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Consider an Ornstein-Uhlenbeck process driven by a fractional Brownian motion. It is an
interesting problem to find criteria for whether the process is stable or has a unit root, given a
finite sample of observations. Recently, various asymptotic distributions for estimators of the drift
parameter have been developed.We illustrate through computer simulations and through a Stein’s
bound that these asymptotic distributions are inadequate approximations of the finite-sample
distribution formoderate values of the drift and the sample size.We propose a newmodel to obtain
asymptotic distributions near zero and compute the limiting distribution. We show applications to
regression analysis and obtain hypothesis tests and their asymptotic power.

1. Introduction

Stability properties of the ordinary differential equation x′(t) = θx(t) depend on the sign of
the parameter θ: the equation is asymptotically stable if θ < 0, neutrally stable if θ = 0, and
instable if θ > 0. These stability results carry over to the stochastic process

X(t) = X(0) + θ

∫ t

0

X(s)ds + Z(t), (1.1)

driven by noise Z = Z(t). When the value of θ is not known and a trajectory of X = X(t) is
observed over a finite time interval t ∈ [0, T], a natural problem is to develop the zero-root
test, that is, a statistical procedure for testing the hypothesis θ = 0 versus one of the possible
alternatives θ /= 0, θ > 0, or θ < 0. While the classical solution to this problem is wellknown (to
use the maximum likelihood estimator (MLE) of the parameter θ as the test statistic), further
analysis is necessary because the exact distribution of the MLE is usually too complicated
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to allow an explicit computation of either the critical region or the power of the test. More
specifically, an approximate distribution of the MLE must be introduced and investigated,
both in the finite-sample asymptotic and in the limit T → ∞. There are other potential
complications, such as when MLE is not available (e.g., if Z is a stable Lévy process, see
[1]) or when the MLE is difficult to implement numerically (e.g., if Z is a fractional Brownian
motion, see [2]).

The objective of this work is the analysis and implementation of the zero root test for
(1.1) when Z = W (H), the fractional Brownian motion with the Hurst parameter H, and
1/2 ≤ H < 1. When 0 < H < 1/2, the integral transformation of Jost [3, Corollary 5.2] reduces
the corresponding model back toH ≥ 1/2 (see [2]).

Recall that the fractional BrownianmotionW (H) = W (H)(t), t ≥ 0, is a Gaussian process
withW (H)(0) = 0, mean zero, and covariance

E

(
W (H)(t)W (H)(s)

)
=

1

2

(
|s|2H + |t|2H − |t − s|2H

)
:= RH(t, s). (1.2)

Direct computations show that, for every continuous process Z, (1.1) has a closed-form
solution that does not involve stochastic integration

X(t) = X(0)eθt + Z(t) − Z(0) + θ

∫ t

0

eθ(t−s)Z(s)ds. (1.3)

When Z = W (H), let X(H) denote the corresponding fractional Ornstein-Uhlenbeck process:

X(H)(t) = X(H)(0)eθt +W (H)(t) + θ

∫ t

0

eθ(t−s)W (H)(s)ds, (1.4)

and let U
(H)

θ
= U

(H)

θ
(t) (now with explicit dependence on the parameter θ) denote the

particular case of (1.4)with zero initial condition:

U
(H)

θ (t) = W (H)(t) + θ

∫ t

0

eθ(t−s)W (H)(s)ds. (1.5)

Define random variables

θ̃T,H =

(
X(H)(T)

)2 −
(
X(H)(0)

)2

2
∫T
0

(
X(H)(t)

)2
dt

−
(

1

HΓ(2H)T

∫T

0

(
X(H)(t)

)2
dt

)−1/2H

, (1.6)

ΨH,c =

(
U

(H)
c (1)

)2

2
∫1
0

(
U

(H)
c (t)
)2
dt

−
(

1

HΓ(2H)

∫1

0

(
U

(H)
c (t)
)2
dt

)−1/2H

, (1.7)
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where c ∈ R. To motivate the main result of this paper, note that if H = 1/2, then θ̃T,1/2 is the
maximum likelihood estimator of θ based on the observations (X(1/2)(t), 0 ≤ t ≤ T) (see [4],
Section 17.3):

θ̃T,1/2 =

(
X(1/2)(T)

)2 −
(
X(1/2)(0)

)2 − T

2
∫T
0

(
X(1/2)(t)

)2
dt

=

∫T
0
X(1/2)(t)dX(1/2)(t)
∫T
0

(
X(1/2)(t)

)2
dt

. (1.8)

While the exact distribution of θ̃T,1/2 is not known, the following asymptotic relations hold as
T → ∞:

√
|θ|T
(
θ̃T,1/2 − θ

) L−→ N
(
0, 2θ2
)
, θ < 0, (1.9)

Tθ̃T,1/2
L−→ Ψ1/2,0, θ = 0, (1.10)

eθT
(
θ̃T,1/2 − θ

) L−→ 2θC(1), θ > 0, X(1/2)(0) = 0, (1.11)

where N is the normal distribution, Ψ1/2,0 is from (1.7) with H = 1/2 and b = 0, and C(1) is
the standard Cauchy distribution with probability density function 1/(π(1 + x2)), x ∈ R.

While (1.10) suggests that the distribution Ψ1/2,0 can be used to construct an
asymptotic zero-root test, it turns out that neither (1.9) nor (1.11) is a good choice for
analyzing the power of the resulting test for small values of the product θT . There are two
reasons: (a) both (1.9) and (1.11) suggest that the product θT should be sufficiently large
for the corresponding approximation to work; (b) it follows from (1.9)–(1.11) that the limit

distribution of the appropriately normalized residual θ̃T,1/2 −θ has a discontinuity near θ = 0,

while, by (1.6), the distribution of θ̃T,1/2 − θ is a continuous function of θ for each fixed T > 0.
Further discussion of the finite sample statistical inference is in Sections 2 and 3. In particular,
Table 1 and Figure 1 in Section 3 provide some numerical results when θ < 0.

It is therefore natural to derive a different family of asymptotic distributions, one that
depends continuously on the parameter θ near θ = 0. To this end, let θ = θ(T) depend on the
observation time T and limT →∞θ(T) = 0. Then, for each fixed T , equality (1.4) still defines
the fractional Ornstein-Uhlenbeck process, but the asymptotic behavior of the estimator (1.8)
changes.

The following is the main result of the paper.

Theorem 1.1. Assume that 1/2 ≤ H < 1, and let θ = θ(T) be a family of parameters such that

limT →∞Tθ(T) = c for some c ∈ R. Then, as T → ∞, θ̃T,H → 0 with probability one and

Tθ̃T,H
L−→ ΨH,c. (1.12)

The proof is given in Section 3. The almost sure convergence can be shown using the
law of iterated logarithm. To proof (1.12), we first show asymptotic properties of individual

terms of the estimator θ̃T,H . Finally, we combine these results using the continuous mapping
theorem.



4 International Journal of Stochastic Analysis

Table 1: P values (in %) for test of normality (Jarque-Bera test) with H = 0.6. Sample size is 1000 for each
P value. Only when θ = −3 and T = 200 or θ = −5 and T = 100, normality gets not rejected at the 5%
significance level.

θ \ T 25 50 100 200

−0.01 <0.1 <0.1 <0.1 0.40

−1 <0.1 <0.1 <0.1 1.26

−3 <0.1 <0.1 2.25 15.58

−5 <0.1 2.45 5.56 50
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Figure 1: Quantile-quantile plot of 1000 samples of
√
T(θ̃T,H − θ) versus standard normal distribution with

θ = −0.5 on the left and θ = −5 on the right, T = 25 andH = 0.7. If the distribution is normal, the simulated
points should lay on the dotted red line. The left plot suggests that the sample data are not normally
distributed. The right plot suggests that the data is approximately normally distributed.

An alternative least-squares type estimator has been considered in [5] and is given by

θ̂T,H =

∫T
0
X(H)(t)dX(H)(t)
∫T
0

(
X(H)(t)

)2
dt

=

∫T
0
X(H)(t)dW (H)(t)
∫T
0

(
X(H)(t)

)2
dt

+ θ. (1.13)

The stochastic integral in (1.13) is understood as divergence integral for H > 1/2 (see
Section 3) and as Itô integral forH = 1/2. A serious drawback of this estimator is that, unless

H = 1/2, there is no computable representation of θ̂T,H given the observations (X(H)(t),
0 ≤ t ≤ T) because there is no known way to compute the divergence integral. If H = 1/2,

then θ̂T,1/2 = θ̃T,1/2 and is computable.
Nonetheless, there is an analogue of Theorem 1.1 for all H ≥ 1/2. To state the result,

define the random variable

ΠH,c =

(
(U(H)(1)

)2−1F1(2H − 1, 2H + 1, c)

2
∫T
0

(
U(H)(t)

)2
dt

, (1.14)

where c ∈ R and 1F1(a, b, z) is Kummer’s hypergeometric function, see Section 3 for details.
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Theorem 1.2. Assume that 1/2 ≤ H < 1, and let θ = θ(T) be a family of parameters such that

limT →∞Tθ(T) = c for some c ∈ R. Then, as T → ∞, θ̂T,H → 0 with probability one and

Tθ̂T,H
L−→ ΠH,c. (1.15)

The proof is given in Section 3. The almost sure convergence can be shown using the

law of iterated logarithm. To proof (1.15), we first find a different representation of θ̂T,H .
Then, we use asymptotic distributions of individual terms and combine these results using
the continuous mapping theorem.

2. Strong Consistency and Large-Sample Asymptotic

In this section, we study the asymptotic behavior as T → ∞ of estimator θ̃T,H given by (1.6).
First, we show that it is a strongly consistent estimator of the parameter θ ∈ R. Consistency
is a minimum requirement for any statistic to be of practical use for estimating parameter
θ. Moreover, we derive its rate of convergence and corresponding limit theorems. Finally,
we illustrate some estimation problems if θT is small through a Stein’s bound and computer
simulations.

2.1. Strong Consistency

We show that the estimator θ̃T,H is a strongly consistent estimator of θ, that is, for all θ ∈ R,

lim
T →∞

θ̃T,H = θ (2.1)

with probability one.

Theorem 2.1. Let 1/2 ≤ H < 1 and X(H) = X(H)(t) be the fractional Ornstein-Uhlenbeck process

defined in (1.4). Then, θ̃T,H defined in (1.8) is a strongly consistent estimator of θ.

Proof. If θ < 0 and X(H)(0) = 0, then, by [6, Lemma 3.3],

lim
T →∞

1

T

∫T

0

(
X(H)(t)

)2
dt = θ−2HHΓ(2H) (2.2)

with probability one; analysis of the proof shows that (2.2) also holds whenX(H)(0)/= 0. Also,

lim
T →∞

(
X(H)(T)

)2 −
(
X(H)(0)

)2

2
∫T
0

(
X(H)(t)

)2
dt

= 0 (2.3)

with probability one, see ([6], the remark after the proof of Theorem 3.4). Then, (2.1) follows
from (2.2) and (2.3).
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If θ > 0 and X(H)(0) = 0, then, by [7, Theorem 1],

lim
T →∞

(
X(H)(T)

)2

2
∫T
0

(
X(H)(t)

)2
dt

= θ (2.4)

with probability one; analysis of the proof shows that (2.4) also holds whenX(H)(0)/= 0. Also,
by [7, Lemmas 2 and 3], the finite limit

ξ = lim
t→∞

∫ t

0

e−θsdW (H)(s) (2.5)

exists with probability one. Therefore,

lim
t→∞

e−2θt
∫ t

0

(
X(H)(s)

)2
ds

= lim
t→∞

e−2θt
∫ t

0

e2θs
(
X(H)(0) +

∫s

0

e−θrdW (H)(r)

)2

ds

=

(
X(H)(0) + ξ

)2

2θ
,

lim
T →∞

(
1

HΓ(2H)T

∫T

0

(
X(H)(t)

)2
dt

)−1/2H

= 0,

lim
T →∞

(
X(H)(0)

)2

2
∫T
0

(
X(H)(t)

)2
dt

−→ 0,

(2.6)

all with probability one, and (2.2) follows.
If θ = 0, then X(H)(t) = X(H)(0) + W (H)(t), and the law of iterated logarithm for self-

similar Gaussian processes [8, Corollary 3.1] implies that

lim
T →∞

(
W (H)(T)

)2

T2H+ε
= 0 (2.7)

with probability one for every ε > 0 and

lim sup
T →∞

1

T2H ln ln T

∫1

0

(
W (H)(Ts)

)2
ds < ∞. (2.8)

Since
∫T
0
(W (H)(t))2dt = T

∫1
0
(W (H)(Ts))2ds, equality (2.1) follows.
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2.2. Convergence Rates and Asymptotic Distributions

We have the following asymptotic distributions and convergence rates of θ̃T,H .

Theorem 2.2. As T → ∞,

√
|θ|T
(
θ̃T,H − θ

) L−→ N
(
0,

θ2

(2H)2
σ2
H

)
, θ < 0, H ∈

[
1

2
,
3

4

)
, (2.9)

Tθ̃T,H
L−→ ΨH,0, θ = 0, (2.10)

eθT
(
θ̃T,H − θ

) L−→ 2θ
η1

η2 +X(H)(0)bH
, θ > 0, (2.11)

with

σ2
H := (4H − 1)

(
1 +

Γ(3 − 4H)Γ(4H − 1)

Γ(2 − 2H)Γ(2H)

)
, bH :=

θH

√
HΓ(2H)

, (2.12)

and η1 and η2 are independent standards normally distributed.

Proof. Set

A(T) =

(
X(H)(T)

)2 −
(
X(H)(0)

)2

2
∫T
0

(
X(H)(t)

)2
dt

, (2.13)

B(T) =

(
1

HΓ(2H)T

∫T

0

(
X(H)(t)

)2
dt

)−1/2H

. (2.14)

Then, θ̃T,H = A(T) − B(T).

Case θ < 0: by [5, Theorem 4.1], we have
√
T(B(T) + θ)

L−→ N(0, (|θ|/(2H)2)σ2
H)

if H ∈ (1/2, 3/4). Hence, for (2.9), it is enough to show that
√
TA(T) → 0. We have

(1/T)
∫T
0
(X(H)(t))2dt → θ−2HHΓ(2H) as T → ∞. By ([5], (3.7)) combined with [5, Corollary

5.2] in the web-only appendix, it follows that (X(H)(T))2/
√
T → 0 almost surely, and the

result follows.
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Case θ > 0: from [7, Theorem 5], with the obvious modification to nonzero initial
condition, eθTA(T) → 2θη1/(η2 +X

(H)(0)bH), with bH defined in (2.12). Moreover, using the
first convergence in (2.6) and 1/H > 1,

eθTB(T) = eθT
(

1

HΓ(2H)T

∫T

0

(
X(H)(t)

)2
dt

)−1/2H

= eθTe−θT/H(HΓ(2H)T)1/2H
(
e−2θT
∫T

0

(
X(H)(t)

)2
dt

)−1/2H

= e−(1/H−1)θT(HΓ(2H)T)1/2H
(
e−2θT
∫T

0

(
X(H)(t)

)2
dt

)−1/2H

→ 0,

(2.15)

almost surely, as T → ∞.
Case θ = 0: the convergence in (2.10) follows from Theorem 1.1, which is proved later.

2.3. A Stein’s Bound

While both (2.9) and (2.11) suggest that the rate of convergence is determined by the product
|θ|T , more precise estimates are possible when θ < 0 and H = 1/2.

IfH = 1/2, then (1.8) implies that

√
T
(
θ̃T − θ

)
=

T−1/2 ∫T
0
X(t)dW(t)

T−1
∫T
0
X2(t)dt

, (2.16)

where W = W (1/2) is the standard Brownian motion, X = X(1/2) is the corresponding

Ornstein-Uhlenbeck process, and θ̃T = θ̃T,1/2. In the following, we show that, when θ < 0 and
H = 1/2, the rate of convergence of (a) the numerator of (2.16) to the normal distribution
and (b) the denominator of a constant indeed depends on how large the term |θ|T is. For (a),
we use elements of Stein’s method on Wiener chaos (see [9]). To simplify the notations, we
switch from θ to −θ and assume zero initial condition, that is, we consider

X(t) = −θ
∫ t

0

X(s)ds +W(t), X(0) = 0, (2.17)

where θ > 0.
For random variables (X,Y ) on (Ω,F,P), we define the total variation distance

‖L(X) − L(Y )‖TV := sup
A∈F

|P(X ∈ A) − P(Y ∈ A)|. (2.18)
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Note that

(
T

2θ

)1/2(
θ̃T − θ

)
= −

(2θ/T)1/2
∫T
0
X(t)dW(t)

(2θ/T)
∫T
0
X(t)2dt

= −
(2θ/T)1/2

∫T
0

∫ t
0
e−θ(t−s)dW(s)dW(t)

(2θ/T)
∫T
0
X(t)2dt

= −
(θ/2T)1/2I2

(
e−θ|t−s|

)

(2θ/T)
∫T
0
X(t)2dt

,

(2.19)

where I2(f(s, t)) = 2
∫T
0

∫ t
0
f(s, t)dW(s)dW(t), denotes the iterated Wiener integral for

symmetric square integrable functions f(s, t). Then one can see that the numerator

FT :=

(
θ

2T

)1/2

I2
(
e−θ|t−s|

)
(2.20)

converges to a normal distribution, and the denominator

IT :=

(
2θ

T

)∫T

0

X2
t dt (2.21)

converges to a constant, both almost surely and in mean square.
By an estimate from [10, Section 2], we get, using an application of Chebyshev’s

inequality,

P{|IT − 1| ≥ δ} ≤ 2

δ2

⎧
⎨
⎩

4
(
2θT − 1 + e−2θT

)

4θ2T2
+
3
(
1 − e−2θT

)2

4θ2T2

⎫
⎬
⎭ ≤ C

δ2
min

(
1,

1

θT

)
. (2.22)

Thus the convergence of the denominator depends on the size of θT . For the numerator, we
need some additional computations to get the rate of convergence to the normal.

Note that FT is in the second Wiener chaos of W , see ([5], Section 1.1.2) for Wiener
chaos for the white noise case. Hence, by [9], Theorem 1.5], we have

‖L(FT ) − L(Z)‖TV ≤ 2

√
1

6

∣∣E
(
F4
T

)
− 3
∣∣ +

3 + E
(
F2
T

)

2

∣∣E
(
F2
T

)
− 1
∣∣, (2.23)

where Z is a generic standard normally distributed random variable.
We have

E

(
I2
(
e−θ|t−s|

))2
= E

(
2

∫T

0

XtdWt

)2

= 4E

∫T

0

X2
t dt = 4

∫T

0

1 − e−2θt

2θ
dt

=
2

θ

(
T − 1 − e−2θT

2θ

)
.

(2.24)
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Therefore,

E

(
F2
T

)
=

(
θ

2T

)
E

(
I2
(
e−θ|t−s|

))2
=

(
θ

2T

)
2

θ

(
T − 1 − e−2θT

2θ

)

= 1 − 1 − e−2θT

2Tθ
,

(2.25)

that is,

∣∣∣E
(
F2
T

)
− 1
∣∣∣ ≤ C min

(
1,

1

θT

)
. (2.26)

We also obtain

E

(
F4
T

)
=

(
θ

2T

)2

E

(
I2
(
e−θ|t−s|

)4)
=

(
θ

2T

)2
{[

E

(
I2
(
e−θ|t−s|

)2)]2
3

+3
4e−2θT

(
4θ2T2 + 10θT + 7

)
+ (20θT − 29) + e−4θT

θ4

}

= 3
[
E

(
F2
T

)]2
+ 3

(
θ

2T

)2 4e−2θT
(
4θ2T2 + 10θT + 7

)
+ (20θT − 29) + e−4θT

θ4

= 3

[
1 − 1 − e−2θT

2θT

]2
+ 3

4e−2θT
(
4θ2T2 + 10θT + 7

)
+ (20θT − 29) + e−4θT

4θ2T2
,

(2.27)

that is,

∣∣∣E
(
F4
T

)
− 3
∣∣∣ ≤ Cmin

(
1,

1

θT

)
. (2.28)

Combining (2.26), (2.28), and (2.23), we finally conclude that

‖L(FT ) − L(Z)‖TV ≤ Cmin

(
1,

1√
θT

)
, (2.29)

An explicit value of C can be recovered from the above computations.

2.4. Computer Simulations

Both (2.22) and (2.29) suggest that the distribution of θ̃T,H will be rather different from normal
for moderate values of 1/

√
θT . This conclusion is consistent with Monte Carlo simulations: if

θ = 1 and T = 200 (so that 1/
√
θT ≈ 1/14, moderate indeed), then the normality assumption

for θ̃T,H is rejected at the significance level 5%, see Table 1.
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In the next section, we study the asymptotic distribution of the statistic θ̃T,H and obtain

a better finite-sample distribution approximation of θ̃T,H .

3. Finite-Sample Approximation and Hypothesis Testing

In this section, we develop approximations of the finite-sample distribution of the estimator
which are different from (2.9) and (2.11). The approximate distribution is continuous as a
function of the suitable parameter and, according to Monte Carlo simulations, works well
when (2.9) and (2.11) do not.

As a motivation, recall an analogous result for the first-order stochastic difference
equation

yn = αyn−1 + en, n = 1, . . . ,N, (3.1)

where en are i.i.d. normally distributed random variables with mean zero and variance 1, and
α is an unknown parameter. The maximum likelihood estimator is the least-squares estimator
(see [11]):

α̂N =
N∑

n=1

ynyn−1

(
N∑

n=1

y2
n−1

)−1

. (3.2)

It is known that α̂T is consistent estimator of α, that is, limN→∞α̂N = α in probability.
Moreover, the asymptotic distribution as N → ∞ of α̂n is given by

√
N(α̂N − α)

L−→ N
(
0,
(
1 − α2

))
, |α| < 1, (3.3)

Nα̂N
L−→ 1 − (W1)

2

2
∫1
0 (Wu)

2du
, α = 1, (3.4)

|α|N

α2 − 1
(α̂N − α)

L−→ C(1), |α| > 1. (3.5)

Equation (3.3) has been proven in [11], and (3.4) and (3.5) in [12]. Several authors deal with
asymptotic distributions in the case that α is near 1, which has been extensively studied in
[13–15]. The idea is to choose the parameter c according to

α = α(N) = exp
( c

N

)
, (3.6)

whereN is the sample size. Note that this family of parameters satisfy limN→∞α(N) = 1 and
limN→∞N(α(N) − 1) = c, where c < 0 corresponds to stationary case, c = 0 corresponds to
the unit root, and c > 0 corresponds to explosive case. The distribution of Nα̂N converges to
a functional of the Ornstein-Uhlenbeck process, see [13, Theorem 1(b)]:

Nα̂N
L−→ Ψ1/2,c, α ∈ R, (3.7)
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where Ψ1/2,c is given in (1.7) with H = 1/2, leading to a better asymptotic distribution than
(3.3) and (3.5) for moderate values of α and N.

The results in Section 2 suggest that, whenever the product |θ|T is small, continuous-
time analogues of (3.6) and (3.7) are necessary, which needs a better understanding of
stochastic integration with respect to the fractional Brownian motion. This understanding
is necessary both to further analyze (1.6) and to establish the connection between (1.6) and
(1.13). Similar to [5, 16, 17], we follow the Malliavin calculus approach.

3.1. Stochastic Integration with respect to Fractional Brownian Motion

As before, denote that W (H) = W (H)(t) is a fractional Brownian motion with index H ∈
[1/2, 1). It can be shown that W (H) has stationary increments, and it is self-similar, in the
sense that for every c > 0,

{
W (H)(ct), t ≥ 0

} L
=
{
cHW (H)(t), t ≥ 0

}
. (3.8)

Assume furthermore that the sigma-field F is generated by W (H)(t). Let E be the set of real-
valued step functions on [0, T], and let H be the real separable Hilbert space defined as the
closure of Ewith respect to the scalar product

〈
1[0,t], 1[0,s]

〉
H = RH(t, s), (3.9)

and denote by W (H)(h) the image of an element h ∈ H under the map W (H) : H → L2(Ω).
The space H is not only a space of functions, but it also contains distributions, see [18].

Let S denote the space of smooth and cylindrical random variables of the form

F = f
(
W (H)(h1), . . . ,W

(H)(hn)
)
, hi ∈ H, (3.10)

where f ∈ C∞
p (Rn), the space of infinitely differentiable functions f : R

n → R, where f and
all its derivatives have at most polynomial growth.

Define the derivative operator of such F as the H-valued random variable

D(H)F =
n∑

j=1

∂f

∂xj

(
W (H)(h1), . . . ,W

(H)(hn)
)
hj . (3.11)

The derivative operator D(H) is a closable unbounded operator from Lp(Ω,F,P) to
Lp(Ω,F,P;H) for any p ≥ 1. Define as D

H,1,p(H), p ≥ 1, the closure of S with respect to the
norm

‖F‖p1,p = ‖F‖pLp(Ω)
+ ‖DF‖pLp(Ω;H)

. (3.12)
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Denote by δ(H) the adjoint of the operator D(H). The domains dom(δ(H)) are all u ∈
L2(Ω,F,P;H) such that there exists a constant C > 0,

∣∣∣∣
〈
D(H)F, u

〉
L2(Ω;H)

∣∣∣∣ ≤ C‖F‖L2(Ω), ∀F ∈ S. (3.13)

For an element u ∈ dom(δ(H)), we can define δ(H)(u) through the relationship

〈
F, δ(H)(u)

〉
L2(Ω)

=
〈
D(H)F, u

〉
L2(Ω;H)

, ∀F ∈ D
H,1,2(H). (3.14)

In [5, Proposition 1.3.1], it is shown that for any u ∈ D
H,1,2(H),

∥∥∥δ(H)(u)
∥∥∥
L2(Ω;H)

≤ ‖u‖1,2, (3.15)

and hence, the space D
H,1,2(H) is contained in dom(δ). In fact, for any simple function F ∈

D
H,1,2(H) of the form

F =
n∑

i=1

Fihi, Fi ∈ S, hi ∈ H, i = 1, . . . , n, (3.16)

we have

δ(H)(F) =
n∑

i=1

FiW
(H)(hi) −

n∑

i=1

〈
D(H)Fj , hj

〉
L2(Ω;H)

. (3.17)

For any u ∈ dom(δ(H)), we call δ(H)(u) the divergence integral and write

δ(H)(u) =

∫T

0

u(t)dW (H)(t). (3.18)

Let f, g : [0, T] → R be Hölder continuous functions of order α ∈ (0, 1), and β ∈
(0, 1) respectively, with α + β > 1. Young [19] proved that the Riemann-Stieltjes integral (now

known as the Young integral)
∫T
0
f(s)dg(s) exists. Accordingly, for H > 1/2, we can define

the pathwise Young integral for any process u = {u(t), 0 ≤ t ≤ T} that has Hölder-continuous
paths of order α > 1 −H by

∫T

0

u(t) ◦ dW (H)(t) = lim
n→∞

n−1∑

i=0

u(ti)
(
W (H)(ti+1) −W (H)(ti)

)
, in L2(Ω), (3.19)

where 0 = t0 ≤ · · · ≤ tn = T is any partition such that maxi|ti+1 − ti| → 0 as n → ∞. In
[17, Theorem 12], it is shown that using the right endpoints such as u(ti+1) in (3.19) does not
change the limit.
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Suppose additionally that u = {u(t), 0 ≤ t ≤ T} is a stochastic process in the space
D

H,1,2(H), and suppose that

∫ ∫T

0

∣∣∣D(H)
s u(t)

∣∣∣|t − s|2H−2dsdt < ∞, P − almost surely (3.20)

Then as in [6, 7], we have the following relation between the two integrals and the Malliavin
derivative:

∫T

0

u(t) ◦ dW (H)(t) =

∫T

0

u(t)dW (H)(t) +H(2H − 1)

∫ ∫T

0

D
(H)
s u(t)|t − s|2H−2dsdt. (3.21)

3.2. Asymptotic Distribution of the Statistics

Let θ = θ(T) depend on the observation time T and limT →∞θ(T) = 0. In analogy to the
discrete time case (3.6), we make the assumption that θ = θ(T) depends on the observation
time interval T , so that

lim
T →∞

Tθ(T) = c, (3.22)

for some real number c. The parameter c plays the same role as in (3.6). The particular form
of θ(T), for example, θ(T) = c/T , will affect the finite-sample distribution of the least-squares
estimator but, as long as (3.22) holds, it will not matter in the limit T → ∞.

Equation (1.4) for the process X(H) = X(H)(t) becomes

X(H)(t) = X(H)(0)eθ(T)t +W (H)(t) + θ(T)

∫ t

0

eθ(T)(t−s)W (H)(s)ds. (3.23)

Strictly speaking, now we should be writing X(H)(t, T), but, for the sake of simplicity of
notations, we will omit the explicit dependence of X(H) on T .

Lemma 3.1. As T → ∞, one has the following asymptotic distributions:

X(H)(T)

TH

L−→ U
(H)
c (1), (3.24)

∫T
0

(
X(H)(t)

)2
dt

T2H+1

L−→
∫1

0

U
(H)
c (t)dt, (3.25)

whereU
(H)
c = U

(H)
c (t) is defined in (1.4).

Proof. Rewriting (3.23) yields

X(H)(T) = X(H)(0)eθ(T)T +W (H)(T) + θ(T)T

∫1

0

eθ(T)T(1−s)W (H)(Ts)ds. (3.26)
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Using self-similarity ofW (H) and the continuousmapping Theorem (3.24) follows. Moreover,∫T
0
(X(H)(t))2dt = T

∫1
0
(X(H)(Tt))2dt and

X(H)(Tt) = X(H)(0)eθ(T)Tt +W (H)(Tt) + θ(T)

∫Tt

0

eθ(T)(Tt−s)W (H)(s)ds

= X(H)(0)eθ(T)Tt +W (H)(Tt) + θ(T)T

∫ t

0

eθ(T)T(t−s)W (H)(Ts)ds.

(3.27)

Using again self-similarity, it follows that

X(H)(Tt)

TH

L−→ U
(H)
c (t). (3.28)

Therefore,

∫T
0

(
X(H)(t)

)2
dt

T2H+1
=

∫1

0

(
X(H)(Tt)

)2

T2H
dt

L−→
∫1

0

U
(H)
c (t)dt. (3.29)

In Theorem 2.1, we used the law of iterated logarithm for self-similar Gaussian
processes:

lim sup
T →∞

∣∣W (H)(T)
∣∣

TH
√
ln ln T

= vH , (3.30)

where vH is a suitable constant (v1/2 = 1). In the following lemma, we show that a similar
result holds after replacing W (H)(t) with X(H)(t) and then use the result to prove the almost

sure convergence of θ̃T,H .

Lemma 3.2. As T → ∞, one has

lim sup
T →∞

∣∣X(H)(T)
∣∣

TH
√
ln lnT

< ∞ (3.31)

with probability one and, hence,

lim
T →∞

(
X(H)(T)

)2

T2H+ε
= 0 (3.32)

with probability one for every ε > 0 and

lim sup
T →∞

1

T2H ln lnT

∫1

0

(
X(H)(Ts)

)2
ds < ∞. (3.33)
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Proof. Let ε > 0. Then, for T sufficiently large,

X(H)(T)

TH
√
ln ln T

=
X(H)(0)eθ(T)T

TH
√
ln ln T

+
W (H)(T)

TH
√
ln ln T

+
θ(T)
∫T
0
eθ(T)(T−s)W (H)(s)ds

TH
√
ln ln T

=
X(H)(0)eθ(T)T

TH
√
ln ln T

+
W (H)(T)

TH
√
ln ln T

+
θ(T)T

∫1
0
eθ(T)T(1−s)W (H)(Ts)ds

TH
√
ln ln T

.

(3.34)

Recalling that limT →∞θ(T)T = c, it follows that the first term vanishes with probability one
as T → ∞. The second term, in absolute value, converges to the constant vH given in (3.30).
For the last term, define a sequence

fT (s) =
eθ(T)T(1−s)

∣∣W (H)(Ts)
∣∣

TH
√
lnlnT

. (3.35)

By the reverse of Fatou’s lemma, we only need to show that there exists an integrable function
g(s) such that fT (s) ≤ g(s) for all s ∈ [0, 1]. Since for all T sufficiently large

sup
T

fT (s) ≤ sup
T

eθ(T)T(1−s)sup
T

∣∣W (H)(Ts)
∣∣

TH
√
ln ln T

< ∞, (3.36)

the result follows.

Proof of Theorem 1.1. The almost sure convergence follows from the law of iterated logarithm
in Lemma 3.2 similar to the proof of Theorem 2.1. Convergence in distribution (1.12) is a
consequence of Lemma 3.1 and the continuous mapping theorem.

Comparing Figures 1 and 2 suggests that distribution in (2) is a better candidate for the
finite-sample distribution for θ = −0.5 and T = 25 than the Gaussian distribution in Figure 1.

3.3. Analysis of Estimator (1.13)

Recall that if H = 1/2, then both (1.6) and (1.13) become (1.8), which also happens to be
the maximum likelihood estimator. If H > 1/2, then the maximum likelihood estimator also
exists:

θT,H =

∫T
0
Q(s)dZs

∫T
0
Q2(s)dwH

s

, (3.37)
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QQ plot of sample data versus asymptotic distribution (H = 0.7)
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Figure 2: Quantile-quantile plot of 1000 samples of Tθ̃T,H with θ = −0.5 versus the asymptotic distribution
ΨH,c; c = −12.5, T = 25, andH = 0.7. Note that Tθ = c. The plot suggests a superior fit compared to normal
distribution in Figure 1, since the simulated quantiles lay on the dotted red line y = x.

where

kH(t, s) = κ−1
H s1/2−H(t − s)1/2−H , κH = 2HΓ

(
3

2
−H

)
Γ

(
H +

1

2

)
,

wH
t = λ−1H t2−2H , λH =

2HΓ(3 − 2H)Γ(H + 1/2)

Γ(2/3 −H)
,

Q(t) =
d

dwH
t

∫ t

0

kH(t, s)Xsds, 0 ≤ t ≤ T,

Zt =

∫ t

0

kH(t, s)dXs,

(3.38)

see [20, 21] for details. If H > 1/2, then θT,H is different from θ̂T,H and θ̃T,H and, despite a

number of very desirable properties, is not easily computable. In fact, only θ̃T,H is computable,

and θ̂T,H , originally introduced in [5], is necessary to study θ̃T,H .

The estimator θ̂T,H , as defined in (1.13), is motivated by (formally) minimizing the
least-squares functional

∫T

0

∣∣∣Ẋ(H)(t) − θX(H)(t)
∣∣∣
2
dt. (3.39)

It is shown in [6] that θ̂T is a strongly consistent estimator of θ < 0, that is, limT →∞θ̂T = θ
with probability one. Reference [7] implied strong consistency for the case θ > 0 after a slight
modification of the estimator.
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A feature of much interest is asymptotic distribution of θ̂T,H as T → ∞. The following
is a summary of the results:

√
T
(
θ̂T − θ

) L−→ N
(
0, |θ|σ2

H

)
, as T → ∞, θ < 0, H ∈

[
1

2
,
3

4

)
, (3.40)

eθT
(
θ̂T − θ

) L−→ 2θC(1), as T −→ ∞, θ > 0, X(H)(0) = 0, H ∈
[
1

2
, 1

)
, (3.41)

where

σ2
H := (4H − 1)

(
1 +

Γ(3 − 4H)Γ(4H − 1)

Γ(2 − 2H)Γ(2H)

)
, (3.42)

and C(1) is the standard Cauchy distribution with probability density function 1/(π(1+x2)),
x ∈ R. Results (3.40) and (3.41) have been shown in [6, 7], respectively. Moreover, forH = 1/2
and θ > 0, Bishwal [10] obtained the rate of convergence O(T−1/2) in (3.40).

In the case H = 1/2, estimator (1.6) is also the maximum likelihood estimator of the
parameter θ. Denote by P

θ
T the measure generated by the Ornstein-Uhlenbeck process Z =

{Zt, 0 ≤ t ≤ T}, Zt =
∫ t
0
eθ(t−s)dW1/2

s in the space of continuous functions C([0, T]). Then, the

measures P
0
T and P

θ
T are equivalent, and the likelihood function is given by

P
θ
T

P
0
T

(Z) = exp

(
θ

∫T

0

ZtdZt −
θ2

2

∫T

0

Z2
t dt

)
. (3.43)

Maximizing the density with respect to θ leads to (1.6). An extension of this result to second-
order differential equations is available in [22].

We cannot use θ̂T,H in practice for two reasons. First, there is no way to compute the

divergence integral
∫T
0
X(H)(t)dX(H)(t) given observations (X(H)(t), 0 ≤ t ≤ T). Second, the

alternative representation we obtain in this section (see Lemma 3.3) depends on the unknown

parameter θ and, therefore, cannot be used to compute the value of θ̂T,H . Nonetheless, the
finite-sample asymptotic for this estimator is an interesting subject to investigate, and we can

also see similarities to θ̃T,H .
In the following, let 1F1(a, b, z) be Kummer’s confluent hypergeometric function (see

[23, Chapter 13], which is given by

1F1(a, b, z) =
∞∑

n=0

a(n)zn

b(n)n!
, (3.44)

where

a(n) = a(a + 1)(a + 2) · · · (a + n − 1). (3.45)
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It is an analytic function of complex variables a, b, z, except for poles at b = 1, 2, . . ..
From the series representation, we get that 1F1(0, b, z) = 1. If b > a > 0, 1F1(a, b, z) can be
represented as an integral

1F1(a, b, z) =
Γ(b)

Γ(a)Γ(b − a)

∫1

0

ezuua−1(1 − u)b−a−1 du. (3.46)

Lemma 3.3. The estimator θ̂T,H defined in (1.13) has representation

θ̂T =

(
X(H)(T)

)2 −
(
X(H)(0)

)2−1F1(2H − 1, 2H + 1, θT)T2H

2
∫T
0

(
X(H)(t)

)2
dt

. (3.47)

Proof. Assume, H > 1/2. From the relation between divergence integral and the pathwise
Riemann-Stieltjes integral,

∫T

0

X(H)(t) ◦ dW (H)(t) =

∫T

0

X(H)(t)dW (H)(t)

+H(2H − 1)

∫ ∫T

0

D
(H)
s X(H)(t)|t − s|2H−2dsdt,

(3.48)

where D(H) denotes the Malliavin derivative. The latter integral is simplified to

∫T

0

∫ t

0

eθ(t−s)|t − s|2H−2dsdt =

∫T

0

∫ t

0

eθξξ2H−2dξ dt

=

∫1

0

∫Tt

0

eθξξ2H−2Tdξ dt

= T2H

∫1

0

∫ t

0

eθTξξ2H−2dξ dt

= T2H

∫1

0

(1 − ξ)eθTξξ2H−2dξ.

(3.49)

Moreover,

1F1(2H − 1, 2H + 1, θT) =
Γ(2H + 1)

Γ(2H − 1)Γ(2)

∫1

0

(1 − ξ)eθTξξ2H−2dξ

= 2H(2H − 1)

∫1

0

(1 − ξ)eθTξξ2H−2dξ.

(3.50)
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Moreover, since W (H)(t) = X(H)(t) −X(H)(0) − θ
∫ t
0
X(H)(s)ds,

∫T

0

X(H)(t) ◦ dW (H)(t) =

∫T

0

X(H)(t) ◦ dX(H)(t) − θ

∫T

0

(
X(H)(t)

)2
dt

=

((
X(H)(T)

)2 −
(
X(H)(0)

)2)

2
− θ

∫T

0

(
X(H)(t)

)2
dt.

(3.51)

IfH = 1/2, then the result follows by Itô’s formula.

Proof of Theorem 1.2. The almost sure convergence follows by the law of iterated logarithm
in Lemma 3.2 and the representation in Lemma 3.3. The asymptotic distribution is a
consequence of Lemmas 3.1 and 3.3 and the continuous mapping theorem.

3.4. Hypothesis Testing

Following the original motivation from the introduction, we now consider the problem of
testing for the zero root

H0 : θ = 0,

H1 : θ /= 0,
(3.52)

and for stability,

H0 : θ ≥ 0,

H1 : θ < 0.
(3.53)

Using the main result in Theorem 1.1, we can easily construct a statistical decision function
for these problems. For an introduction to the statistics of random processes, see [4, 24].

Define by φT (X) the statistical decision function, which is 1 if H1 is accepted and 0 if
not.

Denote by P
θ
T the measure generated by the Ornstein-Uhlenbeck process X(H) =

X(H)(t), X(H)(t) = X(H)(0)eθt + θ
∫ t
0
eθ(t−s)W (H)(s)ds in the space of continuous functions

C([0, T]).
Fix a number α ∈ (0, 1), the so-called level of significance, and define by Kα the class

of tests of asymptotic significance level smaller than α, that is,

Kα =

{
φT : lim

T →∞
E0φT (X) ≤ α

}
, (3.54)
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where the expectation Eθ is the integral taken with respect to the measure P
θ
T . Denote by ψα

the quantiles of the distribution

ΨH,0 =

(
W (H)(1)

)2

2
∫1
0

(
W (H)(t)

)2
dt

−
(

1

HΓ(2H)

∫1

0

(
W (H)(t)

)2
dt

)−1/2H

, (3.55)

which can be obtained by Monte Carlo simulation.
Given observations (X(H)(t), 0 ≤ t ≤ T), the statistical decision function φT (X) for test

(3.53) is given by

φT (X) = 1
(
Tθ̃T,H < ψα

)
, (3.56)

where 1(A(ω)) = 1 if ω ∈ A and 0 otherwise. Hence, φT (X) ∈ Kα.
Likewise, the statistical decision function φT (X) for test (3.52) is given by

φT (X) = 1
({

Tθ̃T,H < ψα/2

}
∪
{
Tθ̃T,H > ψ1−α/2

})
. (3.57)

Next, we analyze the power of the zero-root test, of a unit root against a simple
alternative

H0 : θ = 0,

H1 : θ = θ1.
(3.58)

Define by βT (φT ) the probability of the true decision under H1, that is,

βT
(
φT

)
= Eθ1φT (X). (3.59)

The value βT (φT ) is called the power of the test φT (X).
The asymptotic power of φT (X) can be computed using the asymptotic distributions

in (2.9) and (2.11). Consider the hypothesis test (3.58). If θ1 < 0 and H ∈ [1/2, 3/4), the
asymptotic power of the test is 1:

βT
(
φT

)
= EθTφT (X) = P

θ1
T

(
Tθ̃T,H < ψα

)

= P
θ1
T

(√
T
(
θ̃T,H − θ1

)
<

ψα√
T
−
√
Tθ1

)
−→ 1,

(3.60)

recalling that θ1 < 0. A similar calculation shows that for θ1 > 0 and H ∈ [1/2, 1) the
asymptotic power of the test is 1 as well.
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This is not a very informative result: for every reasonable test, one would expect full
power in the large-sample asymptotic. More interesting is the power of the test βT (φ) when
the sample is finite. Here, the result of Theorem 1.1 helps. We get for any θ1 ∈ R

βT
(
φT

)
= Eθ1φT (X) = P

θ1
T

(
Tθ̃T,H > ψα

)
−→ P
(
ΨH,c > ψα

)
, c = Tθ1, (3.61)

where ΨH,c is the asymptotic distribution of Tθ̃T,H as stated in Theorem 1.1. Thus, we get a
better approximation of the actual power under finite samples.
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