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Abstract

We propose a hypothesis only baseline for di-

agnosing Natural Language Inference (NLI).

Especially when an NLI dataset assumes infer-

ence is occurring based purely on the relation-

ship between a context and a hypothesis, it fol-

lows that assessing entailment relations while

ignoring the provided context is a degenerate

solution. Yet, through experiments on ten dis-

tinct NLI datasets, we find that this approach,

which we refer to as a hypothesis-only model,

is able to significantly outperform a majority-

class baseline across a number of NLI datasets.

Our analysis suggests that statistical irregular-

ities may allow a model to perform NLI in

some datasets beyond what should be achiev-

able without access to the context.

1 Introduction

Though datasets for the task of Natural Language

Inference (NLI) may vary in just about every as-

pect (size, construction, genre, label classes), they

generally share a common structure: each instance

consists of two fragments of natural language text

(a context, also known as a premise, and a hypoth-

esis), and a label indicating the entailment relation

between the two fragments (e.g., ENTAILMENT,

NEUTRAL, CONTRADICTION). Computationally,

the task of NLI is to predict an entailment rela-

tion label (output) given a premise-hypothesis pair

(input), i.e., to determine whether the truth of the

hypothesis follows from the truth of the premise

(Dagan et al., 2006, 2013).

When these NLI datasets are constructed to

facilitate the training and evaluation of natural

language understanding (NLU) systems (Nangia

et al., 2017), it is tempting to claim that systems

achieving high accuracy on such datasets have

successfully “understood” natural language or at

least a logical relationship between a premise and

hypothesis. While this paper does not attempt to

(a) (b)

Figure 1: (1a) shows a typical NLI model that en-
codes the premise and hypothesis sentences into a vec-
tor space to classify the sentence pair. (1b) shows
our hypothesis-only baseline method that ignores the
premise and only encodes the hypothesis sentence.

prescribe the sufficient conditions of such a claim,

we argue for an obvious necessary, or at least de-

sired condition: that interesting natural language

inference should depend on both premise and hy-

pothesis. In other words, a baseline system with

access only to hypotheses (Figure 1b) can be said

to perform NLI only in the sense that it is un-

derstanding language based on prior background

knowledge. If this background knowledge is about

the world, this may be justifiable as an aspect of

natural language understanding, if not in keep-

ing with the spirit of NLI. But if the “background

knowledge” consists of learned statistical irregu-

larities in the data, this may not be ideal. Here

we explore the question: do NLI datasets contain

statistical irregularities that allow hypothesis-only

models to outperform the datasets specific prior?

We present the results of a hypothesis-only

baseline across ten NLI-style datasets and advo-

cate for its inclusion in future dataset reports.

We find that this baseline can perform above the

majority-class prior across most of the ten exam-

ined datasets. We examine whether: (1) hypothe-

ses contain statistical irregularities within each
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entailment class that are “giveaways” to a well-

trained hypothesis-only model, (2) the way in

which an NLI dataset is constructed is related to

how prone it is to this particular weakness, and (3)

the majority baselines might not be as indicative of

“the difficulty of the task” (Bowman et al., 2015)

as previously thought.

We are not the first to consider the inherent dif-

ficulty of NLI datasets. For example, MacCartney

(2009) used a simple bag-of-words model to eval-

uate early iterations of Recognizing Textual En-

tailment (RTE) challenge sets.1 Concerns have

been raised previously about the hypotheses in

the Stanford Natural Language Inference (SNLI)

dataset specifically, such as by Rudinger et al.

(2017) and in unpublished work.2 Here, we sur-

vey of large number of existing NLI datasets un-

der the lens of a hypothesis-only model.3 Con-

currently, Tsuchiya (2018) and Gururangan et al.

(2018) similarly trained an NLI classifier with ac-

cess limited to hypotheses and discovered similar

results on three of the ten datasets that we study.

2 Motivation

Our approach is inspired by recent studies that

show how biases in an NLU dataset allow mod-

els to perform well on the task without under-

standing the meaning of the text. In the Story

Cloze task (Mostafazadeh et al., 2016, 2017), a

model is presented with a short four-sentence nar-

rative and asked to complete it by choosing one

of two suggested concluding sentences. While the

task is presented as a new common-sense reason-

ing framework, Schwartz et al. (2017b) achieved

state-of-the-art performance by ignoring the narra-

tive and training a linear classifier with features re-

lated to the writing style of the two potential end-

ings, rather than their content. It has also been

shown that features focusing on sentence length,

sentiment, and negation are sufficient for achiev-

ing high accuracy on this dataset (Schwartz et al.,

2017a; Cai et al., 2017; Bugert et al., 2017).

NLI is often viewed as an integral part of NLU.

Condoravdi et al. (2003) argue that it is a neces-

sary metric for evaluating an NLU system, since it

1MacCartney (2009), Ch. 2.2: “the RTE1 test suite is the
hardest, while the RTE2 test suite is roughly 4% easier, and
the RTE3 test suite is roughly 9% easier.”

2A course project constituting independent discovery
of our observations on SNLI: https://leonidk.com/
pdfs/cs224u.pdf

3 Our code and data can be found at https://

github.com/azpoliak/hypothesis-only-NLI.

forces a model to perform many distinct types of

reasoning. Goldberg (2017) suggests that “solving

[NLI] perfectly entails human level understand-

ing of language”, and Nangia et al. (2017) ar-

gue that “in order for a system to perform well

at natural language inference, it needs to handle

nearly the full complexity of natural language un-

derstanding.” However, if biases in NLI datasets,

especially those that do not reflect commonsense

knowledge, allow models to achieve high levels

of performance without needing to reason about

hypotheses based on corresponding contexts, our

current datasets may fall short of these goals.

3 Methodology

We modify Conneau et al. (2017)’s InferSent

method to train a neural model to classify just

the hypotheses. We choose InferSent because

it performed competitively with the best-scoring

systems on the Stanford Natural Language In-

ference (SNLI) dataset (Bowman et al., 2015),

while being representative of the types of neu-

ral architectures commonly used for NLI tasks.

InferSent uses a BiLSTM encoder, and con-

structs a sentence representation by max-pooling

over its hidden states. This sentence representa-

tion of a hypothesis is used as input to a MLP clas-

sifier to predict the NLI tag.

We preprocess each recast dataset using the

NLTK tokenizer (Loper and Bird, 2002). Follow-

ing Conneau et al. (2017), we map the resulting to-

kens to 300-dimensional GloVe vectors (Penning-

ton et al., 2014) trained on 840 billion tokens from

the Common Crawl, using the GloVe OOV vec-

tor for unknown words. We optimize via SGD,

with an initial learning rate of 0.1, and decay rate

of 0.99. We allow at most 20 epochs of training

with optional early stopping according to the fol-

lowing policy: when the accuracy on the develop-

ment set decreases, we divide the learning rate by

5 and stop training when learning rate is < 10−5.

4 Datasets

We collect ten NLI datasets and categorize them

into three distinct groups based on the methods

by which they were constructed. Table 1 summa-

rizes the different NLI datasets that our investiga-

tion considers.
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Creation Protocol Dataset Size Classes Example Hypothesis

Recast

DPR 3.4K 2 People raise dogs because dogs are afraid of thieves

SPR 150K 2 The judge was aware of the dismissing

FN+ 150K 2 the irish are actually principling to come home

Judged

ADD-1 5K 2 A small child staring at a young horse and a pony

SCITAIL 25K 2 Humans typically have 23 pairs of chromosomes

SICK 10K 3 Pasta is being put into a dish by a woman

MPE 10K 3 A man smoking a cigarette

JOCI 30K 3 The flooring is a horizontal surface

Elicited
SNLI 550K 3 An animal is jumping to catch an object

MNLI 425K 3 Kyoto has a kabuki troupe and so does Osaka

Table 1: Basic statistics about the NLI datasets we consider. ‘Size’ refers to the total number of labeled premise-
hypothesis pairs in each dataset (for datasets with > 100K examples, numbers are rounded down to the nearest
25K). The ‘Creation Protocol’ column indicates how the dataset was created. The ‘Class’ column reports the
number of class labels/tags. The last column shows an example hypothesis from each dataset.

4.1 Human Elicited

In cases where humans were given a context and

asked to generate a corresponding hypothesis and

label, we consider these datasets to be elicited. Al-

though we consider only two such datasets, they

are the largest datasets included in our study and

are currently popular amongst researchers. The

elicited NLI datasets we look at are:

Stanford Natural Language Inference (SNLI)

To create SNLI, Bowman et al. (2015) showed

crowdsourced workers a premise sentence

(sourced from Flickr image captions), and asked

them to generate a corresponding hypothesis sen-

tence for each of the three labels (ENTAILMENT,

NEUTRAL, CONTRADICTION). SNLI is known to

contain stereotypical biases based on gender, race,

and ethnic stereotypes (Rudinger et al., 2017).

Furthermore, Zhang et al. (2017) commented

that this “elicitation protocols can lead to biased

responses unlikely to contain a wide range of

possible common-sense inferences.”

Multi-NLI Multi-NLI is a recent expansion of

SNLI aimed to add greater diversity to the existing

dataset (Williams et al., 2017). Premises in Multi-

NLI can originate from fictional stories, personal

letters, telephone speech, and a 9/11 report.

4.2 Human Judged

Alternatively, if hypotheses and premises were au-

tomatically paired but labeled by a human, we

consider the dataset to be judged. Our human-

judged data sets are:

Sentences Involving Compositional Knowledge

(SICK) To evaluate how well compositional dis-

tributional semantic models handle “challenging

phenomena”, Marelli et al. (2014) introduced

SICK, which used rules to expand or normalize

existing premises to create more difficult exam-

ples. Workers were asked to label the relatedness

of these resulting pairs, and these labels were then

converted into the same three-way label space as

SNLI and Multi-NLI.

Add-one RTE This mixed-genre dataset tests

whether NLI systems can understand adjective-

noun compounds (Pavlick and Callison-Burch,

2016). Premise sentences were extracted from

Annotated Gigaword (Napoles et al., 2012), im-

age captions (Young et al., 2014), the Internet

Argument Corpus (Walker et al., 2012), and fic-

tional stories from the GutenTag dataset (Mac Kim

and Cassidy, 2015). To create hypotheses, ad-

jectives were removed or inserted before nouns

in a premise, and crowd-sourced workers were

asked to provide reliable labels (ENTAILED, NOT-

ENTAILED).

SciTail Recently released, SciTail is an NLI

dataset created from 4th grade science ques-

tions and multiple-choice answers (Khot et al.,

2018). Hypotheses are assertions converted

from question-answer pairs found in SciQ (Welbl

et al., 2017). Hypotheses are automati-

cally paired with premise sentences from do-

main specific texts (Clark et al., 2016), and

labeled (ENTAILMENT, NEUTRAL) by crowd-

sourced workers. Notably, the construction
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method allows for the same sentence to appear as

a hypothesis for more than one premise.

Multiple Premise Entailment (MPE) Unlike

the other datasets we consider, the premises in

MPE (Lai et al., 2017) are not single sentences,

but four different captions that describe the same

image in the FLICKR30K dataset (Plummer et al.,

2015). Hypotheses were generated by simplifying

either a fifth caption that describes the same image

or a caption corresponding to a different image,

and given the standard 3-way tags. Each hypothe-

sis has at most a 50% overlap with the words in its

corresponding premise. Since the hypotheses are

still just one sentence, our hypothesis-only base-

line can easily be applied to MPE.

Johns Hopkins Ordinal Common-Sense Infer-

ence (JOCI) JOCI labels context-hypothesis in-

stances on an ordinal scale from impossible (1) to

very likely (5) (Zhang et al., 2017). In JOCI, con-

text (premise) sentences were taken from existing

NLU datasets: SNLI, ROC Stories (Mostafazadeh

et al., 2016), and COPA (Roemmele et al., 2011).

Hypotheses were created automatically by sys-

tems trained to generate entailed facts from a

premise.4 Crowd-sourced workers labeled the

likelihood of the hypothesis following from the

premise on an ordinal scale. We convert these into

a 3-way NLI tags where 1 maps to CONTRADIC-

TION, 2-4 maps to NEUTRAL, and 5 maps to EN-

TAILMENT. Converting the annotations into a 3-

way classification problem allows us to limit the

range of the number of NLI label classes in our

investigation.

4.3 Automatically Recast

If an NLI dataset was automatically generated

from existing datasets for other NLP tasks, and

sentence pairs were constructed and labeled with

minimal human intervention, we refer to such a

dataset as recast. We use the recast datasets from

White et al. (2017):

Semantic Proto-Roles (SPR) Inspired by Dowty

(1991)’s thematic role theory, Reisinger et al.

(2015) introduced the Semantic Proto-Role (SPR)

labeling task, which can be viewed as decompos-

ing semantic roles into finer-grained properties,

such as whether a predicate’s argument was likely

aware of the given predicated situation. 2-way

4We only consider the hypotheses generated by either a
seq2seq model or from external world knowledge.

labeled NLI sentence pairs were generated from

SPR annotations by creating general templates.

Definite Pronoun Resolution (DPR) The DPR

dataset targets an NLI model’s ability to perform

anaphora resolution (Rahman and Ng, 2012). In

the original dataset, sentences contain two enti-

ties and one pronoun, and the task is to link the

pronoun to its referent. In the recast version,

the premises are the original sentences and the

hypotheses are the same sentences with the pro-

noun replaced with its correct (ENTAILED) and in-

correct (NOT-ENTAILED) referent. For example,

People raise dogs because they are obedient and

People raise dogs because dogs are obedient is

such a context-hypothesis pair. We note that this

mechanism would appear to maximally benefit a

hypothesis-only approach, as the hypothesis se-

mantically subsumes the context.

FrameNet Plus (FN+) Using paraphrases from

PPDB (Ganitkevitch et al., 2013), Rastogi and

Van Durme (2014) automatically replaced words

with their paraphrases. Subsequently, Pavlick

et al. (2015) asked crowd-source workers to judge

how well a sentence with a paraphrase preserved

the original sentence’s meanings. In this NLI

dataset that targets a model’s ability to perform

paraphrastic inference, premise sentences are the

original sentences, the hypotheses are the edited

versions, and the crowd-source judgments are con-

verted to 2-way NLI-labels. For not-entailed ex-

amples, White et al. (2017) replaced a single to-

ken in a context sentence with a word that crowd-

source workers labeled as not being a paraphrase

of the token in the given context. In turn, we might

suppose that positive entailments (1-b) are keep-

ing in the spirit of NLI, but not-entailed examples

might not because there are adequacy (1-c) and

fluency (1-d) issues.5

(1) a. That is the way the system works

b. That is the way the framework works

c. That is the road the system works

d. That is the way the system creations

5 Results

Our goal is to determine whether a hypothesis-

only model outperforms the majority baseline and

investigate what may cause significant gains. In

5In these examples, (1-a) is the corresponding context.

183



DEV TEST
Dataset Hyp-Only MAJ |∆| ∆% Hyp-Only MAJ |∆| ∆% Baseline SOTA

Recast

DPR 50.21 50.21 0.00 0.00 49.95 49.95 0.00 0.00 49.5 49.5
SPR 86.21 65.27 +20.94 +32.08 86.57 65.44 +21.13 +32.29 80.6 80.6
FN+ 62.43 56.79 +5.64 +9.31 61.11 57.48 +3.63 +6.32 80.5 80.5

Human Judged
ADD-1 75.10 75.10 0.00 0.00 85.27 85.27 0.00 0.00 92.2 92.2
SciTail 66.56 50.38 +16.18 +32.12 66.56 60.04 +6.52 +10.86 70.6 77.3
SICK 56.76 56.76 0.00 0.00 56.87 56.87 0.00 0.00 56.87 84.6
MPE 40.20 40.20 0.00 0.00 42.40 42.40 0.00 0.00 41.7 56.3
JOCI 61.64 57.74 +3.90 +6.75 62.61 57.26 +5.35 +9.34 – –

Human Elicited
SNLI 69.17 33.82 +35.35 +104.52 69.00 34.28 +34.72 +101.28 78.2 89.3

MNLI-1 55.52 35.45 +20.07 +56.61 – 35.6 – – 72.3 80.60
MNLI-2 55.18 35.22 +19.96 +56.67 – 36.5 – – 72.1 83.21

Table 2: NLI accuracies on each dataset. Columns ‘Hyp-Only’ and ‘MAJ’ indicates the accuracy of the hypothesis-
only model and the majority baseline. |∆| and ∆% indicate the absolute difference in percentage points and the
percentage increase between the Hyp-Only and MAJ. Blue numbers indicate that the hypothesis-model outper-
forms MAJ. In the right-most section, ‘Baseline’ indicates the original baseline on the test when the dataset was
released and ‘SOTA’ indicates current state-of-the-art results. MNLI-1 is the matched version and MNLI-2 is the
mismatched for MNLI. The names of datasets are italicized if containing ≤ 10K labeled examples.

such cases a hypothesis-only model should be

used as a stronger baseline instead of the ma-

jority class baseline. For all experiments except

for JOCI, we use each NLI dataset’s standard

train, dev, and test splits.6 Table 2 compares the

hypothesis-only model’s accuracy with the major-

ity baseline on each dataset’s dev and test set.7

Criticism of the Majority Baseline Across six

of the ten datasets, our hypothesis-only model

significantly outperforms the majority-baseline,

even outperforming the best reported results on

one dataset, recast SPR. This indicates that there

exists a significant degree of exploitable signal that

may help NLI models perform well on their cor-

responding test set without considering NLI con-

texts. From Table 2, it is unclear whether the con-

struction method is responsible for these improve-

ments. The largest relative gains are on human-

elicited models where the hypothesis-only model

more than doubles the majority baseline.

However, there are no obvious unifying trends

across these datasets: Among the judged and re-

cast datasets, where humans do not generate the

NLI hypothesis, we observe lower performance

margins between majority and hypothesis-only

models compared to the elicited data sets. How-

ever, the baseline performances of these models

are noticeably larger than on SNLI and Multi-NLI.

6JOCI was not released with such splits so we randomly
split the dataset into such a partition with 80:10:10 ratios.

7We only report results on the Multi-NLI development set
since the test labels are only accessible on Kaggle.

The drop between SNLI and Multi-NLI suggests

that by including multiple genres, an NLI dataset

may contain less biases. However, adding addi-

tional genres might not be enough to mitigate bi-

ases as the hypothesis-only model still drastically

outperforms the majority-baseline. Therefore, we

believe that models tested on SNLI and Multi-NLI

should include a baseline version of the model that

only accesses hypotheses.

We do not observe general trends across the

datasets based on their construction methodology.

On three of the five human judged datasets, the

hypothesis-only model defaults to labeling each

instance with the majority class tag. We find the

same behavior in one recast dataset (DPR). How-

ever, across both these categories we find smaller

relative improvements than on SNLI and Multi-

NLI. These results suggest the existence of ex-

ploitable signal in the datasets that is unrelated to

NLI contexts. Our focus now shifts to identifying

precisely what these signals might be and under-

standing why they may appear in NLI hypotheses.

6 Statistical Irregularities

We are interested in determining what character-

istics in the datasets may be responsible for the

hypothesis-only model often outperforming the

majority baseline. Here, we investigate the impor-

tance of specific words, grammaticality, and lexi-

cal semantics.
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Figure 2: Plots showing the number of sentences per each label (Y-axis) that contain at least one word w such that
p(l|w) >= x for at least one label l. Colors indicate different labels. Intuitively, for a sliding definition of what
value of p(l|w) might constitute a “give-away” the Y-axis shows the proportion of sentences that can be trivially
answered for each class.

6.1 Can Labels be Inferred from Single

Words?

Since words in hypotheses have a distribution over

the class of labels, we can determine the condi-

tional probability of a label l given the word w by

p(l|w) =
count(w, l)

count(w)
(1)

If p(l|w) is highly skewed across labels, there ex-

ists the potential for a predictive bias. Conse-

quently, such words may be “give-aways” that al-

low the hypothesis model to correctly predict an

NLI label without considering the context.

If a single occurrence of a highly label-specific

word would allow a sentence to be deterministi-

cally classified, how many sentences in a dataset

are prone to being trivially labeled? The plots in

Figure 2 answer this question for SNLI and DPR.

The Y -value where X = 1.0 captures the number

of such sentences. Other values of X < 1.0 can

also have strong correlative effects, but a priori the

relationship between the value of X and the cov-

erage of trivially answerable instances in the data

is unclear. We illustrate this relationship for vary-

ing values of p(l|w). When X = 0, all words are

considered highly-correlated with a specific class

label, and thus the entire data set would be treated

as trivially answerable.

In DPR, which has two class labels, because the

uncertainty of a label is highest when p(l|w) =
0.5, the sharp drop as X deviates from this value

indicates a weaker effect, where there are pro-

portionally fewer sentences which contain highly

label-specific words with respect to SNLI. As

SNLI uses 3-way classification we see a gradual

decline from 0.33.

6.2 What are “Give-away” Words?

Now that we analyzed the extent to which highly

label-correlated words may exist across sentences

in a given label, we would like to understand what

these words are and why they exist.

Figure 3 reports some of the words with the

highest p(l|w) for SNLI, a human elicited dataset,

and MPE, a human judged dataset, on which our

hypothesis model performed identically to the ma-

jority baseline. Because many of the most discrim-

inative words are low frequency, we report only

words which occur at least five times. We rank the

words according to their overall frequency, since

this statistic is perhaps more indicative of a word

w’s effect on overall performance compared to

p(l|w) alone.

The score p(l|w) of the words shown for SNLI

deviate strongly, regardless of the label. In con-

trast, in MPE, scores are much closer to a uniform

distribution of p(l|w) across labels. Intuitively, the

stronger the word’s deviation, the stronger the po-

tential for it to be a “give-away” word. A high

word frequency indicates a greater potential of the

word to affect the overall accuracy on NLI.

Qualitative Examples Turning our attention to

the qualities of the words themselves, we can eas-

ily identify trends among the words used in con-

tradictory hypotheses in SNLI. In our top-10 list,

for example, three words refer to the act of sleep-

ing. Upon inspecting corresponding context sen-

tences, we find that many contexts, which are
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Word Score Freq

instrument 0.90 20

touching 0.83 12

least 0.90 10

Humans 0.88 8

transportation 0.86 7

speaking 0.86 7

screen 0.86 7

arts 0.86 7

activity 0.86 7

opposing 1.00 5

(a) entailment

SNLI

Word Score Freq

tall 0.93 44

competition 0.88 24

because 0.83 23

birthday 0.85 20

mom 0.82 17

win 0.88 16

got 0.81 16

trip 0.93 15

tries 0.87 15

owner 0.87 15

(b) neutral

Word Score Freq

sleeping 0.88 108

driving 0.81 53

Nobody 1.00 52

alone 0.90 50

cat 0.84 49

asleep 0.91 43

no 0.84 31

empty 0.93 28

eats 0.83 24

sleeps 0.95 20

(c) contradiction

Word Score Freq

an 0.57 21

gathered 0.58 12

girl 0.50 12

trick 0.55 11

Dogs 0.55 11

watches 0.60 10

field 0.60 10

singing 0.50 10

outside 0.67 9

something 0.62 8

(d) entailment

MPE

Word Score Freq

smiling 0.56 16

An 0.60 10

for 0.56 9

front 0.75 8

camera 0.62 8

waiting 0.50 8

posing 0.50 8

Kids 0.57 7

smile 0.83 6

wall 0.50 6

(e) neutral

Word Score Freq

sitting 0.51 88

woman 0.55 80

men 0.56 34

Some 0.62 26

doing 0.59 22

Children 0.50 22

boy 0.67 21

having 0.65 20

sit 0.60 15

children 0.53 15

(f) contradiction

Figure 3: Lists of the most highly-correlated words in each dataset for given labels, thresholded to the top 10 and
ranked according to frequency.

sourced from Flickr, naturally deal with activi-

ties. This leads us to believe that as a common

strategy, crowd-source workers often do not gen-

erate contradictory hypotheses that require fine-

grained semantic reasoning, as a majority of such

activities can be easily negated by removing an

agent’s agency, i.e. describing the agent as sleep-

ing. A second trend we notice is that universal

negation constitutes four of the remaining seven

terms in this list, and may also be used to simi-

lar effect.8 The human-elicited protocol does not

guide, nor incentivize crowd-source workers to

come up with less obvious examples. If not prop-

erly controlled, elicited datasets may be prone to

many label-specific terms. The existence of label-

specific terms in human-elicited NLI datasets does

not invalidate the datasets nor is surprising. Stud-

8These are “Nobody”, “alone”, “no”, and “empty”.

ies in eliciting norming data are prone to repeated

responses across subjects (McRae et al., 2005)

(see discussion in §2 of (Zhang et al., 2017)).

6.3 On the Role of Grammaticality

Like MPE, FN+ contains few high frequency

words with high p(l|w). However, unlike on

MPE, our hypothesis-only model outperforms the

majority-only baseline. If these gains do not arise

from “give-away” words, then what is the statisti-

cal irregularity responsible for this discriminative

power?

Upon further inspection, we notice an interest-

ing imbalance in how our model performs for each

of the two classes. The hypothesis-only model

performs similarly to the majority baseline for en-

tailed examples, while improving by over 34%

those which are not entailed, as shown in Table 3.

As shown by White et al. (2017) and noticed
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label Hyp-Only MAJ ∆%
entailed 44.18 43.20 +2.27

not-entailed 76.31 56.79 +34.37

Table 3: Accuracies on FN+ for each class label.

by Poliak et al. (2018), FN+ contains more gram-

matical errors than the other recast datasets. We

explore whether grammaticality could be the sta-

tistical irregularity exploited in this case. We

manually sample a total of 200 FN+ sentences

and categorize them based on their gold label and

our model’s prediction. Out of 50 sentences that

the model correctly labeled as ENTAILED, 88%

of them were grammatical. On the other-hand,

of the 50 hypotheses incorrectly labeled as EN-

TAILED, only 38% of them were grammatical.

Similarly, when the model correctly labeled 50
NOT-ENTAILED hypotheses, only 20% were gram-

matical, and 68% when labeled incorrectly. This

suggests that a hypothesis-only model may be able

to discover the correlation between grammatical-

ity and NLI labels on this dataset.

6.4 Lexical Semantics

A survey of gains (Table 4) in the SPR dataset sug-

gest a number of its property-driven hypotheses,

such as X was sentient in [the event], can be accu-

rately guessed based on lexical semantics (back-

ground knowledge learned from training) of the

argument. For example, the hypothesis-only base-

line correctly predicts the truth of hypotheses in

the dev set such as: Experts were sentient ... or

Mr. Falls was sentient ..., and the falsity of The

campaign was sentient, while failing on referring

expressions like Some or Each side. A model ex-

ploiting regularities of the real world would seem

to be a different category of dataset bias: while

not strictly wrong from the perspective of NLU,

one should be aware of what the hypothesis-only

baseline is capable of, to recognize those cases

where access to the context is required and there-

fore more interesting under NLI.

6.5 Open Questions

There may remain statistical irregularities, which

we leave for future work to explore. For ex-

ample, are there correlation between sentence

length and label class in these data sets? Is there

a particular construction method that minimizes

the amount of “give-away” words present in the

dataset? And lastly, our study is another in a

line of research which looks for irregularities at

Proto-Role H-model MAJ ∆%

aware 88.70 59.94 +47.99
used in 77.30 52.72 +46.63

volitional 87.45 64.96 +34.62
physically existed 87.97 65.38 +34.56

caused 82.11 63.08 +30.18
sentient 94.35 76.26 +23.73

existed before 80.23 65.90 +21.75
changed 72.18 64.85 +11.29

chang. state 71.76 64.85 +10.65
existed after 79.29 72.91 +8.75

existed during 90.06 85.67 +5.13
location 93.83 91.21 +2.87

physical contact 89.33 86.92 +2.77
chang. possession 94.87 94.46 +0.44

moved 93.51 93.20 +0.34
stationary during 96.44 96.34 +0.11

Table 4: NLI accuracies on the SPR development data;
each property appears in 956 hypotheses.

the word level (MacCartney et al., 2008; Mac-

Cartney, 2009). Beyond bag-of-words, are there

multi-word expressions or syntactic phenomena

that might encode label biases?

7 Related Work

Non-semantic information to help NLI In NLI

datasets, non-semantic linguistic features have

been used to improve NLI models. Vanderwende

and Dolan (2006) and Blake (2007) demonstrate

how sentence structure alone can provide a high

signal for NLI. Instead of using external sources

of knowledge, which was a common trend at the

time, Blake (2007) improved results on RTE by

combining syntactic features. More recently, Bar-

Haim et al. (2015) introduce an inference formal-

ism based on syntactic-parse trees.

World Knowledge and NLI As mentioned ear-

lier, hypothesis-only models that perform with-

out exploiting statistical irregularities may be per-

forming NLI only in the sense that it is understand-

ing language based on prior background knowl-

edge. Here, we take the approach that interest-

ing NLI should depend on both premise and hy-

potheses. Prior work in NLI reflect this approach.

For example, Glickman and Dagan (2005) argue

that “the notion of textual entailment is relevant

only” for hypothesis that are not world facts, e.g.

“Paris is the capital of France.” Glickman et al.

(2005a,b), introduce a probabilistic framework for

NLI where the premise entails a hypothesis if, and

only if, the probability of the hypothesis being true

increases as a result of the premise.
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NLI’s resurgence Starting in the mid-2000’s,

multiple community-wide shared tasks focused on

NLI, then commonly referred to as RTE, i.e, rec-

ognizing textual entailment. Starting with Da-

gan et al. (2006), there have been eight itera-

tions of the PASCAL RTE challenge with the

most recent being Dzikovska et al. (2013).9 NLI

datasets were relatively small, ranging from thou-

sands to tens of thousands of labeled sentence

pairs. In turn, NLI models often used alignment-

based techniques (MacCartney et al., 2008) or

manually engineered features (Androutsopoulos

and Malakasiotis, 2010). Bowman et al. (2015)

sparked a renewed interested in NLI, particularly

among deep-learning researchers. By developing

and releasing a large NLI dataset containing over

550K examples, Bowman et al. (2015) enabled

the community to successfully apply deep learn-

ing models to the NLI problem.

8 Conclusion

We introduced a stronger baseline for ten NLI

datasets. Our baseline reduces the task from label-

ing the relationship between two sentences to clas-

sifying a single hypothesis sentence. Our experi-

ments demonstrated that in six of the ten datasets,

always predicting the majority-class label is not a

strong baseline, as it is significantly outperformed

by the hypothesis-only model. Our analysis sug-

gests that statistical irregularities, including word

choice and grammaticality, may reduce the dif-

ficulty of the task on popular NLI datasets by

not fully testing how well a model can determine

whether the truth of a hypothesis follows from the

truth of a corresponding premise.

We hope our findings will encourage the devel-

opment of new NLI datasets which exhibit less

exploitable irregularities, and that encourage the

development of richer models of inference. As

a baseline, new NLI models should be compared

against a corresponding version that only accesses

hypotheses. In future work, we plan to apply a

similar hypothesis-only baseline to multi-modal

tasks that attempt to challenge a system to under-

stand and classify the relationship between two in-

puts, e.g. Visual QA (Antol et al., 2015).

9Technically Bentivogli et al. (2011) was the last chal-
lenge under PASCAL’s aegis but Dzikovska et al. (2013) was
branded as the 8th RTE challenge.
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