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The statistical analysis of discrete data has been the subject of extensive
statistical research dating back to the work of Pearson. In this survey we
review some recently developed methods for testing hypotheses about high-
dimensional multinomials. Traditional tests like the χ2-test and the likelihood
ratio test can have poor power in the high-dimensional setting. Much of the
research in this area has focused on finding tests with asymptotically normal
limits and developing (stringent) conditions under which tests have normal
limits. We argue that this perspective suffers from a significant deficiency: it
can exclude many high-dimensional cases when—despite having non-normal
null distributions—carefully designed tests can have high power. Finally, we
illustrate that taking a minimax perspective and considering refinements of
this perspective can lead naturally to powerful and practical tests.

1. Introduction. Steve Fienberg was a pioneer in the development of theory
and methods for discrete data. His textbook [Bishop, Fienberg and Holland (1977)]
remains one of the main references for the topic. Our focus in this review is on
high-dimensional multinomial models where the number of categories d can grow
with, and possibly exceed the sample-size n. Steve’s paper [Fienberg and Holland
(1973)], written with Paul Holland, was one of the first to consider multinomial
data in the high-dimensional case. In Fienberg (1980), Steve provided strong mo-
tivation for considering the high-dimensional setting:

“The fact remains . . . that with the extensive questionnaires of modern-day sample-
surveys, and the detailed and painstaking inventory of variables measured by biological
and social-scientists, the statistician is often faced with large sparse arrays full of 0’s
and 1’s, in need of careful analysis.”

In this review we focus on hypothesis testing for high-dimensional multinomi-
als. In the context of hypothesis testing, several works [see for instance Read and
Cressie (1988), Holst (1972) and references therein] have considered the high-
dimensional setting. Hoeffding (1965) (building on an unpublished result of Stein)
showed that for testing goodness-of-fit, in sharp contrast to the fixed-d setting, in
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the high-dimensional setting the likelihood ratio test can be dominated by the χ2

test. In traditional asymptotic testing theory, the power of tests are often investi-
gated at local alternatives which approach the null as the sample-size grows. In the
high-dimensional setting, considering local alternatives, Ivčenko and Medvedev
(1980) showed that neither the χ2 nor the likelihood ratio test are uniformly opti-
mal. These results show some of the difficulties of using classical theory to identify
optimal tests in the high-dimensional regime.

Morris (1975) studied the limiting distribution of a wide-range of multinomial
test statistics and gave relatively stringent conditions under which these statistics
have asymptotically normal limiting distributions. Related investigations appear in
the works [Koehler and Larntz (1980), Haberman (1977), Koehler (1986)] and are
reviewed in the work of Fienberg (1979). In general, as we illustrate in our sim-
ulations, carefully designed tests can have high power under much weaker condi-
tions, even when the null distribution of the test statistics are not Gaussian or χ2.
In many cases, understanding the limiting distribution of the test statistic under the
null is important to properly set the test threshold, and indeed this often leads to
practical tests. However, in several problems of interest, including goodness-of-fit,
two-sample testing and independence testing we can determine practical (noncon-
servative) thresholds by simulation. In the high-dimensional setting, rather than
rely on asymptotic theory and local alternatives, we advocate for using the min-
imax perspective and developing refinements of this perspective to identify and
study optimal tests.

We emphasize that the minimax perspective on testing is not new to the disci-
pline of Statistics. In particular, the work of Ermakov, Ingster, Lepski, Spokoiny,
Suslina and co-authors [for instance, Ermakov (1991), Ingster and Suslina (2003),
Spokoiny (1996), Lepski and Spokoiny (1999)] laid the foundations of the mini-
max framework for testing. Due to their work minimax rates, for signal detection
in the Gaussian white noise model and more broadly for testing with nonpara-
metric alternatives are relatively well understood [Giné and Nickl (2016)]. More
recently, work on minimax hypothesis testing has focused on testing problems with
a combinatorial flavor [Addario-Berry et al. (2010), Arias-Castro, Candès and Du-
rand (2011)], and on testing problems in high-dimensional statistics with sparsity
constraints [Berthet and Rigollet (2013), Ingster, Tsybakov and Verzelen (2010),
Donoho and Jin (2004)].

For high-dimensional discrete problems a minimax perspective has been re-
cently developed in a series of works in different fields including statistics, infor-
mation theory and theoretical computer science and we provide an overview of
some important results from these different communities in this paper.2

2Theoretical computer science centric surveys of a subset of these results include the papers
Rubinfeld (2012), Goldreich (2017) and Canonne (2018).
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2. Background. Suppose that we have data of the form Z1, . . . ,Zn ∼ P

where P is a d-dimensional multinomial and Zi ∈ {1, . . . , d}. We denote the prob-
ability mass function for P by p ∈ R

d . The set of all multinomials is then denoted
by

(2.1) M =
{
p =

(
p(1), . . . , p(d)

)
: p(j) ≥ 0 for all j,

d∑

j=1

p(j) = 1

}
.

We are interested in the case where d can be large, possibly much larger than n. In
this paper, we focus on two hypothesis testing problems, and defer a discussion of
other testing problems to Section 6. The problems we consider are:

2. Goodness-of-fit testing: In its most basic form, in goodness-of-fit testing we
are interested in testing the fit of the data to a fixed distribution P0. Concretely, we
are interested in distinguishing the hypotheses

H0 : P = P0 versus H1 : P �= P0.

(i) Two-sample testing: In two-sample testing we observe

Z1, . . . ,Zn1 ∼ P, W1, . . . ,Wn2 ∼ Q.

In this case, the hypotheses of interest are

H0 : P = Q versus H1 : P �= Q.

Notation: Throughout this paper, we write an ≍ bn if an/bn is bounded away
from both 0 and ∞ for all large n. In certain cases, to improve readability we make
slightly imprecise mathematical statements and indicate this with the ≈ relational
symbol. In each such case, for the interested reader, we provide a reference to the
precise statement.

2.1. Why hypothesis testing? As with any statistical problem, there are many
inferential tasks related to multinomial models: estimation, constructing confi-
dence sets, Bayesian inference, prediction and hypothesis testing, among others.

Our focus on testing in this paper is not meant to downplay the importance of
these other tasks. Indeed, many would argue that hypothesis testing has received
too much attention: over-reliance on hypothesis testing is sometimes cited as one
of the causes of the reproducibility crisis. However, there is a good reason for
studying hypothesis testing. When trying to understand the theoretical behavior
of statistical problems in difficult cases—such as in high dimensional models—
hypothesis testing provides a very clean, precise framework.

Hypothesis testing is a good starting point for theoretical investigations into
difficult statistical models. As an example, in Section 3.2 we will see that the power
of goodness-of-fit tests can vary drastically depending on where the null sits in the
simplex, a phenomenon that we refer to as local minimaxity. This local minimax
phenomenon is very clear and easy to precisely capture in the hypothesis testing
framework.
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2.2. Minimax and local minimax testing. In traditional asymptotic testing the-
ory, local measures of performance are often used to assess the performance of
various hypothesis tests. In the local approach, one typically examines the power
at a sequence of alternatives at θ0 + C/

√
n where θ0 denotes the null value of the

parameter. The local approach is well-suited to well-behaved, low-dimensional
models. It permits very precise power comparisons for distributions which are
close to the null hypothesis. Generally, the tools for local analysis are tied to ideas
like contiguity and asymptotic normality and in the high-dimensional setting these
tools often break down. Furthermore, as we discussed earlier, results of Ivčenko
and Medvedev (1980) suggest that the local perspective does not provide a clear
overall picture in the high-dimensional case.

For these reasons, we will use the minimax perspective. For goodness-of-fit
testing, we can refine the minimax perspective to obtain results that also have a
local nature, but in a very different sense than the local results described above.
Formally, a test is a map from the samples to {0,1}. We let �n denote all level α

tests, that is, φ ∈ �n if φ(Z1, . . . ,Zn) ∈ {0,1} and

sup
P∈P0

P n(φ = 1) ≤ α,

where P0 denotes the (possibly composite) collection of possible null distributions.
Let

Mε =
{
p : d(P0,p) ≥ ε

}
,

where P0 is the set of null distributions, d(P0,p) = infq∈P0 d(q,p) and d(p, q) is
some distance. The maximum type II error of a test φ ∈ �n is

Rn,ε(φ,P0) = sup
P∈Mε

P n(φ = 0).

The minimax risk is

R†
n,ε(P0) = inf

φ∈�n

Rn,ε(φ,P0).

A test φ ∈ �n is minimax optimal if Rn,ε(φ) = R†
n,ε(P0). It is common to study

the minimax risk via a coarse lens by studying instead the minimax separation,
also called the critical radius. The minimax separation εn is defined by

εn(P0) = inf
{
ε : R†

n,ε(P0) ≤ 1/2
}
,

which is the smallest ε such that the power is nontrivial. The choice of 1/2 is not
important and any sufficiently small, nonzero number will suffice.

We need to choose a distance d . We will focus on the total variation (TV) dis-
tance defined by

TV(P,Q) = max
A

∣∣P(A) − Q(A)
∣∣,
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where the maximum is over all events A. The reason we use total variation distance
is because it has a clear probabilistic meaning and is invariant to natural transfor-
mations [Devroye and Györfi (1985)]: if TV(P,Q) = ε then |P(A) − Q(A)| ≤ ε

for every event A. The total variation distance is equivalent to the L1 distance

TV(P,Q) =
1

2

d∑

j=1

∣∣p(j) − q(j)
∣∣ ≡

1

2
‖p − q‖1,

where p and q are the probability functions corresponding to the distributions P

and Q. Other distances, such as L2, Hellinger and Kullback–Leibler can be used
too, but in some cases can be less interpretable and in other cases lead to trivial
minimax rates. We revisit the choice of metric in Section 3.4.

Typically we characterize the minimax separation by providing upper and lower
bounds on it: upper bounds are obtained by analyzing the minimax separation
for practical tests, while lower bounds are often obtained via an analysis of the
likelihood ratio test for carefully constructed pairs of hypotheses [see for instance
the pioneering work of Ingster and co-authors Ingster and Suslina (2003), Ingster
(1997)].

The local minimax separation: Focusing on the problem of goodness-of-fit test-
ing with a simple null, we observe that the minimax separation εn(p0) is a function
of the null distribution. Classical work in hypothesis testing [Ingster and Suslina
(2003), Ingster (1997)] has focused on characterizing the global minimax separa-
tion, that is, in understanding the quantity

(2.2) εn = inf
{
ε : sup

p0∈M
R†

n,ε(p0) ≤ 1/2
}
,

where M is defined in (2.1). In typical nonparametric problems, the local minimax
risk and the global minimax risk match up to constants and this has led researchers
in past work to focus on the global minimax risk.

Recent work by Valiant and Valiant (2017) showed that for goodness-of-fit test-
ing in the TV metric for high-dimensional multinomials, the critical radius can
vary considerably as a function of the null distribution p0. In this case, the local
minimax separation, that is, εn(p0) provides a much more refined notion of the
difficulty of the goodness-of-fit problem. Valiant and Valiant (2017) further pro-
vided a locally minimax test, that is, a test that is nearly-optimal for every possible

null distribution.
Developing refinements to the minimax framework in problems beyond

goodness-of-fit testing is an active area of research. For the problem of two-sample
testing for multinomials, a recent proposal appears in the work of Acharya et al.
(2012). Other works developing a local perspective in testing and estimation in-
clude Donoho and Johnstone (1994), Goldenshluger and Lepski (2011), Cai and
Low (2015), Chatterjee, Guntuboyina and Sen (2015), Wei and Wainwright (2017).
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3. Goodness-of-fit. Let Z1, . . . ,Zn ∼ P where Zi ∈ {1, . . . , d}. Define the
vector of counts (X1, . . . ,Xd) where Xj =

∑n
i=1 I(Zi = j). We consider testing

the simple null hypothesis:

H0 : P = P0 versus H1 : P �= P0.

The most commonly used test statistics are the chi-squared statistic,

Tχ2 =
d∑

j=1

(Xj − np0(j))2

np0(j)
,(3.1)

and the likelihood ratio test (LRT) statistic,

TLRT =
d∑

j=1

p̂(j) log
(

p̂(j)

p0(j)

)
,(3.2)

where p̂(j) = Xj/n. See the book of Read and Cressie (1988) for a variety of
other popular multinomial goodness-of-fit tests. As we show in Section 5, when d

is large, these tests can have poor power. In particular, they are not minimax opti-
mal. Much of the research on tests in the large d setting has focused on establish-
ing conditions under which these statistics have convenient limiting distributions
[see for instance Morris (1975)]. Unfortunately, these conditions are generally not
testable, and they rule out many interesting cases, when test statistics despite not
having a convenient limiting distribution can have high power (see Section 5).

3.1. Globally minimax optimal tests. The global minimax separation rate was
characterized in the works of Paninski (2008), Valiant and Valiant (2017). In par-
ticular, these works show that the global minimax separation rate [see (2.2)] is
given by:

εn ≍
d1/4

√
n

.(3.3)

This implies, surprisingly, that we can have non-negligible power even when
n ≪ d . In the regime when n ≍

√
d most categories of the multinomial are un-

observed, but we can still distinguish any multinomial from alternatives separated
in ℓ1 with high power. In stark contrast, it can be shown that the minimax estima-
tion rate in the ℓ1 distance, is

√
d/n which is much slower than the testing rate.

This is a common phenomenon: hypothesis testing is often easier than estimation.
An important fact, elucidated by the minimax perspective, is that none of the

traditional tests are minimax. A very simple minimax test, from Balakrishnan and
Wasserman (2017) is the truncated χ2 test defined by

(3.4) Ttrunc =
∑

j

(Xj − np0(j))2 − Xj

max{p0(j), 1
d
}

.
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The α level critical value tα is defined by

tα(p0) = inf
{
t : P n

0 (T > t) ≤ α
}
.

Normal approximations or χ2 approximations cannot be used to find tα since the
asymptotics are not uniformly valid over M. However, the critical value tα for
the test can easily be found by simulating from P0. In Section 5 we report some
simulation studies that illustrate the gain in power by using this test.

3.2. Locally minimax optimal tests. In goodness-of-fit testing, some nulls are
easier to test than others. For example, when p0 is uniform the local minimax risk
is quite large and scales as in (3.3). However, when p0 is sparse the problem effec-
tively behaves as a much lower dimensional multinomial testing problem and the
minimax separation can be much smaller. This observation has important practical
consequences. Substantial gains in power can be achieved, by adapting the test to
the shape of the null distribution p0.

Roughly, Valiant and Valiant (2017) showed that the local minimax rate is given
by

εn(p0) ≈

√
V (p0)

n

for a functional V that depends on p0 as

V (p0) ≈ ‖p0‖2/3 =
(

d∑

j=1

p
2/3
0 (j)

)3/2

.

We provide a more precise statement in the Appendix. The fact that the local
minimax rate depends on the 2/3rd norm3 is certainly not intuitive and is an
example of the surprising nature of the results in the world of high-dimensional
multinomials. When p0 is uniform the 2/3rd norm is maximal and takes the value
‖p0‖2/3 =

√
d whereas when p0 = (1,0, . . . ,0) the 2/3rd norm is much smaller,

that is, ‖p0‖2/3 = 1. This means that a test tailored to p0 can have dramatic gains
in power.

Valiant and Valiant (2017) constructed a test that achieves the local minimax
bound. To describe the test we need a few definitions. First, without loss of gener-
ality, assume that p0(1) ≥ p0(2) ≥ · · · ≥ p0(d). Let σ ∈ [0,1] and define the tail
and bulk by

Qσ (p0) =
{
i :

d∑

j=i

p0(j) ≤ σ

}

3We use this terminology for convenience despite the fact that ℓp “norms” do not satisfy the
triangle inequality for 0 < p < 1.
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and

Bσ (p0) =
{
i > 1 : i /∈ Qσ (p0)

}
.

The test is φ = φ1 ∨ φ2 where φ1 = I (T1(σ ) > t1), φ2 = I (T2(σ ) > t2),

T1(σ ) =
∑

j∈Qσ

(
Xj − np0(j)

)
, t1(α,σ ) =

√
nP0(Qσ )

α
,

T2(σ ) =
∑

j∈Bσ

(Xj − np0(j))2 − Xj

p
2/3
0 (j)

, t2(α,σ ) =

√∑
j∈Bσ

2n2p0(j)2/3

α
.

The test may appear to be somewhat complicated but all the quantities are
easy to compute. Furthermore, in practice the thresholds are easily computed
by simulation. Other near-local minimax tests for testing multinomials appear in
Diakonikolas and Kane (2016), Balakrishnan and Wasserman (2017).

A problem with the above test is that there is a tuning parameter σ . Valiant and
Valiant (2017) suggested using σ = ε/8. While this choice is useful for theoretical
analysis it is not useful in practice as it would require knowing how far P is from
P0 if H0 is false. In Balakrishnan and Wasserman (2017) we propose ways to select
the tuning parameter σ in a data-driven fashion. For instance, one might consider a
Bonferroni corrected test. More precisely, let 
 = {σ1, . . . , σN } be a grid of values
for σ . Let φj be the test using tuning parameter σj and significance level α/N .
We then use the Bonferroni corrected test φ = maxj {φj }. It can be shown that,
if 
 is chosen carefully, there is only a small loss of power from the Bonferroni
correction.

3.3. Implications for continuous data. Although the focus of this paper is on
discrete data, we would like to briefly mention the fact that these results have
implications for continuous data. Our discussion is based on Balakrishnan and
Wasserman (2017). We also note the works of Diakonikolas, Kane and Nikishkin
(2015a, 2015b, 2017) which provide minimax optimal tests for various univariate
continuous testing problems with shape constraints.

Suppose that X1, . . . ,Xn ∼ p where p is a density on [0,1]. We want to test
H0 : p = p0. As shown in LeCam (1973) and Barron (1989), the power of any
test over the set {p : TV(p,p0) > ε} is trivial unless we add further assumptions.
For example, suppose we restrict attention to densities p that satisfy the Lipschitz
constraint

∣∣p(y) − p(x)
∣∣ ≤ L|x − y|.

In this case, Ingster (1997) showed that, when p0 is the uniform density, the mini-
max separation rate is εn ≍ n−2/5. The optimal rate can be achieved by binning the
data and using a χ2 test. However, if p0 is not uniform and the Lipschitz constant
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L is allowed to grow with n, Balakrishnan and Wasserman (2017) showed that the
local minimax rate is

εn(p0) ≍
(√

LnT (p0)

n

)2/5
,

where T (p0) ≈
∫ √

p0(x) dx [a more precise statement of this result can be found
in our paper Balakrishnan and Wasserman (2017)]. This rate can be achieved by
using a very careful, adaptive binning procedure, and then invoking the test from
Section 3.2. The proofs make use of some of the tools for high dimensional multi-
nomials described in the previous sections.

The main point here is that the theory for multinomials has implications for con-
tinuous data. It is worth noting that Fienberg and Holland (1973) was one of the
first papers to explicitly link the high-dimensional multinomial problem to contin-
uous problems.

3.4. Testing in other metrics. A natural question is to characterize the depen-
dence of the local minimax separation and the local minimax test on the choice
of metric. We have focused thus far on the TV metric. The paper Daskalakis,
Kamath and Wright (2018) [see also Diakonikolas and Kane (2016)] considers
goodness-of-fit testing in other metrics. They provide results on the global mini-
max separation for the Hellinger, Kullback–Leibler and χ2 metric. In particular,
they show that while the global minimax separation is identical for Hellinger and
TV, this separation is infinite for the Kullback–Leibler and χ2 distance because
these distances can be extremely sensitive to small perturbations of small entries
of the multinomial.

In forthcoming work [Balakrishnan and Wasserman (2018)] we characterize the
local minimax rate in the Hellinger metric for high-dimensional multinomials as
well as for continuous distributions. The optimal choice of test, as well as the local
minimax separation can be sensitive to the choice of metric and (in the continuous
case) to the precise nature of the smoothness assumptions.

Despite this progress, developing a comprehensive theory for minimax testing
of high-dimensional multinomials in general metrics, which provides useful prac-
tical insights, remains an important open problem.

3.5. Composite nulls and imprecise nulls. Now we briefly consider the prob-
lem of goodness-of-fit testing for a composite null. Let P0 ⊂ M be a subset of
multinomials and consider testing

H0 : P ∈ P0 verus H1 : P /∈ P0.

A complete minimax theory for this case is not yet available, but many special
cases have been studied [Batu, Kumar and Rubinfeld (2004), Acharya, Daskalakis
and Kamath (2015), Indyk, Levi and Rubinfeld (2012), Canonne et al. (2016)].
In particular, the work of Acharya, Daskalakis and Kamath (2015), provides
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some results for testing monotonicity, unimodality and log-concavity of a high-
dimensional multinomial. Here, we briefly outline a general approach due to
Acharya, Daskalakis and Kamath (2015).

A natural approach to hypothesis testing with a composite null is to split the
sample, estimate the null distribution using one sample, and then to test goodness-
of-fit to the estimated null distribution using the second sample. In the high-
dimensional setting, we cannot assume that our estimate of the null distribution is
very accurate (particularly in the TV metric). However, as highlighted in Acharya,
Daskalakis and Kamath (2015) even in the high-dimensional setting we can often
obtain sufficiently accurate estimates of the null distribution in the χ2 distance.
This observation motivates the study of the following two-stage approach. Use
half the data to get an estimate p̂0 assuming H0 is true. Now use the other half to
test the imprecise null of the form

H0 : d1(p, p̂0) ≤ θn verus H1 : d(p, p̂0) ≥ εn.

Here, d1 and d are two possibly different metrics (in the case described above d1 is
the χ2-distance and d is TV distance). The distribution p̂0 is treated as fixed. As is
typical, our interest is in ranges of the two critical radii (θn, εn) for which we have
nontrivial power. Acharya, Daskalakis and Kamath (2015) refer to this as “robust
testing” but they are not using the word robust in the usual sense. This imprecise
null testing problem has been studied for a variety of metric choices in Valiant and
Valiant (2011), Acharya, Daskalakis and Kamath (2015), Jiao, Han and Weissman
(2017) and Daskalakis, Kamath and Wright (2018).

Towards developing practical tests for general composite nulls, an important
open problem is to provide nonconservative methods for determining the rejection
threshold for imprecise null hypothesis tests. In the high-dimensional setting we
can no longer rely on limiting distribution theory, and it seems challenging to de-
velop simulation based methods in general. Some alternative proposals have been
suggested for instance in Berger and Boos (1994), but warrant further study in the
high-dimensional setting.

More specific procedures can be constructed based on the structure of P0, and
important special cases of composite null testing such as two-sample testing and
independence testing have been studied in the literature. We turn our attention
towards two-sample testing next.

4. Two sample testing. In this case the data are

Z1, . . . ,Zn1 ∼ P, W1, . . . ,Wn2 ∼ Q

and the hypotheses are

H0 : P = Q versus H1 : P �= Q.
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Let X and Y be the corresponding vectors of counts. First, suppose that n1 =
n2 := n. In this case, Chan et al. (2014) showed that the minimax rate is

(4.1) εn ≍ max
{

d1/2

n3/4 ,
d1/4

n1/2

}
.

The second term in the maximum is identical to the goodness-of-fit rate. In the

high-dimensional case d ≥ n, the minimax separation rate is d1/2

n3/4 , which is strictly
slower than the goodness-of-fit rate. This highlights that, in contrast to the low-
dimensional setting, there can be a price to pay for testing when the null distribu-
tion is not known precisely (i.e., for testing with a composite null).

Chan et al. (2014) also showed that the (centered) χ2 statistic

(4.2) T =
∑

j

(Xj − Yj )
2 − Xj − Yj

Xj + Yj

is minimax optimal. The critical value tα can be obtained using the usual permuta-
tion procedure [Lehmann and Romano (2005)]. It should be noted, however, that
the theoretical results do not apply to the data-based permutation cutoff but, rather,
to a cutoff based on a loose upper bound on the variance of T . In the remainder of
this section we discuss some extensions:

1. Unequal sample sizes: The problem of two-sample testing with unequal sam-
ple sizes has been considered in Diakonikolas and Kane (2016) and Bhattacharya
and Valiant (2015), and we summarize some of their results here. Without loss of
generality, assume that n1 ≥ n2. The minimax rate is

(4.3) εn ≍ max
{

d1/2

n
1/4
1 n

1/2
2

,
d1/4

n
1/2
2

}
.

Note that this rate is identical to the minimax goodness of fit rate from Section 3
when n1 ≥ d . This makes sense since, when n1 is very large, P can be estimated
to high precision and we are essentially back in the simple goodness-of-fit setting.

From a practical perspective, while the papers [Diakonikolas and Kane (2016),
Bhattacharya and Valiant (2015)] propose tests that are near-minimax they are
not tests in the usual statistical sense. They contain a large number of unspecified
constants and it is unclear how to choose the test threshold in such a way that the
level of the test is α. We could choose the constants somewhat loosely then use
the permutation distribution to get a level α test, but it is not known if the resulting
test is still minimax, highlighting an important gap between theory and practice.

2. Refinements of minimaxity: In two-sample testing, unlike in goodness-of-
fit testing, it is less clear how precisely to define the local minimax separation.
Roughly, we would expect that distinguishing whether two samples are drawn from
the same distribution or not should be more difficult if the distributions of the
samples are nearly uniform, than if the distributions are concentrated on a small
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number of categories. Translating this intuition into a satisfactory refined minimax
notion is more involved than in the goodness-of-fit problem.

One such refinement appears in the work of Acharya et al. (2012), who restrict
attention to so-called “symmetric” test statistics (roughly, these statistics are invari-
ant to re-labelings of the categories of the multinomial). Their proposal is in the
spirit of classical notions of adaptivity and oracle inequalities in statistics [see for
instance van de Geer (2016), Donoho et al. (1996) and references therein], where
they benchmark the performance of a test/estimator against an oracle test/estimator
which is provided some side-information about the local structure of the parame-
ter space. Concretely, they compare the separation achieved by χ2-type tests to the
minimax separation achieved by an oracle that knows the distributions P,Q up to
a permutation.

3. Testing continuous distributions: Finally, we note that results for two-sample
testing of high-dimensional multinomials have implications for two-sample testing
in the continuous case. The recent paper of Arias-Castro, Pelletier and Saligrama
(2018) building on work by Ingster (1997), considers two-sample testing of smooth
distributions by reducing the testing problem to an appropriate high-dimensional
multinomial testing problem. Somewhat surprisingly, they observe that at least
under sufficiently strong smoothness assumptions, the minimax separation rate for
two-sample testing matches that of goodness-of-fit testing.

5. Simulations. In this section, we report some simulation studies performed
to illustrate that tests can have high power even when their limiting distributions
are not Gaussian and to illustrate the gains from using careful modifications to
classical tests for testing high-dimensional multinomials.

5.1. Limiting distribution of test statistics. One of the main messages of our
paper is that tests can have high-power even in regimes where their null distribu-
tions are not Gaussian (or more generally well-behaved). As a result, restricting
attention to regimes where the null distribution of a test statistic is well-behaved
can be severely limiting.

As an illustration, we consider goodness-of-fit testing where the null distribution
is a power law, that is, we take p0(i) ∝ 1/i. We will consider a high-dimensional
setting where d = 1000 and n = 400. In this setting, as we will show in Section 5.2,
the χ2-statistic performs poorly but the truncated statistic in (3.4) has high power.
However, as illustrated in Figure 1, in this high-dimensional regime the limiting
distributions of both statistics are quite far from Gaussian. We also observe that
the classical χ2 statistic has a huge variance, which explains its poor power and
motivates our introduction of the truncated χ2 statistic. The truncated χ2 statistic
has a high-power, and achieves the minimax rate for goodness-of-fit testing, and
as illustrated in this simulation has a much better behaved distribution under the
null.
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FIG. 1. A plot of the distribution of the (centered) classical and truncated χ2 test statistics under a

power law null distribution, in the high-dimensional setting where n = 400, d = 1000, obtained via

simulation.

5.2. Testing goodness-of-fit. In this section, we compare the performance of
several goodness-of-fit test statistics. Throughout we take n = 400 and d = 1000.
Closely related simulations appear in our prior work [Balakrishnan and Wasserman
(2017)]. In particular, we compare the classical χ2 statistic in (3.1), the likelihood-
ratio test in (3.2), the truncated χ2 statistic in (3.4) and the two-stage locally min-
imax 2/3rd and tail test described in Section 3.2, with the ℓ1 and ℓ2 test statistics
given as

Tℓ1 =
d∑

i=1

∣∣Xi − np0(i)
∣∣ and Tℓ2 =

d∑

i=1

(
Xi − np0(i)

)2
.

We examine the power of these tests under various alternatives:

1. Minimax alternative: We perturb each entry by an amount proportional to
p0(i)

2/3 with a randomly chosen sign. This is close to the worst-case perturbation
used in Valiant and Valiant (2017) in their proof of the local-minimax lower bound.
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FIG. 2. A comparison between the truncated χ2 test, the 2/3rd + tail test Valiant and Valiant

(2017), the χ2-test, the likelihood ratio test, the ℓ1 test and the ℓ2 test. The null is chosen to be

uniform, and the alternate is either a dense or sparse perturbation of the null. The power of the tests

are plotted against the ℓ1 distance between the null and alternate. Each point in the graph is an

average over 1000 trials. Despite the high-dimensionality (i.e., n = 200, d = 2000) the tests have

high-power, and perform comparably.

2. Uniform dense alternative: We perturb each entry of the null distribution
by a scaled Rademacher random variable. (A Rademacher random variable takes
values +1 and −1 with equal probability.)

3. Sparse alternative: In this case, we essentially only perturb the first two en-
tries of the null multinomial. We increase the two largest entries of the multinomial
and then re-normalize the resulting distribution, this results in a large perturbation
to the two largest entries and a relatively small perturbation to the other entries of
the multinomial.

4. Alternative proportional to null: We perturb each entry of the null distribu-
tion by an amount proportional to p0(i), with a randomly chosen sign.

We observe that the truncated χ2 test and the 2/3rd + tail test from Valiant and
Valiant (2017) are remarkably robust. All tests are comparable when the null is
uniform but the two-stage 2/3rd + tail test suffers a slight loss in power due to the
Bonferroni correction (see Figure 2). We also note that when the null is uniform
the χ2 test, the truncated χ2 test and the ℓ2 test are identical up to centering. The
distinctions between the classical tests and the recently proposed modified tests are
clearer for the power law null. In particular, from the simulation testing a power-
law null against a sparse alternative it is clear that the χ2 and likelihood ratio test
can have very poor power in the high-dimensional setting. The ℓ2 test appears
to have high-power against sparse alternatives but performs poorly against dense
alternatives suggesting potential avenues for future investigation.

5.3. Two-sample testing. Finally, we turn our attention to the problem of two-
sample testing for high-dimensional multinomials. We compare three different test
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statistics, the two-sample χ2 statistic (4.2), the ℓ1 and ℓ2 statistics:

Tℓ1 =
d∑

i=1

∣∣∣∣
Xi

n1
−

Yi

n2

∣∣∣∣, Tℓ2 =
d∑

i=1

(
Xi

n1
−

Yi

n2

)2

and an oracle goodness-of-fit statistic. The oracle has access to the distribution P

(and ignores the first sample) and tests goodness-of-fit using the second sample. In
our simulations, we use the truncated χ2 test for goodness-of-fit.

Motivated by our simulations in the previous section, we consider the following
pairs of distributions in the two-sample setup:

1. Uniform P , dense perturbation Q: We take the distribution P to be uniform
and the distribution Q to be the distribution where we perturb each entry of P by
a scaled Rademacher random variable.

2. Power-law P , sparse perturbation Q: Noting the difficulty faced by classical
tests for goodness-of-fit testing of a power law versus a sparse perturbation (see
Figure 3) we consider a similar setup in the two-sample setting. We take each entry
p(i) ∝ 1/i and take q(i) to be the sparse perturbation described previously (where
the two largest entries are perturbed by a relatively large magnitude).

3. Minimax P,Q: This construction is inspired by the work of Batu et al.
(2000), and is used in their construction of a minimax lower bound for two-sample
testing in the high-dimensional setting (i.e., when d ≫ max{n1, n2}).

For a prescribed separation ε, with probability n1/(2d) we choose p(i) =
q(i) = 1/n1 and with probability 1 − n1/(2d) we choose p(i) = 1/(2d) and
q(i) = 1/(2d)+ εRi/(2d), where the Ri denote independent Rademacher random
variables. Both distributions are then normalized.

Roughly, the two distributions contain a mixture of heavy elements of mass
1/n1 and light elements of mass close to 1/d . The two distributions have ℓ1 dis-
tance close to ε and the insight of Batu et al. (2000) is that in the two-sample
setting is quite difficult to distinguish between variations in observed frequencies
due to the perturbation of the entries and due to the random mixture of heavy and
light entries.

In each case, the cut-off for the tests is determined via the permutation method.
The balanced case: In this case, we set n1 = n2 = 200 and d = 400. We ob-

serve in Figure 4 that there is a clear and significant loss in power relative to the
goodness-of-fit oracle, indicating the increased complexity of two-sample testing
in the high-dimensional setup. We note that, as is clear from the minimax sep-
aration rate we do not expect any loss in power in the low-dimensional setting.
The loss in power is exacerbated when we consider the minimax two-sample pair
(P,Q) described above. We also note that the loss in power is negligible for the
power law pair of distributions: due to the rapid decay of their entries these multi-
nomials can be well estimated from a small number of samples.
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FIG. 3. A comparison between the truncated χ2 test, the 2/3rd + tail test [Valiant and Valiant

(2017)], the χ2-test, the likelihood ratio test, the ℓ1 test and the ℓ2 test. The null is chosen to be a

power law with p0(i) ∝ 1/i. We consider four possible alternatives, the first uniformly perturbs the

coordinates, the second is a sparse perturbation only perturbing the first two coordinates, the third

perturbs each co-ordinate proportional to p0(i)2/3 and the final setting perturbs each coordinate

proportional to p0(i). The power of the tests are plotted against the ℓ1 distance between the null and

alternate. Each point in the graph is an average over 1000 trials.

The imbalanced case: In this case, we set n1 = 2000, n2 = 200 and d = 400.
The χ2 statistic for two-sample testing in the imbalanced case is given by

T =
d∑

i=1

(n2Xi − n1Yi)
2 − n2

2Xi − n2
1Yi

Xi + Yi

,

where we follow Bhattacharya and Valiant (2015) and use a slightly modified cen-
tering of the usual χ2 statistic. Since the χ2-statistic is minimax optimal in the
balanced case, one might conjecture that this continues to be the case in the im-
balanced case. However, as our simulations suggest this is not the case. Somewhat
surprisingly, the performance of the χ2 statistic can degrade when one of the sam-
ple sizes is increased (see Figure 5). The ℓ1 statistic on the other hand appears to
be perform as expected, i.e. its power is close to that of the oracle goodness-of-fit
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FIG. 4. A comparison between the χ2 test, the ℓ1 test, the ℓ2 test, and the (oracle) goodness-of-fit

test. In the three settings, the two distributions are chosen as described in the text (the distribution

P is chosen to be either uniform, power-law or minimax). The power of the tests are plotted against

the ℓ1 distance between P and Q. The sample sizes from P and Q are taken to be balanced and are

each equal to 200. Each point in the graph is an average over 1000 trials.

test in the case when one of the sample sizes is very large, and we believe that this
statistic warrants further study.

6. Discussion. Despite the fact that discrete data analysis is an old subject, it
is still a vibrant area of research and there is still much that we don’t know. Steve
Fienberg showed prescience in drawing attention to one of the thorniest issues:
understanding high-dimensional multinomials.

Much of the statistical literature has dealt with the high-dimensional case by
imposing assumptions on the distribution so that simple limiting distributions can
be obtained. Doing so gives up the most appealing property of multinomial infer-
ence: it is completely distribution-free. As we have seen in this paper, recent work
by a variety of communities has developed new and rather surprising theoretical
results. What is often missing in the recent literature is the appreciation that statis-
ticians want tests with precise control of the type I error rate. As a result, there
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FIG. 5. A comparison between the χ2 test, the ℓ1 test, the ℓ2 test and the (oracle) goodness-of-fit

test. In the three settings, the two distributions are chosen as described in the text (the distribution P

is chosen to be either uniform, power-law or minimax). The power of the tests are plotted against the

ℓ1 distance between P and Q. The sample sizes from P and Q are taken to be imbalanced, that is,
we take n1 = 2000 and n2 = 200. Each point in the graph is an average over 1000 trials.

remain gaps between theory and practice. This issue is particularly significant in
settings with general composite or imprecise null hypotheses where methods based
on simulation are not directly applicable.

As alluded to earlier other directions of future research include: developing
tractable and interesting refinements of the minimax framework in problems be-
yond goodness-of-fit testing as well as developing a precise and broad understand-
ing of the role of the geometry of the null and alternate sets of distributions in
determining both the minimax rates and well as the optimal tests. From a practical
standpoint, we believe it would be fruitful to develop a deeper understanding of
the middle-ground between minimax-tests that are designed to have power against
a large class of alternatives, and so-called “tailor-made tests” [Bickel, Ritov and
Stoker (2006)] which are designed to have much higher power against a narrow
class of alternatives.

We have focused on goodness of fit and two sample problems. There is a rich
literature on other problems such as independence testing and testing shape con-
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straints [Diakonikolas and Kane (2016), Acharya, Daskalakis and Kamath (2015),
Diakonikolas, Kane and Nikishkin (2015a, 2015b, 2017)]. As we discussed ear-
lier, Balakrishnan and Wasserman (2017) showed that these new results for high-
dimensional discrete data have implications for continuous data. There is much
more to say about this and this is a direction that we are actively pursuing. It would
also be interesting to explore the extent to which these results for high-dimensional
discrete testing can lead to advancements in other parametric, combinatorial or
high-dimensional structured testing problems [Addario-Berry et al. (2010), Arias-
Castro, Candès and Durand (2011), Berthet and Rigollet (2013), Ingster, Tsybakov
and Verzelen (2010), Donoho and Jin (2004)]. Finally, we have restricted attention
in this paper to hypothesis testing. In future work, we will report results on high-
dimensional inference using confidence sets and point estimation.

APPENDIX

Here we describe the local minimax results for goodness of fit testing more pre-
cisely. Without loss of generality we assume that the entries of the null multinomial
p0 are sorted so that p0(1) ≥ p0(2) ≥ · · · ≥ p0(d). For any 0 ≤ σ ≤ 1 we denote
σ -tail of the multinomial by:

Qσ (p0) =
{
i :

d∑

j=i

p0(j) ≤ σ

}
.(A.1)

The σ -bulk is defined to be

Bσ (p0) =
{
i > 1 : i /∈ Qσ (p0)

}
.(A.2)

Note that i = 1 is excluded from the σ -bulk. The minimax rate depends on the
functional

Vσ (p0) =
( ∑

i∈Bσ (p0)

p0(i)
2/3

)3/2
.(A.3)

Define, ℓn and un to be the solutions to the equations

ℓn(p0) = max
{

1

n
,

√
Vℓn(p0)(p0)

n

}
,

un(p0) = max
{

1

n
,

√
Vun(p0)/16(p0)

n

}
.

(A.4)

With these definitions in place, we are now ready to state the result of Valiant and
Valiant (2017). We use c1, c2,C1,C2 > 0 to denote positive universal constants.

THEOREM A.1 [Valiant and Valiant (2017)]. The local critical radius

εn(p0,M) for multinomial testing is upper and lower bounded as

c1ℓn(p0) ≤ εn(p0,M) ≤ C1un(p0).(A.5)
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Furthermore, the global critical radius εn(M) is bounded as

c2d
1/4

√
n

≤ εn(M) ≤
C2d

1/4

√
n

.
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