who first proposed the concept of MINTS in 1989 wrote, when mention-

ing the general requirement for MINTS:

to help the firm it serves to clarify its map or image of the firm’s
environment, to clarify the concept of “position’ and interest in that
environment, and to discriminate between positions and interests it

values highly and ones it values negatively[80].

Significantly in his writing Kochen treated MINTS as intelligent decision support, noting:

MINTS is an executive support system, i.e., a decision support sys-
tem for high-level managers responsible for strategic decision-
making and planning, supplying them with intelligence rather than
information, and based on advanced information technoiogies,

notably artificial intelligence.

When discussing the purpose of MINTS, Kochen commented:

The purpose of such man-machine MINTS is to support profes-
sional strategists, planners, and researchers as would a good semi-
automated research assistant, enabling the strategists to produce

better plans, more quickly and at low cost.

One of the features of these applications is that they support managers in commercial or
profit-seeking organizations. Therefore, the Management Intelligence Systems required by

competing organizations in government and business should be “state of the art”!

2.3 The Spectrum of Information Systems

Information system is defined here as a computer-based system capable of serving organi-
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zational purposes [161}. Current information systems can be divided into three groups
according to their functions and knowledge level: Management Information Systems,
Management Support Systems which consists of Decision Support Systems and Executive

Information Systems, and Strategic Information Systems.

2.3.1 Management Information System (MIS)

Management Information System (MIS) lacks unanimous agreement on definition, but
may be broadly defined as an integrated, computer-based, user-oriented system that pro-
vides information for support of operations and decision-making functions [1]. A contem-
porary requirement of MIS is a corporate database with common data shared by users and
management according to needs and priorities. The principal objectives of MIS at the
operational level include summarising key financial results, performance reports and sup-
port for management by exception. Commercially sensitive records, such as payroll, cus-
tomer orders, purchase orders, production and marketing costs, provide the sources for

this management information.
Existing management information systems (MIS) directly support lower levels of manage-
ment, particularly in decisions on:

® reduction in operating level costs;

® planning and scheduling of manufacturing/inventory;

* customer service levels; and

®* enhanced corporate communications.
MIS has been more effective in management control than in the business planning area.
Control functions tend to be more structured, deterministic, logical, and, therefore, more
amenabie to automation. MIS has had less impact on middie management, other than in
resource allocation and in medium term budgetary planning. Top management typically

relies on reports from middle management for control and MIS has had little impact on

strategic planning processes.

However, in the past decade, a greater understanding is apparent of Management Informa-
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tion Systems amongst business managers. Recognition that MIS 1s a key tool for future
online access by management to all corporate data is consistent with current management
philosophies that emphasise corporate communications. New executive roles (e.g. in
change management) are also leading to expanded MIS functions using online decision

analysis tools.

2.3.2 Management Support System (IMSS)

The role of Management Support Systems is to address those inherently unstructured
problem areas, that by their nature make it difficult for a classical transaction processing
system to address effectively. A number of new terms have been introduced to identify
specific user classes and to create desired differentiations. Some of the terms in the litera-

ture that are related, or overlap are:

® Executive Information Support Systems

®* Executive Support Systems

® Professional Support Systems

®* Management Control Systems

¢ Operational Support Systems

® End User Computing Systems
Decision Support System (DSS) is a computer-based information system developed spe-
cifically to assist the professional classes to optimize their decisions, DSS is a computer-
based analytical system. It provides relevant information on demand, possibly based on

incomplete (subjective) data, and may require access to widely dispersed information

S0Urces.

Executive Information System (EIS) can be defined in its broadest sense as one that deals
with all the information that helps an executive make strategic and competitive decisions,
keeps track of the overall business and its functional units, and minimises the time spent
on routine tasks performed by an executive [139]{155]. EIS is an information system

developed to supply senior executives with appropriate information on demand, in
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response to unstructured inquiries. It usually consists of a summary database supported by
high level access methods. EIS answers data inquiry and retrieval requests, with some

report generation and graphical display capability.

Within the past decade, the use of information systems by managers and professionals has
grown exponentially, This has been stimulated by the increasing supply of software tools
for end-user computation, and by external database services. The benefits of an effectively

implemented MSS are to be found in the improved performance of the organization.

MSS is useful to departmental heads and to middle-level management in their focus on
tactical planning and policy implementation. For example, sales analysis, production
scheduling, and budget allocation involve a time horizon measured in weeks or months
rather than years. The tasks of summarising and distributing information can be automated

to a significant extent by information technology.

The traditional role of middle management in the collation, sifting and distribution of
information across organisation is increasingly being performed by MSS. In summary,
MSS is perceived as support activities to better business integration. It mechanizes opera-
tions for better efficiency, control, and effectiveness, but it does not in itself increase cor-
porate profitability. It is simply used to provide users with sufficient, reliable information

to manage the total business.

2.3.3 Strategic Information System (SIS)

Strategic information system (SIS) 1s one of the most important issues facing management
today. Although several attempts have been made at defining an SIS, a useful short defini-
tiont of an SIS is an IT application which directly assists the firm in achieving its corporate

strategy[133].

More generally, strategic Information System (SIS) is a computer system that reflects
business strategies, and is developed in response to a corporate business initiative
[13]{15}[63]. SIS devotes information services to strategic business opportunities. The

desired payoff in terms of an improvement in the organisation’s products and business
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operation can then be monitored using the MIS.

Strategic information system is becoming an integral and necessary part of any business
organization and is increasingly directed towards securing competitive advantage through
repositioning or market stratification [13]. Expected benefits of SIS include improved mar-
ket penetration, future earnings growth and customer loyalty. SIS may identify the need
for new products, market diversification and new ways of deing business (e. g. telemarket-
ing). An important goal of SIS applications is high quality decision making, which often
teads to some centralisation of top management functions due to the far reaching impact of

changes in corporate strategy’

From a corporate point of view, successful SIS systems for achieving competitive advan-
tage require that the business realign operational information systems to monttoring the

effectiveness of future competitive strategies.

2.4 The Relationship between MINTS and Contemporary IS

A Management Intelligence System is different to contemporary information systems in

three major respects; management Jevels, information sources, and operational functions.

2.4.1 Management Level

By the end of the 1960’s, a theory of business computing and data processing had
emerged, and was subsequently applied to management issues [161]. According to
Anthony, the enterprise may be seen in terms of a trinity consisting of the three processes
of strategic planning, management control, and operative control. FIGURE 2.1 indicates
the classic management triangle which was described by Robert B. Anthony in 1965
[161].

Strategic information is future oriented, involving uncertainty and subjective data {(e. g.
estimates). It is useful in long-range policy planning, which is the task of senior manage-
ment. Management information is useful to middie management and department heads,

who focus on tactical planning and policy implementation. Operational information is the
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short-term, day-to-day information used in operating the business. It is usually highly

structured and well-defined.

Manpagement  Decision Summarizaton Degree of

Levels Features Levels Uncertainty

Upper Unstructured Strategic High High
Pianning

Middle Semistructured Management

Control

Lower Structured / Operational Control E Low Low

FIGURE 2.1 The Levels of Management

MIS, as defined, may be used in automation of the basic business processes of the organi-
zation. It offers great value to management for operational control and provides deciston

support in structured environments.

The primary function of MSS, by definition, is to provide end users with information for
managers and professionals, closely related to their functional responsibilities. MSS
works at the middle-level of management, and provides decision support in a semi-struc-

tured environment with limited uncertainty.

MINTS and SIS both work at the highest management level, typically unstructured deci-
sion support environments with high uncertainty. Unstructured decision making implies
that a routine (methodology) for the decision process does not exist, that multiple decision
phases may exist and novel reasoning strategies may be necessary. Methodologies devel-
oped in the mid eighties for design of such systems placed so much emphasis on tHe struc-
ture of the DSS, and the modelling of input requirements, that it became almost

impossible to use such systems for ad-hoc decisions [103}.
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2.4.2 Differentiation in Information Sources

From a strategic perspective, management usually needs intelligence for two general pur-
poses: environmental scanning and competitive analtysis [140]. This requirement makes
the MINT use not only internal databases, the primary information sources for MIS and
MSS, but also the databases available for public retrieval. The common geal of informa-
tion systems is to make information access easy, guick, inexpensive, and flexible for the

users at different levels,

New technologies, such as high speed global networks and inexpensive online storage
have combined to produce a sharp increase in the availability of on-line information.
Knowledge workers have became increasingly interested in the activity of market
researchers and corporate planners; namely, monitoring their environment and tracking the

activities of their competitors.

It has been noted that management intelligence systems devote special attention to the
public online information sources [80], and take advantage of text information in many
applications. Access to online information sources in electronic form (e.g. World Wide
Web) is now recognized as crucial by most professionals. However the volume of infor-
mation demands advanced techniques for searching, selecting and managing data/informa-

tion.

2.4.3 Differentiation in Function

MINTS has many extraordinary functions such as scanning the environment and monitor-
ing external activities of interest. In a broad sense, a firm’s environment includes the mar-
ket, technology, the financial world, and organizational aspects {(e.g. strategic alliances). It
even includes changes in the firm’s internal environment. The activities monitored by

MINTS embrace competitors’ strategic movements, and customers’ behavior patterns.

The resuit of MINTS is an intelligence report. Intelligence differs from conventional
reports (information) through the use of diagnostic capabilities to identify previously

unknown relationships between items from disparate sources, and by means of interpretive
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skills, in analysing the meaning and significance of new, but apparently unrelated facts.

Such intelligence may be of strategic or of tactical importance, but more analysis is typi-

Background 1o the Research

cally required for higher-level, long-range strategic planning.

In combination with the original work by F. Kochen, and the brief reviews provided on

information system development, the following functions have been identified as the prin-

cipal requirements for MINTS design and development in fraud detection:

We conclude that the major functions of MINTS is to bring together the data from a vari-

ety of sources, which have a variety of formats, into a singie facility, having a common set

to provide searching, collating and analytical capability leading to the
definitive matching of ownership records of assets and property, where

there is some degree of suspicion, with data provided,

to recognise that some of the information may be obscure, incomplete,

or otherwise presented to conceal true ownership or identity;

to enable the investigation of such information, together with other data
and knowledge owned by system, by annotation, sorting, collation,
indexing, cross referencing, linking extraction into separate files with
other relevant data, financial analysis spreadsheeting and output in an

appropriate manner;

to facilitate the interpretation of anomalous evidence, to identify how
participants and companies interrelate, scheduling documents accord-
ing to witnesses, to chronicles of events showing major relevant items

such as dates of appointments, major transactions, flow charts; and

to coordinate the contradictory information according to the reliability
of the information source, which has a default value, and can be

updated after coordination of processing.

of front-end enquiry and analysis procedures.
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2.5 Opportunities for MINTS Development

Many advances in technology (e.g. statistical methods) have asststed in general problem
solving, but none so profound as information technology (IT). As we approach the next
century, systems which are easier to use and more flexible will bring IT into many more
applications, such as strategic planning and business management. New opportunities are

evident for the role of IT in business development through research into MINTS.

The new paradigm for proactive management substantially changes the scope for business
problem solving. Furthermore, access to global networks promises vastly increased oppor-
tunities for remote collaboration and resource sharing. A fundamental problem confront-
ing business management is how to discover relevant information from existing sources,

such as documents, network services, and expertise of other users.

The vision that some day manager will write down a problem or a goal on an electronic
medium sustains the search for a management intelligence system that will intelligently
respond with a reasonable solution. Such a goal is basic to this research, even if its "full”

realisation has not been possible at this time.

2.5.1 Development of Networks

Today's telecommunication networks provide the links that move massive volumes of data
across continents and oceans in seconds. With satellite communication, for example, it
makes no difference whether two or more databases on earth are close together or far
apart. Access to a system or database is independent of its location. The development of

telecommunications makes it possible to compress time and space.

There are many networks around the world providing services to academic and research
users on a national and international basis. There are commercial networks for which users
pay to have access on an individual basis, and there are also corporate networks that link
the branches of large companies. Many of these networks are compatible and are intercon-
nected with each other, so that the full range of network services can be used, in principle,

to access any resource on any connected network. The largest collection of such compati-
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ble networks is the INTERNET [37] and is characterised by the fact that computing sys-

tems connected to it use the Internet Protocol (IP) to communicate with each other.

Today the INTERNET reaches nearly 1 million hosts in more than one hundred countries,
with an estimated five million users[73]. BITNET is the largest non-IP network, based on
IBM mainframe technology, and has extended to many locations that INTERNET does not
yet reach, including much of Eastern Europe and the Middle East. Although BITNET is
incompatible with Internet, computing systems with both an Internet and BITNET con-
nection can act as gateways, allowing information from both networks to be exchanged.
Other networks[136] include DECnet Internet, NSFNET, AARNET, SPAN, JUNET and
USENET et al, and Commercial networks such as BIX, CompuServe, Dialog, The Source

and Telebase.

2.5.2 Development of Network Resources

Widely accessible information resources may be assumed to be available to the business
community (e.g. ASC data), including hundreds of gigabytes of software, documents,
sounds, images, and reference catalogues. A number of autonomous agents (soft-

ware Jexist for remote database searches/browsing.

Because of the growth in network database retrieval (e.g. by scientists), the business com-
munity has begun to show great interest in the location, retrieval, and analysis of on-line
information. In the past four years, a number of resource discovery tools, such as Gopher,
NetScape, and Mosaic etc., have been introduced to help such users locate and retrieve rel-
evant information available on the networks. Some useful network access tools are listed

in Appendix 1.

2.5.3 Development of On-line Information Sources

Full text access to business information remains one of the fastest growing arenas for on-
line information searching. Dow Jones Text-search Services and DowQuest, offered by
Dow Jones News/Retrieval, represent impressive methods for searching business texts,

when one wants access to a broad array of databases or a simple entry into current litera-
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ture. Many commercial services offer a range of options for searching newspapers, trade

journals, newswires, newsletters, and other types of electronic document.

Examples of current online information resources are listed in Appendix 2. The databases

considered applicabie to fraud detection in the insurance industry are listed in Appendix 3.

2.5.4 Hypothesis - the Missing Link

Contemporary tools and access mechanisms for information retrieval generally presume
the existence of sufficient knowledge by the user (manager) of all facets of the query or
investigation in progress. Hypothesis as the overarching construct for successful problem

solving is typically ignored in investigative search.

The synthesis and use of appropriate knowledge structures for hypothesis generation, res-
olution and validation involve levels of complexity in knowledge representation and rea-
soning that have not easily been justified by former architects of DSS or EIS. These issues

are now addressed.

2.6 Conceptual Structure for MINTS

In section 2.5 the growth of corporate access to online information sources was high-
lighted, together with the consequential opportunities for the development of wide-ranging
management intelligence systems. A new paradigm for pro-active management was fore-

shadowed!

The requirements for any MINTS to accommodate high-level management hypotheses in
pro-active management poses new research issues into the design and use of appropriate
conceptual (knowledge) structures. A detailed review of knowledge representation
schemes is now presented, embracing declarative and procedural knowledge. A concep-
tual graph based knowledge representation scheme is then proposed to represent hypothe-

ses, containing both declarative and procedural knowledge.
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2.6.1 Knowledge Representation

Newell defined knowledge as "whatever can be ascribed to an agent, such that its behav-
iour can be computed to the principle of rationality [109]". The artificial intelligence com-
munity have generally acknowledged that Knowledge Representation is the key 1ssue in
artificial intelligence research, because complex problem solving requires large amounts
of knowledge. With an appropriate knowledge representation scheme, the complexity
involved in manipulating knowledge can be reduced[92]. Knowledge representation can
be summarised as a form of data structure used to organise the knowledge required for

problem representation and solution[59]

Knowledge representation could also be described as the "glue” that binds artificial intelli-
gence together{98]. The main purpose of any knowledge representation formalism is to
organise the required information into a form that enables an artificial intelligence solution

to be applied.
Various formalisms for representing knowledge have been developed over the last
decades. They can be divided into two major categories[160]:
* Declarative knowledge representation,
* Procedural knowledge representation.
Rich[135] has identified some properties essential for a good knowledge representation
system:
® Representational adequacy,
Inferential adequacy,
Inferential efficiency, and
Acquisitional efficiency.

Woods [164], on the other hand, has introduced two key aspects of the problem of knowl-

edge representation. As reported by Woods, they are:
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® expressive adequacy, which includes the distinctions of a representation
it can make and the distinction it can leave unspecified to express par-

tial knowledge.

notational efficiency which deals with the actual shape and structure of
the representation; as well as the impact this structure has on the sys-

tem's operation.

Not all knowledge representation schemes meet all of the above criteria. Most of them

have varying degrees of compliance with the ideal scheme[93].

The knowledge required for a management intelligence system inciudes objects, processes
and common sense knowledge, as well as the capability to accommodate goals, motiva-

tion, causality, time, actions, efc.

2.6.2 Declarative Knowledge Representation Formalisms

Most existing knowledge representation formalisms like Frames by Minsky[102}, Con-
ceptual Dependency by Schank[1411 and Semantic Networks by Brachman{10] provide a

sound framework for the representation of declarative knowledge.

Lukose [95] has provided a comprehensive survey of knowledge representation formal-
isms. There are six fundamentally different knowledge representation formalisms that

could be utilized to represent declarative knowledge. They are:
®* Predicate logic,
®  Frames,
* Scripts,
®  Semantic nets,
®* Conceptual Dependency, and
* Conceptual graphs.

Conceptual graphs have been adopted as the core knowledge representation scheme in this

thesis, and the theory of conceptual graph of Sowa [151] will be covered in 2.6.4. Concep-
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tual graphs incorporate both the entity-relationship model and the semantic network

scheme.

2.6.3 Procedural Knowledge Representation Formalisms

In procedural knowledge representation formalisms, the knowledge base is usually a col-
lection of procedures. The modification of the knowledge base takes place when subrou-

tine addition/subtraction/modification or access requirements change.

The artificial intelligence community uses the term "ACTOR", while the term "OBJECT"
is used by the Smalltalk community[122], to describe a software engineering paradigm
known as "anthropomorphic programming”[95]. Substantial work on the actor paradigm
was conducted by Carl Hewitt in the early 1970's at MIT. Evolution towards a true Actor
Model of computation comes from the development of Smalltalk by the learning research
group at Xerox PARC, the PLANNER system and from the ACT family of languages by

Hewitt.

PLANNER [71] is an artificial intelligence programming language addressing both repre-
sentation and control information. In the PLANNER, the problem and their solutions can
be stated in a modular, fiexible style, similar to logic. Hewitt has described the logic of

PLANNER as a combination of classical logic, intuitional logic and function required.

2.6.4 An Overview of the Conceptual Graph Formalism

The theory of conceptual graphs is largety a network representation formalism [151}. Two
basic and important types of entities in this framework for representation are "concept”
and “conceptual relation”. A concept corresponds to a type of physical or abstract entity in
the domain of knowledge that is represented as a graph. A conceptual relation represents
the (semantic) links between concepts. A conceptual graph is therefore a directed, bipar-

tite graph of connected concepts and conceptual relations.
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2.6.4.1 Advantages of Using Conceptual Graph

Contemporary knowledge representation formalisms, such as Frame [102}, Conceptual
Dependency [141], Semantic Network [10], enable the representation of declarative
knowledge. On the other hand, the procedural attachment in the Frame, Scripr [144}and
Production Rules enable a way of representing procedurat knowledge. The lack of formal
mapping between operations in the formalisms and the corresponding functions in first
order logic [95][156], however, is a problem. Conceptual graph formalism, however, pro-
vides such a mapping to first order logic. It is a semantically rich formalism for the study
of modal logic paradigms[18]. Conceptual graphs have alsc been extensively used as an
intermediate language for bridging between natural fanguage and computer representation
of logic equivalence [57] [152], as well as language generation from conceptual

graphs[11].

Apart from representing declarative knowledge, conceptual graphs have been demon-
strated as capable of representing procedural knowledge[95]. Dataflow graph{151] 1s a
form of abstraction to represent operators. Hartley{67] has also used conceptual graphs as
a high level natural programming language. Lui[94] bas further demonstrated the ability to
utilise conceptual graphs to represent causal rules for representing procedural knowiedge.
With the development of an Extendible Graph Processor, Garner and Tsui have demon-
strated the ability to represent a control script as a type of procedural knowledge[58]. Fur-
thermore, Garner and Lukose implemented intelligent control scripts{95]} as a procedural

paradigm with the Extendible Graph Processor.

In addition to the distinguished features of conceptual graphs that are mentioned by
Sowa[151] and Clancey{23], conceptual graphs offer three distinct advantages over other

knowledge representation formalisms[156]:

1. A subset of conceptual graphs can be directly mapped into first order
logic. Sowa provided such a mapping[151]. Conceptual graphs can also
act as an intermediate language (or notation), bridging between natural

language statements and machine representation of logic equivalents.
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There is active research on the decoding of natural language sentences
into conceptual graphs as well as on language generation from concep-

tual graphs.

2. Control knowledge (or heuristics) can be embedded into a conceptual
graphs, hence enabling the use of graphs as control structures in a
knowledge-based system. Actor graphs are defined in Sowa[151}, Hart-
ley{67]. Sowa's actor [loc. cit.] graphs are similar to datafiow graphs in
database systems, whereas Hartley's system [loc. cit.] uses conceptual
graphs as a high level natural programming language for simulation

and program development purposes.

3. Research resuits on modal logic reasoning[18] confirm that conceptual
graphs serve as an excellent framework for developing sophisticated
and elegant reasoning algorithms. Recursive modal logic resolution
principles are defined and implemented for components of a graph

instead of an entire graph.

The knowledge representation, processing, and reasoning potential of conceptual graphs
has been realised with the development of the Extendible Graph Processor. It was devel-
oped at Deakin University over the last seven years as a domain-independent, knowledge

engineering tool for advanced knowledge engineering research.

2.6.4.2 Conceptual Graph for Representing Declarative Knowledge

In the conceptual graph formalism, concepts correspond to physical or abstract entities,
while conceptual relations provide the semantic links between concepts within a particu-
lar domain of knowledge. A type of hierarchy tabie is maintained to represent the type-
sub-type associations between the concepts. A concept can have many referents, and a
conformity table is thus maintained to enforce the canonical constraints. The conformity

relation relates type labels to individual markers.

There are eleven types of concepts that can be utilized o represent declarative knowledge,

as described by J. Sowa[151], E. Tsui[156] and D. Lukose[95]. They are:
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1. Generic concepts:
these are concepts that do not correspond to any particular instance

of the knowledge being represented,;

2. Individual concept:
these are concepts that correspond to a particular (unique) instance

of a modelled entity;

3. Empty set concept:

there does not exist any instance of the concept;

4. Generic set concept:
specifies that there exists an un-identified set of elements as the ref-
erent to the concepts;

3

generic set is denoted by “{*}”;

5. Individual set concepts:
these concepts correspond to having a set of individuals as refer-

ents;

6. Partially specified set concept:
these are concepts resulting from the union of an individual set

concept and a generic concept;

7. Distributive set concept:
these concepts specify that the interpretation of the concept has to

be repeated for each element in the set;

8. Respective set concept:
this concept requires that the interpretation of the concept has to be

repeated for each pair of corresponding referents;

9. Nested graph concept:
these concepts have a graph as a referent;

these concepts are interpreted with respect to the referent graph;

10. Nested sets of graphs:



40 Background io the Research

these concepts have a set of graphs as a referent;

11, Variable concept:
these concepts specify that the referent is a variable to be instanti-
ated later; the variables are denoted by “x” where x is a symbolic
tag;

12. Ruie package concept:

these concepts may have a rule package as a referent representing

strategic knowledge.

Conceptual graph formalism also provides us with another class of structure. J. Sowa, E.
Tsui and D. Lukose define this class of structure as an abstraction. The five types of

abstraction for representing declarative knowledge are:

1. Type definition:
all concept type labels are denoted by a canonical graph which

consists of the necessary and essential properties of the concept;

2. Relation definition:
all relation type labels are also defined by canonical graphs repre-

senting all necessary and essential properties of the relation;

3. Schema:
these are canonical graphs that represent the occasional and/or
accidental properties of a concept type label,
these canonical graphs show the typical ways in which a concept

may be used;

4. Composite Individuals:
this is the type definition graph (i.e., canonical graph) with the

generic concept instantiated,

5. Prototype:
these are canonical graphs that show a typical instance of use of a

concept.
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2.6.4.3 Conceptual Graph for Representing Procedural Knowledge

As summarised by D. Lukose, there are four methods to represent procedural knowledge

utilising conceptual graphs. A brief overview of four formalisms is described below:

1. Dataflow Graph[151}:
The actor nodes are attached to the conceptual graph to form a
dataflow graph. Control Marks on the graphs are used to trigger the
actors and computer referents for generic concepts. This dataflow
graph formalism resembles Petri Net [121]with two kinds of token:
assertion marks are propagated forward like the token in Petri

Nets, but request marks are propagated backwards.

2. Actor Typet67]:
R. Hartley has attempted to elevate procedural knowiedge to the
same level as declarative knowledge. He defines actor type in the
same way as concept type and relation type, and introduced a set of
actor inputs and outputs. Hartley’s extension to conceptual graphs
allow actors to be much like “active concepts”, which accept states
as preconditions, and events as trigger. An assertion mechanism is
utilized to activate the actors which are used to express causality,

involving states and events, and inferences, involving propositions.

3. Conceptual Rules[94]:
D. Lui on the other hand has extended the production rule formal-
ism with conceptual graphs. He has implemented the Rule Acquisi-

tion System for Conceptual structures, that encodes causal rules.

4. Actor Graph[95]:
The actor graph incorporates the declarative knowledge representa-
tion of conceptual graphs, the procedural knowledge representation
of intelligent Control Scripts, and the object-oriented properties of
the active Agenr Paradigm. Executing han actor graph involves

sending an appropriate message to the actor component of the
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actor graph. The main methods in actor graphs are designed to ini-

tially check whether the pre-conditions are satisfactory.

2.6.5 Executable Knowledge Structure

Knowledge re-organisation is a process of re-arranging knowledge structures within a
knowledge base. Schank has identified memory models that can automatically reorganise

their knowledge structures as dynamic memory.

There has been active development of executable knowledge structures in recent years.
Both artificial intelligence and software engineering practitioners have developed the exe-

cutable transformation schema, as summarised by D. Lukosef95].

2.6.5.1 Control Script and Intelligent Control Script

Garner and Tsui have introduced the term Control Script, which is used to specify a skele-
tal set of Canonical Graph Processor operation required for the implementation of a partic-
ular knowledge structure[58). The Canonical Graph Processor system is an interactive
knowledge engineering tool that is utilized by knowiedge engineers to perform conceptual
graph processing, Control Scripts can be utilized to reorganise knowledge structures, even
though they suffer from a series of fundamental limitations, which prevent them from

being used for any serious knowledge engineering applications. The main limitations are:
1. static contro] script,
2. single script language,
3, no control structure, and
4. no variable binding.
To overcome these limitations, D. Lukose has made a number of extensions and realised
the implementation of intelligent control scripts. In the intelligent control script, a Control
Transfer Mechanism was introduced to enable the use of multiple script languages in writ-

ing a particular script. Secondly, the control structures are utilized to incorporate a high

level control structure to enable interaction with users. Thirdly, the concept of a self-
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organising script is introduced to enable re-organisation of relevant sequences of script at

run time, usually based on the run-time state information.

2.6.5.2 Active Agent

The artificial intelligence community uses the term ACTOR while the term OBJECT is
used by the Smalitalk! community to describe a software engineering paradigm known as
anthropomorphic programming [55]. An Actor is a small processoer defined solely by its
behaviours, and characterised by its response to messages. The behaviour of an Actor Sys-
tem highlights its capabilities as well as its level of implementation. Various definitions of
Actor are encountered in the literature. A few of the definitions listed below outline the

functions envisaged by various researchers:

® a process that responds to messages by performing some service and

then generating messages that it passes to other actors[151],

® a capsule of knowledge with behavior including self invocation, repro-

duction, self introduction and communication[106].

® an active agent which plays a role on cue according to a script[72].

Actors endowed with the properties of procedures and data since they perform computa-
tions and save local state information. Communication between actors is through message
passing which is a form of indirect procedure call. When an actor receives a message, it
will first determine whether it recognises the message for response purposes. If it does, the
associated script, method or procedure is evaluated, and a response is relayed back to the

sender of the original request.

In an actor model of computation, actors are divided into two major categories: classes
and instances. A "class” is analogous to "type” in a procedural language. An “instance” is
an actor that is not a "class”. The method and structure of an "instance” is determined by
its "class". Most actor systems support two types of variables: class variable and instance

variables. "Class variables" are used to hold information shared by all instances of the

1. Smalitalk is an early example of an object oriented language.
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"class”, while “instance variable” contains information specific to a particular instance.

Inheritance enables specialisation. Specialisation uses class inheritance to elicit informa-
tion. Actors may be created dynamically for various functions without the need of storing
an impossibly large number. Polymorphism extends downwards in the inheritance net-
work, because subclasses inherit protocols from parent actors. The conclusions from D.

Lukose research into the characteristics of an actor are as follows:
1. the maintenance of a local body of knowledge;

2. it can provide operations which allow other actors to interrogate and/or

update its local body of knowledge;
3. it owns its own local body of knowledge;
4. it decides if and when other actors can access it; and

5. it decides when other actors should know of its existence.

2.6.5.3 Problem Map

A problem map is made up of a number of actor graphs organised in a certain sequence,
The sequence of the actor graphs is determined by pre-condition and post-condition of
each actor graph. Similar to the type definition, schema, prototype and other forms of

abstraction defined by Sowa[151], problem map is a new type of abstraction:
1. Problem map is an executable knowledge structure;
2. Problem map is a highly nested conceptual graph;

3. Sequence of messages to be sent to execute the problem map is stored

in a message list;

4. Information about similar/identical concepts in the problem map is

stored in a binding list;

5. Each problem map has a set of initial states under which it could be

executed; and

6. When a problem map successfully completes execution, it will produce
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a final state.

This review of progress during the past decade in knowledge representation has identified
a source of rich abstractions and analogs for the design of conceptual structares for man-
agement intelligence requirements. A better understanding of user missions (goal) in man-
agement environments was also essential, however, to proceed further in the specification
of generic MINTS reasoning capabilities and explanation requirements. The results of this

study of typical MINTS application environments are now summarised:

2.7 Generic Requirements for the MINTS Paradigm

The justification for a new MINTS paradigm rests largely on three premises:

1. Complexity of contemporary business problems due to global competi-
tion, compiiance with laws of evidence and the fragmentation {distribu-

tion) of information sources;

1. Emphasis on proactive management, inchiding adaptive planning

requirements in risk management; and

2. maturity of some knowledge base technologies in meeting require-

ments for cognitive models and diverse reasoning styles.

In the following section (2.7), four key requirements are identified in elaborating criteria

of success for the MINTS paradigm.

2.7.1 Detecting Anomalies

A major opportunity for a generic MINTS 1s in systems integration, which involves con-
nection to massive databases. For the user of MINTS, it would involve workstations which
have global access to other professionals and are connectable to an enormous diversity of
information data-banks. Global connection makes it possible to scan environmental issues

and to monitor competitors' activities.

To deal with the massive explosion of data, one effective way is to identify anomalous
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phenomena for further investigation. The anomaly can be catalogued into two groups,

anomalous values and anomalous relations, as revealed in this research.

The existence of anomalous values has been recognised for a long time, and a lot of
researchers have sought to explain individual exceptions since 1755 [3][84](93]{97]. In
such work, there was seldom any consideration of the existence of anomalous relations,
however, between data, yet there is ample evidence that anomalous relations often exist in
behavioural situations with consequential implications for human conduct. The search for
anomalous relations among data, or rarely encountered patterns of behaviour is a difficult

problem for management.

Much of the existing work on anomaly detection is highly intuitive and takes no account
of the nature of the working environment and the need for new hypotheses. For example,
when concerned with an apparent anomaly in a set of independent data, it is natural and
appealing to look for outliers using scatter diagrams or regression analysis. However,
gualitative behaviours cannot readily be examined on a statistical basis, and the use of

artificial intelligence to define appropriate reasoning processes has a great deal of appeal.

2.7.2 Generating a Suitable Hypothesis

In management intelligence systems, the most important function is carried out by an

hypothesis generation model, typically linked to case histories.

Other than in game theory or in the exploitation of deterministic patierns of prior behav-
jour {e.g. case based reasoning), hypothesis generation has attracted singularly little

research by the artificial inteliigence community.

In our research, hypothesis generation is viewed essentially as the process of re-explaining
observed phenomena, and resolving confiict among the possible explanations. This
description derives from the notions of human cognition, where human beings are always
attempting to explain observed behaviour. When two expl anations conflict, creative think-
ing may result. For example, in renaissance physics, the bchavibur of light could be par-

tially explained by postulating that it was a stream of particles, and partially, by
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considering it as a form of electromagnetic radiation. The conflict energised a great deal of
creative research into physics, and it is the authors' opinion that new hypotheses about

modern physics were triggered by the process of data explanation and conflict resolution.

2.7.3 From Information to Understanding

When seeking to provide a competitive perspective to the company's strategic planning
process, managers often discover that their knowledge of competitors is incomplete,
widely scattered throughout the corporation, and generally not coordinated. What 1s per-
haps even more frustrating is that the available internal assessments and opinions about
competitors are frequently in conflict, unsubstantiated by documented facts, and often
based on assumptions and intuitive hunches that are partially right, unrelated in context,

and often out of date [139].

A basic, but often misunderstood, reality is that intelligence is not equal to information.
Information is the raw material of the intelligence process. It is contextualised data
derived from every possible information source, such as financial statements, trade show
gossip, union newsletters, marketplace rumours, product brochures, executive speeches,
and so on. Such pieces of competitor information flow by in a constant stream, maybe true
or false, relevant or irrelevant, confirmed or unconfirmed, positive or negative, deceptive
or insightful. In its undigested state, these voluminous items of competitor information,
most of which is publicly available, may be vaguely interesting and occasionally intrigu-
ing, but however glittering, it is essentially an unusable and potentially dangerous resource

[140].

Intelligence is produced by an analytical process that transforms the disorganised, con-
fused, and sometimes contradictory stream of competitor information into relevant, accu-
rate, and usable strategic knowledge about competitor's position, performance,
capabilities, and intensions. Intelligence is the product resulting from the collection, eval-
uation, integration and interpretation of all available ihformation, which concerns one or
more aspects of competition, or of their areas of operations, and which is immediately or

potentially significant to strategic planning.
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The most important phase of the intelligence process is to transfer the raw information
(knowledge) into understanding. Before the collected information can be upgraded to the
category of competitor intelligence, every relevant piece of collected information must be
critically assessed and then fitted into a large, more meaningful unity. The nature of the
intelligence work at this stage is the intellectual activity of sifting diverse, often conflict-
ing strands of competitor information to find the meaningful pattern within the stream of

available data.

Transformation from information to inteiligence requires elaboration of the link between
knowledge and understanding. To deal with such a task, it is natural to categorise those

knowledge structures suited to complex, unstructured problems.

2.7.4 Human Computer Interaction

Since the user of MINTS is, in most situations, expert in the domain, strategic pro-active
management requires the creation of an environment conducive to the problem solving
process. The key requirement of MINTS is to provide a cooperative environment between
the users and the computer system to recognise and deal with the new situations. Human
beings are good at using common sense, rule of thumb and conjecture, whereas computers
are effective and efficient in assisting with problems requiring repetitive analysis and
involving a large amount of data. Cooperative problem solving enables the strengths of

both partners to be exploited to the full!

The problem of designing a Human-Computer Interface to mediate between the users,
who require an understanding of the problem, and the computer-based information
resources, poses a number of research issues. The intermediary and information resources
together constitute the Infelligence Provision Mechanism. At present, such systems
require a human intermediary. The desired human-computer interaction of MINTS will
need to perform at least some of the functions which human intermediaries perform; such

an interaction woulid perforce be intelligent.

The typical situation in management intelligence systems, and indeed in many decision

support systems, is that the users are unable to specify the requirements for intelligence or
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information needed for managing a problem situation. The task of such an interface thus

requires:
® adaptive model of dialogue control
* information selection for improved user understanding of the problem
® associated explanation capabilities

®* anomaly detection and hypothesis generation in mediated learning

2.8 Summary

Justification for a new paradigm for MINTS has focussed on the complexity, regulatory
and distributed information issues that are seen to pose insuperable difficulties for manag-
ers, unless a convergence is achieved between distributed problem knowledge and under-
standing. the competitive advantages of MINTS have also raised expectations of their
capabilities (e.g. data mining). The maturity of contemporary research in knowledge based
systems has similarly generated expectations regarding the new management opportuni-
ties for problem diagnosis and proactive planning. However, the extent to which current
technologies can deliver the promised benefits is itself an issue deserving objective
research, as there are patently few methodologies of generic value in management intelli-
gence. Much of the current research is fragmented and unfocused in relation to the intelli-

gence mission.

In chapter 3, a novel and original framework for MINTS is elaborated, and appropriate cri-

teria of success are developed further.
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CHAPTER 3

Framework for Management Intelligence

3.1 Management Intelligence Systems: Business View

F. Kochen described how a Management Intelligence System might look to a system devel-
oper and to a user (as shown in FIGURE 3.1). Raw data flows into the scanning box of the
system in response to environmental changes. Two basic types of analysis are shown in box
1. One is monitoring indicators and another is searching for novel patterns. The indicator
monitoring is applied to the incoming data stream, and the pattern searching requires com-
paring and correlating incoming data with what has been accumulated, which is no longer
raw data. Hence, it must be screened on the basis of estimated reliability, utility, precision,

clarity and novelty.

The screening function can be partially automated with the help of an expert system if crite-
ria for data evaluation can be specified and the judgements of experts can be expressed in
the form of rules. In current business practice, the functions in box 1 are generally per-
formed by human experts, whose capabilities for dealing with vast and diverse data and

knowledge streams are limited.

Monitoring well-defined indicators is easily automated, but the search for novel or rarely
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encountered patterns is a challenge. The basic idea for discovering new patterns is to screen
out forms of behaviour that fail to correspond to any known patterns or are unusual varia-
tions of known patterns. The human expert may be very good at noticing the unusual or
unfamiliar, and the computer, in symbiotic partnership with human judgement, could dis-
play data in various ways — using methods of Exploratory Visualisation — to enhance this
ability. Moreover, much of the data in intelligence analysis is qualitative, in the form of
unformatted text and graphics, and this would have to be transformed into a canonical rep-

resentation, perhaps one resembling the form of influence graphs [80].

The most important function in the architecture of a MINTS is represented by box 2, m
which the intelligence analysis process really begins. It starts in response to an alert or a
stimutus that motivates hypothesis formation or generation. This motivation usually stems
from external data. But it could also stem from the reflections or meditations of a human

analyst.

At stage 3 (box 3) the analyst seeks to mine knowledge from the data using detected anom-
alies as cues for possible questions. In seeking to automate this process it has been noted
[46] that domain-independent algorithms for asking good questions are particularly difficuit
to construct. The more specialised the domain the easier it is for an expert to ask profound
questions! This probiem is reflected in the need for domain restriction in box 2, so that non-
trivial questions may be selected (box 4). The questions generated actually imply or define

the strategy of the investigation to be conducted by the intelligence analyst.

In seeking answers to questions posed in box 4, conventional approaches depend on infor-
mation retrieval strategies (IR) that may be informed by artificial intelligence (e.g. deduc-
tive database). Typically, such questions are transformed in box 35 into boolean
combinations of search terms and would then be directed to one — or more on-line biblio-
graphic databases. The latter consist of indexed references to documents that might contain
relevant information. The role of Al or expert systems, at this first stage, may be solely to
advise the investigator about which database(s) to use. The questioner (currently a human
investigator, in future, perhaps an automated analysis assistant) is presented with a number

of articles that are retrieved from such database, indexed with the specified terms, so that he
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can revise the search strategy. During the first run, only titles or abstracts may be retrieved.
Finally, full bibliographic information would be printed out about articles matching the
revised search specification. Manual searching of these articles would normally permit a

useful inteliigence assessment to be made.

Of great benefit are those situations where the questions may be posed in a query language
that can automatically search a database or a knowledge base. For example, if he wishes to
know for the past two years the number of motor vehicle theft claims in Kensington, a sub-
urb of Sydney, there may be a database management system that can provide this data. In
response to these opportunities for automation of the query, directory services are being

implemented to identify the existing databases and their access paths.

Many database management systems (DBMS) are directly coupled with a Statistical Analy-
sis Package (SAP), so that confirmatory statistical analysis can be done on a continual
basis. Ideally, a DBMS and a SAP should also be integrated with simulation systems or
modeling packages, such as an Interactive Financial Programming Language (IFPL), and
also with tutorial systems, so that the investigator can get on-line guidance about which

methods, programs or languages to use under different circumstances.

When it is not possible to obtain useful answers to the questions posed, artificial intelli-
gence may be used (box 6) to retrieve units of knowledge from which better IR strategies
may be formulated. For highly restricted domains of discourse, automatic question-answer-
ing algorithms for English-like questions have been developed. Should such discourse fail
to provide the breakthrough needed, external knowledge may be sought off-line! Ulti-
mately, if the enguiries prove to be fruitless, the process of investigation is abandoned, and
repiaced by a new one that is expected to do better. This is done in box 7 by zooming back
to the general domain and selecting a different set of specialized domains or some other

representation shift procedure.

The remaining two processes (box 9 and 10), complete a leamning ioop. Learning by the
MINTS is necessary, if only to enable it to keep up with a changing environment. For it to

improve, it must learn faster than required by the changing environment.
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A MINTS can be regarded as a combination of several subsystems. Each subsystem has its
own knowledge base, question askers, question answerers, and expert system (box 2 — 6).
But there are also hypothesis generators at the system level. The subsystems are further
organized into more specialized sub-subsystems, in which there is increasing expertise. It
is the integration of all these subsystems that makes the production of intelligence possi-

bie.

A concluding statement in Kochen’s work is worth considering:

Many assumptions about human problem solving and decision
making are again under challenge as researchers develop a para-
digm to fit in with this perceived demand. Contemporary research
into management systems reflect this research for new support par-

adigms.

3.2 Management Intelligence System: Artificial Intelligence
Viewpoint

From Kochen’s architecture, there are several stages in which an hypothesis is needed

leading to the conclusion that hypothesis generation should play a key role in any manage-

ment intelligence system. In our proposed structure for a management intelligence system,

the central role of a knowledge based system, supported by an hypothesis generation para-

digm, is the key to new search strategies and learning functions.

Thus, the structure depicted in FIGURE 3.2 can implement most functions of MINTS
specified by Kochen and is based on an hypothesis generation model, HG, an hypothesis
space, HS, and an anomaly detection model, ADM. The six (6) stages of the problem solv-
ing cycle of the process used by our management intelligence system are outline briefly

below:

1. ADM scans the environment such as databases, and on-line information

sources through the back-end interface.

2. When some anomalies are detected by ADM, the attributes will be sent

to HS, and relevant components in the system will be activated.
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3. Based on the active components of HS, HG will generate a candidate
hypothesis abstract, which will be instantiated by domain knowiedge.
The hypothesis generation process also involves the evaluation process

for hypothesis verification.

4. After the hypothesis is generated, it can be used to solve the probiem by
execution of the proposed hypothesis. One example of hypothesis execu-
tion 1s to explain anomalies detected. This explanation may be supported

by information retrieved from various sources.

5. The process of hypothesis execution is a feedback control process. The
information gathered from hypothesis execution will be used to test this

hypothesis. The credibility of an hypothesis will often change in the pro-
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cess of verification.

6. The final stage is to generate an intelligence report.

At any one of these stages, the user can interrupt systems process by assigning another
scanning strategy, the system explanation may be overridden by attaching a new explana-

tion, and a generated hypothesis may be manually verified or rejected (i.e. “fastpath™ facil-

ity).

All the processes can be represented using the flow chart shown in FIGURE 3.3.
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3.3 Hypothesis and its Representation

The knowledge required for a2 management intelligence system includes declarative and
procedural knowledge, such as about objects, processes, as well as about goals, motivation,

causality, time, actions, etc.

3.3.1 Limitations of Current Approaches

In order to overcome the limitation caused by treating the knowledge differently from the
data/information, collaborative research conducted by University of Technology, Sydney
and the CSIRO Division of Information Technology developed an unifying formalism
called ‘objects’, in which data, information and knowledge are all described by one formal-

ism[28]. Their work focuses on three tssues:

First, the development of an unified framework for conceptual mod-
elling in which the ‘data’, ‘informatior’ and ‘knowledge’ in the
application can all be represented entirely in a single formaiism.
Second, the development of classes of constraints for knowledge
that can protect the knowledge base effectively against the introduc-
tion of update anomalies. Third, the derivation of a single principle

of normalisation (loc cit).

Furthermore, the distinction between declarative and procedural knowledge governs the

fiexibility of knowledge system’s application in profound ways.

Since 1985, the Knowledge Engineering Group in Deakin University has built a number of
knowledge engineering tools based on Canonical Graph Model. This project has pro-
gressed from the initial Canonical Graph Processor to an Extendible Graph Proces-

sor[156], and subsequently, included an Actor Paradigm[55] and Problem Map{95].

Even though Canonical Graph Model was an improvement in comparison to other models
for knowledge engineering, it was unsuited to rapid prototyping or to general problem solv-

ing by domain experts wishing to build hybrid systems.
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The Deakin design of a Problem Map, notably the executable feature of the actor mecha-
nism, has successfully realised a knowledge acquisition process for complementary use of
declarative and procedural knowledge in goal interpretation [95]. Strategic knowledge 1s a

key goal of this knowledge acquisition process [65].

Qur research inio knowledge management and knowledge reusability has, however, iden-
tified significant limitations in use of the Problem Map design in management intelligence
applications. The principal limitations in relation to our requirements are summarized

below:

1. Problem map is a static knowledge structure.
Dr. Lukose uses goal interpretation mechanism to explicate plan-
ning knowledge to construct problem maps[95]. Once the problem
map is built up, it is fixed, and is difficult to change. Thus, the
problem map lacks the ability to modify and maintain itself 1n

dynamic environments.

2. There is a lack of knowledge sharing among different problem maps.
Problem maps are stored separately, and there is no connection
among them. Strategic/planning knowledge is not shared. Due to
this limitation, a new problem map will be built from scratch

whenever a new situation is encountered.

3. The explanation capability is inadequate.
Description of the problem solving routes or the sequences of actor
execution are the only explanation sources available. Explanations

based on those sources are often unconvincing at strategic levels.

Removal of those limitations was necessary in the elaboration of a structure for represent-
ing hypotheses. A number of modifications and extensions have been made to the base

Problem Map leading to significant improvements to the generic model:



60 Framework for Management intelligence

1. Introducing Hypothesis Space as a node-relation structure to represent
the expertise of the expert’s domain. This knowledge structure will be
used to generate a specific hypothesis by the hypothesis generation

model.

2. Hypothesis space is a dynamic knowledge structure which will expand
in the process of knowledge acquisition and will shrink in the process of

knowledge re-organization (fusion}.

3. All hypotheses are concealed in the hypothesis space, and an hypothesis
will only become active when its triggers(evidences) are activated. The

hypotheses are interconnected and overlap in the hypothesis space.

4. In the hypothesis generation process, a segment of hypothesis space is
projected by the executable components (actors), thus producing an

instantiated hypothesis.

5. An hypothesis can be executed if its pre-conditions (observed evidences)
are satisfied. On compietion of execution, an explanation will usually be

produced.

6. From the topological viewpoint, an hypothesis is also a highly nested

conceptual graph and is, thus, a complex abstraction.

3.3.2 Hypothesis Representation

An intuitive concept of hypothesis may be illustrated as follows: two attributes a; and a; are
said to be related by a chain of qualitative connection in the simplest hypothesis shown in
FIGURE 3.4. The gualitative connection included in this chain, when assumed to be active,

would invoke the explanation of a causal relation (r;) between a; and aj.

The hypothests (H,) is formally defined as follows:

HiE‘(IDf, Ei"' XP,‘, KPI‘>
KP£E<DKI', 1‘41C,‘3.r|().RI b
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FIGURE 3.4 Simplest Hypothesis Structure
where i € T and Lis a set of positive integers;

ID; is the hypothesis’ identification number;

E; is a set of nodes representing evidence or attributes;

XP; is a set of relations representing explanation sources;

KP; is executable knowledge (expressed in set form) which can be
used to verify the anomalies;

DK, is domain knowledge (declarative knowledge packet),

ACTOR, is a set of actors {executable knowledge packet).
A simplified definition of hypothesis can be expressed as:
H=(A R

For a given set of nodes A (that is attributes which represent observed or unobserved evi-
dence, facts, and conclusions), and a set of relations R, an hypothesis, H = (A, R). is thal
subgraph of hypothesis space HS, formed by connecting the separated nodes with rela-

tions, that obeys the following two constraints:

1. each node has at least one qualitative relation connected to another

node;

2. there is no confiict among the relations in an hypothesis.
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Hypothesis is a type of knowledge of unusual complexity and scope. The following context

may be used for its application:
® Hypothesis is an executable knowledge structure;
® Hypothesis is a highly nested conceptual graph;

®* The hypothesis contains actors connected in a certain sequence. Execu-
tion of these actors will cause the state of the hypothesis space to change.
Hypothesis verification (or not) follows from the execution path that the

evidence supports.
¢ Each actor in an hypothesis is activated by pre-conditions of the actor;

* The sequence of executing actors in the hypothesis ts determined during
hypothesis generation, and could be revised according to the current exe-

cution state;

When an hypothesis successfully completes execution, it will produce a

final state (goal).

3.3.3 Data Structure of Hypothesis

The hypothesis structure definition has been elaborated steadily during the course of this
) research to enable the computer to identify and utilise hypotheses to solve domain specific
) problen?.vs, Bro]og data structures were selected, as the knowledge engineering workbench at
Deakin }?Based on the Prolog Programming Language. The data structure needs to repre-
sent the name of the hypothesis, the conceptual graph representing the hypothesis, the con-
cept binding list to propagate new information during the execution of the hypothesis, and

some other details particular to our implementation.

A Prolog fact with eight (8) arity called hypoindex/8 is used to represent the definition of an

Hypothesis. The data structure is shown below:

hypoindex (<hyponame>, <hypo cg>, <hypo cg id>, <main concept name:>,

<main concept id>, <binding list>, <initial state cgs>, <hypo id>)
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where:

<hyponame> - the name of the hypothesis;

<hypo cg > - the name of the conceptual graph that represents the
hypothesis,

<hypo cg id> - the identifiers of the conceptual graph that represent
the hypothesis;

<main concept name:> - the name of main concept in conceptual graph;

<main concept id> - the identifier of the main concept in conceptual
graph;

<binding list> - nested list containing the concept identifiers of iden-

tical concepts in conceptual graph;

<initial state cgs> - list of skeletal initial state graph identifiers represent-
ing the initial state required to activate the hypothesis

<hypo id> - the unique identifier representing the hypothesis
The following is an example of such a definition:
hypoindex(staged_accident, stage_a, 810460, hypo, 765483,
[810448, 810460, 810501], [810 541, 810194, 810 325], 810101)

In the hypothesis structure (FIGURE 3.5), k-package points to an executabie knowledge
packet, which is represented as a nested graph, and describes the knowledge base and pro-

cedures (actors) to apply the knowledge.

Evidences are connected by an explanation package, represented as a nested conceptual

graph. A simplified structure for ap hypothesis is shown in FIGURE 3.5.

3.4 Improving Explanation by Combining Planning Heuristics
with Explanation Based Learning

The need for better explanations in knowledge based systems has been recognized for a
long time. Domain knowledge is typically incomplete for many classes of problem, neces-
sitating the use of heuristic knowledge in association with procedural knowledge. Being
heuristic, they do not guarantee optimal sotutions: in fact, they do not guarantee any solu-
tion at all. The best that can be said for a useful heuristic is that it offers solutions that are

good enough most of the time.
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FIGURE 3.5 Simplified Structure of Hypothesis

For a knowledge based system to be trusted, it must be able to provide explanations on its
reasoning, justification and conclusion. Good explanations can make an heuristic system
more believable and can improve confidence in the systern’s advice. On the other hand, if a
knowledge based system has been pushed beyond the limits of its expertise, an expianation
facility can also make it obvious to the user, thus warning the user that the system’s advice

is based on tentative conclusions and may be erroneous.

Based on direct tracing of the rules fired in solving a problem, first generation systems pro-
duce explanations by paraphrasing the rules or execution traces into natural language using
templates [146]. A major advantage of this approach lies in its simplicity: once the system

is working, explanations may be generated fairly easily.
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However, the limitations of this approach of “paraphrasing-the-rules-to-explanation”
have been well documented [25]. Swartout and Moore, while working on the requirements
for second generation expert systems[154], concluded that the first generation systems’
failure to generate a good explanation lies in three limitations: the use of a representation
(rules) that is too low-level, the failure to capture all the information needed for explana-
tion, and an inability to distinguish the roles that different kinds of knowledge play. Fun-

damentally, all these limitations derive from the same origin.

On the other hand, case-based explainers, provide explanation from prior (known) expla-
nations stored in memory. Case-based explanation ignores the causal information which
may exist in a knowledge base, and depends on anomaly detection, case index, and case
modification techniques to solve the problem[145]}. The attraction of case-based explana-
tion lies in the power of indexing and modification methods. But this method appears to
ignore the effective guidance provided by tracing rules or causal relations in knowledge

bases.

Explanation generation is a process of constructing a consistent narrative that relates the
evidence to be explained and the conclusions that the user understands and accepts. First
generation systems assumed that satisfactory stories could be produced with ciever tech-
niques for traversing, pruning, and translating the system’s execution trace. But, as we

have seen, this approach proved unsatisfactory.

The main aim, in developing explanation capabilities involving hypothesis structures, is to
develop a knowledge representation which is suitable for the explanation generated. Gen-
erating a good explanation is a complex problem solving process requiring its own exper-

tise,

The design advocated here involves separation of causal relations from explanation
knowledge, while retaining use of causal refations for guidance of the case based explana-
tion mechanism. Explanation requires its own body of knowledge, in addition to the

knowledge used by the conventional knowledge based systems.
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Many of the explanation failures of early knowliedge based systems can be attributed to
restrictions on structures in representing knowledge that is required to support explanation.
Researchers now have a better understanding of what kinds of knowledge support good
explanations. Second generation expert system architectures have been developed to repre-
sent that knowledge and to make it available for explanation[154]. The explanation genera-
tion is a problem-solving activity in its own right, worthy of its own problem-solving

architecture,

Conceptual graphs, as used in our hypothesis structure, provide the ability to represent both
declarative knowledge and procedural knowledge, and facilitate the combination of plan-
ning heuristics with explanation based learning. The limitations of explapations provided in
first generation systems, however, can be resolved more efficiently when explanation based

learning provides strategic knowiedge.

Thus, to support better explanations, the knowledge structure needs to represent two gen-

eral kinds of information[154}:

1. It must represent concepts, methods, facts and terms that are potentially
familiar to the user and that underlie the system’s actions. These are the
starting points for an explanation. They are the points where the explana-

tion connects with the user’s current knowledge,

2. It must represent the inferential linkages between the starting points and
the item to be explained. The linkages show the object to be explained
relates back to things the user understands. The linkages provide an
abstract “story line” for the explanation, based on strategic knowledge

for representation of the inference strategy.

One of the promising {eatures of our hypothesis structure is that the system is able to sup-
port feedback from the user about the suitability of its explanations. This capability is cru-
cial for two reasons. Firstly, studies of human computer interactions show that experts and
novices must negotiate the probiem to be solved as well as agree on a solution that the nov-
ice understands and accepts. Secondly, the relevance and accuracy of user models cannot be

guaranteed in practice. Thus, unless systems can compensate for incorrect or incomplete
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user models, the preferable explanation is difficult to generate for a wide range of skill lev-

els.

Our proposed hypothesis structure provides support for better explanations through the
use of high-level specifications to allow the representation of extensive knowledge of the
domain, its principles and terminology. Procedural and heuristic knowledge are separated
and can be represented at various levels of abstraction. A knowledge base at several levels
increases the number of possible “starting points” for an explanation and enhances under-

standability.

3.5 Anomaly Detection Modeling

Anomaly detection is a vital step in indexing and generating hypotheses. In this section,
we present an anomaly detection model, the potential vaiue of which has been demon-
strated in the domain of fraud detection[50] and by other authors, for market surveillance
[63]. This model drives the hypothesis guided problem solving mechanism, which pays
attention not only to anomalous data, but also to anomalous relations among data, and aiso

involves abductive processes for positing virtual relations.

3.5.1 Introduction to Anomalies

What are anomalies and what is anomalous evidence? As defined by most research-
ers[3][97], an anomaly is a subjective, post-data manifestation. In observing a set of obser-
vations in some practical situation, an observation may Stand out in relation to other
observations, usually as an extreme value. In other words an anomaly is one that appears

to be an exception to other members of the sample in which it occurs.

The existence of anomalous values has been recognized for a long time, and 2 lot of
researchers have sought to explain individual exceptions since 1755 [3]{84][93][97]. In
such work, there was seldom any consideration of the existence of anomalous relations
between data, yet there is ample evidence that anomalous relations often exist in behav-
ioural situations, with consequential conclusions for the explanation of human conduct.

Research by the author in conjunction with a major insurance company has demonstrated
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that the discovery of anomalous relations is extremely important in fraud detection, as dis-

cussed in Chapter 9 (Case study).

Much of the existing work on anomaly detection is highly intuitive and takes no account of
the nature of the working environment and the need for new hypotheses. For example,
when concerned with an apparent anomaly in a set of independent data, it is natural and
appealing to iook for outliers using scatter diagrams or regression analysis. However, quali-
tative behaviours cannot readily be examined on a statistical basis, and the use of artificial
intelligence to define appropriate reasoning processes has a great deal of appeal. Story
understanding programs, in particular, have been particularly effective in using expectation
as the basis of anomaly detection. The SWALFE project [145], for example, detects anoma-
lies in the stories it reads and explains them by retrieving and revising old explanations. The

new explanations are then stored in memory for future use.

3.5.2 The Basis for Modelling Anomaly Detection

An Anomaly Detection Model, as defined and reported in 1994[50], has been used to scan

and judge insurance claims on the basis of:

1. Anomalous data (outliers) defined both statistically and using rules of
classification. For example, in vehicle insurance claims, anomalous data

could be such items as;

. events (e.g. accident happened at midnight)

* attributes (e.g. very large losses; aged vehicle)

2. Anomalous relationships, which are typically unsuspected at the time of
the claim and are indicative of suspicious scenarios. For exampie, the
vehicle mvolved in the accident has previous claims; two parties to the

accident/claim are known to each other!

To deal with these two types of anomaly, the detection process is separated into two steps,
each of them utilizing different reasoning processes. The first stage is statistics/rule based

processing for the detection of anomalous data, The next stage is hypothesis guided pro-
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cessing for anomalous relationship detection. The strategy of the Anomaly Detection
Model is to narrow the scope of the data, and then to thoroughly investigate possible
anomalies according to the hypothesis. Occasionally, it will be necessary to perform a data

mining search for the discovery of virtual relations (referenced in chapter nine).

Anomaly (data) detection is initially simplified to identify any data which appears to devi-
ate considerably from other data in the samples. There are various methods of detection
[3][971[84]. In order to overcome the limitation of pure statistical methods and to provide
a fiexible process, a rule-based strategy was found to be necessary and has been incorpo-

rated in the detection medel for the insurance domain.

The results of this anomalous data detection are the claims with fraud scores over a
defined threshold, together with the qualitative evidence provided (summarised). Usually
the evidence available is not enough for a firm conclusion for fraud. The claims which

should be investigated have, however, now been limited.

The next stage involves hypothesis guided detection, which attempts to establish new rela-
tionships in the anomalous data. The respective heuristics are activated by initial indica-

tions of anomalous behaviour based on evidence from:

®  historical pattern of suspicious events (e.g. fraud claims known to

insurers);
® linkage with other (suspicious) circumstances,
* facts determined in the course of attempting to verify claimants stories;

* inconsistencies, as determined by reference to other agencies database;

and

®* model-directed discovery of new methods for verifying the information

provided.

Using the knowledge implied in the respective hypothesis/explanation and extracted from
online information sources, such as the Australian Securities Commission (ASC) and Aus-

tralian Electoral Roll, the process for examining anomalous relations will, if successful,
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throw up some novel evidence and further leads for the investigation. Field studies may be

necessary under some circumstances.

3.5.3 Structure of the Anomaly Detection Model

The structure of our Anomaly Detection Model is shown as FIGURE 3.6. In this model,

there are two types of knowledge involved in anomaly detection.

1. Knowledge represented as rules, which includes the strategy to analyse

statistical results, and threshold rules for determination of anomalous

data. This type of knowledge is also used to detect inconsistent data.

hypothesis
evaluation

anomaty index hypothesis hypothesis
recognition selection - selection generation
f ! o
rule virtual hypothesis
structure refationships indexing [

N

knowledge base o
anomaly feature

fraud classification
actual cases

on-line
data base

FIGURE 3.6 Anomaly Detection Model

2. Knowledge assisted detection of anomalous relations, based on hypothe-

sis guidance. The knowledge required for use of an hypothesis is derived

from fraud indicators, from verification sources and from information

retrieval techniques. Use of a particular hypothesis implies the availabil-

ity of the following knowledge:

® Historical Paitern of events (fraud claims);

® Description of events affecting or refating the claims;
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® Knowledge about evidential anomalies;
® Information sources to verify the hypothesis; and

* Methods of using on-line information to detect anomalous rela-

tions.

As shown in figure FIGURE 3.5, the hypothesis structures are based on highly nested con-
ceptual graphs[151]. The representation has agvantages in using the conceptual graph for-
malism as well as the actor formalism [54]. The proposed data structure representing the
hypotheses has to accommodate state change information and methods, and also handle
incoming and out-going messages, together with the capability to transfer control to vari-

ous entities during graph execution {54][95].

3.5.4 Reasoning in the Anomaly Detection Model

In the knowledge acquisition conducted by the author in the Special Claims Unit, fraud
investigators have demonstrated highly developed abductive reasoning skills. Broadly
speaking, abductive reasoning is any reasoning process which derives the best explana-
tion(s) for a given set of problem features/evidence {120]. Like deduction, abduction
requires that we find pertinent facts and apply them to infer a new fact. However, unlike

deduction, ambiguous answers can arise in abductive reasoning {19].

Explanation plays a vital role in cognitive processes used in this anomaly detection model.
In the anomaly understanding process, this role ranges from self-evident connections to

the generation of complex relations between any nodes in the reasonmg network.

The definition of an explanation is defined as:

explanation = Explanation(node;, node,)

or

explanation = Relation (node;, node;)

This latter explanation is defined as explaining the relation linking the node; to node,.
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Such explanation definitions are primarily based on the specific domain knowledge embod-
ied in the anomaly detection model. Note, however, that we concerned with the provability

of an hypothesis rather than an explanation of the behavior of the model itself.

The purpose of such explanations is to construct an hypothesis, which enables better under-
standing of anomalous evidence. The effectiveness of explanation is mainly determined by

the conceptual richness of its knowledge sources.

In the domain of insurance fraud detection, we are particularly interested in the individual
conditional probabilities connected through evidence to certain type of fraud. In particular,
given that partial evidence may be present, there could be many hypotheses available, and
each could be mandated for investigation. The detective is interested in the most iikely over-

all hypothesis or explanation for the occurring evidence.

There is a considerable literature on reasoning under uncertainty. Most publications appear

to address one of the four (4) following theories:
® Bayesian Inference[19],
* Dempster-Shafer Theory of Evidence [30][147],
® (Certainty Factor Modelf{14], and

® Theory of Possibility [166].

In our application to insurance fraud detec.tion, evidence can be seen as statistically inde-
pendent not only in generic fraud cases, but also in special types of fraud. We are interested
in a reasonable hypothesis for a short time rather than a perfect one for a long time. The
Bayesian model has, therefore, been chosen as the basis for bottom-up inference in our rea-
soning engine {19]. The top-down reasoning process is a straight-forward application of

backward chaining for reasons of efficiency.

In fraud detection, complicated situations may arise where the reasoning process first prop-
agates probabilities up through intermediaries to hypothesis, following which, top-down
reasoning may occur. FIGURE 3.7 explains, by example, this Bottom-up and Top-down

reasoning process.
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FIGURE 3.7 Reasoning Process in Action

In the anomaly detection model, the probabilities are not directly propagated up to the
conclusion but are directed through some intermediate steps. This structure provides a
flexible strategy to control the reasoning process, and requires only simple semantics to
explain relations between neighboring nodes. As shown in FIGURE 3.7, the facts are

evaluated first, and finally the conclusions.

3.6 Hypothesis Based Problem Solving Cycles

Through research conducted at Deakin University, we conclude that an hypothesis based
problem solving process can be described as one involving Abduction, Resolution, Verifi-
cation, and Deduction, as shown in FIGURE 3.8. This result is analogous to the human

cognitive model in a complex problem solving process.
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Abduction._ Explanation | Resolution

Generation
Anomaly Hypothesis
Detection Generation
Hypothesis | |
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FIGURE 3.8 Hypothesis Based Problem Solving Cycle

Abduction is used to generate explanations, i.e., abducible sentence, whereas resolution 1s
used to synthesize the conflict explanation. Deduction is normally used for testing deriva-
bility. In a deduction step, each consequence is obtained by applying a logically correct
inferential rule, so the deduced formulae are a logical consequence of the theory under con-

sideration.

In our experiment, once the hypothesis is defined, the problem solving simply becomes
hypothesis verification. Thus, the mechanism for generating an hypothesis must have the

following features:

1. control capability for inference using strategies implied in the hypothesis

structure (that is executable relations);

2. improved communications between the user and expert systems in the

process of problem solving; and

3. to focus the system resources on interesting aspects of the problem solv-

ing, and thereby avoid exhaustive search.
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The strength of hypothesis based problem solving comes from the evaluation of complex
hypotheses. We are also investigating the possibilities of controlling the inference with
novel control strategies derived from hypothesis structures. This view of problem solving
is different from the classical methods based on a single trace of reasoning, or from newer
approaches using muitiple threads of reasoning, which provide the problem solver with

consistent alternatives, but make no attempt to evaluate their respective credibility.

3.7 Summary

In this chapter, the prototype specifications of a management intelligence system capable
of meeting the requirement of an unstructured environment were analyzed. The conceptual
framework advanced has three subsystems: anomaly detection model, hypothesis genera-
tion model, and hypothesis execution system. Our framework for a management intelli-
gence system draws on the contributions made by Kochen [80] in a business management

context.

A management intelligence system is ideally an extension of the domain expert’s cogni-
tive model. Its map of concepts and relationships extends the user’s cognitive space, push-
ing back cognitive limits and expanding knowledge levels. Its knowledge processing
capabilities increase the user’s skills, by overcoming cognitive limits on the speed and

capacity of knowledge processing,.

The management intelligence system can also be seen as a knowledge based system sup-
ported by an hypothesis generation paradigm. The kernel of our framework is hypothesis
generation modelling. Here, we have proposed a knowledge structure for hypothesis rep-
resentation after briefly reviewing the limitations of current knowledge representation
schemes. An original approach to explanation generation is offered by combining plan-
ning heuristics with explanation based learning, and by using a high-level specification for

the representation of knowledge about the domain, its principles and terminology.

A vital step in hypothesis generation and indexing is the process of detecting anomalies. In
this chapter, we briefly introduced an anomaly detection model, which is based on the

hypothesis guided problem solving mechanism. An important feature of this anomaly
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detection model is its ability to detect not only anomalous data, but also anomalous rela-

tions.

Once the hypothesis is defined, the problem solving is, in effect, simplified as a process of
hypothesis verification. The inference control capability has been used to focus the system

TeSOUICes on interesting aspects, thereby improving human-computer interaction.

In the next chapter, the rationale and significance of hypothesis generation modelling are
explored in depth. The contribution made by abductive reasoning to this paradigm is

explained in chapter 5.



CHAPTER 4

Hypothesis Generation Modelling

4.1 Introduction

All problem solvers are believed [90] to generate hypotheses in developing a solution
framework. Hypothesis has been variously construed as a cognitive structure, as meta-
knowledge or as ‘possible worlds’ knowledge. Qur computational model for representing
and using hypothesis to enhance reasoning skills reflects the need, identified in complex
problem solving environments such as management intelligence, for knowledge integration
and re-organisation. The paradigm proposed for hypothesis space elaboration and reasoning
is original in supporting the diverse knowledge types and levels for problem explication and

explanatory functions.

Quite recently, researchers in Artificial Intelligence have signalled the importance of
hypothesis generation {29][33][51][99]{1011[108]. Such research has typically been limited
to the assembly of an hypothesis rather than hypothesis generation [76]. One of the funda-
mental differences between hypothesis assembly and geﬁeration is the ability to deal with
new situations, to discover new interpretations, and to form new theories that explain the

observed data.
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Case Based Explainer has theoretically solved the problem of building new explanations
from old ones relying on having past explanations readily available in memory[145]. One
obvious problem is what to do when no existing explanations relate to the facts at hand.
This kind of problem will arise when the knowledge gaps between the current knowledge
base and the real world become too big. We propose a framework which is based on Case
Based Interaction principles [35][49] to overcome the limitations encountered in current

Explanation Generation mechanisms [145].

4.2 Peirce’s Early Contributions

Philosopher C. Peirce described a logic ‘for the future’ in his seminal work on abduction as
source of new inferences[118]. Abductive reasoning is a form of logical inference, distin-
guished from induction and deduction, the traditional forms of reasoning. Abduction
derives plausible explanations for a given set of observations and proceeds, in effect, by
generating hypotheses, which may be combined with the respective domain information to

‘explain’ the given observation[39][113].

Peirce’s classification is thus different from the traditional one, because it includes a novel
type of inference, in addition to induction and deduction. Peirce’s classification of infer-

ence 13 as follows:

Explicative (analytic or deductive)

Inference
Abductive

Ampliative (synthetic) <
Inductive

According to Peirce’s definition,

Deduction: an analytic process based on the application of general
rules to particular cases, with the inference of a result.
Induction: a synthetic reasoning which infers the rule from the

case and the result.
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Abduction: another form of synthetic inference, which infers the

case from a rule and a result.

Peirce further described abduction as the “probational adoption of an hypothesis” in
explaining observed facts (results). But he also pointed out that it was, however, a kind of
weak inference, because we could not assert the truth of the explanation, only that it might

be true!

Broadly speaking, abduction happens in all the processes by which theories and concep-
tions are engendered. These process operations are best illustrated in scientific hypothesis.
Peirce thought this process was essentially inferential. “Although it is very little hampered
by logical rules, nevertheless it is logical inference, asserting its conclusion only problem-
atically or conjecturally, it is true, but nevertheless having a perfectly defined logical

form™[118]. Abductive reasoning may be illustrated as follows:

The surprising fact C is observed,
But if A were true, C would be a matter of course;

Hence, there is reason to suspect that A is true[39].

Such a process is inferential because the hypothesis “is adopted for some reason, good or

bad, and that reason is regarded as lending the hypothesis some plausibility”{118].

Hypothesis is where we find some surprising fact which would be explained by supposing
that it was a case of a certain general rule, and thereupon adopt that supposition[39]. This
sort of inference is called “making an hypothesis”. In this kind of inference, it should be
noted that “When we adopt a certain hypothesis, it is not alone, because it will explain the
observed facts, but also because the contrary hypothesis would probably lead to results

contrary to those observed”[118].

Although explanatory hypotheses may vary widely, Peirce identifies at least three kinds:

1. The kind which refers to facts unobserved when hypotheses are made,
but which are capable of being observed. For example, upon entering a

room I find many bags coniaining different kinds of beans. On a table
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there is a heap of white beans; I may adopt the hypothesis that the heap

was taken out of a bag which contained white beans only.

2. There are hypotheses which are incapable of modern observation. This

is true of historical situations.

3. Thirdly, hypotheses may refer to entities which in the present state of

knowledge are both factually and theoretically unobservable.

In order that the process of making an hypothesis should lead to a probable result, Peirce

lists three ruies which must be followed [39]:

1. The hypothesis should be distinctly put as a question, before making the
observations which are to test its truth. In other words, we must try to

see what the result of predictions from the hypothesis will be.

2. The respect in regard to which the resemblance is noted must be taken
at random. We must not take a particular kind of prediction for which

the hypothesis is known to be good.

3. The failure as well as the success of the predictions must be honestly

noted. The whole proceeding must be fair and unbiased.

In one sense, proposing an hypothesis is no problem at ail. But of the hundreds of hypothe-
ses that might be suggested, only one is true. The problem of constructing a good hypothe-
sis is analogous to the problem of choosing a good hypothesis. The two guestions, in

practice, merge together [39].

What does abduction consist of? Is it the logic of constructing an hypothesis, or the logic
of selecting an hypothesis from among many possible ones? At the outlet these seem to be
too entirely different questions, but, in practice they are comparable questions. The central
problem of abduction is to analyze the conditions or the criteria for the best hypothesis
[39]. Peirce names three main considerations that should guide our choice of an hypothesis

[118]:

1. An hypothesis must explain the facts at hand (effectiveness}.
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2. An hypothesis must be capable of being subjected to experimental con-

firmation.

3. An hypothesis must be guided by economic consideration (efficiency).

The first two requirements, however, are only the condition of a good hypothesis. The
third consideration, in which efficiency plays a considerable role, is a very important ele-
ment in Peirce’s theory of abduction. Since the number of possible hypotheses satisfying
the first conditions may be very great, we are faced with the problem of deciding which

one should be tested first.

4.3 Early Approaches to Hypothesis Generation

Early philosophers believed that inductive inference was a suitable mechanism to generate
hypothesis[2]. Induction is the inference of the rule (major premise) from the case (minor
premise) and results (conclusion). From induction, we can generalize from a number of
cases of which something is true, and infer that the same thing is true of the whole case.
Also, we can find a certain thing to be true of a certain proportion of cases and infer that it

is true of the same proportion of the whole class.

After several year’s research, Barker concluded, however, that induction is unable to
account for the confirmation of hypotheses implying the existence of unobserved things,
and so, he has been examining ways in which such hypotheses supposedly might be dis-
pensed with[2]. Abductive reasoning is the inference of case from a rule and a result.
Abduction is a form of logical inference that attempts to derive plausible “explanations™
for some observed evidence. In fact, abduction is sometimes referred to as “inference to
the best explanation”[117]. Essentially, an abductive inference proceeds by generating
hypotheses which, when considered together with certain domain knowledge, would

account for or “explain” the given data[[15].

The most important function of hypothesis generation is the formation of a new “theory”
that explains the observed data. Abductive reasoning, which is, in a general form, seen as

the process behind insight and is the key mechanism that introduces new ideas, is expected
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to play a significant role in hypothesis generation.

The earliest concept of hypothesis generation in the artificial intelligence community was
proposed by Morgan in 1971. In his work[104], Morgan showed how a complete set of
truth-preserving rules for generating theorems could be turned into a complete set of false-
hood-preserving rules for generating hypothesis. Morgan’s method is based on deductive

inference and it faces the same difficulties regarding inductive completeness.

4.4 Hypothesis Generation Modelling

In this section, we will propose a conceptual framework for hypothesis generation, involv-
ing the anomaly detection model, case based interaction, and conflict resolution strategies.
The framework also makes it possible to integrate qualitative knowledge with the primary

probabilities for use in abductive reasoning.

Domain knowledge consists of the qualitative information about the structural relations
and their evidential atiributes, and the quantitative information about the uncertainty asso-
ciated with these relationships. It also contains the procedural knowledge which can be

used to change state when executed.

4.4.1 Semantic Description of Hypothesis Generation

Two main components of an hypothesis are the domain attributes (such as facts, evidence,
and conclusions) and the relations among subsets of these attributes. We denote an hypoth-

esis as a collection of attributes, A, and relations, K, among them:
H={A,R}

where: A = {ay, a,...., a3} is a finite non-empty set of attributes, which include evidences,
facts and conclusions; R € A X A is a set of non-empty relations among the
attributes A.

The attributes are constructed from three types of entities, such as:

1. concepts,



Hypothesis Generation Modelliing 83

2. statements,

3. conceptual graphs.

Based on their function in hypothesis space, the attributes can be classified into three

groups;

1. Evidential attributes, which usually consists of the factual knowledge
of hypothesis space, (e.g. references to anomalous evidence,) and are
activated by the anomaly detection model. They may also be used to

index events;

2. Factual attributes, which are the middie component of hypothesis
space, are connected directly by evidential attributes, and are usually a
type of generalized evidence, or an intermediate state of evolution from

evidence to conclusion;

3. Conclusive attributes, which are the higher levels of hypothesis space

and are usually the respective interpretations of ancmalous evidence.

In the initial version, relations were characterised as a type of explanatory reiation and
were used to explain the causal link between two attributes. This relation can be a simple
conceptual relation as defined in the theory of conceptual structures{151], such as ‘is &, “is
a type of’, and ‘is evidence of”. The relation, in more complex situations, can be a com-

plex conceptual graph or nested conceptual graph.

In an hypothesis structure, the inference about underlying evidence (attributes) is achieved
with the help of the relations that link the observed evidences to proposed factual
attributes, and on subsequent analysis, to Conclusive attributes. The nature of this hypoth-
esis generation paradigm, therefore, critically depends on the reliability of the explanatory
relations, and on their ability to assimilate a new relation into hypothesis R without caus-

ing conflicts.

Considering a set of relations R (a presented theory), and a set of evidences £ (observa-
tion) the hypothesis generation process can be characterized to a first approximation as the

problem of finding a set of explanations X (abductive reasoning) that satisfy the following
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two conditions:
¢ RUX—DE,

* R \JU X is consistent.

This characterization of hypothesis generation is independent of the knowledge representa-
tion in which R, E, and X are formuiated. The proposed requirement denoted by “R \UJ X is
consistent” is not explicit in Peirce’s more informal characterization of abduction, but it 1s

a natural further condition.

In fact, these two conditions are too loose to completely capture Peirce’s notion. In partic-
ular, additional restrictions on X are necessary to distinguish abductive explanations from
inductive generalizations. Moreover, we also need to restrict X. We do not want to explain
one effect in terms of another effect, but only in terms of some cause. For both reasons,
explanations are often restricted to belong to a special pre-specified, domain-specific class

of sentences.

Theoretically, there are two ways to deal with the problem. One is to only generate a suit-
able explanation at the beginning. Even if possible, it may, however, be more time consum-
ing during the generation process and would certainly require a more complex
representation for the hypothesis space. An alternative way to deal with this problem is
fast-prototyping by separating the hypothesis generation process into two steps; the abduc-
tive reasoning for generating plausible explanations, and the hypothesis synthesis for con-

flict resolution among the explanations.
Hypothesis Generation = Abductive Reasoning + Conflict Resclution

QOur implementation is based on the second appreach, in which an explanation is generated

first, followed by the detection and resolution of conflicts.

4.4.2 Extending the Framework for Hypothesis Generation

The original framework for hypothesis generation contained only explanatory relations.

This framework was unsuited, however, to the automated generation of hypotheses due to
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lack of procedural knowledge. For example, in the process of generating the hypothesis -

staged accident, use was made of several pieces of evidence; namely
®  the rime when the accident happened,
- ®  the location where the accident happened, and

® both parties have same background.

To make the hypothesis more acceptable, other evidence such as ‘the driver/passenger has
only soft tissue injuries’ should be examined, since people are usually unwilling to risk
bodily injury. In this situation, it is useful to have a procedure by which a database con-
taining medical reports is opened, and the information relevant to the driver/passenger is
retrieved. If the driver/passenger has not sustained serious bodily injury, the credibility of

the hypothesis is increased.

Conclusion
Staged Accident \
Sun-concl. Sun-concl. Sun-concl,
Easy to set Less damagg | Both parties
witnesses to human know each
/ \ body other
Fact Fact
Hardtofind || Not many
Witness || people arround
- Evidence
. - Evide :
Evidence Ewdelnce ng’t ; gscﬁe ﬁgffe %gﬁ%s
Time Location injuries background

FIGURE 4.1 Example of Hypothesis Generation
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To improve effectiveness in generating and verifying hypotheses, both declarative and pro-
cedural knowledge have been incorporated into the hypothesis, as different types of rela-
tions. The relations involved in the extended hypothesis generation model are categorized

as two types:

1. explanatory relation

This type of relation is used to explain the causal relation between two
attributes. A simple explanatory relation can be in the form of ‘is a’, ‘is a type
of ', and ‘is an attribute of ', while a complicated relation {explanation) is repre-

sented by a conceptual graph.

2. executable relation

This type of relation is used to change from one state to another. A simple exe-
cutable relation can be a command, while a more complicated one can be a

software procedure, or even a pop up window containing another application.

To keep the hypothesis structures simple, the executable relations only serve as index fea-
tures, the actual procedures are stored in memory while activated. The executable relations

will be executed when the evidence connected is crucial to verify the hypothesis.

4.4.3 Virtual Representation of Hypothesis

In our experimental prototype of the hypothesis generation paradigm, the attributes A and
relational explanation R are loosely and separately stored, and they are connected to each
other only after being activated. In this way, the working space of the system can be

reduced significantly, and the speed of response is also significantly improved.

FIGURE 4.2 describes a connected hypothesis which is activated by evidential attributes
a;, a», and ay (The circles connected by solid lines are activated). From the definition
given in section 4.4.1 (page 82), the generated hypothesis can be seen as the mapping on

the space A X R with the evidential attributes a;, a, and ay.
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conclusions

sub-conciusions

facts

evidence T e

FIGURE 4.2 Virtuat Representation of Hypothesis and Hypothesis Space

4.5 A Dynamic Hypothesis Space

A fundamental difference between our approach and the case-based reasoning paradigm
lies in the difference in memory organization. Cases stored in memory are separated, and
they are indexed by case features. There is no connection between the different cases. In
our hypothesis generation model, the hypotheses (or cases) are dispersed in hypothesis
space, in which the different hypotheses may be interconnected, and may share some com-
mon components. Hypotheses are implied in hypothesis space in an idle state. An hypoth-
esis will emerge only when its relevant attributes are activated by anomaly detection
model. In this way, we can say that the hypothesis space is a cluster of hypotheses about a

specified domain.
HS =XH

The main advantage of introducing the notion of an hypothesis space is the facilitation of
new ways to generate hypotheses, or a new explanation. This improvement is achieved by
the knowledge sharing in the domain. Furthermore, the extent of memory required for

storage of cases is reduced.

The hypothesis space is a dynamic knowledge base, in which part of system’s memory is

allowed to change. The working memory of a hypothesis generation model consists of all
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the attribute-relation-attribute relationships that are established during the knowledge
acquisition process and will keep changing during the process of knowledge acquisition

and problem solving.

4.5.1 The Evolution of Hypothesis Space

Goal interpretation has been developed as a mechanism for eliciting planning knowl-
edgef95]. Subsequently extensions of this work on knowledge acquisition focussed on
knowledge capture and construction of dynamic Canonical Graph Model that utilizes prob-

lem maps to represent the elicited planning knowledge[93].

Goal interpretation as a knowledge acquisition mechanism solves the problem of hypothe-
sis space construction to some degree. The main intention of the goal interpretation mech-
anism for knowledge acquisition is to assist domain experts utilize, build and evaluate their

own hypothesis space.

A dynamic hypothesis space has the following features:

1. Only relevant part is activated. Usually it is much smaller than the total

hypothesis space;
2. Hypothesis space will expand as the knowledge acquisition proceeds;
3. Hypothesis space will shrink with knowledge fusion, and

4. During the problem solving process, the active hypothesis space will

expand or contract depending on the intermediate results.

In this implementation, the hypothesis space consists of attributes and relations which are
stored separately in attribute and relation tables. Two approaches are employed for control-
ling the hypothesis space. They are Parsimony Covering Theory and Forward-backward

Propagation.

A number of different control criteria have been identified and used in related research
work such as Single-disorder Restriction, Minimality, Irredundancy, and Relevancy. These

criteria could also be applied to control the hypothesis space.
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4.5.1.1 Restricting hypeothesis space by parsimony covering

Parsimony covering theory, which is based on a formalization of causal associative knowl-
edge{119], has been proved to be an effective approach in diagnostic problems, where all
causal relationships are well known and can be easily represented by a function. Although
it is potentially inefficient when new evidences or new relationships appear, it has been

used very effectively to restrict the active extent of hypothesis space.

In our research, we have expanded the scope of parsimoeny covering theory to our hypoth-
esis generation model. Based on parsimony covering theory, an active hypothesis space
must cover all the initial attributes (evidence) in order to accommodate all evidences in E.
On the other hand, not all covers of E are equally plausible for generating hypotheses for a
given problem. The principie of parsimony is adopted as a criterion of plausibility: a “sim-
ple’ cover is preferable to a ‘complex’ one. Therefore, a restricted hypothesis space is
defined as a parsimonious cover of that set of attributes that both covers the anomalies and
satisfies the notion of being parsimonious or ‘simple’. There is, in general, more than one
possible cover for initial attributes, and users are often interested in all plausible hypothe-
ses. In this situation, the set of all covers is defined to be the hypothesis space of a given

problem.
conclusions

sub-conclusions

tacts

avidence

FIGURE 4.3 Restricting Hypothesis Space by Parsimony Covering

FIGURE 4.3 graphically illustrates the parsimony covering process in a partial hypothesis
space. Let initial attributes E = {e}, e, eg} be the initial evidence detected. Then the active
space Ay = {n;, ns, ny, ng, njy, E) is a minimal cover of £ because it alone covers all evi-

dences (e}, e4 e5}. The space A; = {ny, n3, ns, ny, ng, nyy E} is not redundant but not
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minimal because these attributes cannot cover the evidences {e}, ey, e4}. The space A; =
{n;, ng, n3, ns, 1y, ng, 1y, E} is relevant but redundant because Ay is a subset of A,. Finally
A3 = {n,, n;, ny, n3, ng, ny, ng nyy, E} is an irrelevant cover of E because there is no evi-

dence in E causing n,,.

The determination of restricted hypothesis space is the first step of inference, and the type
of relations is not considered at this stage. The initial (active} hypothesis space (working
hypothesis space) will increase progressively in the reasoning process, until finally the

working hypothesis space becomes a plausible hypothesis abstraction or schema.

Algorithm for hypothesis space restriction using Parsimony Covering

Input: An hypothesis space HS, initial evidence
Output: active hypothesis space AHS
Initialize: open = (initial evidencel; closed = [[; AHS = [}, n =0,
while open <= [] do
remove the leftmost evidence from open, called it X;
if X can be found in HS
then
if X is conclusion node
then put X in closed
clse
generate all higher level nodes ¥ for X;
put ¥ on the right end of open;
end
end
end
while closed <> [] do
remove the leftmost conclusion node from closed, called C;
generate all the nodes A4 under this conclusion C;
counter the number of initial evidence N involved in A;
if N> n then
n=N
AHS = A
end

end
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This algorithm is not strictly parsimonious for general graph searched. It achieves a very
good result in our prescribed hypothesis space and also provides the ability to cope with

newly found evidence.

An alternative approach to determining the plausibility of an hypothesis space is to objec-
tively calculate its probability using formal probability theory. Peng and Reggia [119]
integrated formal probability theory into the framework of parsimonious covering theory.
According to their approach, a prior probability p; is associated with each disease (conclu-
sion). A causal strength is associated with each causal association representing how fre-

quently a disease causes a symptom {evidence).

Although Peng and Reggia’s approach solves the problem of multi-membership classifica-
tion, and provides a formal method for hypothesis likelihood calculation, the assumption

that conclusions (i.e. disease) are independent is not valid in all domains.

4.5.1.1 Restricting hypothesis space by propagation

Another simple and useful approach is based upon forward-backward propagation. An
example of a restricted hypothesis space based on this approach is shown as FIGURE 4.4,

where the initial detected evidences E = {e;, e3}, and the restricted hypothesis space {4q)

= {n;, ny, ns, ng ng Ny Ny €1 €, €3 €4}

conclucions

sub-conclusions

cRONCNE
Q

evidence

FIGURE 4.4 Restricting Hypothesis Space by Propagation
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The scope of working hypothesis space based on forward-backward propagation is usually
larger than one based on parsimony covering theory. The initial hypothesis space will

decrease gradually in the reasoning process, until finally it becomes a plausible hypothesis.

Algorithm for forward-backward space restriction

Input: An hypothesis space HS, initial evidence
QOutput: active hypothesis space AHS
Initialize: open = [initial evidence); closed = [1; AHS = [;
while open <> [] do
begin
remove the leftmost evidence from open, called it X
if X can be found in S
then
if X is conclusion node *
then put X in closed
else
generate all higher level nodes ¥ for X,
put ¥ on the right end of open;
end
end
end
while closed <> ] de
remove the leftmost conclusion node from closed, called C;
generate all the nodes A under this conclusion C;
eliminate any elements of 4 already on AHS;
put the remaining elements on AHS;
end

In comparing the two approaches, our research shows that the active space generated by
parsimony covering based approach is smaller than that from forward-backward propaga-
tion. The first approach is more efficient in generating a plausible hypothesis while the lat-

ter is more effective.

Researchers in the machine learning field are also interested in hypothesis space and its

restriction[99]. They have argued that in many cases the meta-knowledge can be extracted
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directly from the raw data and can be used to restrict the scale of hypothesis space. Due to
different domains and a fundamentally different approach, it is not appropriate to compare

the results.

4.5.2 The Evolution of Hypothesis Space

Research has indicated that this hypothesis generation paradigm, empowered by abductive
reasoning, has the ability to acquire new explanations from existing evidence, and to cause
the hypothesis space to expand. The relevant process reflected in hypothesis space is their

evolution; more specifically, the generation of a new attribute or relation.

Attribute generation is simpler than relation generation. The process of generating an

attribute is as follows:

1. selecting an attribute which has the shortest semantic distance from the

evidence node,

2. modifying the label of the attribute by automatic modification strategies

such as concept substitution, generalization, and specification,

The generated attribute inherits the properties from its relative, i.e. the attribute upon
which the new one is based. The relations inherited from others will be deleted based on

the following strategies:
1. all the executable relations are deleted,

2. virtual relation is checked with concept hierarchy table, and if in con-

flict, it is deleted; and

3. explanation relation is ranked by an explanation credibility measure-

ment. It will be deleted if it’s credibility is below the threshold.

Generating an explanatory relation is based on knowledge from the concept hierarchy
table and is supported by the generalization/specification algorithms. Suppose a relation is
required to link two atiributes labeled a; and @,. The system searches for corresponding

concepts A; and A, from the concept hierarchy table. A; is the concept in the concept hier-
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arch table, which has the shortest distance to a;. A similar relationship also exists between
A, and ;. The relation between A; and a; (4, and a,) may be equivalent, generalized, or
specified. If the search is successful, the relation between A; and A, in hierarchy table will
be adopted as a virtual relation through some simple revision. With the support of the con-

cept hierarchy, virtual relations in hypothesis space are well mamtained.

1. Generating a new explanatory relation is basically a case based
approach. If failure occurs in generating a virtnal relation between a;
and a,, the system turns to generating an explanatory relation. In our
case based algorithm, a; and a, will be used as the indexes to retrieve
the most suitable explanation. After some necessary explanation modifi-
cations, this explanation could be adopted as a new explanatory rela-

tion.

2. Case based explanation often fails when faced with a new situation.
Currently, we are using abductive reasoning {a knowledge based strat-
egy) to control the inference, and only restricted types of explanations
are invoked and processed. In this way, the redundancy and irrelevancy
of explanation, which is generated by abduction, will be reduced con-

siderably.

3. Generating a new executable relation is the process of actor assembly.
Every actor has its pre-condition and post-condition. To build an exe-
cutable relation between two attributes a; and a,, a typical breath-first
search algorithm is utilized, and if successful, a sequence of actors,
{actory, actors,..., actor,) is assembled, such that the pre-condition of
actory matches a; and post-condition of actor, matches a,. This execut-

able relation has the capability to change the state of a; into that of a,.

4, It is not necessary to have an executable relation between most
attributes. In insurance fraud detection, the executable relation between
two attributes labeled “hard to find witness” and “‘accident time” is actu-
ally the procedure to open a database, read a file, and get the time the

accident happened. The procedural knowledge, together with declara-
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tive knowledge embedded in hypothesis space, make it possible to gen-
erate an hypothesis which can solve the problem without the support of

massive knowledge bases.

4.5.3 Knowledge Fusion in Hypothesis Space

Knowledge fusion is the process of producing a simplified knowledge structure by the
combination of two or more separate data/knowledge structures{56]. The hypothesis space
is formed during the knowledge acquisition process and evolves in the hypothesis genera-
tion process. Without proper management, the hypothesis space will become more and
more complex and inefficient. The effectiveness of indexing and retrieving knowiedge
from the hypothesis space is fundamental to the efficiency of the knowledge based system.

Knowledge fusion is used to maintain effectiveness.

Knowledge fusion aims to increase the efficiency of knowledge management by simplify-
ing the structure of hypothesis space. The fusion process is triggered by a housekeeping
program when certain problem solving cycles are finished. At the macro level, the fusion
processing replaces a set of relations {Relation(type, a;, a3, pj2). Relation(type, a;, aj,
P23)-., Relation(type, ay, ag.pqs)} with a simpler one Relation (type, a;, a5,p 16} as shown
in FIGURE 4.5. 1t usuaily contains executable knowledge which may change the state of
a; into ag, and an explanation, which interprets the relationship between a; and ag; occa-

sionally as a virtual relation.

as

a;

FIGURE 4.5 An Example of Knowledge Fusion in Hypothesis Space
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FIGURE 4.6 Three types of Basic Fusion Process

Although complicated, the fusion process can be broken down into three basic fusion pro-
cesses: parallel, series and complex relation fusion. A graphical description for these pro-

cesses 18 shown in FIGURE 4.6

The basic principle in a fusion process is that the simpler relation is preferred to a compli-
cated one, and the executable relation is favored most. Under this principle, a virtual rela-
tion is better than an explanatory relation, a simpler explanation is better than a complex

one, and an executable relation is better than all others.
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Algorithm for series fusion processing:

1.

2.

delete attribute a,,

if relations r; and r, are virtual or explanatory relations; then r = r; +
r.

The process of “r = r; + r,” is a maximal-join operation with the con-
ceptual graphs related to r; and ry. If r; or r; is a virtual relation, a sim-

ple graph is constructed to perform maximal-join.

if relations r; and r, are executable relations, then r=r; & r,.

The process of “r=r; & ry” is a merging process with:
pre-condition(r) = pre-condition{r;),

post-condition(r) = post-condition(r;),

actor(r) = actor{r;)+actor(r;) (i.e. execute actor(r;) followed by

actor(r;)).

if relation ; is virtual/explanation relation and r; is executable relation,
thenr=r, @ r;.

In these situations, actor(r) = actor {r,), and the conceptual graph
related to r; max-join with graph related to r if it existed, otherwise

just add to the explanation slot of executable relation.

Algorithm for parallel fusion processing:

l.

if relation r; is virtual relation and r, is virtual/explanatory relation then

r=ry, and vice versa,

if relation r; is virtual/explanation relation and r; is executable relation

thenr=r; @ry,

Algorithm for complex fusion processing:

1.

select one executable relation if it exists (suppose r4 is executable rela-

tion),

select the simplest path which links attribute a; to @, through the exe-

cutable relation ry (that is ry and r3 in FIGURE 4.6),

87
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3. processr=ry @ ry,

4. if there is no executabie relation, the simpler path is chosen as r = r3 +

r40rr=r4+r3.

The knowledge fusion algorithms are powerful tools to simplify hypothesis space. No mat-
ter how complicated, all lattices are composed of attributes linked by series, parallel, and
complex relations. Oversimplification of hypothesis space should, however, be avoided by
restricting at least three or four levels from fusion of any evidential attributes to conse-

quent attributes.

4.6 Conceptual Graph Based Hypothesis Generation Model

The model for hypothesis generation proposed so far is a generic one, and there is no
restriction on the formalism (knowledge representation). The definition (in section 4.4.1)
can be easily applied to a conceptual graph based knowledge representation scheme. In our
experiments with hypothesis structures, including all attributes and relations, conceptual

graphs have been used.

Abduction as presented c¢an be restricted by using integrity constraints. The concept of
integrity constraints first arose in the database field and to a lesser extent, in the field of
knowledge representation. The basic idea is that only certain knowledge elements are con-
sidered acceptable, and an integrity constraint is meant to enforce these restrictions. When
conceptual graphs are used to perform abduction, the integrity constraints are used to

restrict graph operations, and to reject unacceptable abductive explanations.

Given a set of integrity constraints of first-order closed formulae /, the second condition of

the semantic definition of hypothesis generation can be represented by:
HS ' X satisfies 1.

HS represents hypothesis space and X represents explanatory relations. There are several
ways to define what it means for an explanation in hypothesis space AS, (R \U X in our

case) to satisfy an integrity constraint /. In our prior experiments:
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HS U X satisfies I iff HS U X is consistent.

In further experiments to explore alternative uses of /, only integrity constraints having
practical value were explored, as that there are no conflicts among the explanations in
hypothesis space. The absence of conflict is true for the knowledge base rather than the

world modelled by the knowledge base.

4.6.1 Basic Definition and Notation

Two attributes @; and a; are said to have been explained by a chain of qualitative relations
in an hypothesis. These qualitative relations, when active, provide the causal chain

between g; and a;.
Consider the following definitions involved in hypothesis generation.

Attributes
The attributes in hypothesis generation are the nodes which are either a concept or a state-
ment represented by conceptual graphs. The attribute can be used to represent evidence,

states, facts or conclusions.

Evidential attributes and conclusion attributes
The evidential attributes are the lowest level attributes of any relations in hypothesis

space, while the conclusion attributes are the attributes appearing at the top level.

Relations
A relation from an attribute g; to another atiribute 4; in an hypothesis is defined as an
ordered sequence {a; @, @42 4ip G5}, Where ;. g, Giio. G refer to the intermedi-

ary attributes, g; refers to the evidential attribute, while a; is a consequent atiribute.

An explanatory relation between a; and g; in an hypothesis in either direction constitutes
an explanation for the causality between the evidential atiribute and its consequent.
Assuming this path of qualitative causal relationships to be active, then the two events

would occur as a matter of course.
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Another way of understanding two attributes g; and a; 1s to hypothesise a shared common
ancestor attribute for them. If there is an attribute a,, such that there is a path from attribute
a, to the attribute ¢; and another from the attribute a, to the attribute a;, then, the attribute

a, is hypothesised as being the cause for both the events.

An executable relation between a; and a; in an hypothesis can be used to invoke a proce-
dure which can change the initial state a; to consequential state a;. The pre-condition of
execution is decided by the priority of the consequential states when verifying the hypoth-

esis.
The index format of relations in Prolog is as following:
Relation(type, a;, a;, pi-j)

In this notation, the relations are indexed by the attributes, evidences/consequences (or ini-
tial/consequential state), where a; and gy, are attributes in hypothesis. Here type In a rela-

tion notation can be explanatory or executable.

In relation notation, pj; is an indicator representing the credibility measurement of explana-
tion between g; and g;, it can also be represented by the prior probability of P(a; | ;). This

indicator will be used to control the reasoning process in an hypothesis generation.
Note that relation Relation(type, a;, a3, py2) 1s not equal to the Relation(type, a,, a;, p3j)-

Hypothesis Space
Let HS = [A* R*] be an hypothesis space. The hypothesis space HS is defined as a lattice
which consists of a set of nodes A* (attributes) connected by a set of relations R*. The

generic space is instantiated for a pre-specified application domain.

Hypothesis
Given a set of attributes A, and a set of relations R, an hypothesis H = (A, R), is that subset
of hypothesis space HS formed by connecting the separated attributes with relational

explanations while obeying the following constraints:

1. Ae A* Re R* and He HS,
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2. each attribute has at least one qualitative causal relation connected to

another attribute;

3. there are no conflicts among the explanations in an hypothesis.

Hypothesis Generation

Given a set of attributes 4, and a set of relations R: For a set of attributes A", A" C U, U is
domain knowledge and A” is part of the domain knowiedge. Hypothesis generation is the
process to generate a set of relational explanations for connecting A" and A. If there is no
suitable explanation or attribute, the process will create a new one. An hypothesis genera-

tion problem is thus defined to be
H=1A, R)

where A = {a, ay,... a,} is a finite non-empty set consisting of n =lAl attributes, including
evidence, facts, sub-conclusion and conclusion. R is a class of non-empty relations, and

includes explanatory and executable relations.

Based on this hypothesis space, the hypothesis generation problem is to select a suitable
subset of hypothesis space HS. The subset of hypothesis space must include the observed
attributes if they exist in hypothesis space. Otherwise, it is necessary to incorporate the

new attributes in the hypothesis space and to generate a corresponding relation.

In order to qualify as an hypothesis, by which an inference about a set of evidences can be
made, the hypothesis generated should include ail the observed evidential attributes and at
least one conclusion attribute. It should include explanations for all evidences taken a pair
at a time. Of course, there is no conflict among the explanations in generating the hypoth-

esis.

In our application, A” represents the evidence detected. A and R represent the existing
knowledge base. In the simplest situation: A’ € A, the evidence detected is already defined
in the existing hypothesis space, and therefore, the existing explanations can be used to
explain them. This is a special case of hypothesis based problem solving. The system

works in a similar way to a case base reasoning process.
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The hypothesis generation paradigm provided here is mainly concermed with situations in
which not all elements in A” can be found in A. In such situations, a new (observed) piece

of evidence and a new explanation will be generated to expand the hypothesis space.

Conflict
In this hypothesis generation paradigm, conflict can theoretically be divided into two
types; namely explanation conflicts and execution conflicts. In our research, only the

explanation conflicts are considered, based on the following reasons:

® the executable relations in our application domain are closely related to the
evidence, and they are, in most cases, executed in parallel. So, the execu-

tion of one executable relation will not change the pre-condition of others.

* the exccutable relation is used to verify evidential propositions. Once exe-
cution has finished, we are only interested in the truth value of evidential
propositions and the explanation between them. The executable relation is

no longer useful.

Let HS = [A, R] be an hypothesis space, in which a conflict is:

1. a subset C of R such that explanation cannot be intact under current

observations, (contradicts observations)

2. a subset C cannot be intact among the other explanations (contradicts

other explanations).

The conflict C is identified by an inference engine using the design model for hypothesis
generation and from current observations. Each conflict in R is a set of components which
cannot all be intact under current observations or other explanations. In other words, a con-

flict C € R represents the explanation that there is at least one anomaly within C.

Conflicts are usually detected when erroneous values are observed as output variables. In
general, conflicts occur when two different values are predicted for a variable using same
test. The definition of conflicts (above) is very loose, and several concepts require formali-
sation. A detailed discussion on conflict detection and conflict resolution 1s presented in

chapter 6.
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4.7 Hypothesis Generation Processing

In this section, we provide a graphical model (flow chart FIGURE 4.7) to illustrate at an

abstract leve} the relations between the main components in the hypothesis generation

model.

Initialisation
Input: Evidence [E]
Hypothesis Space[HS]

Y

Generate a Restricted

Hypothesis Space

Y

Generate an Explanatory

Relation for New Evidence

Yes
r

Extension
Success?

Separate Hypothesis
From Hypothesis Space
Extend
+ Hypothesis Space

Calculate Primary Credibility No
other
hypotheses
available

for Every Hypothesis

k Yes

Conflict Resolution

Y

Credibility Calculation [~

Yes
<0utput: Hypothesis [H] }

FIGURE 4.7 Flow Chart of Hypothesis Generation Processing
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4.8 Summary

In this chapter, we have focussed on the issue of knowledge representation. A kernel for
future management intelligence systems has been proposed based on an hypothesis gener-
ation paradigm. More specifically, the hypothesis generation model, supported by a
dynamic hypothesis space, provides the capability to represent both case based explana-

tions and novel interpretations of evidence

The contributions of Peirce on abduction and hypothesis were first reviewed, from which

the potential of abduction for generating hypotheses was developed.

The knowledge representation requirements for a conceptual hypothesis structure were
then addressed. The main advantage of this structure is 1ts ability to accommodate both
declarative and executable knowledge, and also its capability to imply inference control

strategies in its extended version, a very important feature in dynamic probiem solving.

Subsequent extension of the definition of hypothesis includes the notation of an hypothesis
space. Management of the knowledge space is supported by a space restriction algorithm
(which is based on either parsimony covering theory or forward-backward propagation),

and a knowledge fusion aigorithm. Technical advantages of this approach are evident in:
® providing a platform to actualize hypothesis generation processing,
* reducing the size of hypothesis space, and
® sharing knowledge in different hypotheses.
Finally, substantive results of implementing this approach in conceptual graphs (CG) have

been reported. The generic algorithm developed for hypothesis generation modelling has

provided the experimental theory for CG based knowledge guided abductive reasoning.

In summary, the experimental justification provided for hypothesis generation modelling
for management intelligence has identified new research opportunities in knowledge

guided abductive reasoning.



CHAPTER 5
Abductive Inference Control in Hypothesis

Generation

5.1 Introduction

Abduction was frequently confused with induction until Peirce distinguished it as one of the
three fundamental types of logical inference: abduction, deduction and induction. In the
artificial intelligence literature, research into abductive inference was re-activated by Pople
in 1973 [126] and subsequently, by Chamiak and McDermott in 1985[19]. At its simplest,
abduction is a plausible reasoning process, which derives the best explanation(s) for a given

set of problem features (evidence).

Abduction provides hypotheses about why a statement is true, while deduction solves the
problem of determining whether a given statement is true. Abduction requires a reasoning
engine that can incorporate a set of new observations into a theory of the world by deter-
mining what assumptions should be added to the theory, so that it accounts for the new

observations.

Like deduction, abduction requires that we find pertinent facts and apply them to infer a

new fact. However, unlike deduction, we can get ambiguous answers in abduction[19].
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Unfortunately, there is no obvious strategy to choose among the alternatives. The best we

can do is to determine which hypothesis is the more plausible?

In the case of fraud detection, the conditional probabilities of possible frauds is of less inter-
est than the most likely hypothesis and explanation for the evidence at hand. For instance,
suppose that a detective finds that the credit limit is exceeded in one account. There might
be many explanations avatlable to explain this evidence. Our purpose is not to list all
hypotheses, but to provide the best explanation, which shouid also accommodate other real

world knowledge.

5.2 Contemporary Approaches to Abductive Reasoning

It is commonly recognized that there are many versions of abduction in the artificial intelli-
gence literature[193[117], namety: classical approaches, set cover based approaches, logic

based approaches, knowledge level approaches; etc.

Knowledge for abduction is generally presented as explanations and rules to apply to the
explanations. The objective of abduction is to find a set of explanations generated by the
rules as consistent with the evidence. Usually, there would be more than one set of explana-
tions satisfying the observed evidence. The explanations are considered to be the hypothe-

ses or assumptions underlying the observations.

5.2.1 Classical Approach

The classical way to deal with abductive reasoning is based on Bayes’s Theorem:

P (cause) P (evidence|cause)
F (evidence)

P (cause|evidence) =

We describe this process in the following way. Given the conditional probabilities Plevi-

dencelcause) and the unconditional probabilities P{cause) and P(evidence) for the natural
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occurrence of causes and evidence of interest, respectively, then the probability that the
observed evidence signifies 2 possible cause can be calculated for each cause. The best

known expert systems, such as Mycin and Caduceus, utilise Bayesian statistics.

It should be noted that Bayes’s theorem makes a very strong assumption about the inde-
pendence of evidence, and the independence of evidence for given causes. For this reason,
classical abductive reasoning has severe, practical limitations inherited from Bayes’s

assumptions.

5.2.2 Set-cover Based Approaches

Tn set-cover based approaches, a set of explanations are found by selecting a suitable sub-
set from a given set of explanations[38]. This subset should best account for the observa-
tions, and is determined by coverings, parsimony, plausibility or another suitable selection
criterion. Since hypotheses constructed in this way use a set of previously known candi-

dates, this approach is also called hypothesis assembly[38].

There are some limitations that cannot be neglected. First and foremost, the computability
of the mapping (covering) is crucial for the choice of possible explanations. All causal
relationships that might be relevant must be encoded in the form of relations before start-
ing the abductive process. This seems practicable only in restricted areas, e.g., diagnostic

problems.

Apart from that, the domain must satisfy some further assumptions[117]. Set-cover based
approaches rely heavily on previously known relations from which a super-set of the
desired explanations is determined. Levesque [90] concluded that the set-cover based
abduction model appears to be adequate only for diagnostic tasks or repair problems,
where all causal relationships are well known and can easily be represented by function.

Another disadvantage is the sensitivity of hypothesis selection to background knowledge.

5.2.3 Logic Based Approaches

The majority of research in abduction is based on logic models [1171[124]. The logic
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based approach is widespread as it allows more flexibility, and thus seems to be adequate
for a wide range of applications. The weakness of this approach is the implicit reliance on a
special knowledge representation scheme. Causal relationships among the facts and evi-

dences must be determined, since they are responsible for choosing the right explanations.

As noted by Levesque, however, logic-based abduction is defined over global logical prop-
erties, such as consistency and derivability, and this seems to be a limitation. In addition, the
knowledge about causal relationships that are used for selecting abductive explanations is
represented implicitly in the global theory[117]. The disadvantage of this approach lies in
the limiting specification of reasoning into global properties of the logic, such as consis-
tency and implication. Different reasoning abilities, deductive or abductive, will then

require different notions of implication or consistency[90].

5.2.4 Knowledge Based Approaches

Levesque gives an account of abduction at the knowledge level{90]. The knowledge based
approach is based on a model of belief. It goes one step further and defines a model for
abduction independent of a belief type. Levesque shows that the knowledge level approach
subsumes the logic based model for implicit belief. Hence, further generality has been

gained.

Nevertheless, it remains necessary to represent causality at the computational ievel in
explicit terms. So, in order to gain further insight into the scope of abduction for this inves-
tigation, the role of causality should be incorporated into the relationship between abduc-

tion and induction, thereby making explicit the close connection stressed by Peirce.

5.2.5 Conceptual Graph Based Approaches

The conceptual graph based approaches demonstrate the feasibility of the implementation.
Tsui has suggested that maximal-join operation could be a useful tool for plausible reason-
ing[156]. Hartley and Coombs {68] proposed an operator which is composed of the two

primitives, cover and maximal-join for abductive reasoning.
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Abduction = Cover + Maximal-join

The function of cover is to choose an appropriate subset of stored graphs, which cover all
of the concepts in a given subset of graphs extracted from those inputs. The function of
producing an explanatory hypothesis is based on the Maximal-join operation[151][156].
This approach is limited by the capability of choosing the most suitable graphs, as there
may be many that satisfy the above condition. Furthermore, a satisfactory algorithm for

cover is hard to define.

On the other hand, Pagnucco proposed an approach which was also based on conceptual
graphs[115]. In his approach, he utilizes the Sheet Of Assertion, and in particular, the
graphs that belong to it are deemed to represent the domain knowledge. Abductive infer-
ence can be viewed as the process of determining a set of graphs to add to the sheet of
assertion in order to prove the given data, and which are also consistent with the graphs on
the sheet of assertion. As Pagnucco admitted, there are no criteria for selecting the best
abduction from those explanations derived, and there are also some syntactic restrictions

on the representation of conceptual graphs.

5.2.6 Other Approaches

The above approaches represent the main trends in development of an abductive inference
engine. Other methods are no doubt under investigation. However, besides the four princi-
pal methods briefly reviewed, complementary approaches are to be found dealing with

abductive inference, in some degree, as a subgoal of their main goal.

Weight abduction [74] was proposed by Hobbs Stickel et al at SRI International. It uses
assigned weights and costs to make individual assumptions. The cost of an explanation is
a function of the cost of the individual assumptions made in reaching the explanation. This
cost is used in an effort to guide the abductive inference by favoring the intended explana-

tions. The final choice for best explanation will be the one with lowest cost.

The main weakness of this approach, however, is the lack of clear sernantics for the cost

assignments. Furthermore, objective ways to assign weights and costs remain an open
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question.

A minor variant of weighted abduction was presented by Charniak and Shimony as cost
based abduction, in which hypotheses have associated costs, and the cost of a proof is sim-
ply the sum of the costs of the hypotheses required to complete that proof {20]. The key idea
to this approach is to utilise directed acyclic graphs (or weighted AND/OR directed acyclic
graphs) to represent the relationships between hypotheses and the evidence to be explained.
Each node represents some piece of knowledge, and the connections explicitly detail the
relationships between the different pieces. Unfortunately, finding minimal cost has been

shown to be very difficult [20].

5.3 Abductive Inference for Hypothesis Generation

In our research, the most important goal of abductive inference has been to generate a new
hypothesis that explains the newly detected evidence. The new hypothesis means that there
are some pieces of evidence which cannot be explained by existing knowledge. In other
words, there is no attribute in the activated hypothesis space that can match the evidence
observed, and therefore, there is no explanatory relation which can be connected to the new

evidence.

Hypothesis can be seen as a set of explanations to explain observed evidence. The outcome
of abduction is an explanation for this evidence. For a given collection of evidence, the
abductive inference engine will generate a number of explanations. In this chapter, we defer
consideration of the conflicts among the explanations and the evaluation of explanations

until the next chapter.

Our abductive inference engine processes only the new evidence provided by the anomaly
detection model, Where there are existing attributes which match the new evidence, exist-
ing explanations will be indexed to explain them. In this case, abductive inference is not

activated.
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5.3.1 Problem Descriptions

We begin by reiterating the notation for abduction in terms of conceptual graphs as defined
by Pagnucco recently[115]. An abduction (in terms of conceptual graphs) is a set of graphs
which, when added to a set of graphs denoting our domain knowledge, will allow us to

‘account” for the given data (a graph) while maintaining the domain knowledge.

Abductive inference requires knowledge to perform the inference and rules to apply the
knowledge. In our hypothesis generation model, the knowledge is the explanations in
hypothesis space, (i.e., the explanatory relations,) while the rules are implied in the topo-

logical structure of hypothesis space.

Two components of an hypothesis are the domain attributes (such as facts, evidence, and
conclusions) and the relations among these attributes.For simplicity, we only consider

explanatory relations in hypothesis space. There are three reasons for this simplification:

1. Abductive inference is mainly concerned with generating explanations

for observed evidence.

2. The function of executable relation is to subsequently verify the expla-

nation.

3. In our application domain, most executable relations are connected to
the evidence (that is the bottom nodes). The execution of one relation

will not cause a state change for another relation.

For these reasons, executable relations are ignored in the abductive process. The definition
of hypothesis space is now revised as a collection of attributes, A, and relational explana-

tions, RX, among them:
HS = {A, RX}

where: A = {a;, a,..., a3} is a finite non-empty set of attributes, which includes evidences,

facts and conclusions; and RX is a set of non-empty relations within attributes A.

Therefore, abductive inference is defined in relation to hypothesis space as the problem of
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generating an explanatory relation, which can be used to connect the new evidential

attribute to the hypothesis space.

If there is no existing relation connecting the observed evidence, domain knowledge would
be used to establish the association between the evidence node and the explanations. Case
Based Explamer [145] and knowledge level approaches [90] have dealt with this type of
problem to some degree. The new explanations are derived from old explanations through
appropriate modification and rely on having explanations readily available in memory and

knowledge structures that package the reasoning strategy.

The two approaches described above have been combined in this research project and sat-
isfy the requirement to absorb new explanations, generated by the abductive reasoning pro-

cess, into a subset of relational explanations without causing conflict.

5.3.2 Operation for Abductive Reasoning

Existing methods for abductive inference are generally neutral to prior experience and cur-
rent goals{681[115]. Candidate explanations are built from scratch by means of forward and
backward chaining, without considering how similar situations were previously explained.
Problems arise when applying these methods to complex problem solving. For example, the
large number of possible explanations makes it difficult to reduce the cost of selecting the
“best” explanation and difficult to ensure that the hypotheses generated will actually be use-

ful.

An alternative model that addresses the weakness of standard abductive inference control
by using previous knowledge and current goals to guide the inference is advocated here.
Being consistent with the common view of abduction, our model also characterizes the

abduction task as finding plausible explanations for observed evidence.

Maximal-join is advocated as an appropriate operation for conceptual graph based abduc-
tive reasoning. The theoretical basis for this research relies on canonical rules of forma-

tion[106]:

By formation rules the resultant graphs from canonical graphs are canonical.
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A conceptual graph is a combination of concept nodes and relation nodes where every arc
of every conceptual relation is linked to a concept. But not all such combinations make

sense. For example, some of them include absurd combinations such as:

{Sleep] — (AGNT) — [Idea] — (COLR) — [Green]
This is an odd, unusual, or perhaps meaningless graph(151].

To distinguish the meaningful graphs that represent real or possible situations in the real
world, certain graphs are declared to be canonical. Based on Sowa’s theory[151], new
conceptual graphs are canonical if they are derived from canonical graphs by canonical

formation rules. The rules can be classified into:
® Equivalent rules (Copy and Simplify)
® Specialization rules (Restrict and Join)

®  Generalization rules (Unrestrict and Detach)

The Join operation is to perform the integration of two graphs. Two concepts are “join-
able” if and only if they have the same type labei and the same referent. In the Max-join all
corresponding compatible concepts and relations between the two original graphs are uni-

fied together [151].

We believe that Max-join holds the key to success in conceptual graph based abductive
inference and can provide a set of possible explanations for further development

[151][156]. Conceptual graph based abduction is defined here as:

Explanation = Background_knowledge ® Evidence

The operator ® employed here is used to represent the Maximal-Join of conceptual
graphs. Minimum requirements for a Maximal-Join operation to be successful is that there

exist two “joinable” concepts.

In abduction based on the Maximal-Join operation, the resultant graphs can be seen as
hypothetical in nature. Additionaily, however, constraints stemming from canonicity and

conformity increase the likelihood of successful (plausible) inference.
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In the above notation, the pragmatics of the problem are significant, because there are too
many explanatory graphs that could be chosen. It is a difficult job to select an appropriate
subset of graphs and, furthermore, to restrict the number of conceptual graphs for abduc-
tion. Unfortunately, there is no solution that is totally satisfactory for the evaluation of

selected graphs.

5.3.2.1 Algorithm for Maximal-Join

In Tsui’s research[156], two algorithms for plausible reasoning with conceptual graphs are
investigated: the Join and the Maximal-join operations. The Join operation is the simpler of
the two, and it refers to the integration of two graphs that share a common concept. Two

concepts are common, if and only if, they have identical type labels and identical referents.

Abductive Inference Control in Hypothesis Generation

For example, consider the following graphs:

The resultant graph of a Join operation on the common concept [PERSON:John] of the

above graphs is the following graph.

OBJ

Person: John Drunk

Driving Person: John

Vehicle

Driving

~Ga-

Person: John

— G-

Drunk

However, the Join operation creates a problem when the graphs to be joined have more than

Vehicle
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one concept that can be merged. In this case, if one simply Joins the graphs on a common
concept, then there exist duplicate relations and concepts in the resultant graph. As a
result, Join cannot be used on graphs that share more than one concept in common. The

Maximal-join operation is used in such situations.

The Maximal-join algorithm between two graphs essentially provides abductive inference.
Maximal-join ensures maximum connectivity in the resuitant graph, merging as many con-

cepts between the two original graphs as possible. For example, consider the following

Person: John Drunk

AGNT Driving

graphs:

Driving Person: John

OBJ Vehicle

The resultant graph of a Maximal-Join operation on the above graphs is the following.

Person: John Drunk
@ Driving ' Vehicle

Tsui implemented his algorithm in MU-Prolog, and it proved to be very successful. Cur-

rently, some researchers are working on other algorithms[68]{105].

For my purposes, it was necessary to extend the definition of "joinable” concepts in order
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to perform abduction more flexibly. In our Maximal-join algorithm, the concept "joinable"
is looser! The two concepts u and v are still "joinable" if they meet one of the following

conditions:

® uand v have a common supertype,

® uis the subtype of v, or

® v is the subtype of u.

In essence, the resuiltant graphs produced by Maximal-join can be seen as abductive infer-
ence from the facts and those definitions, causal or Aristotelian, that cover them [68]. The
result is hypothetical in nature because the maximal common subtype restriction of two

types leads to the same unsound inference rule to that derived from logical abduction.

5.3.2.2 The Role of Hypothesis Space in Abduction

In this research, all potential explanatory graphs have been represented as explanatory rela-
tions which are used to connect two different attributes. This theoretical notion permits any
two graphs sharing a common concept to participate in maximal-join operations. However,
if an evidence graph is imported into the maximal-join operation the ensuing number of
resultant graphs will be large. Strategies for restricting the number of graphs to which max-

imal-join is applied are essential.

Before we discuss the strategies to implement inference control for Maximal-Join based
abductive reasoning, there are three questions to be answered, while noting that the hypoth-

esis generation model is based on hypothesis space:
1. how to restrict the explanatory graphs;
2. how to select suitable explanatory graphs; and
3. how to measure the relevance between evidence and its explanation.
It has been noted that the specific desires for knowledge have a clear role in the focus of

attention during natural language processing, and in directing machine learning programs

[131]. We believe that the method of restricting realm of experience and background knowl-
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edge for inference should be context-based. The dynamic hypothesis space has an innate

advantage in providing an appropriate set of explanation graphs.

The explanatory relations in hypothesis space are used to index the explanatory graphs.
My research indicates that restricting hypothesis space is a very effective way to reduce
the candidate explanatory graphs. This is achieved using the feature of dynamic hypothe-

sis space that requires oniy part of the space to be active.

In assuming that a set of evidence will require a set of related explanations, it is quite
likely that explanations that are currently active in hypothesis space will also be relevant
to explanations of successive evidence to that causing the initial activation. As such, it is
appropriate to consider these active explanatory graphs as prime candidates for the abduc-

tion process with the new evidence.

As discussed in Chapter Four, several approaches have been researched for hypothesis
space restriction. They are Parsimony Covering Theory and Forward-backward Propaga-
tion based approaches. The experimental results indicate that active hypothesis space gen-
erated by the parsimony covering theory based approach is smaller than that from the
forward-backward propagation based approach. In abductive inference, the number of
candidate explanatory graphs restricted by the latter approach is larger. It is difficult to tell
however, which approach is preferred in terms of the semantic requirements of explana-

tions.

5.4 Example of Abductive Inference

In this section, an example of abductive inference is used to generate a “suitable” explana-
tion. Supposing that the evidences detected by Anomaly Detection Model are “Accident
happens at 11 pm”, “Driver has only soft tissue injury”, “Repair cost is low” and “Claim-
ant has claim history”. FIGURE 5.1 shows the evidence graph representing the above evi-

dence {facts):
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/} Claim  ——{ ATTA }—« Anomalous | \

——~{  EVDN »—=] RapairCost f~—-v{ QTY }—etf Valusilow |

el EVON y—={_Irjury__—{(FART —{ SofTissue |

{TEVDN y—{ Time:11,15pm p=——{ PITM }=—TSiluation:Accident]

o EVDN_}—={ClaimHistory |+——( UNK )— Re: Claimg18.93 ]
/

-

FIGURE 5.1 The Evidence Graph

The first step of abductive reasoning involves decomposing the evidence graph into four
separate graphs, which are used to activate the evidence nodes in hypothesis space. The
result is a limited hypothesis space, as shown in FIGURE 3.2, merged through the activa-
tion of evidence derived from the evidence graph. The hypothesis, with the conclusion of
"Exaggeration of Economic Loss" and "Staged Accident” are associated automatically in
the limited hypothesis space. At the same time, it should be noticed that there is no match-

ing of evidence for the "Repair cost is low".

Conclusion Conclusion
Exaggerated Cost Staged Accident
Sub-concl, Sub-concl. Sub-concl, Sub-concel, Sub-concl.
Easy to set | | Make big Less damage | Both parties | Repeated
withesses Profit to human know each Scenario
body other
Fact Fact
Harq to find High
Witness Compensation gvéd?nce = Erderce
SOit tissue Both parties || Have Claim
: Injuries have same History
Evidence Evidence background
g H High repair T [
Tim: 23.15 cost

Unmatched Evidence
repair cost is low

FIGURE 5.2 Activated Hypothesis Space (Abstracted)
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Conclusion Conclusion _
Exaggerated Cost | | Staged Accident AGHT --{Parsomh -\ AW J{Perei
Sub-conel. Sub-concl, Sub-concl. Sub-concl. Sub-concl.

Easy to set | | Make big Less damagq | Both partieg Repeated
witngsses Profit to human know each Seenario
body other
Fact Fact I B Y EEERETEEEEEEES R ik
Hard to find o High i U
i nsation| . - .
Witness ompensation 1 Evidence Evidence | || Evidence
_____ - fe - : Sqﬂ fissue Both parties |- | Have Claim
‘. . + | Injuries have same |i| History
Evidence I || Evidence L5 background | | ;
Time:12omi : High repair . ; '
lme p . COSt . +
; . [Person:A f—+(kaw )—~{ Person:B|
5 (KW
R LR EE TR E LR POSS FOSS

[ RepairCost F—w( QTY }—={ Value:High |

1
(CADS —={ompensation}-+{_QrY_y—={valueHgty

j b Gmﬁ “—=| Recoverable

[y +——={ 08 )—-{ SofiTissue |

Short

=)

otmpensation|
CAUS

Value:High

FIGURE 5.3 Hypothesis Space with Explanatory Relations



120 Abductive Inference Control in Hypothesis Generation

In FIGURE 3.3, the detailed hypothesis space with explanation relations is displayed, and is
equivalent to the hypothesis space in FIGURE 5.2. By utilizing this activated hypothesis
space, the number of explanations which potentially could be used in abductive inference is
greatly reduced to twelve {ten relations are shown). In the twelve restricted explanation
graphs, only three graphs, which have at least one concept “joinable” to unmatched evi-
dence, will actually be used for the abductive inference process. FIGURE 5.4 displays these

three candidate explanation graphs.

a ™

{ Clam _—~( ATTR }—+{ Fraudulent |
FURF }— Proft |

[ RapairCost f—={ QTY “}— Vaiue; High |
¥
( CAUS y—Compensation}~( QTY —=|Value:HigH

[Compensation—={ QTY }— Valte:High |
)
(CAUS y—{ Proft_ —={ QTY -~fvalue:High

FIGURE 5.4 Candidate Explanation Graphs

The new evidence graph which is separated from matched evidence graphs is shown in
FIGURE 5.5. The abductive inference engine will ‘maximal-join' it with three candidate
explanation graphs respectively. The resultani graphs generated from the maximal-join

operation for the new evidence “Repair cost is low™ are shown in FIGURE 5.6.

As we know, one of the weaknesses of abduction is redundancy in its resolutions. It is nec-
gssary to assess these three graphs and choose a “best” one. This is carried out by the expla-
nation evaluation and conflict resolution process, which are discussed in the next chapter
(6). Following explanation evaluation and conflict resoiution, the final explanation for the
new evidence is shown in FIGURE 5.7; namely: ‘the low repair cost results in low compen-

sation.
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RepairCost

FIGURE 5.5 New Evidence Graph

i————( ary —[ Vatua:Low | \
[FReparCostj——{ ATIR_—-{ Fraudulant |

PURP Profit

RepairCost Qry alue: Low

CAUS Compansation—{_QTY )

AspairCost QrY Value:Low
K Profit ary Value:High j

FIGURE 5.6 Resultant Graphs of Abductive Inference

[RepairCosl_|——~( Q1Y _}-—{ Value: tow |

CAUS Compensalion —{_QTY Valueiow |

FIGURE 5.7 Final Explanation Graph for the New Evidence

/[_ﬁaTm_i—-( ATTR y—| Fraudufent |

FURE )Pl @

[ (TS y—{Compensation]—~(_OTY )— Valuelow |

[Repaircost |— QTY_)—{ Vaiue:Tow | /

N

FIGURE 5.8 Combined Explanation Graph
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FIGURE 5.9 Candidate Hypothesis
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The final explanation graph, which explains the relation between the new evidence and
conclusion, is generated by a max-join operation. The label high of concept value, which
is connected from profit by QTY is substituted by low with the strategy used in local con-
flict resolution. This method is actually an equivalent to the Twist technique introduced by

Leake and Schank[145].

The conceptual graph displayed in FIGURE 5.8 is the result of Maximal-join of the

explanatory graph from the evidence, facts, sub-conclusion and conclusion.

The current state of the hypothesis, which is still under developmeat, is shown in FIGURE
5.0. Because the evidence “fwo parties involved in accident know each other” cannot be
verified, the conclusion of staged accident is abandoned. This hypothesis is reasonable in

logic, but it did not have a suitably strong conclusion to support it.

The hypothesis space will continue to extend through the incorporation of the pew evi-
dence nodes and new explanatory nodes. As the result of this extension, it is obvious that
the old conclusion is no longer suitable, and a new conclusion is necessary. There are the-
oretically three types of methods for providing a conclusion. They are based on extending
hypothesis space, analyzing the knowledge in rule bases and eliciting the knowledge from
users. The last method is based on the principle of hypothesis based interaction and will be

discussed later.

To extend the hypothesis space, a broader set of explanations will be used for abduction.
We still use the unmatched evidence graph, as shown in FIGURE 5.5, as an index to acti-
vate hypothesis space. FIGURE 5.10 displays the Extended Hypothesis Space with two

relevant explanations.

In the extended hypothesis space, two relevant explanations are activated, in which con-
cepts share a common supertype with concepts in the unmatched evidence graph. This first
one connects to the evidence “photocopies from altered document” and another to “repair-
ing existing damage”. Both of them involve further inveétigation for the purpose of “check

original document” aud “check damage consistency”.
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Conclusion
Repair Uninsured Damage

N\

Sub-concl. Sub-conc!.
High Cover Existing
Compensation Damage
Fact Fact
High Repair High
Cost Compensation
/ / e ;
Evidence Evidence |.| Evidence |:| Evidence
Enlarge High Claim |+ | ©opy From |- Repair Existing
Damage igh Claim Altered Doc. )] Damage
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| Chack = PURP }—={Consistency{

- ) \__ /

FIGURE 5.19 The Extended Hypothesis Space

As an example, consider the second explanation “check damage consistency”. The resultant
graph from Maximal-join operation shows that “Repair cost is low” will not cause “Check
damage consistency” by an inspector. Based on such information, the explanation: “Low
repair cost will avoid damage consistency check by inspector” will naturally follow.
Although a fruitful outcome (conclusion) from such a process cannot be guaranteed, the
hint provided by the machine does provide guidance for user responses. At the end of the
dialogue between user and system, the new explanatory graph is formed after a conflict res-

olution process, such as simplification, deletion, or etc.
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FlepanGost ary Value: Low Evidence

Y-e{Daig > (ATTR)—[FoCovered] .
©

- f | Then: ' Explanation
0BJ Vehicl .
Check PURP amagaConsisten

=

| Resultant Graph
"1 Then:
0BJ »—{ Vehicle |
[Check }—{ FURF —{DamagaCansistenty]
N D
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FIGURE 5.11 Another Explénation Generated

FIGURE 5.11 displays the process of generating a new explanation from the resultant
graph by max-join. We incorporate the new explanation into the candidate hypothesis
(FIGURE 5.12). The Sub-conclusion “Cover Existing Damage” (see FIGURE 5.10) will
be adopted as a conclusion in the hypothesis shown in FIGURE 5.12. The final consis-
tency check for the conclusion is usually performed by human experts. At this stage, the
aser can overwrite the system’s conclusion, and input a statement, which usually is more
meaningful in a fraud context. However, note that the explanation process has been pack-

aged for future use by the machine.



126 Abductive Inference Control in Hypothesis Generation

Conclusion
Cover Existing Damage
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FIGURE 5.12 Hypothesis nnder Development

In FIGURE 5.13, we present a final version of the new hypothesis, formed after simplifica-

tion using the knowledge fusion process.

In this example of abductive inference, originality has been demonstrated in hypothesis
space activation, explanatory relation selection, maximal-join operation, hypothesis space
extension, conflict resolution, explanation evaluation, and knowledge fusion. Naturally, the
human expert should be able to overwrite the system's conclusions and explanations at

every stage of the intelligence acquisition process.
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FIGURE 5.13 A New Hypothesis Generated

5.5 Summary

The abductive inference is a weak mechanism for generating explanation and hypothesis.
A practical conclusion cannot be guaranteed, and sometimes, results will conflict with
other existing explanations. Strategies for conflict resolution and hypothesis evaluation

will be addressed in the next chapter.

The research indicates that inspiration provided by abductive inference is sometimes more
beneficial than a complete hypothesis. Inevitably, real world knowledge and suspicions
voiced by other parties may require modification of machine intelligence results. How-
ever, there is inestimable value in fully exploiting the formalised facts by machine and in

explaining how a result was arrived at.

While abductive inference has not been able to produce a complete hypothesis in some sit-
uations, the inspiration provided by the machine is very attractive for complex problem

solving and for the associated human computer cooperation.
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CHAPTER 6

Conflict Resolution and Hypothesis Evaluation

6.1 Introduction

In artificial intelligence, the problem of evaluating explanations has been investigated in
three main areas{88]. Research into explanations provided by expert systems has concen-
trated on the question of the explanation’s goodness for explaining system behavior, for the
benefit of the system users[25]; research into explanations for story understanding has con-
centrated on how to select valid explanations from a range of hypotheses{145]; and research
into explanation based learning has been primarily concerned with the probiem of determin-
ing an explanation’ goodness for improving performance of concept recognition and

search[36].

Many theories of explanation evaluation are logically based on context independent criteria.
Such theories either restrict their consideration of explanation to fixed goals, or assume that
all valid explanations are equivalent, in which case evaluation criteria would be neutral to
the hypotheses underlying the explanation task. Context-dependent criteria evaluate

hypotheses from the point of view of domain tasks that the system is trying to solve. A fraud
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detective, for example, might need to build very different explanations for such facts as “the
driver had decamped from the scene of accident” to the common hypothesis of “Joy driv-

ing”?

This chapter addresses the problem of evaluating the “goodness” of explanation and
hypotheses in the context of a working domain. The focus on explanatory hypotheses
(causal chains) attempts to verify a given anomalous fact in terms of causal relations within

the underlying hypotheses.

6.2 Conflicts in Hypothesis

An hypothesis consists of a set of attributes which is connected by relations. For the reasons
given before, the relations, relevant to conflict resolution, are explanatory ones, which
explain the relations between the attributes. One of the major problems produced by the
hypothesis generation model, more specifically by abductive inference, is the existence of
redundant and contradictory explanations. The origin of conflict in hypothesis is determined
by the nature of abduction, which provides “plausible” explanations for the given evidence.
In insurance fraud detection domain, if the evidence is “Driver has no obvious injuries”, the
two explanations: “Accident in which the person is involved is not serious™ and “Person is
not in car when accident happened” are contradictory and only one can be valid when the

hypothesis is verified.

The contradictory explanations, which are commonly called conflicts, can often be modified
or removed by further imposing some constraints to the hypothesis. A single candidate
hypothesis may contain different kinds of conflicts, and each conflict, in turn, may be soived

by a particular set of constraints.

The process of hypothesis generation consists of three steps: anomaly detection, hypothesis
generation, and hypothesis verification. No matter which way the hypotheses are generated,
evaluation of the derived hypotheses is crucial. Ram and Leake categorize evaluation crite-
ria into two categories: syntax-based and task-based criteriaf129]. Syntax-based criteria rely

on structural or syntactic properties of the causal chain to evaluate hypotheses. A “good-
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ness” measure for each hypothesis can be computed based on the length of the causal
chain, the number of abductive assumptions, or other structural properties [74][82]{129].
Task-based criteria select hypotheses according to requirements arising either from the
system’s intended use, or from an explanation, such as those required for predictions about

future events[129].

Conflict resolution in hypothesis generation is a complex computational process. In this
chapter, we will introduce a measure for explanation and hypothesis. Our method can be
used to evaluate the “quality” of explanation and hypothesis, and could also be used to
detect indirectly, possible conflicts in a set of explanations. The abductive inference
engine and hypothesis generation model are, therefore, consistent with the use of such

measures, elaborated below.

6.3 Semantic Distance of Concepts

The notion of semantic distance as a useful measure of concept similarity has been
exploited by Tsui [156]. Firstly, however, the notion of type hierarchy 1s introduced as a
partial ordering defined over the set of concept labeis [151]. Consider the concept type
vehicle. The immediate subtype of vehicle includes ambulance, automobile, bicycle, buck-
board, bus, carriage, cart, etc. Immediate subtypes of automobile would be coach, con-
vertible, coupe, hot-rod, jalopy, sedan, etc. Immediate subtypes of sedan inciude

brougham, limousine and saloon.
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Graphically, the above type hierarchy is shown in FIGURE 6.1

Vehicle

m

Ambulance Automobile Bicycle Buckboard Bus Marriage Cart

/’M

Coach Convertible Hot-rod Coupe Jalopy Sedan

Brougham Limousine Saloon

FIGURE 6.1 Concept Type Hierarchy for Type Vehicle (adapted from[156])

The semantic distance (SD) function is designed to correlate the relevancy of two valid con-
cept labels[47][151], and represents the similarity of two concept labels. The link between
two adjacent type labels in the type hierarchy is assigned an arbitrary quantitative value
called the “semantic distance between two type labels”[156). For any concept labels p and
q, the semantic distance between them, SD(p,q), may be defined as the number of arcs in the

shortest path through the type lattice from p to q. For example:
SD(convertible, saloon) =3,
SD(sedan, vehicle) = 2,
SD(coupe, automobile) = 1, and

SD(saloon, cart) = 4.

It may be inferred that two concepts which have the smallest semantic distance (SD} are
most relevant and “similar”. Tt should also be noted in support of the SD notion that seman-
tic distance has played an important role in the Semantic Interpreter, a memory based natu-

ral language parser[57].
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6.4 Difference Measurement between Conceptual Graphs

Semantic distance can be utilized to assist in calculating the difference between two con-
ceptual graphs. Wuwongse and Niyomthai use matching score, which is defined as the
summation of Importance Values [165] minus Sermantic Distance of each concept in their
minimal common generalization. The importance value is a score for each concept type to
denote its relevance to the essence of the graph in which it is contained. It can be fixed or

redefined with each concept type according to the domain.

Other proposals for matching conceptual graphs are based on Ten Position Vector [107]
which is used in matching conceptual graphs and is useful in classification and compari-

son, common generalization[101], and specific algorithms{103].

The algorithm proposed by Wuwongse and Niyomthai sets important values manually and
pays no attention to similarities in macro-structure of conceptual graphs. The ten position

vector algorithm is also too time consuming for efficient human computer interact:on.

Definition of Graph Difference-1:

Given two conceptual graphs U and V, such that u; € U (0<i<n),
v;€ V(0<j<m)andn < m, then the difference (GD) of two con-
ceptual graphs is defined as:

GD = Y SD(u,v)

i=1
j=i(<n)

The difference measurement is an extension of the semantic distance, and is the sum of the
semantic distance of corresponding concepts in two conceptual graphs. If the difference is
zero it means two graphs are identical while a difference of infinity means they belong to

different domains.
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The Definition-1 is simple to use and is efficient in computation. But, there are two limita-
tions to this definition; namely the difference in relations and the need to specify corre-
sponding concepts. This definition is effective only when two graphs have a similar
structure. In our experiment, all evidences or attributes have similar structures and the Defi-

nition-1 1s shown to be effective and efficient.

Definition of minimal common generation:
Let conceptual graphs # and v have a common generalization w. w is said
to be a minimal common generalization of u and v if the following con-

ditions are true:

® for each concept ¢ in w, it is a minimal common super type of the corre-

sponding concepts in u and v,

* wis maximally extended (i.e. no further extension is possible).

Definition of Graph Difference-2:
Given two conceptual graphs « and v that have w as their minimal
commeon generalization, the graph difference (GD), of u and v 1s

defined by the following formula:

f
GD = Ny+N,—-2N,,+ Y q;x5D (u}, v;)
i=1
Note:
N, is the number of concepts in u,
Ny, 1s the number of concepts in v,

N, is the number of concept in w,

q; 1s the weight of the corresponding concept in the conceptual graph,
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SD (u;v;) is the semantic distance between u; and v;.

The minimal difference value is reached when one conceptual graph is identical with

another graph or is a subgraph of another graph.

The Definition-2 is a more general method for measuring the Difference for graphs. This
definition also embraces the different structures that may exist, and can assign a different
weight to the concepts in graphs. By this method, the key concepts play an important role

in graph matching, and some concepts will be relatively unimportant.

In our model, hypothesis space is activated by matching the graphs with evidences

detected and with evidence nodes in the hypothesis space.

In the process of hypothesis space activation, we can treat the problem of graph matching

as:

Given evidence represented as a conceptual graph «, given an
hypothesis space HS, and given v; is the evidence node in V of the
hypothesis space HS (v; € V, and V C HS), then the activated evi-
dence node v; will have the minimal difference D with 4, and D > d

(the threshold value).
D=Min{SD(v;,u)}
(v;e V)

If, D 2 d then the evidence node v; is activated by u.

Semantic distance based measurement is computationally expensive. A good method for
deciding weights for attributes may be hard to define. The attractiveness of this approach
lies in the capability to deal with inexact matches of features and in the representation of

‘fuzzy’ concepts and situational knowledge.
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6.5 Credibility Measurement

In our hypothesis generation model, the candidate explanations are the results of an abduc-
tive reasoning process. In order to measure the quality of explanations, we introduce the
concept of credibility. The purpose of a credibility measurement is to select the “most suit-
able” explanation. The degree of conflict identified with any given (generated) explanation

1 an inverse measure of its likely credibility.

Conflicts may be divided into different categories according to the different feature classifi-
cations. Qur principal concern is with two kinds of conflicts according to their local or glo-

bal significance.

1. Explanation conflicts (local conflicts)
Conflicts occur when explanations are activated by same evidence. This
kind of conflict happens in the process of abductive reasoning, and is due
to the set of candidate graphs selected. The strategy for expianation con-
flict resolution is to select that one which “best” explains the evidence

under certain selection criteria.

2. Hypothesis conflicts (global conflicts)
After the process of hypothesis generation, there may still be some con-
flicts among the candidate hypotheses. Such conflicts are caused by
introduction of a new explanation to the hypothesis space. It is necessary
to identify and resolve such conflicts (between explanations) and to rede-

fine the hypothesis, if necessary.

A problem of implementation often arises, however, as the boundary between conflict reso-
lution and hypothesis evaluation is often indistinct. Minor modifications may be necessary

to the methods used to evaluate hypotheses.

6.5.1 Explanation Credibility

To measure the credibility for an explanation in relation to particular evidence, we use the
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notation:
p’= py (explanation, evidence)

In an activated hypothesis space, an explanatory relation 1s activated by at least one
attribute. The credibility for an existing explanation derived from a connected evidence

node is very high, because conflicts are resolved during the generation process.

To explain new evidence, there are two ways; namely use of an existing explanation, or

generation of a new explanation.

The computational cost is very high in calculation of the credibility between explanation
and evidence directly and even worse in conflict resolution. In the first situation, we can
avoid the difficulty by calculating the difference between attributes in hypothesis space
and the evidence discovered. Therefore, we can simplify the credibility computation
through measurement of the difference between the evidence at hand and the existing
attributes, because the value of credibility p is inversely proportional to that of graph dif-
ference GD.

€

p’ = p’(attribute, evidence) = —m———r

where g; is the evidential graph nested in evidence-node, g is the conceptual graph of

new evidence and ¢; is a constant.

According to this definition, the difference GD ranges from zero to infinity[0, +c°) and the
credibility will be range from infinity to zero (+eo, 0. For the purposes of standardization,
it is more sensible to normalise the range between {0, 1]. The following formula will fulfil

this mapping:

p’ !

p= p'+e, - ¢, +¢,GD (g, 8,)
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where ¢, is also a constant, and therefore:

. b
P = b¥GD (g, 8,

Here b = ¢j/c,. The definition can be simply represented as:

b
b+ GD

p:

Under this definition, the credibility p is one (1) if two evidential graphs are identical, and
zero (0) if two graphs are totally different (This may be interpreted as two graphs being in

different domains).

In a similar way, explanation ur-acceptability (up} may be defined as (I - p):

v~ (:555)
P=\Fr+GD

The un-acceptability is zero (0) if the difference is zero (0) and is one (1) where the differ-

ence is infinity (+20),

This explanation’s credibility and the related measure of un-acceptability, are derived from
the evidences-node and from the evidence at hand. It is only suitable for measuring existing
explanations. For measuring the credibility of a new explanation, we have developed a

method which can be classified as task based evaluation, which will be discussed later.

6.5.2 Hypothesis Credibility

The measurement of hypothesis credibility is made by extending individual explanation

credibilities, The simple way is to calculate every explanation’s credibility separately, and
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then compute the hypothesis’ credibility as the sum:

n
1
P = ;pr

i=1

In this formula, n is the number of explanations connected to the evidence nodes.
Although this approach is very simple in concept, it has two disadvantages. One is the
high computational burden. Another is the lack of consideration of conflicts between the

explanations.

To overcome such limitations, the credibility is calculated after abductive operation. This
method reduces computation significantly, but at the cost of decreasing accuracy. In deter-
mining hypothesis credibility, we are concerned about conflicts among all the explanations

indexed by all evidences. We define the hypothesis credibility as P:

P= Py Explanation, Evidence) = Py Zexplanation;, Zevidence;)

The Explanation represents all explanations in the hypothesis and the Evidence represents
all evidence to hand. The X operation can be implemented by the Maximal-Join operator

[151][156], and, therefore
Py(Explanation, Evidence) = P(G;, G2}
where: G; = Max-join{IDX-evidence,, IDX-evidence,,.. IDX-evidence;), and
G, = Max-join{Evidence,, Evidence,,....Evidence;).

As with explanation credibility, we can compute the hypothesis credibility as:

— a
a+GD(G,, G,)

In a similar way, hypothesis un-acceptability may be defined as:

GD(G,,G,)
T a+GD(G,, G,
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Because the hypothesis credibility and un-acceptability are measured indirectly from con-

ceptual graph differences, it is a kind of possibility measure.

If the credibility P as calculated exceeds the threshold of credibility D, some conflicts may
be presumed to exist. A trace-back of the computation process reveals a way to identify the
location of the conflicts through identification of the concepts having a semantic distance

over the threshold.

Semantic distance (SD) based criteria provide a relatively easy way to evaluate the “good-
ness” of an hypothesis. However, such criteria are sometimes not very desirable in conflict
resolution with newly generated explanations. Goal based criteria (or task based) are then
directly applicable to explanations, without the help of evidence nodes. Whereas the SD
method relies on domain knowledge such as inference rules, cases, schemas, or other types
of knowledge, goal based criteria take a strongly context-dependent view of evaluation of
hypotheses. The final determinant of an explanation’s “goodness” is whether it informs the

reasoning process.

6.6 Conflict Resolution Methods

Conflicts threaten the reliability of hypotheses. As stated earlier, both local conflicts and

global conflicts may be encountered, requiring different conflict resolution strategies.

When an hypothesis is generated to explain anomalous evidence, it is necessary {0 evaluate

the hypothesis using criteria that are domain dependent:

1. Novelty:
In fraud detection, we are more interested in a novel explanation instead
of modifying old explanations to suit new evidence. Novelty provides a
basis for judging whether a surprising event was itself caused by some-

thing surprising.

2. Simplicity:

In most situations, the simplest explanation is often the best. This crite-
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rion (Occam’s razor) can also be used in hypothesis evaluation by

focussing on the simplest structure and the simplest concept.

3. Specificity:
The specified explanation is usually richer in knowledge when accumu-

lated through the process of problem solving.

Although goal based criteria provide some indirect approaches to hypothesis evaluation,
such considerations sometimes result in goal conflicts, for example, the criteria for sim-
plicity and specificity. We cannot expect any one assessment technique to give a uniquely
definitive result. The best that can be hoped for is that a number of different criteria (each

incorporating different features) will give self-consistent results.

6.6.1 Explanation Conflict Resolution

The main point in explanation conflict resofution is that when there is a limited choice of
explanations, increasing of the credibility of one explanation will decrease the credibility
of the other explanation. Since the number of possible explanations involved in an hypoth-
esis is finite, the absence of a new explanation strengthens the evidence for existing expla-
nations. In order to implement these ideas, a Priority Value (PV) has been employed to

select the most suitable one.

In this approach we extend the treatment of Modified Belief Value proposed by
Zhang[167][168] for the purpose of explanation conflict resolution. Each hypothesis deter-

mines
1. the degree of explanation credibility p; and

2. the degree of explanation un-acceptability up

for each explanation. Modification of the degree of credibility for an explanation for the

purpose of general applicability is obtained as foliow:
i
ModifiedCredibility (MP) = p,+ Y o, up;- (1-p)
i=2
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where p; is the credibility of an explanation, up; is the un-acceptability of all the explana-
tions, and @ (2 @; < 1) is a weighting factor which is self-adjusted when the system is run-
ning. From this formula, we not only consider the credibility of an explanation but also the

relationships to other explanations.

We determine a modified un-acceptability (MUP) of each explanation in a similar way.

n
MUP = up,+ ), &, p;- (1-up))
i=2

After an hypothesis has modified the credibility and un-acceptability value, the priority
value (PV) of an explanation for given evidence is computed by using the combination

function in the hypothesis generation model, and is determined by the formula as:

PV=MP-MUP

6.6.2 Hypothesis Conflict Resolution

When a set of explanations are indexed by separate evidence, some conflict may exist
between the explanations. Resolution of these conflicts and refinement of the explanations

is then necessary.

In order to detect conflicts in hypothesis, we calculate the hypothesis credibility P. If the P is
below a certain threshold, minimal conflict is assumed and it is ignored. Otherwise, it would

be necessary to examine every individual confiict.

To detect inconsistence (conflicts) in hypotheses, it is useful to measure the un-acceptabiiity

between one explanation and new evidence.

UP = UP,(explanation, Evidence) = UPO(explanation,Zevidence)

UP = UP,(g,, G,)
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When an explanation with the maximal UP (un-acceptability) is under consideration, it is
asserted the explanation is in conflict with others. A conflict resolution process will then

be applied to that explanation.

It should be noted that no single solution exists to resolve all conflicts. The method pro-
vided here is a weak approach. Conflict resolution should be supported by a number of

approaches, such as task based approaches.

6.7 Task Based Evaluation

What constitutes a good hypothesis? Before discussing task-based evaluation, we should
classify this question. For our purposes, a good expianatory hypothesis should comprise a
set of good explanations without conflict between them. However, in some domains {e.g.
fraud detection) it is necessary to speculate regarding individual motives to discover the
rich hypotheses and associated explanation. It may be concluded from our study that there
is no sole criterion suitable for hypothesis evaluation in a complex domain. A sophisti-

cated set of criteria must reflect the dynamics of the situation actually encountered.

The semantic distance measurement provides a basis for evaluating the explanation with-
out considering (or discounting) other explanations, although it does provide a simple way
to calculate credibility indirectly. On the other hand, the accuracy of this measure requires
improvement due to the indirect measurement. To overcome such limitations, the knowl-
edge based method has been proposed as a compensating strategy to measure the credibil-

ity of an hypothesis.

In knowledge based explanation evaluation, the system has a set of expectations in mem-
ory, such as a set of fraud schemes in our case. The method involves evaluating whether
the proposed explanation “fits” a candidate fraud scheme. In our experiment, the fraud

schemes are arranged in a fraud hierarchy as shown in FIGURE 6.2.
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In the above graphs, we only show the details for two fraud schemes: namely Car Insur-
ance Fraud and Exaggeration of Economic Loss. The Car Insurance Fraud is a supertype
of Exaggeration of Economic Loss in the fraud scheme hierarchy. Every fraud scheme has
a set of indicators. If the explanation can satisfy one of the fraud schemes, this explanation

will be accepted. Otherwise, it might be rejected or need o be modified.

The indicators in a fraud scheme are usually abstracted fraud evidence. For example, the

scheme for a staged accident has the following indicators:
® The location has few pedestrians,
® The time is after dark,
® Two parties know each other,
® The claimant is in financial trouble, and

® Accident did not cause exira loss.

We tested this method of explanation evaluation through representation of every indicator
in the form of conceptual graphs. If the explanation can be projected into any variation of
the indicators, it will be accepted. The projection[151][156] algorithm will consider not
only the concepts of indicators themselves but also sibling concepts which share the mini-
mal common general type in the concept type hierarchy. The expansion to sibling concepts

provides an approximate way to derive explanation measures.

Knowledge based explanation evaluation is, in some degree, analogous to semantic dis-
tance based approaches. We evaluate explanation by means of the difference between the
explanation graph and the fraud scheme indicator graph as shown in the following for-

mula:
p'= py (explanation, scheme-indicator)

In the same way, we can also calculate credibility p and un-acceptability up (stated
before). This method of evaluation for frand detection is based on the following assump-

tions:
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® the perpetrators {claimant) employ various ways to conceal their frauds

Although there are many different ways to commit fraud, the basic objective is to practise
deception for financial gain. To be successful, perpetrators must use various ways to conceal
their deception. As a result, the indicators of fraud schemes are relatively simple at an

abstract level. (The difficulty is to link the evidence to indicators at the abstract level).

Knowledge based explanation evaluation can be readily extended to hypothesis evaluation
by summarizing individual explanation credibilities. This approach is useful for comparing

several hypotheses.
P=2 p,-'(explanarion,-, scheme-indicators;)
Or in an approximate way as:
P= p;'(Zexp!anationj, Zscheme-indicatorsf)

The knowledge based approaches naturally favour explanations which are consistent with
the system’s knowledge. This could well disadvantage the novel explanations, and some-
times new discovery may be discounted. This disadvantage affects not only our methodol-
ogy, but also appears in human expert’s problem solving, and is believed be a common
limitation of ali knowledge based processes{88][128]. A compromise proposal to overcome
this limitation involves combining multiple approaches, such as the use of siructural and

knowledge based approaches for new situations.
6.8 Hypothesis Modification Strategies

It is seldom the case that existing hypotheses can be applied directly to the present situation
to either solve a problem, explain an anomaly or plan for a new goal [66]. In order to cope
with ill-structured problems, where no existing solution currently exists, the hypothesis
space successfully used in the past requires modification in a cd-operative manner to make

it fit the requirement of a new probiem.
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6.8.1 Explanatory Relation Modification

In the theoretical treatment of hypothesis conflict resolution, the aim of hypothesis evalua-
tion was to modify explanations and thereby increase their credibility. In our experimental

justification, three types of failures were attributed to conflicts:

[. Plausible failures
Plausible failures correspond to explanations that do not make sense,
because they contradict some important aspects of the application

domain, as represented in the knowledge base.

2. Fatlures due to vagueness
Vagueness arises from explanations that are not detailed enough, not

sufficiently convincing, or do not contain sufficient information.

3. Conflicts between concepts
This is the most common conflict arising from max-join operations.
This failure corresponds to explanations that are not consistent and fail

to satisfy the explanations’ criteria for acceptance.

We have investigated several conflict resolution strategies, which can be used individually

ot in a (prioritized) combination. The strategies are as follows:

1. Concept substitution
Concept substitution attempts to fix plausible failures by replacing a
concept in an explanation pattern with an equivalent concept at the
same level of the concept hierarchy. Alternatively, a contrary notion

may be substituted!

2. Concept generalization
Concept generalization broadens the scope of an explanation, at the
cost of some detail information. In effect, an instance is generalised to

its class!

3. Concept specialization

Concept specification attempts to eliminate vagueness through addi-



148 Conftict Resolution and Hypothesis Evaluation

tional information (e.g. specific context) through the creation of informa-

tion rich hypotheses.

4. Deletion
That part of a graph, a concept or a relation, which fails acceptance crite-
ria given conditions, is deleted from the explanation. This strategy can be

used to simplify explanations.

5. Human computer interaction
Human computer interaction mechanism is the method of last resort
when progress has stalled using the other methods. It provides a flexible
dialogue and interface to acquire user knowledge in explaining the avail-

able evidence and for revising the hypothesis.

6.8.2 Executable Relation Modifications

The modification of an executable knowledge structure is a complex process even for
human experts. The actor paradigm provides an effective solution for some simple modifi-
cations. Techniques such as substitution, generalization and specialisation, are commoniy

used to complement the operations involved in data retrieval processes.

Substitution attempts to fix probiems by replacing an actor in the failed executable relations
with an actor that could have the same causal consequences. The following substitutions

have been investigated:

1. Replace an actor with a common stereotype.

2. Replace an actor with one closely related in the action hierarchy.

3. Replace an actor with one having the same pre-conditions.

4. Replace an actor with one known to have solved similar probiems.
Generalizer reworks plausible failures by producing a version of an actor that applies to a
broader class of situation, at the cost of some detail in the hypothesis.

1. Generalize old actor to make it compatible with the new actor.
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2. Generalize the constraint on the new actor to make it compatible with

current actor.

3. Delete the problematic actors.

Specidlisation fixes problems of vagueness by expanding details in the executable rela-

tion, thereby making it less general, but richer in information content.

1. Expand an actor description by finding an actor matching the initial
description derived from the problem situation, or from elsewhere (e.g.

in the hypothesis!)

2. Specialise an actor description by finding an actor matching the motiva-

tion implicit in the problem case.

3. Add details to the causal connections between two concepts by splicing

in another hypothesis that could explain the origin of the link.

At this stage, the process for modifying virtual relations is usually carried out using human
computer interaction. Automatic modification is typically limited. Further research is
needed to provide an adequate modification process, especially in the process of concept
specialization. An effective environment has, however, been realised for virtual relation

modification under support of hypothesis based interaction.

6.9 Example of Evaluation

In this section, we explain the hypothesis evaluation process by an example. The evidence
detected by the anomaly detection model is described in FIGURE 6.3, as the evidence

graph combining all the anomalous attributes detected.
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FIGURE 6.3 Anomalous Evidence Graph

This evidential graph can be explained as:
1. Low repair cost,
2. Soft tissue injury only,
3. Accident happened at 11.15 pm, and

4. With previous claim: claim number 818.93

The hypotheses indexed by the evidence are “Exaggeration of Economic Loss” and “Staged
Accident”, which are merged automatically in hypothesis space (shown later FIGURE 6.6)
The fraud scheme indicators for these hypotheses are depicted in FIGURE 6.4 and FIGURE
6.5. The next step is to determine which hypothesis has the highest credibiiity based on fol-

lowing formula:
P = 2 p/(evidence;, scheme-indicator;)

As a result of the evaluation, the hypothesis “Exaggeration of Economic Loss” is selected.
(For the hypothesis “Staged Accident”, the indicator “repair cost is very high” is not
matched, and the indicator “two parties involved know each other” has not been verified).
From the activated space we can also determine that there is no match for the evidence

“Repair Cost is low”



Conflict Resoiution and Hypothesis Evaluation

/_Fraud Scheme: Exaggeration of Economic Loss

Claim ATTR Anomaly__—={_ CHRAC y—-{ExaggeratedEconomicLoss |
) Situation;

{ Claimant__——={ POSS r—+ Income |

[ Value:Low { a1y )

(T Situation: [Crury — F—=(ATTR_)—={ Unseriots |

. Siluation: ™ peren  —e( LoC —] Place |

- Situalign: [ RepairGast }—{_QTY_»—{ Value:High'|

N

/

FIGURE 6.4 Fraud Scheme: Exaggeration of Economic Loss
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FIGURE 6.6 Activated Hypothesis Space

The resultant graphs for the new evidence “Repair Cost is low” is shown in FIGURE 6.7
and the whole explanatory graphs, which are generated by max-join of the explanation paths

from evidence node to conclusion node in hypothesis space, is shown in FIGURE 6.8.

/ ary Valee Low \
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\- /

FIGURE 6.7 Resultant Graphs of Abductive Reasoning
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FIGURE 6.8 Explanatory Graphs Invoived in Active Hypothesis Space

There are two approaches for evaluating the explanation graphs generated for the new evi-
dence. The first is to evaluate the individual resultant graphs one by one, and then combine
the “best” one into other high level explanations by maximal-join operations. Another
approach is to generate the combined explanation graphs by applying max-join operation

on several resultant graphs, and then evaluate all derived explanation graphs.

Theoretically, the latter approach would appear to be the most compelling. However, our
research indicates it also introduced complexity into the evaluation, and the process is
more time consuming. FIGURE 6.9 demonstrates the complexity of the resultant graphs
and combined graphs using these two approaches. From the graphs, we can determine that
a large part of the combined graphs are common to all, which implies that most computa-
tion on evaluating combined explanations is redundant. In conclusion, the evaluating

resultant graphs offers the fastest solution.
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FIGURE 6.9 Complexity Comparison
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The three resuitant graphs in FIGURE 6.9 are now discussed in more detail:

® There is neither any existing explanatory relation nor any executable
relation for “fraudulent repair cost” in R1. Ri would not then be con-

sidered, at least at this stage.

¢ R2 and R3 are similar in structure and semantics except for the concepts
compensation and profit. Since compensation is more specific than
profit according to the concept type hierarchy table, we choose R2
instead of R3 based on the strategy “A specific case is better than a gen-

eral one”.

® Because the concept repair cost and concept compensation have a com-
mon root in the concept hierarchy of insurance fraud domain!, the
labels for the concept value connected by two separated relations quan-
tity (QTY) are in conflict. Since the quantity of Repair Cost is low is
evidence detected, (i.e., verified evidence) the label (high} will be
replaced by verified label low using our concept substitute modification

strategy.

After local conflict resolution, the selected resultant explanation is shown in FIGURE

6.10.

RepairCost ary Vaiue: Low
1
((CAUS )] Gampensation - ary = Vaelow |

FIGURE 6.10 Selected Explanation Graph

The combined explanation graph using the selected explanation graph (as shown in FIG-
URE 6.10) will be generated by a max-join operation on ail explanation relations from the
new evidence to conclusion. The label of concept value, which is connected from profit by

OTY is substituted by low using the same strategy for local conflict resolution.

1. A concept hierarchy contains common concepts used for insurance fraud detection.
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FIGURE 6.11 Combined Explanation Graph

6.10 Summary

Some type of quality measurement for explanation based paradigms are found in many arti-
ficial intelligence systems. The explanation credibility and hypothesis credibility measure-
ments developed in this chapter propose an indirect method to measure the “quality” of an
explanation for given evidence. All measurement is primarily based on semantic distance.
The difference measurement calculates the credibility through the calculation of conceptual

graph difference.

There are a number of research groups dedicated to explanation evaluation. Some of them
discuss the problem from the viewpoint of psychological criteria. Most of them are inter-
ested in generating explanations for expert systems. Our approach is different from both of

them in the form of its implementation.

Credibility can be used to resolve local explanation conflicts and to select a suitable expla-
nation from multiple candidates derived from the given evidence. The un-acceptability mea-
sure can be used to resolve global conflicts, and to identify expianations from a set of

explanations.

The significance of this research is now summarised:
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®  Qur approach is conceptual graph based, and the inherent property of
conceptual g'raphs [95]{156] provides unique context-based criteria for

evaluation.

. ® The credibility measurement provides an indirect way to measure the

quality of explanations;

® The credibility measurement can be used to resolve the local explana-

tions’ conflicts.

The most obvious and frequent criticism raised in use of abductive inference concems the
redundancy produced by Max-join. Although we have argued that these are not as serious
as would appear at first sight, there clearly does not exist an unique “best” explanation.
Also, there are some uncertain features involved in measuring the “goodness” of an

hypothesis.

Another conclusion from this chapter is that no explanation assessment technique can be
used blindly. The information gained from consideration of competing hypotheses provide
the system with an initial assessment, from which an explicit analysis can be made of how
sensitive this assessment is to changes in a priori assumptions and to details of the assess-
ment procedure. With the assessment of complex hypotheses no single assessment tech-
nique appears to give definitive results. The best that can be hoped for is that a range of

different assessment techniques will give comparable results.

This approach is realistic for complex domains such as fraud detection and management
intelligence systems where existing hypotheses are not always applicable and existing

explanation patterns can rarely explain new evidences.



158 Conflict Resolution and Hypothesis Evaluation



CHAPTER 7

Case Based Interaction

7.1 Introduction

Many knowledge based systems fail because discrepancies exist between the systemn’s view
of the world and reality. Such systems have three primary components: a knowledge base,
decision rules, and an inference engine. The techniques for knowledge engineering have not
changed much generally, and creating a current knowledge base is a difficult and painstak-
ing process. In particular, the AI research community has had limited success in capitalising
on the demands for robust, predictive models using knowledge based systems. As a result,

there is an obvious gap between most system models and reality.

Our research[52] into hypothesis generation for management intelligence has demonstrated
the value of intelligent user interfaces. We now show that the inclusion of hypothesis in
knowledge based system facilitates the cooperation between the human user and the com-
puter, and it also, provides a mechanism for directing the interference strategy for particular

user queries.

In this chapter, we discuss, in particular, what roles hypotheses can play between the user
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and knowledge based systems. Our aim is to bridge the gaps between knowledge based sys-
tems and reality by introducing hypothesis as a medium, and to develop the capability to
reason about problems at the limits of system knowledge. The requisite roles of hypotheses

are as follows:

1. the control capability for inferencing using control strategies implied in

the hypothesis structure,

2. improved communication between the user and knowledge based sys-

tems in the process of problem solving, and

3. a mechanism to focus the system resources on interesting aspects of the

problem solving, and thereby avoid exhaustive search.

FIGURE 7.1 graphically displays the role of hypothesis in problem solving.

Hypothesis DB

Hypothesis
Generation

FIGURE 7.1 Hypothesis as an Intelligent Interface

7.2 Case Based Interaction

Cooperative problem solving, which refers to the cooperation between a user and a com-
puter system in our research, is expected to facilitate the competence to solve complex

probiems by utilisation of the knowledge from both sides of the interface: user and system.
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This type of interaction is different from the cooperation involved in Computer-Supported
Cooperative Work (CSCW) [64][9] and Distributed Artificial Intelligence (DAD[6]{62]
[861, or Distributed Expert Systems (DES) [168]. CSCW has emerged as an identifiable
research field focussed on the role of the computer in group work, and has mainly con-
cerned cooperation among users brought together by computer networks, while DAJ is
divided by Bond and Gasser [6] into three areas: Distributed Problem Solving which deter-
mines how the work of solving a specific problem can be divided among a number of
modules, Parallel AI which is concerned with developing architectures, languages, etc. for
Al in parallel computing environments, and Multiple-Agent Intelligent Systems which is
concerned with the co-ordination of behavior among a collection of intelligent agents.
DES mainly addresses the resolution of conflicts caused by applying rules from different
rule bases. In our research, the cooperative problem solving system deals mainly with the
interactions of a group of intelligent agents (users and systems) to create a team that acts

together to solve a complex task, such as fraud detection in an EDP environment [49].

The interaction between the user and the computer is the main issue in cooperation, so the
communication module plays a key role in information or knowledge transfer between
user and computer in order to facilitate complex problem solving. Computers provide
external memory for the user, insure consistency, hide irmelevant information and summa-
rize and visualize information. The human works like an extra inference engine and pro-
vides knowledge bases to bear for use by the system. The communication module brings

the power of both sides together.

Case-based reasoning (CBR) is a problem solving method that involves recalling a previ-
ous, similar situation and applying its solution to a current problem. Schank and Leake’s
recent work has demonstrated [145] the application of case-based reasoning as a new
explanation mechanism. The concept of Case-based Interaction (CBI) as a mechanism for
intelligent Human Computer Interaction was first expounded by Professor’s Edmonds and

Garner in 1991, and their ideas were incorporated in a new ESPRIT project proposal[35].

In the current research undertaken at Deakin University, case-based interaction utilizes an

hypothesis structure for the representation of relevant planning and strategic knowledge.
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The extent to which case-based explanation can be utilized as a module of an Human-Com-
puter Interaction (HCI) system is now explored. Our approach extends the notion of goal
space modeling[95] utilizing case-based interaction through the mediation of the communi-

cation controller.

7.3 The Requirement for Cooperation

A broad range of Well Structured Problems (WSP) - embracing forms of diagnosis, category
selection, and skeletal planning - are solved by “Expert Systems” with the methods of heu-
ristic classification[24]. But in many situations, the problem is ill structured (ISP) such as
fraud detection, environment assessment, et. al. It is difficult to anticipate the variety of
problems that might arise in achieving a goal in the real world, and there is no universal

solution.

The boundary between WSP and ISP is imprecise. Simon uses the notion of residual con-
cept to define ISP as a problem whose structure lacks definition in some respect. A problem
is an ISP if it is not a WSP. According to Simon[149], a well-structured problem has some

or all of the following characteristics:

1. There is a definite criterion for testing any proposed solution, and a

mechanizable process for applying the criterion.

2. There is at least one problem space in which can be represented the ini-
tial problem state, the goal state, and all other states that may be reached,

or considered, in the course of attempting a solution of the problem.

3. Attainable state changes can be represented in a problem space, as transi-

tions from given states directly attainable from them.

4. Any knowledge that the problem solver can acquire about the problem

can be represented in one or more problem space.

5. If the actual problem involves acting upon the external world, then the
definition of the state changes and of the effects upon the state of apply-

ing any operator reflect with complete accuracy in one or more problem
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spaces the laws that govern the external world.

6. All of these conditions hold in the strong sense that the basic process
postulated should require only practicable amounts of computation, and

the information postulated is effectively availabie to the process.

In general, problems presented to problem solvers by the world are best regarded as ill
structured. They become WSPs only in the process of being categorised as solvable by

well known methods.

Many knowledge-based systems are built on the assumption that the user has a WSP that
the system is supposed to solve. More frequently, users learn incrementally about the
nature of their problem, and they want to solve them in cooperation with heuristics pro-

vided by a sysiem.

In most classical expert systems, include the rule-based system MYCIN {14], frame-based
system GRUNDY [134], and SOPHIE [12] et. al., the user is a passive agent who is asked
for inputs, and the system makes all decisions by itself and then returns an answer,

together hopefully, with some explanation.

Human-computer interaction (HCI) is believed to be one of the key issues in cooperative
problem solving, and the communication module will play a key role in dynamic informa-
tion transfer between user and computer systems in order to facilitate probiem solving.
The design of the communication module between human and computer systems should

meet the following requirements:
1. Coordinate control when there is a conflict of opinion between agents.

2. Give control to users when they need or desire it, otherwise, provide

automatic support.

3. Promote human problem-domain communication; mirror the abstrac-
tions of the problem domain, thereby reducing the transformation dis-
tance between task descriptions by the domain expert and their

representation as computer programs.
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One of the most promising approaches for coping with the HCI requirements is to include
knowledge-based systems that contain knowledge about specific problem domains, the part-
ners (agents), communication processing, recovery from breakdowns, and help and expla-

nation facilities for increasing comprehensibility,

7.4 Contemporary Human-Computer Interfaces

The Human-Computer Interface (HCI) is the mediator of all information between the user
and systems. Therefore, it is a crucial element for any intelligent system to succeed mn deci-
sion support. The infrastructure for evolution of effective human-computer interfaces was
laid during the last decade. In this period, the literature on human factors and behavioral sci-
ence research concentrated on interface design from an empirical perspective [100], and
much research in computer science addressed interface design principles and guidelines
[22]. Recently, Hartson and Hix wrote an excellent survey article [69] that covered the
range of human-computer interface development. In this section, we present the more
important concepts of interface management: dialogue independence, structural modeling,
representation, interactive tools, rapid prototyping, development methodologies, and con-

trol structures.

Advances in computer and communication technology continue to result in increasingly
complex systems. In many cases, human users are still very much involved in system oper-
ations. There are trendy areas of current research designated by the term “adaptive inter-
face”. Hoppe [75] proposed the following steps of information processing for adaptive

interactive systems:

® assessment of user characteristics (constructing a user profiie);

® diagnosis of the user’s current needs based on what he/she is actually
doing;

derivation of adequate responses to the user’s actual needs taking into

account the long-term characteristics,

Two recent attempts in developing human-computer interaction systems are the ESPRIT II
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project 2630 - FOCUS (Front-ends for Open and Closed User system) and the ESPRIT II
project 2474 - MMI2 (Multi Mode Interface for Man Machine Interaction with knowledge

based systems).

The MMI2 project aims to build a man/machine interface for dif-
ferent kinds of user, integrating several modes of communication
supported by modern workstations: natural language, command
language, graphic and gesture. The interface will provide simulta-
neously modes suitable to support the efficiency of experienced,
professional users (command language, menus) and natural com-
munication modes well suited to naive users, such as graphics and

natural language [51.

MMI2 is an ambitious architecture for multi-mode interface systems, addressing concems
such as user modeling, communication planning, multi-mode meaning representation, dia-
logue context managing, etc. But it seems not possible to develop all features to the same

degree of completeness within the scope of the MMIZ project.

In parallel with the MMI2 project, the FOCUS project was co-ordinated by the LUTCHI
Research Centre, Loughborough. It is designed to assist computer users in a wide and
ever-growing range of application packages and libraries and addresses a large variety of

computing tasks across the spectrum of subject areas.

The aim of the FOCUS project is to develop tools, techniques and
methodologies for the construction of KBFEs for use in conjunc-
tion with “open” computational systems and “closed” systems.

It is also developing a harness which provides the framework for
the interaction between end users, the front-ends and the user sys-
tem which is considered as the “Back-End”. The combination of
the framework and its KBFE components will facilitate the provi-
sion of an enhanced human-computer interface and will also poten-
tially provide a more profound level of assistance than is generally

available at present [34].
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User Interface Management System (UIMS) attempts to build the construction of consistent
interfaces that can be rapidly developed by providing 2 uniform set of high-quality primi-
tives [113]. The major issue in UIMS is how well tools support the development of user
interfaces by providing the right functionality to make it easy to develop good user inter-
faces. Most UIMSs are based on a strong separation of interface and application code and it

is a good approach to problems for which there is only limited information exchange.

Other works in knowledge-based human-computer interaction include UIDE: the User
Interface Design Environment, a system to assist in user interface design and implementa-
tion [45]; SAUCT: Seif-Adaptive User-Computer Interface [157]; Friend21 project: A con-
struction of 21st century human interface [112]; et. al {96] [116].

7.5 Interaction Guided by Hypotheses

Current research undertaken in Deakin University, in case-based interaction utilizes a proto-
typical knowledge structure, called hypothesis space, for the representation of relevant

planning and strategic knowledge for fraud detection within the EDP domain.

In traditional menu-based interaction, the user always drives the interaction process. The
menu restricts alternative actions that the user could perform at any one stage of the interac-
tion. For some applications and for some users, these approach with a predefined set of
functions would suffice to accomplish nearly all tasks. In cooperative problem solving envi-
ronments, case-based interaction is guided by the case rather than by the user. The interac-
tion process attempts to explicate the user’s goal space to select and instantiate a set of

probabie cases to solve the ill structured problem that may have no predefined solution.



Case Based Interaction 167

. Communicatior CBP
Module
Execution Dynamic
INDEX Database
Module Memory of
Case
Back-end
ack-en Modifier
Manager

w v

FIGURE 7.2 Structure of Case-Based Interaction

As noted earlier the communication module is the key part in case-based interaction. The
role of the communication module is to manage the information flows: the information
input to the system from users and the requested output to the users, as well as to manag-
ing the system resources and the screen (window) dynamics, in order to utilize effectively

the human-computer interface.

It is obvious that some information requests are more important than others. Importance
can be expressed in terms of the priorities of the information in question relative to
achievement of one or more goals within the goal hierarchy of the domain of interest. A
criterion in setting priorities is the timeliness necessary for the information to be useful. If
presented too soon, the relevance of the information may not yet be clear; if presented to

late, it may no longer be useful.

Within case-based interaction, priorities are determined by information requirements asso-
ciated with the successful pursuit of users’ intentions. More specifically, the case structure

includes a hierarchical representation of the goals, plans, and actions that are potentiatly
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relevant within the domain of interest. This representation is annotated with information
and control requirements that are determined using contemporary knowledge acquisition
technigues. In this way, the communication module can obtain a baseline estimation of

information requirements but using the active goals and plans as pointers.

This baseline is augmented in several ways. Based on our philosophy of interface design,
information requests by the user automatically assume higher priority. In addition, requests
submitted via the system are associated with priorities set by the organizer of hypothesis
knowledge structures. One of the priority criteria in case-based interaction is the importance
of the requirement to verify an hypothesis. For example, the request to verify high weighted
evidence has a higher priority than the request to verify low weighted evidence. Another
criterion considered here is the cost to retrieve this information. Information with a lower

cost should have a higher priority than that with the higher cost.

Once the priorities are assigned, communication control between human and computer
becomes a standard scheduling problem and can be solved fairly easily. There are various
methods for quene management that can be used to determine the order in which requests
should be serviced. Furthermore, if the communication module has a resource aliocation
problem, information importance priorities can be set. The resources include the user’s
information-processing capacity, input/output channels and remote databases or knowledge

bases, as well as screen (icon) management.

7.6 Knowledge Acquisition in Case-based Interaction

In traditional knowledge based systems, the knowledge acquisition process was completed
before the system could be used. Such systems cannot tackle problems without knowledge

being available in pre-stored knowledge bases.

With CBI, the knowledge acquisition process is activated when a gap between the existing
knowledge base and the real world is detected. Such situatioris, in which the system could

not solve the problem by itself, might basically fall into three grdups:

1. Case retrieval failure (Hypothesis retrieval failure in our situation)
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2. Case instantiation failure

3. Case modification failure

Recent discoveries in Goal Interpretation Mechanism [95)] have highlighted goal abstrac-
tion as a novel and significant knowledge acquisition mechanism and have resulted in the
identification of a number of goal abstractions. Goal interpretation is used to explicate and

elicit knowledge from users.

Goal interpretation is an intermediate process, in which the system tries to identify and
understand the goal implied in user statements. The objective of goal interpretation has

been summarized by Dr. Lukose [95] as follows:

* Identify “user goals” and their associated requirement(s) from the “user

aims” (i.e. user input);

® Determine the intentions behind the “user goal”, since knowledge of

the user intentions can facilitate the replanning process;

* Construct the goal state (i.e. the condition(s)) under which the goal

state is fulfilled,

Essentially, there are two types of knowledge relevant to problem solving within CBIL;
namely, explanatory knowledge and strategic knowledge, which is defined as knowledge
concerned with actions, plans, rules, and goals. Following the knowledge elicitation pro-
cess, knowledge factorization is initiated, in which the user will factorize the knowiedge
into types or categories. The process of knowledge factorization involves the transforma-

tion of expert knowledge into concepts, relations, graphs, and abstractions.

Once a satisfactory knowledge base is obtained, problems within the domain can be
solved. During probiem solving, the system will also interact with the user to acquire any

additional problem specific knowledge that js relevant to the particular problem.

In CBI, efforts are concentrated on the acquisition of problem solving strategies from the
experts through the procedure developed for hypothesis space modeling, which plays a

central role in communication control between the end user and knowledge based systems,
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as well between various partners of the intelligent human-computer interface system.

Strategic knowledge is the knowledge used by an agent to decide what action to perform
next, where actions affect both what are believed by the agent and the state of the external
world [3]. We define strategic knowledge as that process knowledge that enables decisions
(iteratively) on actions appropriate in the current situation. Given a general structure of stra-
tegic knowledge, we must design or adapt an operational representation that can be exe-
cuted by a knowledge system to achieve the desired behavior. In practical terms, this means
designing an architecture for control. The paradigm underlying this acquisition process is an
iterative control strategy, where CBI decides what to do and decides on the next step at each

iteration of the control cycle.
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FIGURE 7.3 Paradigm for Strategic Knowledge Acquisition

Figure 7.3 illustrates the straiegic knowledge acquisition paradigm. At each iteration, the



Case Based interaction 171

CBI proposes a recommended action and a set of alternative actions which are listed,
based on their priorities. If the user agrees with the system’s decision, CBI executes the
recommended action. No knowledge acquisition process is reguired. The system will
change the state of the goal space (hypothesis structures), and then enter the next iteration.
If the user does not approve of the system’s choice, CBI will initiate a knowledge acquisi-
tion dialogue to resolve the conflict, since the system has insufficient strategic knowledge

to continue.

In the process of strategic knowledge acquisition, the system firstly provides a set of
actions which might be suitable in the current situation for the user to choose from. The
user can simply choose from a menu or enter the name of a new action within the dialogue
box. In this process, the user is required to assist through CBI in assigning new action to

the group it belongs to and in defining the relationship with other actions.

Secondly, the user is required to interpret the reason for his choice. Meanwhile, the system
displays the explanation for its requirements. At this stage, the user is provided in the

explanation dialogue box with the menu of:
1. No reference;
2. User overwrite CBI's choice;
3. Supplement CBI’s choices with reasons; and

4. User explanations.

Once this dialogue has terminated, the knowledge based management system will carry on
consistency checks. If there is a conflict in introducing the new strategic knowledge into
the knowledge base, CBI will display information regarding the conflict, together with the
systems reasoning. The system runs the dialogue box iteratively until no further conflict is
detected. CBI will then incorporate the new strategy mto an hypothésis or hypothesis

space.

Finally, after the acquisition of strategic knowledge, the system will generate a new rela-
tion, which is the detailed record covering evidence of the hypothesis, the actions in this

hypothesis, and the outcomes (results}.
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7.7 Roles of Hypothesis in Human Computer Interaction

In a cooperative problem sotving environment, case-based interaction is guided by the rela-
tionships within the hypothesis rather than by the user. The interaction process attempts {0
explicate the user’s goal space to select and instantiate a set of probable hypotheses to solve

the ill-structured problem that may have no predefined solution path.

The function of the hypothesis is to act as an intelligent clearing house for all information
between the user and the knowledge based system. The principal role is the control capabil-
ity for inferencing using strategies implied in the hypothesis structures. Secondly, hypothe-
ses may be used to provide improved communications between the user and knowledge
based systems in cooperative problem solving. Finally, hypotheses may be used to focus the
system resources on interesting aspects of the problem solving, and thereby avoid exhaus-

tive search.

7.7.1 Inference Control Strategies

The principal role of hypothesis in an intelligent interface is the provision of a control capa-
bility for the inference process by using control strategies implied in hypothesis structures.
Instead of directly controlling the inference, hypotheses control inference by providing sub-
goals and modifying the intermediate goals promptly, according to the outcome of the infer-
ence. The problem solving process is thus captured at a high level of abstraction, as

reflected in the hypotheses.

The intermediate goals (linking sub-conclusions and facts) can be implied by utilizing the
relations in the hypothesis structure. In order to verify an hypothesis, it is worthwhile to ver-
ify some key facts and sub-conclusions. The key facts are actually used to imply key evi-
dence by means of the probability propagation in the Bayesian model or other cause-effect
theories. By providing a suitable intermediate goal, the hypothesis can improve the effi-

ciency of problem solving.

In fact, we can carry this idea one step further: not only can implicit knowledge in hypothe-

sis help control the inference, but it can also be used to direct action intended to accomplish
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some key intermediate goals. Rather than passively waiting for the outcome of the infer-
ence process, the hypothesis can actively anticipate and pursue missing steps. These func-
tions are achieved by the execution of procedural knowledge, (actors) incorporated in the

execttable relations of hypotheses.

With the support of hypothesis, knowledge based systems provide feedback, in which the
search outcomes are taken into consideration in determining future control strategies. The
results are also used to enhance or reject the current hypothesis. Without hypothesis infer-
ence control, the knowledge based system will continue its exhaustive search, unless cut,
without considering intermediate states. Using feedback, the system can immediately

revise a hypothesis, update its control strategies, and avoid blind alleys.

7.7.2 Communication Control Techniques

The user and knowledge based system must interact with each other to achieve an identi-
fied goal. Traditional interaction in knowledge based systems has been command oriented,
supported by menus or other means to communicate progress of the inference. This type
of support is restricted and quite simple. For example, manipulations may include walking
menus, dragged folders, or mouse actions. It can require a high degree of familiarity with

the system interface for the user to perform the requisite operations sequence.

Qur particular form of modelling human-computer interaction is known as hypothesis
based. The communication by means of hypothesis aims to facilitate cooperation, not just
provide a set of discrete commands/responses and questions/answers which are prescribed
scripts for achieving a given goal. An agent for cooperation between a user and a com-
puter system has been established and provides the competence to solve complex prob-
lems by utilizing of the knowledge from both sides of the interface: user and knowledge

based system.

Our approach to dialogue control is under the guidance of hypothesis, i.e. controlled by
hypothesis logic instead of a fixed menu system or script. After an hypothesis is generated,
the dialogue is solely directed to verification of this hypothesis, and there is no need for

further communication between the user and the knowledge based system. The strategies



174 Case Based Interaction

for controlling such dialogues are:

1. The relations between the nodes in an hypothesis imply the required
information, and only the nodes linked by most possible relations (high

weighting) will be processed;

2. The candidate nodes will be re-organized after receiving outcomes and

new information;

3. The hypothesis will be rejected if the key feature of an hypothesis cannot

be verified. Hypothesis generation process will be restarted;

4. User categorisation (from novice to expert) can be used to indicate the

levels of abstraction required for individual users;

5. The dialogue process is quite flexible.For example, in the execution of an
hypothesis, a request is usually sent to the information retriever and user
at the same time. If the response from user precedes that from the sys-

tem, then the retrieval process will be terminated.

In this way, hypothesis based interaction can provide improved communication between
user and system. The hypothesis based interface is utilized to identify what information the
user needs, what information the knowledge based system needs and how to pass this infor-

mation in the form of commands.

Under the guidance of an hypothesis, the users are active agents empowered by the sys-
tems’ knowledge, and the systems have an auxiliary knowledge source in the user. Comput-
ers provide external memory for the user, insure consistency, hide irrelevant information
and summarize and visualize information {44]. And the human works like an external
knowledge base to the systems. Cooperative problem solving enables the strengths of both

partners to be exploited to the full.

7.7.3 Focus on Inference Intension

Another promising attribute of an hypothesis based interface is the capability to focus the

system resources on interesting aspects of problem solving, and thereby avoid exhaustive
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search. After a suitable hypothesis is generated and indexed, the problem solving becomes
one of hypothesis verification. A complicated problem is divided into several simpler sub-
problems, whereby several attributes would require validation to achieve a complete solu-
tion. This strategy will dramatically decrease the search space and the cost of problem

solving.

Hypotheses focus system’s inference intension by providing more detailed sub goals. One
of the functions is to verify the causal relation between two nodes. If the system can infer
the link between one node to another, or vice versa, the causal relation will be established.

In this way, inferencing in our knowledge based system will be betier focussed.

Hypothesis can also imply the relevant information sources and knowledge bases. For a
complicated problem, it is often less effective to rely on a single information source and a
single knowledge base (rule base). Our results indicate that the size of a knowledge base
will directly affect the efficiency of search, suggesting that dividing a large knowledge
base into several smaller ones will improve the efficiency. On the other hand, distributed
Al is interested in utilizing distributed knowledge bases. Hypotheses provide the capabil-
ity to selectively locate the information and knowledge sources required. This capability is

implied in the executable relations among the different attributes.

7.7.4 Using Knowledge to Control Inference

Ideally, only those inferences should be drawn that lead to useful conclusions. But this is
not always possible in practice. An obvious choice needs to be made in the design of the
inference strategy as characterized by the two extremes; Anomaly driven (Data-driven)

and Hypothesis driven (Goal-driven) search.

Our methods are designed to combine these two approaches. The process from attributes
to conclusion is data driven, while from conclusion to attributes is goal driven. Only part
of the inference paths activated by evidence nodes can participate in the inference. Thus,
the program only draws those inferences that are required to match the new structure to its

hypotheses.
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7.7.5 Memory Management in Hypothesis Generation

Another key issue which affects the efficiency of a system is the management of schemata
and their instances. In this section, we will offer a technique for memory organization, for
the investigation of those techniques which involve matching data structure to special pur-
pose inference requirements (FIGURE 7.4). The knowledge engineer is expected to learn

the characteristics of shared behavior in knowledge engineering activities.

In this section, we will distinguish hypothesis abstraction and hypotheses. The hypothesis
generated from hypothesis space is actually an abstracted structure of hypotheses, denoted

as schemata, and containing some variables.

In our experiment, hypotheses are organized according to the principie of property inherit-
ance [111]. The relationship between hypothesis and its schema is maintained in an hierar-
chy table, which supports the inheritance of properties from schemata to hypothesis. The
data structure for a schema differs considerably to that of hypothesis, because the schema
needs to maintain all the information in its class. This hypothesis data structure thus inherits
all the properties of its parent, and there is no need to replicate the generic information

about its class in each of the hypotheses.

The hypothesis contains the declarative and executable knowledge which is only of use to
itself, and will typically expand before it is executed. In this process, variable instantiation

is effected with the support of domain specific knowiedge.
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The approach which is under investigation, is to join an individual hypothesis to schemata
and to describe them by an associative link (a property-inheritance link). We identify the
meaning of this link with two predicates “instance(hypothesis, schema)”. This is accom-
plished by having the retrieval system search for “instance” links. In our knowledge repre-
sentation approach, inheritance serves as a reusability mechanism as well as an hypothesis

management mechanism{111].

7.8 Summary

A major conclusion from this study is that in the absence of support structures of the type
proposed for guiding interaction between users and the knowledge based system, the pow-
erful capabilities of the knowledge based system for probiem solving will not be fully uti-
lized. Further investigation of our approach is planned drawing on contemporary work in

the use of conceptual modelling in parallel with knowledge based systems processing.

The key features of the CBI model that distinguish it from previous ones are the following:

*  An hypothesis guided inference engine, based on the theory of a gener-
alized set covering model, reduces the combinatorial explosion of

abductive inference, which is a central problem in artificial intelitgence.
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® An integrated anomaly detection model, which is mutually complemen-
tary to the hypothesis generation model, can be used to discover not only
anomalous data but also anomalous relations between data. This is a

great advantage over contemporary anomaly detection techniques.

® (Case based interaction provides a sophisticated interface for cooperative
problem solving, which refers to utilization of knowledge from users and
computer systems. Under the guidance of case based interaction, the
users are active agents empowered by the system knowledge, and the

systemss get their auxiliary information/knowledge from the user.



CHAPTER 8

An Hypothesis Agent for Case Based Interaction

8.1 Introduction

Al research is moving away from “laboratory tasks” such as block stacking towards more
realistic probiems. Building autonomous agents that interact with real world software envi-
ronments, such as operating systems or databases is a pragmatically convenient, yet intel-
lectually challenging task for Al researchers. The properties of hypothesis developed in this
research in a case based interaction (CBI) context make it possible to formulate a super
object, intelligent agent or autonomous agent, which in response to an anomaly in a work-
ing environment, generates an explanation and executes actors to achieve the CBI goal and

to learn from its experience.

Since “intelligent agent” is an utterance that has differing interpretations, depending on the
situation, the CBI context is defined for my purposes as programs that are capable of
responding to anomalous discovery by generating an hypothesis to explain the anomaly, and
then creating plans for verifying the hypothesis; programs that can learn about their envi-
ronment — about other agents and the person using the agent ~—— to provide better explana-

tions and plans; programs that are capabie of altering their behaviour in response to
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unexpected conditions.

The proposition that CBI provides the requisite context for formalising an hypothesis agent

is now examined in terms of its practical application.

8.2 Hypothesis as an Autonomous Intelligent Agent

From the viewpoint of a software engineer, hypothesis can be seen as an autonomous intel-
ligent agent which will be called upon to perform a varying range of tasks under a wide
range of circumstances. With the development of giobal computer networks, the number of
useful information sources is increasing year by year. The autonomous intelligent agent is
desired for problem solving, specifically data mining using information sources distributed
over computer networks. For example, it is very attractive to retrieve the results of informa-
tion analysis from a remote database by sending an agent to a remote site, at which most
computations will be done. Instead of downloading a large quantity of data, this method

reduces unnecessary traffic in the giobal networks.

An intelligent agent acting in such complex and unpredictable remote environments must be
able to accommodate diverse data structures and resolve conflicts. Classical planning, in
which a sequence of actions that the agent intends to execute is produced ahead of time, and
reactive planning, in which the agent simply responds to its surroundings at any given
moment, instead of following an explicit plan are crucial elements of intelligent behaviour.
Pryor and Collins’ agent, for example, falls somewhere between the extremes of classical

and reactive planning.

The hypothesis agent supports both planning modes. In the hypothesis structure, the actions
are planned ahead, but the option remains to accommodate new variables dynamically.
After the hypothesis is generated, a small portion of the knowledge base contains custom-
ised rules for detailing the variables in the remote environment. For efficiency, it is neces-
sary to reduce the size of knowledge base in hypothesis to its minimum, while for

flexibility, it is desirable to increase the coverage of hypothesis space to some degree.

To qualify as an autonomous intelligent agent, it should have the following basic features:
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* have a knowledge base and an inference control engine;
* have the ability to revise plans to cope with diverse environments; and

® ability to learn from failure.

The following features would benefit the performance of an intelligent agent:

®*  An agent should be able to interpolate from known changes to the data-
base (e.g. upgrades) and what to do if database access is temporarily

not available.

* An agent should be able to recognize when an achieved outcome is
inadequate 1o realise a goal, and to create a contingency plan for such

outcomes.

The hypothesis is actually a portion of the specified hypothesis space. The difference
between hypothesis space and hypothesis lies in scale and in specification. In this way,

hypothesis inherits the conciusions derived from the evidence.

A particular hypothesis is a customised agent derived from the defined hypothesis space.
The principal difference between hypothesis space and hypothesis thus lies in the specific
conclusions {results) derived from the evidence presented. Conversely, the ability to revise
a plan is limited once the hypothesis is generated. However, the hypothesis (agent) encap-
sulated several options depending on the type of failure encountered in executing this
agent. The relations between the nodes in the knowledge base determines which strategy
is chosen. Failure on execution of an actor will cause a change in pre-condition or post-
condition, which will then activate other actor(s) satisfying the pre-condition. Details of

the actor system are discussed in [54][55].

If all actors involved in an hypothesis failed, an agent will send a failure message back to
the CBI system. The system will then send other agents based on the information feed-
back. The learning process provided by CBI is supported by hypothesis space evolution

and fusion, which were discussed in chapter 4.
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8.3 Object-Oriented Design for the Hypothesis Agent

An object-oriented design for the hypothesis agent is proposed as a natural extension of the

principles adapted for hypothesis generation.

Objects typically contain data, procedures and an activation mechanism, typically a mes-
sage passing mechanism. An hypothesis can be seen as an extension this object construct
and contains both a knowledge base and an inference engine. Properties such as information
hiding, knowledge abstraction, dynamic binding and inheritance are also exhibited by

hypothesis agents, as noted below:

8.3.1 Information Hiding

Information hiding is important for ensuring efficiency in meta-level reasoning such as the
hypothesis generation process. It is also important for ensuring reliability and flexibility of
knowledge based systems by reducing dependencies between software components. The
concepts in hypothesis are contained within private variables, which are visible only to the

domain of the hypothesis.

8.3.2 Knowledge Abstraction

Knowledge abstraction could be considered as a way of using information hiding. Data
abstraction mechanism provides a certain degree of protection, since no direct access to the
internal state of the hypothesis structure is provided. Abstractions are generally acknowl-
edged to be desirable for knowledge based systems. A schema supported by conceptual
instantiation technique provides an effective form of implementation. A schema will be

transformed to an hypothesis by providing specialized concepts and values.

The purpose of using such an abstracted knowledge structure is to hide the details and main-
tain processing at a meta-level in the first stage of hypothesis generation. Later, at the
hypothesis instantiation stage, the system has the freedom to choose relevant parameters
and control structure to solve the different problem. For instance, in the schema No-genuine

theft the system has to select a different control structure to deal with the diverse situations:
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Vehicle is not recovered or Vehicle is recovered.

8.3.3 Inheritance

Inheritance enables programmers to create classes and their instances, in our case the sche-
mas and hypotheses. From its classes, the instance inherits variables and methods that are
appropriate to more specialised objects. In addition, the instances may override or provide

additional functionality for methods inherited from a class.

Under the principle of inheritance, the knowledge which is shared by a group of hypothe-
ses is stored in a common schema, while the instance only contains the knowledge which
is speciatized to itself. In this way, systems not only reduce the size of information to be

stored, but the system knowledge structure is readily maintained.

8.4 Goal Driven Mechanism

The goal of an hypothesis agent is to verify itself using external data to increase certainty
and to resolve inconsistencies. Research on goal-driven problem solving mechanism has
been motivated mostly by computational considerations [95]. The problem of combinato-
rial explosion of inferences, especially abductive inference, is well known; in real world
problem solving, resource and time constraints prevent consideration of all but a few of
the possible inferential paths. Consequently, human experts or computer systems must
quickly focus their attention and resources on pursuing those inferential paths that are

most promising.

1t follows that in any realistic situation, there are several different types of problem solving
strategies that might be chosen, several kinds of knowledge that might be acquired, and
several kinds of reformulation or reorganization of existing knowledge that might be
required. Again, due to resource and time constraints, it is only practicable to perform a
few of these options. Because the utility of an inference or a piece of knowledge can best
be evaluated relative to a particular task or goal, goal based reasoning must guide reason-

ing[130]. CBI adds value to this process.
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The attractions of computational models employing goal driven mechanisms are also well
grounded in psychological research[87], which has addressed the cognitive basis of human
problem solving and provided strong evidence for the use of strategic and goal-driven pro-

cesses in many kinds of human reasoning.

The hypothesis provides a conceptual framework for a goal driven strategy and aims at inte-
grating a diverse range of inferential problem solving strategies into a unified goal driven

problem solving mechanism.

Although the generation/index of hypothesis is driven by anomalous evidence, the problem
solving process is goal (hypothesis) driven.
In summary, the execution of an hypothesis agent entails:

1. Verification of itself

2. Monitoring its own performance during task execution

3. Analysis of the learning effectiveness

4. Instantiate the hypothesis during the inference process

5. Detection of relevant evidence in modification of the problem-solving

strategy; and

6. Activates the strategy as a goal directed search through the (constrained)

hypothesis space, but guided by the CBI principles.

8.5 Features of Hypotheses

In the methodology of case-based reasoning or object-oriented programming, the problem
solving modules (cases and objects) are discrete, while hypothesis space is a continuum.
The hypothesis space involves a lattice of hypotheses, partially overlapped, but including
nested graphs as discrete entities. The activity of hypothesis space is dynamic and will
expang according 1o the evidence discovered and the inference results. This coincided with
the process used by experts in problem solving. Sometimes a case is remembered by exist-

ing evidences, and another case may arise as information accumulates. The original case
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and the new one would usually have similarities.

8.5.1 Combining Explanation with Action

In contemporary Al research, the issues of explanation and action are usually considered
separately. Various agent models have generally exhibited one or the other, but not both, of
these capabilities. In particular, they are apparently developing in parallel, but indepen-

dently.

A competent agent should be capable of explaining anomalous evidence where possible,
yet be able to react to the anomaly quickly in seeking to verify its goal, even in situations
in which the current hypothesis may not be substantiated. Furthermore, the capabilities of
explanation and action should be mutually supported. The action can bring additional
information to support explanation while the explanation can be used to select a suitable

action.

The challenge of co-existence of both explanation and execution is mainly an issue of
knowledge representation. This problem has been solved by our hypothesis structure. The
activation of explanation and action is managed by the higher attribute nodes in hypothests
space, and it is naturally controlied by the deduction process. This is also the property

inherited from the hypothesis space.

Hypothesis is an intelligent agent, which brings explanation and action together. Hypothe-
sis execution in a complex and unpredictable environment must be able to both explain
conclusions as they change. When working in a remote environment, there is a mirror
agent in the host system. This agent mirrors the changes according to the feedback of
information. The user is provided with explanations provided by the mirror agent and

relays information on the state of the hypothesis updates.

8.6 The Role of Virtual Relations in Decision Support

A new family of relationships between evidence, facts, sub-conclusions and conclusions

in hypothesis space[51] has been defined as a key element of the reasoning process for
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hypothesis generation. This generic class of relationship is termed *“Virtual Relation” and
can be classified primarily as explanatory relations and executable relations, depending on
the type of knowledge to be represented. They can also be used to explain the causality
between two nodes and to verify the respective facts. On the other hand, virtual relations
can also be classified as domain (context) dependent and domain independent, based on the
original knowledge from which the virtual relations are constituted. Domain independent
virtual relations usually deal with the task at a more abstract level, while domain depen-

dency requires greater specificity.

A principal role of virtual relations [53] is to provide an inference control strategy for intel-
ligent decision support. The topological structures constructed by weighted relations in
hypothesis space represents a virtual reasoning process from facts to possible conclusions.
The virtual relations demonstrate their novel capabilities most powerfully when there are
some missing facts or access is available to some new facts. In this situation, the perfor-

mance of many current decision support models lack discrimination or strategic knowledge.

When there is new evidence, an hypothesis generation stage is usually activated m our pro-
cess[51]. In this process, the existing virtual relations will compete to explain the new evi-
dence under the criterion of suitability. If successful, a new virtual relation will be used to
connect the new fact into the hypothesis space. If it fails, the case-based interaction pro-
cess[49] would be employed to establish new relations by eliciting knowledge from the user

for discrimination between choices.

If there is a missing fact, (i.e., the fact is not verified), the virtual relation may guide the sys-
tern to an on-line information source and use the information acquired to evaluate compet-
ing hypotheses. This process relies on a novel virtual relation, that is the executable
relation, and provides the methods to retrieve and analyse information. By utilizing such
executable relations, the system expects to verify every fact involved in an activated
hypothesis. A “good” decision will be made if the hypothesis passes the evaluation, and all

the facts are verified.

Of course, we cannot always anticipate every situation. Where the missing fact cannot be

verified by executable relations, it may be possible to estimate the plausibility of missing
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facts based on other verified facts. Then, a ‘weak’ decision is expected to result, based on

the plausibility of the missing *“fact”.

The importance of virtual relations lies in the expanded use of hypotheses to provide feed-
back of information from users or other information sources, thereby enhancing inference
control strategy. Hypothesis is additionally used to draw both the system and user’s atten-
tion to a more limited goal space for decision support, and therefore, avoids exhaustive
search. Finally, hypotheses may be used to focus the system resources on interesting

aspects of probiem selving[52].

Decision support requires a sophisticated interface to facilitate dialogue between the sys-
tem and user. Case Based Interaction principles support a sophisticated interface for coop-
erative problem solving utilising co-operating agents for knowledge acquisition from
users and computer systems[49]. Under the guidance of case based interaction, the users
are active agents empowering system knowledge. Strategies to conduct the dialogue

include:

® the virtual relations in an hypothesis imply the required information,
and only the fact linked by most “weightiest” relation will be pursued

for verification;

® the priority of missing facts will be re-organized after receiving out-

comes and new information;

* an hypothesis will be rejected and the hypothesis generation process
will be restarted if the key fact(s) of the hypothesis cannot be verified;

and

® . users’ model (from novice to expert) can be used to indicate the level

of abstraction required for support of users.

The power of virtual relations has been explored in our research into hypothesis genera-
tion modelling[51]. A major conclusion here is that virtual relations offer a logical
approach to decision support; in particular, when the knowledge s incomplete, or a new

problem is encountered. Further investigation is planned into virtual relfation induction
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drawing on contemporary work in automated knowledge acquisition. Abductive inference

schemes also appear to have a promising role in explaining new evidence.

8.7 Summary

The previous discussion shows how hypotheses can provide considerable power in problem
solving and its contribution to object-oriented design. In problem solving, hypotheses can
be used to focus inference and to constrain the search. They can also be used to guide the

information seeking process and to make strategic choices.

Furthermore, hypotheses can be used as a theoretical device to build computational models
of strategic and active inference processes. Such models have practical ramifications for the
design of instructional material. Ram and Leake [130] show that the inclusion of learning
goals facilitate different kinds of reasoning in different kinds of learning. Their results sug-

gest that learning is largely a goal-directed process.

Every program encodes knowledge about the application or the domain of application. But
the conventions for encoding that knowledge depend solely on programmer’s ingenuity

[153].

Hypothesis based (goal-driven) mechanisms have many advantages over traditional proce-
dure-oriented languages. Information hiding and knowledge abstraction increases the reli-
ability and helps to separate procedural and declarative constructs as complementary
knowledge. Inheritance coupled with dynamic binding permits consistency in hypothesis
space to be easily maintained. This has the attendant advantage of reducing the size of the
knowledge base and increasing system productivity, since all shared knowledge is main-

tained at a higher level of abstraction

Unfortunately, our current hypothesis structure has limitations. The most obvious one is the
increased complexity in implementation. At concept level, hypothesis is instantiated from
an abstraction, separated from hypothesis space, then encapsulated into an entity. From the
implementation viewpoint, hypothesis is interconpected with other hypotheses instead of

the common use of a type hierarchy as in traditional object oriented programming.
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Next shortcoming is the increasing difficulty in knowledge acquisition. In hypothesis gen-
eration, not only the declarative knowledge but also executable knowledge is required.
The executable knowledge is more difficult to acquire than declarative knowledge,
although the actor system provides modules for construction. At this stage, it seems that
automated acquisition of executable knowledge is dependent on the effectiveness and effi-

ciency of actor management.

In comparison with contemporary expest systems, hypothesis based problem solving is
time consuming by its very nature in comparison with CBI, as it aims to solve a new prob-
lem when there is no existing solution available. It is necessary to perform some knowl-

edge acquisition, explanation evaluation, and conflict resolution process.

Subject to these limitations, however, our approach is believed to be an effective paradigm
for problem solving, especially in complex environments. The potential benefits of our
hypothesis structure will no doubt, attract other researchers in pursuit of an alternate meta-

phor.
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CHAPTER 9
Case Study: Fraud Detection

9.1 Introduction

Insurance companies are exposed to fraudulent claims of increasing diversity and
scope[162]. Such claims are also characterized by collusion and ingenuity. Contemporary
interest in improved methods for fraud detection{49][501[63]1[91][97] has focussed on the
role of knowledge rich strategies, particularly the use of knowledge based systems, to com-
plement the use of system controls and auditability mechanisms derived from risk based

audit requirements.

The insurance industry spends millions of dollars every year on information systems.
Despite these enormous expenditures, many companies remain data rich and information
poor. Much of the data necessary for fraud control has not been transiated into actionable
intelligence that can be accessed by the right individuals at the right time for fraud contro)

purposes.

Our risk analysis of the requirements for fraud detection in Electronic Data Processing

(EDP) environments, for example, suggests that traditional approaches to fraud manage-
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ment would be ineffectual and that a new problem solving paradigm is urgently required.
Expert systems can be designed to automatically identify fraud from appropriate indicators
and to detect suspicious claim patterns. They are particularly effective in connection with

“fraud rings”, which routinely reuse phoney identifications, phone number; etc.

The research results from psychology indicate that the skill to apply knowledge flexibly ts
one of the major differences between novices and experts[87] and, based on our research,
generating a suitable hypothesis is constructive in solving a difficult problem. Experts are

seen to use hypotheses in several different ways for complex problem solving:

® use hypothesis as a knowledge frame. Problem solving is then reduced to
the process of knowledge instantiation using knowledge either from pre-

vious cases or from new observations.

® yuse hypothesis as an inference strategy, which will invoke the desired
inference processes with condition branches, utilising an appropriate

inference engine.

* use hypothesis to guide the reasoning process and to select different rea-

soning paths.

In this case study, we utilise an hypothesis generation paradigm as a psychologically plausi-
ble cognitive model [132] of human expertise within the domain of fraud detection in EDP
environments. The prototype developed in the case study has been adopted by a major
insurance software company as a basis for field tests, and a commercial fraud detection sys-

tern is in under development.

9.2 Hypothesis Generation for Fraud Detection

Our suggested paradigm for cooperative problem solving in EDP fraud detection[49] was
Case-Based Interaction (CBI) drawing on eariier work by Professors’ Garner and Edmonds
[35]. The knowledge availabie for EDP fraud detection, alth.ough complicated and exten-
sive, was categorized into: evidential reasoning and relation of the evidence to past cases;

knowledge about fraud investigation technigues; e.g. in EDP domains auditing and control
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techniques provide a basis for conjecture/deduction; and learning abilities derived from the
successful use of specific investigative techniques provides a basis for discourse with the

fraud analyst!

In this case study, the scope of this paradigm has been substantially extended to general
insurance fraud (e.g. false claims) through the development of Case Based Hypothesis
Generation (CBHG). This research was prompted by insights derived from Schank and
Leake’s[145] work on creativity and learning in a case-based explainer. In broad terms,
CBHG relies on both case-based explanation and the four interaction modes supported by
CBI:

1. communication by users of Hypotheses to explain fraud in question i.e.

analysis of anecdotal commentary on fraud circumstances;

2. clarification (transaction mapping) of initial and intermediate conditions

for system verification!

3. elicitation of strategic knowledge for disambiguation of alternative

fraud paths proposed by the system; and

4. analysis (abduction) of explanations given by previous investigators of
similar fraud cases, based on the anecdotal commentary provided and

the explanation index for past cases.

The significance of our CBHG paradigm lies in the extension of Case Based Explainer
[145] to a deeper level, from explanation pattern level to hypothesis level, and from minor

modification of old knowledge to a totally new view.

The benefits of providing a client server architecture to integrate access to multiple data
sources with the hypothesis generation paradigm will be evident from the management
intelligence system architecture shown in FIGURE 9.1. Ongoing research into diverse
fraud scenarios are expected to define the limitations of our current paradigm, but the evi-
dence todate fully vindicates the value of the five components of the integrated structure;
namely, anomaly detection model {ADM), hypothes'is generation modelling, interaction

modes selection(CBI), data mining and intelligence synthesis.
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Information Sources

Oz On Disc Rlesflgzzz: Electoral Roll

Service

Information Interface:
Generating a speciat format
query to access information
sources and then transfer data
forrat 1o suit syster

. Knowledge Bases

» | What are gnomalous evidences Hypothesis Verification:

, | How to explain these evidences Looking for more evidence .
+ | What and how information based on hypothesis and then )
+ | sources can be used to verify deciding whether this case is :
1 |hypotheses worth purseing .
. Anomaly Detection: Hypothesis Index/Generation: .
' Automatic searchicg of claim Provide a suitable hypothesis '
' databases and finding o IS explain the anomalies. :
' anomalous feamres :

: ClaimData Palicy Data

........................................

FIGURE 9.1 System Structure for Fraud Detection and Discovery
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FIGURE 9.2 Structure of hypothesis Based Insurance Fraud Detection
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9.3 System Control Strategies

As noted in section 9.2 and illustrated in FIGURE 9.1, there is a need to provide a client
server architecture to integrate access to multiple data sources with the hypothesis genera-
tion paradigm. The successful application of this paradigm in practice depends no less,
however, on the availability of an adaptable contro! structure.

The following control requirements are provided by the system.

9.3.1 Agenda-control

The diversity of tasks in fraud detection, especially in ad hoc situations, requires a flexible
control structure. Qur approach offers the requisite flexibility through the synthesis of dif-
ferent levels of control structure. Agenda control is concentrated at a high level. Its task is
selection of the appropriate module. Details of the process and hypothesis verification are

secondary issues.

The Management Intelligence System is generally controlled by a recursive algorithm

whose Pseudo code is as FIGURE 9.3:
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BEGIN

IF fraud-evidence-found = false

THEN Anomaly detection model

ELSE Index-hypothesis (evidences)
IF hypothesis exists
THEN retrieve-hypothesis(index)
ELSE Hypothesis-generate-model (evidence)

Hypothesis-manager( new-hypothesis, evidence)

Update-hypothesis-space (hypothesis)
END
Execute(hypothesis)
END
END

FIGURE 9.3 Algorithm for Insarance Frand Detection

9.3.2 Hypothesis-control

The control structure involved in building new hypotheses (cases) is derived from the stra-
tegic knowledge acquisition processes [95]. Control complexity is usually due to the num-
ber of alternative actions available to achieve intermediate goals/alternative sub-plans, ot is

due to the different evidence requirements to activate a case.

Hypothesis-control structure is represented by strategic rules speciatized by the domain

expert and can encompass various states of the problem domain.

Hypothesis control is concentrated on hypothesis verification, on the selective activation of
actors, is responsive to agenda control and in charge of process management. The hypothe-
sis control structure is derived from hypothesis space. Data (evidence)-driven instantiation

processes occur when the hypothesis is executing.
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0.3.3 Process-control

In an hypothesis, actors are used to perform the requisite actions (activities). Actors are
entities that combine the properties of procedures and data (or knowledge). The communi-
cation method in the Actor System is message passing. The actor can be activated by receiv-

ing a message and can activate other actors by sending messages.

The message is made up of two components. The first is the name of the actor that is going

to receive the message, while the second component js the message itself.

The diversity of tasks in fraud detection requires flexible control structures. Our approach

offers the requisite flexibility through different leveis of control.

When an actor is activated, the process will be guided by the control structure inherited
from its superclass. With the current implementation of our actor system, the relationship
between a class and superclass is maintained in the Inheritance Hierarchy Table [151][156].
This relationship is maintained to enable an actor to inherit micro-control structure from its

superciass.

9.3.4 Dialogue Control

Our particular form of modelling in HCI is known as “hypothesis based interaction” which
aims to facilitate a system model of co-operating agents, not just provide a set of discrete
commands/responses and questions/answers constrained by a preliminary goal. The
approach to control dialogue is under the guidance of the respective hypothesis, i.e. con-
trolled by the hypothesis logic (implied in relations) instead of being derived from a fixed
Mmenu system.
The functions of dialogue control are:

1. Selecting the information sources: internal or external;

2. Providing the control privileges when needed by the user;

3. Identifying the user’s profile and providing suitable assistance;

4. Querying the end-user when crucial information is missing; and
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5. Natural language processing.

Process control, which is an integral component of ali actors, is in charge of detailed steps
of the process, including database dial-up, data retrieval and invokation of analysis algo-
rithms. When an actor is activated, the process will be guided by the control structure
inherited from its parent. With the current implementation of our actor system, the relation-

ship between an actor and its parent is maintained in the Inheritance Hierarchy Table

[95]1[156].

9.3.5 Inference Strategy in Hypothesis Execution

Components of the inference strategy work together to produce a solution. FIGURE 9.4

shows the following components:
* Control: Executing agenda statements.
* Backward Chainer: Resolving evidences.

® Forward Chainer: Monitoring data/evidence, and invoking rules and

hypotheses.

® Execution: Executes rules and hypotheses.

HYPOTHESIS

CONTROL

Determine Forwardchain

Value Onrequest

Execute

Process

Hypothesis Agenda

Execuie Rule,

Faci, Default Value Assigned
Backward |——— i HYPOTHESIS | Yae Al Forward
Chainer leg———— EXECUTION f———————————— Chainer
Determine Vaiug (Process Control} | g .. Rute

FIGURE 9.4 Inference Engine Model
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Interaction between the components may be summarised as follows:

® Hypothesis Control executes agenda statements. The Control calls the
backward chainer to resolve the evidence which is needed to execute an
agenda statement. The Cortrol calls Execution to process the actors con-
tained in the hypothesis, and calls the Forward Chainer to fire appropri-

ate rules.

® Backward Chainer processes parameters and evidences. It calls Execu-
tion to execute actors, rules, and facts for the resolution of missing evi-

dence.

®  Execution calls the Forward Chainer whenever it assigns a boolean
value to evidence. Execution calls Backward Chainer when it needs to

determine the value of evidence.

®  Forward Chainer monitors changes to data and maintains a list of rules
that can be execuied. When a rule is ready to execute, the Forward

Chainer calls Execute.

The inference strategy for rule processing determines the degree of interaction during a

consultation. For exampie, Forward Chainer may not participate in the processing.

Agenda statements also affect component interaction during processing. For example, you

can control the actions that the inference engine takes when resolution is prolonged.

9.4 Anomaly Detection

The Anomaly Detection Model (ADM) [55], which was developed following extensive dis-
cussion with fraud detection experts, provides a unique way to detect anomalies automati-

cally in insurance claims.

The anomaly detection model (ADM), integrated with the hypothesis based problem solver,
1s used to scan and detect anomalous claims in the claim database. Two types of anomaly

are addressed in this case study; outliers from normal distribution models or unlikely
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events, however defined, and anomalous relationships, which are ‘strange’ relations within
the ordinary data. In the domain of insurance fraud detection, anomalous attributes could

be:

1. accidents happening at midnight,

2. claims with very big losses,

3. vehicle theft just before registration expired,

4. vehicle theft in first year of insurance,

5. vehicle stolen after the insured purchases another car,

6. rented vehicle involved in an accident.
Anomalous relations may be between data in the same database, or with data from different
databases. Here are some examples:

1. vehicle involved in accident has previous claims,

2. two parties involved in an accident were known o each other,

3. vehicle, with third party property damage plus theft and fire, involved in

single vehicle accident and the driver has decamped,
4. the stolen vehicle had a ‘for sale’ advertisement recently,

5. the claimant had financial difficulty recently.

To deal with these two types of anomalies, the detection stage is separated into two sieps,
each of them utilising different scanning strategies. The first step is a classic rule-based
inference for anomalous data detection, and the second step is a novel hypothesis-guided
process for anomalous relationship detection. Another reason for this separation is that the
determination of such relationships is very costly. For instance, to verify vehicle involved in
accident has previous claim, a dial-up to the database in Insurance Report Service through
a modem is necessary. The cost will be 25 cent telephone line connect and about 5 dollars’

for each search. Thus, a relationship search can be used to reduce the number of suspicious

1. The cost is dependent on the agreement with IRS.
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claims. The aim of the Anomaly Detection process is to narrow the scope of the claim data,

and then, to investigate the summary information drawing on the applicable hypothesis.

Anomaly (data) detection entails recognizing any data which appears to deviate consider-
ably from normal reference samples. There are various methods to deal with it{50][91]{97].
In order to take advantage of statistical methods[3] to provide a flexible detection process,
our rule-based strategies which are incorporated with the statistical techniques, are utilized

to process the data structures most commonly used in the insurance domain.

The outcome of anomalous data detection is a listing of the claims with a score, which is
linked to the suspect attributes through the defined threshold, together with any evidence
detected (usually it is not strong enough to prove the hypothesis). At the next stage, the

scope of the claims which should be investigated are narrowed,

Hypothesis guided detection process will look for new relations between the data by means
of the heuristics implied in the hypothesis. Heuristics are activated by anomalous evidence.

Some examples are shown below:
1. Historical pattern of events (fraud pattern);
2. The linkage with other possible evidence;
3. Failure of field studies to verify purported evidence;
4. Credibility of sources of conflicting facts supporting the evidence;
5. The experimental methods for examining evidence.
Using the heuristic knowledge represented by an hypothesis and the information available

from on-line sources, the anomalous relation detection process ts able to identify unusual

relationships.

9.5 Hypothesis Generation Process

In the process of hypothesis based problem solving, the system indexes the knowledge base

of existing hypotheses for problem solving. Through the instantiation, modification, and
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verification of the selected hypothesis, a suitable explanation would be provided. Hypothe-
sis generation would be necessary, however, when, in problem solving, there are no exist-
ing hypotheses which can be utilised to explain new evidence.
The current hypothesis space involves the following fraud schemes:

1. Dumping vehicle after devaluation (loss of value),

2. Dumping vehicle after failing to sell,

3. Phantom accident,

4. Change drivers,

5. Multiple claims, and

6. Organised crime ring.
In the process of case based hypothesis generation (CBHG), conceptual graph [151] based
abductive reasoning [117] is playing a central role. Although abduction lacks rigour in the-
oretical terms, our CBHG has provided new insights, and plausible hypotheses have been

discovered. The following process of hypothesis generation (refer 1 - 4) begins with a set

of anomalies.

1. Using evidence to index explanation patterns;

2. Using maximal join operation to generate plausible explanations;

3. Instantiating the explanation patterns;

4. Hypothesis synthesis and conflict resolution.
In the first step, all anomalies are used to index a set of explanations, which provide the
basis for generating a new hypothesis. The explanation index is based on similarity mea-
surement between the concepts in current evidence and the hypothesis index. Both evi-
dence and the hypothesis index are represented as conceptual graphs. The similarity

measurement is the sum of the semantic distances of corresponding concepts [47}. The

threshold of the similarity is adjusted dynamically to balance precision and extent.

The conceptual graph operation Maximal-join [156] has been used as an operation for both
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abductive reasoning and to provide possible hypotheses for a set of evidences. One of the
major problems caused by the max-join operation is that of generating too many (redun-
dant) hypotheses. In order to overcome this problem, all the explanations are arranged into
a tree structure from generalized to specialized. Every explanation in the tree structure can
have two states: active and inactive. The state is decided by the current evidence. In this
way, only those explanations activated by the current evidence will be involved in max-join
abductive operations, and resultant graphs (candidate hypothesis) are fewer. Additionally,
constraints stemming from canonicity and conformity requirements increase the likely

credibility of the hypothesis.

Thirdly, because the hypothesis is an abstract structure, it needs to be related to the applica-
tion domain. This instantiation process is supported by the domain knowledge bases to fill
the slots or to specify the relevant concepts in the explanation. The operation is based on the
Concept Type Hierarchy[151], and may need to refer to type definitions or to schemata for

concept specification or substitution.

Finally, a resolution process has been employed relying on an Explanation Believability
measure to detect conflicts. A simple rule-based strategy is used to classify the type of con-
flict; principally plausibility and vagueness failures. To resolve these conflicts, the system
provides resolution strategies based on concept substitution, generalization, specification,

and user interaction.

9.6 Interaction Mode Selection Strategies

To provide intelligent support for hypothesis based problem solving, an intelligent interface
is needed to perform communications between user and computer. The interface provides
four types of basic interaction mode, and can be changed dynamically according to the

communication requirements during hypothesis execution.

9.6.1 Composition of the four interaction modes

Through the CBI research, we have shown that four fundamental interaction modes [49] are
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important for cooperative probiem solving in management inteliigence systems. The modes
are declarative knowledge acquisition, hypothesis explanation, strategic knowledge acqui-

sition, and cooperative dialogue.

Every hypothesis can be attached to a different interaction script, which relates to the spe-
cific needs and circumstances. The interaction mode appropriate to each hypothesis reflects
the requirement for a dynamic mix of the four basic interaction modes, and entails a
dynamic control structure, which will change according to progress in the hypothesis veri-
fication process. This kind of dynamic control structure provides a unique human computer

interface for our hypothesis-based problem solving technique.

9.6.2 The strategy for selection of interaction modes

There are several facts that affect the interaction scripts, such as the information needed to
verify hypotheses, actors [95] involved in hypothesis, and evidence to hand. In our hypoth-

esis paradigm, the interaction modes scripted for an hypothesis reflect the above factors.

In the process of hypothesis execution, a queue of candidate actors is created and a queue
of corresponding candidate interaction modes will be created simultaneously. The queue of

interaction modes may, of course, change to reflect changes to the queue of actors.

9.6.3 Advantages of flexible interaction modes

In the traditional menu-based approach, the user selects the interaction mode. The menu
limits the actions that the user could perform at any one stage. On the other hand, case-
based interaction is guided by the case logic rather than by the user. The interaction process
attempts to explicate the user’s domain knowledge to select and instantiate a plausible

hypothesis to achieve the user goal.

9.7 Data Mining Process

We have currently reached the stage where many widely accessible information resources

are available. Full text access to business information remains one of the fastest developing
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areas for on-line information searching. Because of this growth in accessible information,
the network community has begun to show a great deal of interest in the location, retrieval,

and analysis of network information.

In hypothesis generation, we make full use of on-line information sources to fill the knowl-
edge gaps. Data bases which have been used or could be used for detecting anomalous per-

sonal relationships are shown in TABLE 9.1.

Although these databases provide routine commercial information, they can be very useful
for verifying information, or to acquire missing knowledge. Because of the variability of
the data structure in these databases, however, it is necessary to convert the query data into
a common data structure; conceptual graphs in our case. This knowledge mining process
thus involves: data format investigation, data base query generation, information retrieval,

and translation into conceptual graphs.

TABLE 9.1 Typical Information Sources

DATABASE CONTENTS
Aus. Security Commission Directors, major shareholders and executives
Electoral Roll {CD-ROM) All registered voters
Electronic White Pages (WWW) | Name, address, phone ne contained in white page.
tnsurance Report Service Most insurance claims reported
Land Tities Property ownership, price
QZ on Disk (CD-ROM) Name, address, phone no.
News Classified (WWW) Classified advertisements in nine newspapers

The knowledge mining process involves:
® Data format capture
® Data base query generation
® Relevant information retrieval
® Conceptual graphs composition

After the information retrieval process, the hypothesis in working memory will adapt to the

new information retrieved.
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9.8 Intelligence Synthesis

Intelligence synthesis is the analytical process that transforms the disorganized, confused,
and sometimes contradictory stream of business related information into relevant, accurate,
and usable knowledge. The synthesis process also provides conflict resolution, which is
based on three approaches. The first is a statistical counter, the second is a priority table of
actions, and the third involves the hurman expert. Intelligence is the product resulting from
the collection, evaluation, integration and interpretation of all available information and

concerns one or more aspects of explanations derived from the evidence.

The proposed intelligent system thus requires a model for memory (hypothesis) manage-
ment and a process monitor for knowledge processing, including access to an actor model.

The blackboard structure has been adapted for our requirements.

Implementation of the intelligence function requires a working “memory”, which will be
able to satisfy a range of functions to ensure the intelligence analyst meets the established
design (synthesis) criteria. A blackboard structure is the chosen model for a central work-

ing memory for intelligence synthesis.

The original blackboard concept is credited to A. Neweli [110], being advanced as a knowl-
edge system architecture having the fiexibility to enable general reasoning to be performed.

Control of the blackboard is by a problem solving strategy implemented by a scheduler.

In the hypothesis generation process, a blackboard scheduler is responsible for selecting the
best explanations to resolve conflicting evidence. This supports a dynamic, dialogue driven
system, where, not only is there the problem of best explanation, but aiso, the task of keep-
ing track of any changes made during the synthesis process. The challenge at this stage is
the intellectual sifting of diverse, often conflicting strands of fraud-related information to

find meaningful patterns.
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9.9 Example: Intelligence Analysis of Fraudulent Insurance
Claims

The conceptual structure shown in FIGURE 9.1 has been used to study fraudulent insurance
claims experienced by a major Australian insurance company. The knowledge acquisition
phase conducted with the Special Claims Unit and Motor Vehicle Claims department
enabled the existing fraud detection process to be defined, and known frauds (successful
prosecutions!) were used to extract key fraud attributes for testing the fraud detection sys-
tem. Novel cases for evidential search have been constructed from our CBI model, and typ-
ical rules under examination for the detection of fraudulent claims have been incorporated

into the system.

In our prototypical model the rules for initial evidence detection (anomaly data) are exem-

plified as:

Rule I: IF both parties have same background THEN add 5 points to fraud score.
Rule 2: [F theft with TPPDO insurance THEN add 35 points to fraud score.
Rule 3; IF vehicle is a hire car THEN add 10 points to fraud score.

Rule 4: IF vehicle is over 10 years old THEN add 10 points to fraud score.
Rule 5: IF vehicle is 5 to 10 vears old THEN add 5 points 1o fraud score.
Rule 6: IF vehicle is unidentified THEN add 40 poinis to fraud score.

Rule 7: IF it is a single vehicle accident THEN add 40 points 1o fraud score.
Rule 8:......

Rule J101: IF fraud score < 39 THEN suspect = clear.

Rule 102: IF fraud score > 40 THEN suspect = dubious.

Rule 103: IF fraud score > 60 THEN suspect = obvious.

This type of rule is consistent with current practice in Australian insurance companies.
Other types of rule are more knowledge intensive, and are based on forward chaining infer-

ence:

Rule 1: IF the policy is TPPDOPT (third Party Property Damage Only Plus Theft)
AND the claim is theft claims
THEN Motivation to cover loss is obvious
Rule 2: IF accident time is difficult to find witness
OR accident location is difficult 1o find witness
THEN description of accident is dubious
Rule3: IF vehicle was stolen in the front of insured home
AND the garage was not occupied
THEN the theft was dubious
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Rule 4: IT theft vehicle left at the scene of accident
AND the driver was not ideniified
THEN the theft was dubious
Rule100: IF the motivation to cover the lpss is obvious
AND description of accident is dubious
AND the theft was dubious
THEN the claim is very likely froudulent

The test results show that the second type of rule narrows the scope for fraudulent claims.
Experts on claim investigation agree that it is specifically suited to patierned investigation
and could be further developed towards claim processing automation. The first type rule
will provide more freedom of decision making, especially by experienced investigators,

and also provides more opportunities to discover new fraud patterns.

9.9.1 Results from Anomaly Detection Model

The purpose of the anomaly detection model (ADM) is to limit the quantity of claims, and
to send suspicious claims to the hypothesis generation model. Assuming the evidence of 2

particular (suspicious) claim is:
®  Time when it would be difficult to find witness,

® The car was allegedly stolen in the front of insured house

® No report to police.

When these evidential graph nodes were input into the hypothesis space, the hypothesis

1

‘dumping vehicle after devaluation’" is activated by forward propagation.

But the reasoning process does not stop there, and the system continues propagation from
top to bottom. In insurance business practice, some information is not available in the data-
base, and human investigators will be sent out to check the evidence. The results from

investigation will then be input to the system at a later stage.

Back-propagation produces additional evidence:

1. Scenario: The insured received a bill from insurance company before the current policy expired. The
insured noticed that the vehicle (insured) value has been reduced; i.e. devaluation! Thus, the insured dumped
the vehicle and claimed for the original value.
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®  Single vehicle accident
* No forced entry, and
®

Steering lock is intact.

At the next round, the system uses six pieces of evidence (instead of three) to forward prop-
agate from bottom to top again. If the resultant hypothesis from this round is the same as the
last one, this hypothesis is the final conclusion. Otherwise, the system will continue pro-

cessing until no further evidential node can be activated.

Staged Accident Dumping Falsified Theft
Devalued Vehiclef
Suspicious on Motivation to gel] Vehicle value is Suspicions on .
Incil:ient rid of vehicle less than insured theft incident No alibi
Total | incident may Over Strange Theft was
Loss m;Sb:t:f:; vred insured circumstance not likely

Move o Agree value Stayed with
Overseas greater than | | Ads for sale close friend
purchased
/ / value / [
j
Move to Insured value Key left Garage was Sleeping
Interstate was adjasted in the car not occupie while
recently : {| i incident
/ occurred
Place was Rought Vehicle was
remote area a new car burnt cut
incompletely

FIGURE 9.5 Action in Hypothesis Space

9.9.2 Evidence Discovered

After several rounds of forward-backward propagation (it is two rounds in this example},

the evidence found by the ADM model is:

*  Time when it would be difficult to find witness
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®  The car was stolen in the front of insured house
*  Garage was not occupied

® No report to police

®  Single vehicle accident

®  Steering lock is intact

® No forced entry

® Sleeping while incident occurred

After several simple manipulations such as deleting irrelevant evidence/conclusions, the

active hypothesis space (as shown in FIGURE 9.6) is the basis for generating a new

hypothesis.
Not Available
Suspicious on Motivation to get Vehicle value is Suspicions on No alibi
Incident rid of vehicle Iess than insored theft incident
Over Strange Theft was
insured circumstance not likely
Agree value No forced Stayed with
greater than Ads for sale Entry close friend
purchased
value / /
i Smgle T Move to Insured value Key left
-vehicle Interstate was adjusted in the car
acc.ldex/lt recently
Piace was Bought Vehicle was
remote ares a pew car burnt out
incempletely

FIGURE 9.6 Part of Hypothesis Space Used to generate Hypothesis
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9.9.3 Hypothesis Generated

The key operation in hypothesis generation is abductive reasoning. The objects of abduc-

tion are the evidential graphs and existing explanations.

The draft hypothesis reveals key evidence (or requirements). If and only if such kinds of
evidence are verified, is the hypothesis justified. For instance, an hypothesis “Falsified
Theft” must meet requirements: The Policy Is Third Party Property Damage Plus Theft and
Fire or The Policy Is Comprehensive. Hypothesis Abandon Vehicle After Accident must
meet the evidence Single vehicle accident. If one of the key pieces of evidence is not satis-

fied, hypothesis synthesis will be executed.

The shadow part of hypothesis space shown in FIGURE 9.7 is constructed by the user as a
supplementation of knowledge acquisition based on the information from the investigation

report. This kind of knowledge acquisition is supported by case-based interaction.

Ahandon Vehicle
after Accident

Suspicious on Suspicions on No alibi
Incident theft incident
Incident may Stayed with
Strange Theft was yed |
no:tasb:t:'t::; = circumitance not likely clase friend
Ti / / \ \ \ L f\ : Slte.ieiping
me was Stolen from o force whle
late night Ads for sale{ | the fll}onl of| Entry incident
house \ occurred
vt | [ meyten | [Goragewas] - [SEERECk
accident in the car not eccupie
Place was No report Vehicle was
remote area to police burnt out
incompletely

FIGURE 9.7 Interim Hypothesis Generated
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9.9.4 Strategies Used in Intelligence Synthesis

The principal function of hypothesis synthesis is to explain the unexplained facts. From the
evidence obtained, more than one explanation might be triggered. A resolution strategy is
incorporated in an explanation mediator, which will rule out any explanation that violates

observed or deduced facts.

To detect contradictory explanations, three methods were employed:

® Knowledge abstraction: If two explanations have the same abstraction
[173], it is believed that they are contradictory, or at least one of them is

redundant.

® Explanation pattern: If two explanations have the same explanation pat-
tern [159], it is believed that they are contradictory, or at least one of

them is redundant.

® Hypothesis Revision Heuristics: To make a candidate hypothesis more
acceptable, a set of heuristics will be chosen to examine the effect of
hypothesis revision. Some exemplars employed by CBHG are Concept
reversion, Concept generalization, Concept specification, Concept sub-

stitution, and Relation substitution.
CBHG provides six contradiction resolution strategies, which may be used individually or
in prioritized combination. The strategies are as follows:
* Match most: triggers the explanation which matches most evidence.

* Jeft least: triggers the explanation which has the least unmatched evi-

dence.
®* Recent used: triggers the explanation most recently used.
® Recent not used: triggers the explanation least recently used.

* Antecedent ordered: triggers the explanation which has the highest ante-

cedent priority



214 Case Study: Fraud Detection

®* Consequent ordered: triggers the explanation which has the highest con-

sequent priority.

To understand how these methods work in combination, consider the ranked combination:

(1) Match most, (2) Left least, and (3) Recent used.

Strategy “Match most” will be applied to the contradictory explanations. If more than one
explanation remains, the “Left least” strategy will be invoked. If there are unresolved con-
tradictions at this point, strategy “Recent used” would be expected to produce the final
explanation. Hypothesis generation guided by this revision process makes it possible to

explore evidential conclusions more thoroughly.

9.9.5 Final Hypothesis Generated
The particular hypothesis generated by this system, based on the anomalous data and rela-
tions deduced, may be stated as follows:

Hypothesis: Abandon Vehicle after Accident.

Feature: The vehicle was involved in a single vehicle accident caused by careless driving.
Since the policy related to this vehicle was ‘Third party property damage plus theft and fire’
the loss was not covered by insurance. Since there is no witness to the accident, the insured

alieged the vehicle was stolen.

Evidence: The vehicle was allegedly stolen from the front of his home. The vehicle was
then involved in a single vehicle accident. At the time of the accident, it was difficult to find
a witness. The policy is “Third party property damage plus theft and fire”.

Further Instruction:

® ask for an explanation of ‘why the car was parked in the front of the

house while the garage was not occupied’.

® verify the activities of any related person at the time of accident.
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Bad road
condition
Driving under] Ads for sale
influence of
alcohol ‘
\ Key left
back from in the car
party
After watch No RFO“
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FIGURE 9.8 Final Hypothesis Incorporated inte Hypothesis Space

The generated hypothesis may still reveal some inconsistencies, but it is reasonable. It can

be passed to a solicitor for further consideration, and be used as a rule in anomalous data

scanning to avoid future ioss.
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9.10 Fraud Detection as Knowledge Discovery: A Conclusion

In this chapter, a case study was presented for the new hypothesis generation paradigm and
its application to insurance fraud detection. While the results of this study are very promis-
ing, there are some issues which are still outstanding. From the authors' standpoint, CBHG
offers a novel methodology for complex problem solving and for Knowledge Discovery in

Databases.

Knowledge discovery has undergone explosive growth in recent years [40}{42]{43]. The
rapid growth of many business, government, and scientific databases has far outpaced our
ability to explain this data, thereby creating a demand for new tools and techniques for
automated and intelligent database analysis[41]. Knowledge discovery through database
searches is the overall process of detecting and preparing data, selecting projections, select-
ing data mining methods, extracting patterns as potential ‘knowledge’ and consolidating

knowledge.

My research has directly addressed the key issues of knowledge discovery, focussing on the
search for missing data, verification of complex relationships, pattern understanding, and
user computer interaction. The new CBHG paradigm promises a new era for knowledge

discovery.

In this study, the anomaly detection model is a data mining tool for fraud detection, com-
prising a particular data mining algorithm and rules that, under the acceptable computa-
tional efficiency limitations, produces a particular enumeration of evidence. Hypothesis
generation is mainly concerned with how to extract (identify) New discoveries and involves
the selection and evaiuation of possible patterns, especially unfamiliar patterns. Conflict
resolution provides a way to consolidate discovered knowledge (new fraud scheme) and to

integrate it with the existing knowledge base (hypothesis space).

The capability of this fraud detection system depends upon the accumulation of actual cases
suitably classified by fraud type. With our model (current hypothesis space), most of the
common ancmalies in the motor insurance domain can, we believe, be detected and

explained effectively.
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The most obvious limitation of CBHG is its slow response to unfamiliar situations, and a
sophisticated mechanism is required to build up hypotheses automatically. These are topics

for further research.

Finally the omission of key facts in a case has led us to examine a novel hypothesis genera-
tion paradigm, with particular emphasis on the use of conceptual graph based abduction.
The impact of this extension will bring some degree of creativity to our current anomaly

detection model.

A commercial fraud detection system, currently under development, avoids these limita-
tions by providing a static knowledge base which is fully implemented. The hypothesis
generation process is carried out only in the master system, which works on data mining,

claim analysis, knowledge acquisition and hypothesis generation.
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CHAPTER 10

Conclusion and Future Direction

Research reported in this thesis, into hypothesis in human probiem solving and the design of
an hypothesis generation model for management intelligence systems, encompasses a wide

range of contemporary studies on knowledge engineering.

In this research, the author initially reviewed developments in contemporary information
systems for management. Then, the need was explained for a management intelligence sys-
tem to utilize and integrate various intelligence derived through the information superhigh-

way.

The omission of key facts in case based explanations provides the motivation to examine a
new paradigm for hypothesis generation. Novel results have been reported, with particular
emphasis on the use of conceptual graph based abduction and conflict resolution This para-

digm will bridge the gap between reality and the system’s knowledge base.

The hypothesis guided problem solving process elaborated in this thesis is believed to rep-
resent a plausible cognitive mode! for complex probiem solving. The resulting paradigm

required the introduction of several key concepts that are applicable to the construction of
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any hypothesis generation model:
® anomaly detection,
® abductive inference control in hypothesis generation,
® conflict resolution and hypothesis evaluation, and

® case-based interaction.

The generalised hypothesis paradigm provides an attractive reasoning capability for com-

plementing other problem solving paradigms.

10.1 Contributions

In this thesis, we have described how an hypothesis generation model] solves some of the
theoretical and technical problems of building a management intelligence system. The theo-
retical issues tackled include hypothesis representation, evolution of a dynamic hypothesis
space, and the knowledge requirements for controlling both abductive reasoning and the
conflict resolution strategy. The technical problems addressed included anomaly detection,
online information analysis and knowledge acquisition. The proposed solutions are based

on the hypothesis generation framework.

In summary, the results from this research include several original contributions in interac-

tive knowledge engineering.

® Hypotheses support cooperation between human and computer systems.
Cooperation between human experts and computer systems 18 important
when solving complex problems, especially when the system doesn’t
have an existing base case. Using hypothesis as the driver, cooperation is

achieved by dialogue or negotiation.

* Abductive inference plays a central role in generating explanations.
Although it is 2 weak mechanism for generating explanation and hypoth-
esis, and although it cannot guarantee a practical solution, the inspiration

provided by abductive inference has been shown to be very useful.
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® Conflict resolution provides a mechanism to resolve the inconsistency
between explanations generated and existing explanations.
When an hypothesis is generated, the hypothesis generation model usu-
ally gives different explanations, The final hypothesis should be
obtained by synthesis of the different explanations. This approach is a
novel metaphor for the synthesis of solutions using a variety of source

mappings contained in hypothesis space.

® Hypothesis space is a dynamical knowledge structure. It has the ability
to organise itself, and maintain its complexity at a certain leve] accord-

ing to the requirements of the application.

The experimental framework of this research has been validated in a complex comunercial

situation, namely fraud detection in the insurance industry.

10.2 Future work

Plans for future work have two aspects: application of the hypothesis generation method-
ology to commercial practice, and extension and improvement of the current hypothesis

generation model.

For fraud applications, an on-line fraud detection system will be built based on hypothesis
based problem solving methodology. At the same time, the template knowledge base for
fraud detection will be extended to meet any new application requirements. Other features,
such as on-line information retrieval and analysis, may be supported. The fraud detection
system is capable of generalisation to intelligent decision support systems based on the

global information resource.

An improved hypothesis generation model is currently being investigated for application
in the domain of general insurance. Design studies of this model in collaboration with

experts in the insurance industry are in progress.

At the theoretical levél, further improvements should be anticipated:
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® Although the anomaly detection model is quite sophisticated, its con-
struction, especially the knowledge acquisition, is still quite time-con-~
suming. An automated or semi-automated process is the goal, with
operatiopal records and knowledge acquired from their actual actions.
Domain independent abstractions/rules are expected to be included in

future anomaly detection models.

* Complexity contro! based on the semantic meaning of hypothesis space
is required at a number of levels. At the same time, the hypothesis space

should be capable of dynamic change for efficient operations.

® The effectiveness and efficiency of the hypothesis generation model is
crucial. A more effective form of strategic knowledge for controiling
abductive inference and conflict resolution is needed. The option to use
other algorithms as a basic abduction operator is still open to investiga-

tion.

®* TIn case based interaction, it is desired to change the case/hypothesis
incrementally. In order to achieve this, it is necessary to maintain an
hypothesis competition priority list in background. Dynamic connections

within the hypothesis space should provide more flexibility.

The methodology developed in this research, for an hypothesis based problem solving
approach, has wide application. We also believe that hypothesis generation offers intelligent
decision support with the functionality and performance required. With further develop-
ment, as outlined above, the hypothesis generation model extends the notion of machine

intelligence.
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Appendix 1. Network Resources Tools

WAIS is the prototype that allows users to navigate information net-
works to locate resources. This tool is already in use around the world

and provides access to greater diversity of services[78].

WHOIS is another prominent example, used by Network Information
Centers (NICs) and other organizations to maintain databases of regis-

tered users, and domains.

X.500, a distributed directory service standard jointly developed by
CCITT and ISO, describes a hierarchical name space, with provisions
for caching, authentication, and replication. Users access this informa-
tion through Directory User Agents. The most widespread use for
X.500 currently is as a user directory and it can also store other types of

information.

ARCHIE SERVICE maintains a list of approximately 1,100 UNIX
anonymous FTP archives world-wide, and builds a database of retriev-
able files by performing recursive directory listings at each site once
per month. These sites contain about 150 gigabytes of information, in

more ran 2.6 million files.

PROSPEQ file system allows users to organize files according to their
personal preference while Archie allows users to search for files. In this
sense, Prospeo is an “enabling technology” for building information
infrastructure, and allows users to create their own views of the infor-
mation in a distributed file system. Several global file systems, includ-
ing the Andrew File System (AFS), and the Alex file system allow
users to form local views of files by creating symboiic links from their

own directories.

223
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*  KNOWBOT (Knowledge Robot), the notion introduced by the corpora-
tion of National Research Initiative, can launch searches for informa-

tion in a network, possible replicating itseif onto other nodes.

* WWW (World Wide Web) system allows user to organize and access

information without concern for the distribution of the information.

®* GOPHER system provides a simple menu-driven user interface that
allows users to browse and locate information from a number of differ-
ent sources throughout the world. Gopher provides a relatively uniform
interface to this data, so that users need not understand many of the

details of interacting with each of the systems being accessed.
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Appendix 2. On-line Information Sources

Adtrack

a golden resource for the advertiser, ad agency, and media, publishing,
and marketing professionals, Adtrack has gathered advertisements of a
quarter page or larger from 150 major consumer and business publica-

tions.

D & B - Dun’s Financial Records

In putting together its credit reports, Dun & Bradstreet collects a huge
amount of information on American Companies. Through Dun’s Finan-
cial Record, people can find up to three years of balance sheets and
income statements, fourteen pre-calculated ratios, comparisons of the
company’s performance with the industry as a whole, company history,

and operattons summaries.

Harvard Business Review Database

Just a week after the Harvard Business Review is released in print, it
appears on-line to join the more than 2,000 records already on file. The
database for this noted bimonthly management periodical contains the

full text of articles from 1976 to the present.

World Patents Index

This bible of international patents information comes from Derwent
Publication Ltd. in London. Derwent suggests that only patents can
give business professionals “Advance warning of technological innova-

tion and development.”

Dow Jones News/Retrieval
DIN/R divides its services into two major categories: Business &

Investor Services (company/industry data and news; quotes and market
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averages; and on-line brokerage from Fidelity Brokerage Inc.) and
General Services (World news, sports, weather; shopping, travel, MCI

E-mail; and education/entertainment).

* Text-Search Services
Text-Search Services includes over a thousand full text sources search-
able in either a menu-driven or command version. These sources at cur-
rent stage includes the following: Dow Jones news, Wall Street Journal,
Barron’s Washington Post, Los Angeles Times, and Business Week. Text
search offers most of the advantages of full features online services,
including field and proximity searching, sorting, limiting by varicus

parameters, and custom output [158].

® Telenet
Telenet claims to be the world’s largest public data network. It is possi-
ble to get many commercial services thought Telenet, such as The

Sources and Dow Jones News/Retrieval.

® Dialog
Dialog is an information retrieval service with access to numerous
large databases. It is reached by direct login over Public Data Networks

such as DIANET, TYMNET, or Telenet.

® Telebase
Telebase provides information retrieval services and specializes in

sophisticated user interfaces to diverse databases.
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Appendix 3. Information Source for
Fraud Detection

® ASCOT

Australian Security Commission database

® Tlectoral Roll

Australian citizen registration data

® Electronic White Pages

Name, address, telephone number (current information)

® Insurance Report Service

Special claims

* Newsclassified

For sale advertisements in nine newspapers of News Limited

® and Title

Property ownership, price

® (OZonDisk
Name, address, phone Number.
®* Cogen
Insurance Policy and Claim database

* TPVR
Weekly Trading Post Records

*  Business Who’s Who Australia

Details about companies listed in Stock exchange market
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