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SUMMARY

Weconsider testing whether the nonparametric function in a semiparametric additive mixed model is a
simple fixed degree polynomial, for example, a simple linear function. This test provides a goodness-
of-fit test for checking parametric models against nonparametric models. It is based on the mixed-
model representation of the smoothing spline estimator of the nonparametric function and the variance
component score test by treating the inverse of the smoothing parameter as an extra variance component.
Wealso consider testing the equivalence of two nonparametric functions in semiparametric additive mixed
models for two groups, such as treatment and placebo groups. The proposed tests are applied to data from
an epidemiological study and a clinical trial and their performance is evaluated through simulations.

Keywords: Equivalence test; Goodness of fit; Longitudinal data; Mixed models; Nonparametric regression; Polyno-
mial test; Score test; Variance components.

1. INTRODUCTION

Linear mixed models (Laird and Ware, 1986) and their extension generalized linear mixed models
(GLMMs) (Breslow and Clayton, 1993) are widely used to analyse clustered data such as longitudinal
data. A key assumption in these models is that the conditional mean of the outcome variable given the
random effects depends on the covariates parametrically. Since this parametric assumption in GLMMs is
strong and may not be appropriate for data with complex covariate effects, Lin and Zhang (1999) proposed
generalized additive mixed models (GAMMs) that allow for flexible modeling of the covariate effects by
replacing the linear predictor in GLMMs with an additive combination of nonparametric functions of
covariates and random effects.

It is of substantial interest to test whether a simple parametric GLMM can fit the data well
compared with a more complicated nonparametric GAMM. First, regression coefficients in an appropriate
parametric GLMM might have an appealing practical interpretation. Second, despite its substantial
flexibility, estimation in a GAMM is computationally much more intensive than estimation in a GLMM.
One is often interested in having a tool to check for the goodness-of-fit of a parametric model where the
covariate effects are assumed to be some fixed-degree polynomial.
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One example is the longitudinal study of respiratory infection in 275 Indonesian children (Diggle
et al., 1994), which will be analysed in Section 5. Each child was examined every quarter up to six
consecutive quarters for the presence of respiratory infection. One is interested in the age effect on the
risk of respiratory infection. Diggleet al. (1994) fit a logistic mixed model assuming a quadratic age
effect, while Lin and Zhang (1999) allowed the age effect to be nonparametric. A question of interest is
whether the simple quadratic age model is appropriate compared with the nonparametric model.

For independent data, several authors considered testing whether a nonparametric function is a fixed-
degree polynomial. Cox and Koh (1989) derived a test statistic for testing the adequacy of polynomial
regression based on the smoothing spline formulation of the nonparametric function. Härdleet al. (1998)
proposed a likelihood-ratio-based test using bootstrap to compare parametric generalized linear models
with semiparametric generalized partial linear models. For additional references, see Eubank and Hart
(1992); Azzalini and Bowman (1993) and Fan and Huang (2001), among others. These authors all assume
the data are independent. Little work has been done to test the goodness of fit of parametric models against
alternative nonparametric models for correlated clustered data.

A second problem of common interest in many applications of nonparametric regression is to compare
nonparametric covariate effects between two groups. For example, Breslow and Clayton (1993) used a
GLMM to analyse epileptic seizure count data from a clinical trial of an anti-epileptic drug and found
different nonlinear baseline seizure count effects between the treatment group and the control group.
It is desirable to develop an equivalence test for the baseline seizure count effects between the two
groups. Several authors considered testing the equivalence of two nonparametric functions for independent
Gaussian data. See Härdle and Marron (1990); Hall and Hart (1990) and Young and Bowman (1995),
among others. Several tests were recently developed to test the equivalence of curves for longitudinal
Gaussian data, see, for example, Fan and Lin (1998) and Zhanget al. (2000). Little work however has
been done on testing the equivalence of two nonparametric functions for correlated non-Gaussian data.

We tackle these two problems in this paper. Specially, we consider a goodness-of-fit test for
polynomial regression versus nonparametric regression for clustered Gaussian and non-Gaussian data,
such as longitudinal data, using semiparametric additive mixed models (SAMMs), a special case of
GAMMs. The test is based on the mixed-model formulation of the smoothing spline estimator of the
nonparametric function in SAMMs. By treating the inverse of the smoothing parameter as an extra
variance component, the variance component score test developed for parametric GLMMs (Lin, 1997)
is adapted to construct a goodness-of-fit test of polynomial regression in SAMMs. Due to the special
structure of the smoothing matrix, a scaled chi-square test is proposed for the goodness-of-fit test. We
also consider an equivalence test for two nonparametric functions between two groups in SAMMs for
clustered data. Simulation studies are conducted to evaluate the performance of these tests.

This paper is organized as follows. In Section 2, we present the model. In Section 3, we discuss
the polynomial tests for clustered Gaussian and non-Gaussian responses in SAMMs. We present the
equivalence test for two nonparametric functions in Section 4. We apply these two tests to Indonesian
respiratory infection data and to epileptic seizure count data in Section 5. In Section 6, we report the
results from simulation studies to evaluate the performance of these two tests. We conclude the paper with
discussion in Section 7.

2. SEMIPARAMETRIC ADDITIVE MIXED MODELS

In this section, we present SAMMs for clustered data, and briefly discuss the estimation procedure.
These models are special cases of GAMMs considered by Lin and Zhang (1999). Let the data consist
of a response variableyi j for the j th observation (j = 1, . . . , ni ) of the i th cluster (i = 1, . . . , m),
a scalar covariateti j , a p × 1 covariate vectorsi j associated with fixed effects, and aq × 1 covariate
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vector zi j associated with random effects. Conditional on aq × 1 vector of random effectsbi , the
yi j are assumed to be independent with conditional means E(yi j |bi ) = µb

i j and conditional variances

var(yi j |bi ) = φω−1
i j v(µb

i j ), whereφ is a dispersion parameter,ωi j is a known prior weight, andv(·) is a

variance function. The SAMM assumes the conditional meanµb
i j takes the form

g(µb
i j ) = f (ti j ) + sT

i jα + zT
i j bi , (1)

where f (t) is an arbitrary smooth function,α is a p × 1 vector of fixed effects andg(·) is a known link
function. It is further assumed that the random effectsbi are independent and have a normal distribution
N{0, D0(θ)}, whereθ is a vector of variance components.

Denotey = (y11, . . . , y1n1, . . . , ym1, . . . , ymnm )T , D(θ) = diag(D0, . . . , D0), b = (bT
1 , . . . , bT

m)T .

Supposef (t) ∈ W (h)
2 , whereh is a positive integer,f (h)(t) denotes thehth derivative of f (t), and

W (h)
2 = {g(t)|g(t), g′(t), . . . , g(h−1)(t) absolutely continuous,

∫
{g(h)(t)}2 dt < ∞}.

Since the likelihood of model (1) involves integration over the random effectsb and f (·) is a
nonparametric function, following Lin and Zhang (1999), we estimate{ f (t), α} givenθ by maximizing
the following double-penalized quasi-likelihood (DPQL) function with respect to{ f (·), α, b}

�dp{ f (.), b, α, θ; y} = − 1

2φ

m∑
i=1

ni∑
j=1

di j (yi j , µ
b
i j ) − 1

2
bT D−1b − λ

2

∫
{ f (h)(t)}2 dt, (2)

wheredi j (yi j , µ
b
i j ) = −2

∫ µb
i j

yi j ωi j (yi j − u)/v(u) du is the conditional deviance function, andλ is a
smoothing parameter that controls the goodness of fit of the model and the roughness of functionf (t).
It can be easily shown that given(θ, λ), the estimate off (t) that maximizes the DPQL (2) is a natural
smoothing spline of orderh.

There are many equivalent expressions for the natural spline estimate off (t) (Cox and Koh, 1989;
Green and Silverman, 1994; Wahba, 1990). For numerical reasons, we consider the smoothing spline
representation given by Kimeldorf and Wahba (1971). Denote byt0 = (t0

1, . . . , t0
r )T an r × 1 vector

of ordered distinctti j and by f the vector of f (t) evaluated att0. Without loss of generality, assume
0 < t0

1 < · · · < t0
r < 1. Thehth-order smoothing spline estimatorf (t) can be expressed as

f (t) =
h∑

k=1

δkφk(t) +
r∑

l=1

al R(t, t0
l ), (3)

where{φk(t)}h
k=1 is a basis for the space of polynomials of orderh − 1 (for example,φk(t) = tk−1/(k −

1)!, k = 1, . . . , h) andR(t, s) is defined by

R(t, s) = 1

[(h − 1)!]2
∫ 1

0
(s − u)h−1+ (t − u)h−1+ du,

where(s − u)+ = s − u if s � u and 0 otherwise.
Denoteδ = (δ1, . . . , δh)T anda = (a1, . . . , ar )

T . Under this smoothing spline representation,f can
be written asf = T δ + �a and the penalty in DPQL (2) has the expression

λ

2

∫
{ f (h)(t)}2 dt = λ

2
aT �a, (4)
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whereT is ar ×h matrix with the(k, l)th element equal toφl(t0
k ), and� is a positive definite matrix with

(k, l)th element equal toR(t0
k , t0

l ).
Let n = ∑m

i=1 ni and denote byN ann × r incidence matrix that mapst0 into ti j . Denote byS the
matrix with thei th row blocksi = (si1, . . . , sini )

T and denoteβ = (δT , αT )T , X = (N T, S), B = N�,
Z = diag(z1, . . . , zm), wherezi = (zi1, . . . , zini )

T , andµb = (µb
11, . . . , µb

1n1
, . . . , µb

m1, . . . , µb
mnm

)T .

The penalty term (4) suggests thata can be treated as random effects following N(0, τ�−1) with τ = 1/λ,
and f as a linear combination of the fixed effectsδ and the random effectsa. Under this mixed-model
representation of the smoothing spline estimator off , SAMM (1) can be written as the following GLMM:

g(µb) = Xβ + Ba + Zb, (5)

whereβ is the fixed effect anda ∼ N(0, τ�−1) andb ∼ N(0, D(θ)) are independent random effects.
This GLMM representation takes the same form as that Lin and Zhang (1999) used for natural

cubic spline estimators. We hence adapt their approach by calculating the DPQL estimators off and
α via estimating(β, a, b) in (5) using the PQL method of Breslow and Clayton (1993), and estimating
τ and θ simultaneously using the approximate maximum marginal likelihood approach by treatingτ

as an extra variance component. Specifically, define the working vector byY = Xβ + Ba + Zb +
�(y − µb), where � = diag{g′(µb

i j )}, and the working weight matrix byW = diag{wi j } where

wi j = {φω−1
i j v(µb

i j )[g′(µb
i j )]2}−1. One iteratively fits the working linear mixed model

Y = Xβ + Ba + Zb + ε,

whereε ∼ N (0, W −1). Then f andα are estimated by the BLUP estimatorsT δ̂ +�â andα̂ respectively,
andτ andθ are estimated by the restricted maximum likelihood (RML) estimators at convergence. For
detailed justification of this estimation procedure, see Lin and Zhang (1999).

3. THE POLYNOMIAL TESTS

In this section, we propose a test for whether the nonparametric functionf (t) in SAMM (1) is equal
to an(h−1)th-order polynomial for clustered Gaussian and non-Gaussian data. For example, ifh = 2, we
test the linearity off (t). This test provides a tool to check for the goodness of fit of a simple parametric
GLMM against a nonparametric model. It is based on the mixed-model representation of the smoothing
spline estimator off (t) given in Section 2 by testing the variance componentτ = 0 using the score test. A
key feature of the proposed test is that it can be easily implemented by fitting a simple parametric GLMM
by assumingf (t) is an(h − 1)th-order polynomial, and does not require fitting the more complicated
nonparametric model (1).

3.1 The polynomial test for gaussian responses

Wefirst consider the polynomial test when the response variabley is normally distributed with the identity
link function. The SAMM (1) becomes

yi j = f (ti j ) + sT
i jα + zT

i j bi + εi j , (6)

wherebi ∼ N {0, D0(θ)} andεi j ∼ N (0, φ). The following development remains valid for correlated
residualsεi j , such as an auto-regression process. Denote by the space of polynomials of orderh − 1.

We are interested in testingH0 : f (t) ∈  versusH1 : f (t) ∈ W (h)
2 − . Using the results in Section 2,

if one estimatesf (·) by anhth-order smoothing spline, the semiparametric model (6) has a linear mixed
model representation

y = Xβ + Ba + Zb + ε, (7)

wherea ∼ N(0, τ�−1), b ∼ N(0, D(θ)) andε ∼ N(0, φ I ).
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The natural spline expression off (t) in (3) implies that f (t) is an(h − 1)th-order polynomial if and
only if a = 0, which is equivalent toH0 : τ = 0 under linear mixed model representation (7). Since the
natural spline estimate off (t) is the optimal estimate inW (h)

2 using the penalized likelihood approach,
we hence approximate our hypothesis testing problem by testingH0 : τ = 0 versusH1 : τ > 0 in
linear mixed model (7). In other words, this test is equivalent to testing the null hypothesis thatf (t) is
an(h − 1)th-order polynomial against the alternative hypothesis thatf (t) is a natural spline function. An
alternative motivation for testingH0 : τ = 0 versusH1 : τ > 0 is that the spline estimator off (t) can
be derived from a Bayesian perspective by assumingf (t) to have the following improper prior (Wahba,
1990)

f (t) =
h∑

k=1

δkφk(t) + τ1/2W (t), (8)

whereδ has a flat prior, andW (t) is an (h − 1)-fold integrated Wiener process. Obviously,f (t) is an
(h − 1)th-order polynomial if and only ifτ = 0.

The null hypothesisH0 : τ = 0 placesτ on the boundary of the parameter space. Self and Liang
(1987) showed that the likelihood ratio and Wald statistics typically do not follow a chi-square distribution
asymptotically. However, the score statistic often still follows a chi-square distribution asymptotically
under some regularity conditions and can be easily calculated (Lin, 1997). We hence consider a score test
for H0 : τ = 0 under model (7). However, unlike the variance component score test in GLMMs considered
by Lin (1997), due to the special structure of the design matrix�, the score statistic forH0 : τ = 0 in
(7) does not follow a chi-squared distribution, but follows a mixture of chi-square distributions, which is
often called a chi-bar squared distribution (Robertsonet al., 1988).

Denoteγ = (βT , θT , φ)T andV = Z DZ T + φ I . Let �(τ, γ ; y) be the log-likelihood function of
model parameters(τ, γ ) under linear mixed model (7). Simple calculations show that the score statistic
of τ for testingH0 : τ = 0 is

Uτ (γ̂ ) = ∂�(τ, γ ; y)

∂τ

∣∣∣∣
τ=0,γ=γ̂

= 1

2

{
(y − Xβ)T V −1B�−1BT V −1(y − Xβ) − tr(V −1B�−1BT )

}∣∣∣
γ=γ̂

,

(9)

whereγ̂ = (β̂T , θ̂T , φ̂)T is the maximum likelihood estimate (MLE) ofγ under the null parametric linear
mixed model

y = Xβ + Zb + ε. (10)

Since B�−1BT = N�N T is not a block diagonal matrix, the scoreUτ (γ ) cannot be written as a
sum ofm independent random variables, with thei th term being a quadratic function of thei th cluster
data yi . This suggests intuitively that the distribution of the standardized score statistic ofUτ (γ̂ ) may
not converge to a standard normal distribution, in contrast to the variance component score statistic
of Lin (1997). A more rigorous proof of this result is given in Appendix A. Specifically, writeUτ (γ )

asUτ (γ ) = Uτ (y; γ ) − e(γ ), whereUτ (y; γ ) and e(γ ) denote the first and the second terms in (9)
respectively. Denoting byγ0 the true value ofγ , the results in Appendix A show that underτ = 0, the
distribution ofUτ (y; γ0) is a mixture of chi-square distributions

∑r
i=1 ψiχ

2
1i , whereχ2

1i are independent
random variables following a chi-square distribution with one degree of freedom. Here the weightsψi

(i = 1, . . . , r) are the ordered non-zero eigenvalues ofV −1N�N T /2 and decay rapidly to zero.
Since calculations of theψi are often computationally intensive and the exact probability associated

with a mixture of chi-square distributions is difficult to calculate, we use the Satterthwaite method
to approximate the distribution ofUτ (y; γ0) by a scaled chi-square distributionκχ2

ν , where the scale
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parameterκ and the degrees of freedomν are calculated by equating the mean and variance ofUτ (y; γ0)

and those ofκχ2
ν . Specifically, sinceUτ (y; γ0) is a quadratic function ofy, its mean and variance are

easy to calculate and are respectivelye = tr(V −1N�N T )/2 and Iττ = tr((V −1N�N T )2)/2. Simple
calculations then giveκ = Iττ /2e andν = 2e2/Iττ .

Sinceγ is unknown underH0, weestimate it using its MLÊγ by fitting model (10). The test statistic is
S(γ̂ ) = Uτ (y; γ̂ )/κ, and its distribution is approximated byχ2

ν . To account for the fact thatγ is estimated
by its MLE γ̂ , wecalculateκ andν by replacingIττ with the efficient informatioñIττ = Iττ − Iτϑ I −1

ϑϑ I T
τϑ ,

whereϑ = (θ, φ) and

Iτϑ = 1

2
tr

(
V −1N�N T V −1∂V

∂ϑ

)
, Iϑϑ = 1

2
tr

(
V −1∂V

∂ϑ
V −1∂V

∂ϑ

)
. (11)

To further adjust for the small-sample bias due to estimatingβ, we modify the test statisticS(γ̂ ) by
estimatingϑ using REML estimate under the null linear mixed model (10), and estimatingκ andν by
replacinge with ẽ = tr(P N�N T ), where P = V −1 − V −1X (X T V −1X)−1X T V −1 is the projection
matrix under the null model (10), and replacingĨττ by Ĩττ = Iττ − IτϑI−1

ϑϑIT
τϑ , whereIϑϑ andIτϑ

are the same asIτϑ and Iϑϑ in (11) except thatV −1 is replaced by the projection matrixP. This gives
us a bias-corrected versionSR of the statisticS. Simulation studies show thatSR usually outperformsS.
Therefore results are given only for the bias-corrected versionSR . Note that the test here is necessarily
one-sided. We study the performance of this test statistic through simulations in Section 6.

The proposed test procedure has some attractive features. One only needs to fit the null linear mixed
model (10). Unlike fitting SAMM (1) using DPQL, where one often needs to invert a high-dimensional
matrix, this is not necessary when calculating the test statisticsS and SR . Hence computation ofS and
SR is very easy. Especially, whenXiα and the random effectsbi are absent from model (6), we have the
classical nonparametric regression modelyi = f (ti )+ εi for independent data, whereεi ∼ N (0, σ 2), and
the test statisticS reduces to the simple form given by Cox and Koh (1989).

3.2 The polynomial test for non-Gaussian responses

In this section, we extend the REML version polynomial test proposed in Section 3.1 to SAMM (1)
for non-Gaussian responsey. If f (t) is estimated by an(h − 1)th-order smoothing spline, Lin and
Zhang (1999) proposed to jointly estimate the smoothing parameterτ and the variance componentsθ

by maximizing the marginal likelihood under the GLMM representation (5) of the SAMM (1)

LM(τ, ϑ; y) ∝ |D|−1/2τ−r/2
∫

exp

{
m∑

i=1

ni∑
j=1

− 1

2φ
di j (y; µb

i j ) − 1

2
bT D−1b − 1

2τ
aT �a

}
da db dβ.

= |D|−1/2
∫

exp

{
m∑

i=1

ni∑
j=1

− 1

2φ
di j (y; µb

i j ) − 1

2
bT D−1b − 1

2
uT u

}
du db dβ, (12)

whereu = τ−1/2�1/2a ∼ N(0, I ) and in matrix notationµb satisfiesg(µb) = Xβ + Zb + √
τ N�1/2u.

Similar to Section 3.1, we testH0 : f (t) is an (h − 1)th-order polynomial in SAMM (1) by testingH0 :
τ = 0 in GLMM (5). Let �M(τ, ϑ; y) = log{LM(τ, ϑ; y)}, and denote byL(y|β, b, u) the conditional
density ofy givenb andu, and byL(b) andL(u) the marginal densities ofb andu respectively. It can be
easily shown that

∂�M(τ, ϑ; y)

∂τ
= 1

2τ1/2LM(τ, ϑ; y)

∫
L(y|β, b, u)L(b)L(u)uT �1/2N T W�(y − µb) du db dβ, (13)
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whereW and� were defined in Section 2. Using L’Ĥopital’s rule, some calculations show that the score
of τ evaluated atτ = 0 is

Uτ = ∂�M(τ, ϑ; y)

∂τ

∣∣∣∣
τ=0

= 1

2L M (0, ϑ; y)

∫
L(y|β, b)L(b){(y − µb)T �W N�N T W�(y − µb) − tr(W N�N T )} db dβ

= 1
2E{(y − µb)T �W N�N T W�(y − µb) − tr(W N�N T )|y}, (14)

whereµb satisfies the null parametric GLMM

g(µb) = Xβ + Zb, (15)

with b ∼ N {0, D(θ)}, W and� are evaluated atµb, and the conditional expectation is taken under the
null hypothesisτ = 0 and by assumingb ∼ N {0, D(θ)} andβ a flat prior. The score statisticUτ for
testingH0 : τ = 0 is evaluated at̂ϑ , the REML estimate ofϑ under the null GLMM (15).

Since the integral in (14) generally does not have a closed form except for normal responsesy and
the identity link function, and sometimes is high-dimensional, we approximate (14) using the Laplace
method. Specifically, we show in Appendix B that (14) can be approximated using the Laplace method by

Uτ ≈ Uτ (β̂, ϑ̂) = 1
2{(Y − Xβ)T V −1N�N T V −1(Y − Xβ) − tr(P N�N T )}|

β̂,ϑ̂
, (16)

whereβ̂ is the BLUP-type estimate ofβ andϑ̂ is the REML estimate ofϑ , andY is the working vector
Y = Xβ + Zb + �(y − µb) under the null GLMM (15),P = V −1 − V −1X (X T V −1X)−1X T V −1 and
V = W −1 + Z DZ T . One can use the existing software such as the SAS macro %GLIMMIX to obtain
the estimateŝβ andϑ̂ by fitting (15).

Examination of equation (16) suggests that it corresponds to the score equation ofτ evaluated atτ = 0
under the working linear mixed model at convergence

Y = Xβ + Zb + Ba + ε, (17)

by assumingb ∼ N {0, D(θ)}, a ∼ N (0, τ�−1) andε ∼ N (0, W −1). We hence can apply the results in
Section 3.1 to approximate the distribution of the score statisticUτ in (16) by replacingy in Section 3.1
by the working vectorY . Specifically, writeUτ = Uτ − ẽ, whereUτ andẽ are the first term and the second
term in (16). We approximate the distribution ofUτ by a scaled chi-square distribution by matching their
means and variances. The mean ofUτ can be approximated bỹe = tr(P N�N T )/2, and the variance by
Ĩττ , where P was defined in the previous paragraph andĨττ was defined in Section 3.1 but under the
working linear mixed model (17). The test proceeds by using the test statisticSR = Uτ /κ, which follows
χ2

ν approximately, whereκ andν are calculated similarly to those in Section 3.1 but under the working
linear mixed model (17). Note thatSR here corresponds to the bias-corrected statisticSR in Section 3.1.

Due to the Laplace approximation of the score function (14), we here have assumed normality of the
working vectorY and implicitly used a Gaussian fourth-moment assumption for the working vectorY
in the approximation of the variance ofUτ . This approximation may be less than satisfactory for sparse
data such as binary data. We illustrate this test procedure through an application to the infectious disease
data in Section 5.1 and evaluate its performance for different kinds of responses through simulations in
Section 6

4. THE EQUIVALENCE TEST OF TWO NONPARAMETRIC FUNCTIONS

In many applications, such as clinical trials and epidemiological studies, we are often interested in
comparing the overall response profiles between two groups, for example, a treatment group and a placebo
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group. In this section we consider testing the equivalence of two nonparametric functions between two
groups.

Suppose the responseyki j of groupk(k = 1, 2) has conditional meanµb
ki j = E(yki j |bki ) that satisfies

the following SAMM:

g(µb
ki j ) = fk(tki j ) + sT

ki jαk + zT
ki j bki , (18)

where all model components have the same specification as that given in Section 2 except that they are
now group specific. For example, the subject-specific random effectsbki (k = 1, 2) may have different
distributions N{0, Dk(θk)}. We are interested in testing the hypothesisH0 : f1(t) = f2(t), where both
f1(t) and f2(t) are nonparametric functions, e.g. time profiles.

Denote by[T1, T2] the interval that specifies the range oftki j for both groups. Following Zhanget al.

(2000), define an overall measure of the difference betweenf1(t) and f2(t) as
∫ T2

T1
{ f1(t) − f2(t)}2 dt . To

testH0 : f1(t) = f2(t), weconstruct the test statistic

G{ f̂1(·), f̂2(·)} =
∫ T2

T1

{ f̂1(t) − f̂2(t)}2 dt, (19)

where f̂k(t) is the DPQL estimate offk(t) defined in Section 2. A large value ofG{ f̂1(·), f̂2(·)} will
suggest evidence againstH0.

We now study the distribution ofG{ f̂1(·), f̂2(·)} underH0. When y is normally distributed, Zhang
et al. (2000) studied the distribution ofG underH0 and showed that its exact distribution is difficult to
derive. NoticingG can be written as a quadratic function ofy, Zhanget al. (2000) approximated the
distribution ofG{ f̂1(·), f̂2(·)} by a scaled chi-square distribution using the moment matching technique.
Wenow extend their results to SAMM (18) for non-Gaussian data.

Denote byYk the working vector of SAMM (18) defined in Section 2 for groupk. The results in
Section 2 show that the DPQL estimatorf̂k can be obtained by iteratively fitting the working linear mixed
model using groupk data

Yk = Xkβk + Zkbk + Bkak + εk,

wherebk ∼ N (0, Dk), ak ∼ N (0, τk I ), εk ∼ N (0, W −1
k ), Xk , Zk , Bk , Wk are defined similarly to those in

Section 2 using groupk data. One can show that at convergence,f̂k(t) can be written aŝfk(t) = cT
k (t)Yk

for some vector functionck(t). Let c(t) = {cT
1 (t), −cT

2 (t)}T andY0 = {Y T
1 , Y T

2 }T , then the test statistic
G{ f̂1(.), f̂2(.)} can be written as a quadratic function of the joint working vectorY0

G{ f̂1(·), f̂2(·)} =
∫ T2

T1

Y T
0 c(t)c(t)T Y0 dt = Y T

0 CY0, (20)

whereC = ∫ T2
T1

c(t)c(t)T dt and the integration is evaluated elementwise.

Assuming the working vectorYk follows N (0, Vk) approximately, whereVk = Zk Dk Z T
K +τk Bk BT

k +
W −1

k , the quadratic form in equation (20) suggests thatG{ f̂1(·), f̂2(·)} follows a mixture of chi-square
distributions approximately. We hence approximate its distribution by a scaled chi-squareκ∗χ2

ν∗ , where
the scale parameterκ∗ and the degrees of freedomν∗ are calculated by matching the approximate mean
and variance ofG{ f̂1(.), f̂2(.)} underH0 and those ofκ∗χ2

ν∗ . Denote byE0 andV0 the approximate mean

and variance ofY0 underH0, then the approximate meane∗ and varianceψ∗ of G{ f̂1(.), f̂2(.)} underH0
can be calculated as

e∗ = ET
0 C E0 + tr(CV0), ψ∗ = 2tr(CV0)

2 + 4ET
0 CV0C E0,
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where the unknown parameters are replaced by their DPQL estimates obtained underH0. SinceC E0 is
negligible underH0, e∗ andψ∗ can be further approximated bye∗ ≈ tr(CV0) andψ∗ ≈ 2tr(CV0)

2.
Matching these mean and variance with those ofκ∗χ2

ν∗ gives the estimates ofκ∗ andν∗ asκ∗ = ψ∗/2e∗
and ν∗ = 2e2∗/ψ∗. Define χ2

obs = Gobs/κ∗, where Gobs denotes the observed value ofG. Then the

approximatep-value for the test statisticG{ f̂1(·), f̂2(·)} is given by P[χ2
ν∗ > χ2

obs]. We evaluate the
performance of this test through simulations in Section 6.

5. APPLICATIONS

5.1 Application of the polynomial test to the infectious disease data

Lin and Zhang (1999) applied SAMM (1) to analyse longitudinal data on respiratory infection in
275 Indonesian children. The children were examined every 3 months up to six consecutive visits for
respiratory infection (0=no, 1=yes). The covariates of interest included age in years, xerophthalmia status
(0=no, 1=yes), an eye condition of chronic vitamin A deficiency, sex (0=male, 1=female), height for age,
seasonality and the presence of stunting (0=no, 1=yes). For a more detailed description of this data set,
see Lin and Zhang (1999) and the reference cited therein.

Denote byyi j the j th binary indicator of respiratory infection for thei th child, agei j his/her age
andsi j the other covariates. Examination of the data suggested a strong non-linear age effect. Lin and
Zhang (1999) hence fit the following semiparametric logistic mixed model to model the age effect
nonparametrically

logit{pr(yi j |bi )} = sT
i jα + f (agei j ) + bi , (21)

where the random interceptbi ∼ N(0, θ), si j is a vector of the other covariates.
Figure 1 shows the estimated functionf̂ (age) and its 95% confidence interval. It suggests that the risk

of respiratory infection increased during the first two years of life and then steadily decreased afterwards.
An immediate question of interest was whether or not a quadratic function of age fits the data adequately.
In other words, we were interested in testingH0 : f (age)is a quadratic function vs H1 : f (age)is a
smooth non-quadratic function. We applied the polynomial test proposed in Section 3.2 to the data. The
test statistic wasSR = 5.73 with 1.30 degrees of freedom, providing strong evidence (p-value=0.026)
against the null hypothesis thatf (age) is quadratic in age.

Table 1 contrasts the estimates of the covariate effects and the variance components when the age
effect is modeled quadratically and nonparametrically. The parameter estimates were similar, except that
the regression coefficient estimate of the covariateStunted wasattenuated and the estimate of the variance
component was inflated when a quadratic age model was assumed. This suggests that the covariate effects
and the variance component were somewhat sensitive to the misspecification of the functional form of the
age effect, and nonparametric modeling off (age) would be more preferable.

5.2 Application of the equivalence test to the epileptic data

Thall and Vail (1990) presented data from a clinical trial of 59 epileptics randomized to receive either the
anti-epileptic drug progabide or a placebo, as an adjutant to standard chemotherapy. The response variable
was the number of epileptic seizures in four two-week intervals. The covariates of interest included the
epileptic seizure counts during a baseline period of eight weeks, logarithm of age (in years) at baseline,
visit number (coded asvisi t = −3, −1, 1, 3) and a treatment indicator (0=placebo, 1=progabide). For a
more detailed description of the study, see Thall and Vail (1990). Breslow and Clayton (1993) analysed
this data set using GLMMs assuming random intercepts and random slopes. Their analysis indicated
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Fig. 1. Estimatedf̂ (age) (——) and its 95% pointwise confidence intervals (- - - -) under model (21) for the infectious
disease data: the vertical strokes at 2 and−4 indicate the occurrence of 1s and 0s in the response.

Table 1.Comparison of parameter estimates for the infectious
disease data assuming the age effect to be quadratic and non-

parametric

Quadratic age model Nonparametric age model
Covariate Estimate SE Estimate SE
Intercept −2.12 0.22 −2.92 0.24
Vitamin A 0.53 0.46 0.52 0.46
Seasonal cosine −0.58 0.17 −0.58 0.17
Seasonal sine −0.16 0.17 −0.16 0.17
Sex −0.48 0.24 −0.50 0.24
Height for age −0.03 0.03 −0.03 0.02
Stunted 0.27 0.42 0.39 0.43
Age −0.30 0.08
Age square −0.11 0.04
θ (DPQL) 0.40 0.26 0.38 0.26
θ (CDPQL) 0.52 0.34 0.48 0.33
CDPQL: Corrected DPQL estimate (See Lin and Zhang, 1999)

some nonlinearity of the baseline seizure count effect and some degree of interaction between treatment
and the baseline seizure count. We applied the equivalence test developed in Section 4 to investigate this
interaction.

Denote byk = 1 the treatment group andk = 0 the placebo group. Letyi jk be the seizure count for the
i th subject on thej th visit in groupk, tik be his/her baseline seizure count andsi jk be the covariate vector
consisting of centered logarithm of age at baseline andvisi t/10. For groupk, conditional on the subject
specific random effectsbik = (b0ik, b1ik)

T ∼ N (0, Dk), yi jk was assumed to have a Poisson distribution
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Table 2.Estimates of the parameters in model (22)
fitted to the epilepsy data

Placebo group Treatment group
Variable Estimate SE Estimate SE
Fixed effects
Age 0.37 0.43 0.71 0.55
Visit/10 −0.20 0.26 −0.40 0.17

Random effects
Intercept 0.17 0.02 0.38 0.12
Visit/10 1.04 0.50 0.10 0.17
Covariance −0.06 0.13 0.15 0.13

with the conditional meanµb
i jk = E(yi jk |bk) satisfying the SAMM

log(µb
i jk) = fk(tik) + sT

i jkαk + b0ik + b1ik · visi tk/10, (22)

where fk(·) is a smooth function andαk is the covariate effect. This model is similar to model IV in
Table 4 of Breslow and Clayton (1993) except they modeled the baseline seizure effect linearly and the
random effects were assumed to have the same distribution.

Table 2 presents the parameter estimates of age and time under model (22). The results showed that
both the treatment and the placebo reduced the change rate of the number of seizures over time. However,
the seizure reduction rate over time for the placebo group was statistically not significant, while it was
significant in the treatment group. This result was different from that in Breslow and Clayton (1993)
who assumed a common linear time effect between the two groups. Older patients had a higher number
of seizures and the effect of age was stronger in the treatment group, although the age effect was not
significant in both groups.

Figure 2(a) presents the DPQL estimatesf̂0(t) and f̂1(t) of the baseline seizure effects in the
two treatment groups, while Figure 2(b) gives the difference of the two curves and its 95% pointwise
confidence intervals. Breslow and Clayton (1993) assumed a linear baseline seizure effect. Figure 2(a)
seems to suggest a linear baseline seizure effect in the placebo arm, but a nonlinear baseline seizure effect
in the treatment arm. In both groups, patients with a higher number of baseline seizures were likely to
have a higher number of seizures in subsequent weeks.

Figures 2(a) and (b) show that, compared with the placebo, the drug progabide seemed to reduce the
number of seizures for those patients whose baseline seizure count was less than 80, but to increase the
number of seizures for those patients whose baseline seizure count was greater than 80. We applied the
equivalence test to test the hypothesisH0 : f0(t) = f1(t), i.e. whether the effect of the baseline seizure
count was the same in the two treatment arms. The test statistic was 1.55 with 1.52 degrees of freedom,
which provided no strong evidence for different effects of the baseline seizure count between the placebo
and the treatment arms.

6. SIMULATION STUDIES

6.1 Simulation study for the polynomial test

Weconducted a simulation study to evaluate the performance of the polynomial test proposed in Section 3
for clustered data with different types of responses and different magnitudes of correlation. Each dataset
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Fig. 2. (a) Estimatedf̂0(t) (——) for the placebo group and̂f1(t) (- - - -) for the treatment group under model (22)
for the epileptic data. (b) Difference (——) of f̂0(t) and f̂1(t) and its 95% pointwise confidence intervals (- - - -).

was composed of 100 clusters of sizeni = 5. Conditional on the cluster-specific random interceptbi ∼
N (0, θ) with θ = 0.5 and 1, independent Gaussian, binary and binomial responses (with denominator
N = 8) yi j were generated respectively under the model

g{E(yi j |bi )} = fd(ti j ) + bi ,

where g(µ) = µ for Gaussian response, andg(µ) = logit(µ) for binary and binomial responses.
The scale parameterφ was estimated for Gaussian responses and was set to be one for binary and
binomial responses. One hundred equally spaced points were generated fort in [0, 2] as follows:
ti j = [trun{(i + 4)/5}/50] + 0.40( j − 1) for i = 1, . . . , 100 andj = 1, . . . , 5, where trun(.) denotes a
truncation operator. We assumed the functionsfd(t) = (0.25d)t ·exp(2−2t)− t +0.5 (d = 0, 1, 2, 3, 4).
We considered the linearity test in our simulations, i.e.H0 : fd(t) is a linear function int . Therefore,
d = 0 corresponds to linearity, and asd increases,fd(t) becomes further away from being linear. The
functions fd(t) are plotted in Figure 3.

Table 3 presents the empirical size and power of the linearity test (bias-corrected version) based on
2000 simulation runs ford = 0 and 1000 runs ford = 1, 2, 3, 4. We carried out more runs for the size
calculations to ensure more accurate estimation of the empirical size of the test, since the nominal size
was often set to be small. We set the nominal size to be 0.05. The results showed that the linearity test
performed very well for Gaussian responses for different magnitudes of the variance component. The
empirical sizes were very close to the nominal size and the powers of the test were high, and was not
significantly affected by the magnitude of the variance component. The test was a little conservative and
not very powerful for binary responses. However, when the binomial denominator increased to 8, the size
of the test quickly approached the nominal value and the test became very powerful to detect nonlinearity
for both values of the variance component. The test became slightly less powerful when the variance
component became larger.
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Fig. 3. Functionsfd (t) (d = 0, 1, 2, 3, 4) used in the simulation studies for the polynomial test in Section 6.1.

Table 3. Empirical sizes and powers of the linearity test for three types of data
based on 1000 simulation runs

Variance of Data type Size∗ Power
random effects d = 0 d = 1 d = 2 d = 3 d = 4
θ = 0.5 Gaussian 0.051 0.184 0.618 0.945 0.996

Binary (N = 1) 0.043 0.072 0.152 0.276 0.424
Binomial (N = 8) 0.054 0.288 0.816 0.996 1.000

θ = 1 Gaussian 0.049 0.205 0.599 0.922 1.000
Binary (N = 1) 0.042 0.067 0.127 0.263 0.421
Binomial (N = 8) 0.047 0.289 0.784 0.984 1.000

∗Simulation on size was based on 2000 runs.

6.2 Simulation studies for the equivalence test

We next conducted a simulation study to evaluate the performance of the equivalence test proposed in
Section 4. The design of the simulation study was the same as that in Section 6.1. Since the performance
of the test for Gaussian responses was reported in a simulation study by Zhanget al. (2000), we here
considered binary and binomial responses (with the denominatorN = 8) yi j , which were generated for
groupk = 1, 2 under the model

logit{E(yi j |bik)} = fkd(ti j ) + bik,

wherebi1 ∼ N (0, θ1), bi2 ∼ N (0, θ2), two configurations of the variance components were considered
(θ1, θ2) = (0.5, 0.4) and(1.0, 0.8), and fkd(t) = d

4 fk(t) + (1 − d
4) f (t) (d = 0, 1, 2, 3, 4; k = 1, 2), and

f1(t) = t · exp(2− 2t) − t + 0.5, f2(t) = t · exp(2− 2t) − 0.5 and f (t) = ( f1(t) + f2(t))/2, t ∈ [0, 2].
Therefore,d = 0 corresponds to the situation where the functions in the two groups are equal, and asd
increases, they differ further more. These functions are plotted in Figures 4(a) and (b).
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Table 4. Empirical sizes and powers for the equivalence test for binary and
binomial data based on 1000 simulation runs

Variance of Data type Size∗ Power
random effects d = 0 d = 1 d = 2 d = 3 d = 4
θ1 = 0.5, θ2 = 0.4 Binary (N = 1) 0.061 0.121 0.362 0.710 0.938

Binomial (N = 8) 0.047 0.249 0.958 1.000 1.000
θ1 = 1.0, θ2 = 0.8 Binary (N = 1) 0.041 0.092 0.260 0.556 0.851

Binomial (N = 8) 0.050 0.119 0.706 1.000 1.000
∗Simulation on size was based on 2000 runs.
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Fig. 4. (a) Functionsf1d (t) (d = 0, 1, 2, 3, 4) used in the simulation studies for the equivalence test in Section 6.2.
(b) Functionsf2d (t) (d = 0, 1, 2, 3, 4) used in the simulation studies for the equivalence test in Section 6.2.

Table 4 presents the empirical size based on 2000 simulation runs ford = 0 and the empirical power
based on 1000 runs ford = 1, 2, 3, 4. The nominal size of the test was 0.05. For binary data, the size
of the test differed slightly from the nominal size for both sets of the variance components. The size was
slightly anti-conservative when the variance component was smaller, while slightly conservative when
the variance component was larger. This might be due to the fact that the DPQL estimates of the two
nonparametric functions for binary data are biased (Lin and Zhang, 1999) and their biases may not cancel
out underH0 : f1(t) = f2(t). The test was quite powerful to detect the difference in two nonparametric
functions. When the binomial denominatorN increased to 8, the size quickly approached the nominal
value and the power was very high for both sets of variance components. For both binary and binomial
data, the power was slightly affected by the variance component, and became a little higher when the
variance component was smaller.

7. DISCUSSION

We have developed in this paper a test procedure for testing a parametric mixed model against a
SAMM by testing whether the nonparametric function is some fixed-degree polynomial. The key idea is
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based on the mixed-effect representation of the natural spline estimator of the nonparametric function and
that the inverse of the smoothing parameter can be treated as a variance component. We hence represent the
SAMM as a working GLMM and proceed the test by a variance component score test. Unlike conventional
variance component score tests, due to the special structure of the smoothing matrix, this polynomial test
does not have a chi-square distribution asymptotically. We hence approximate its distribution by a scaled
chi-square distribution. For non-Gaussian outcomes, the Laplace approximation is used when developing
the test statistic to avoid possibly high-dimensional integration. Simulation studies show that for Gaussian
outcomes the test performs very well in terms of size and power. For sparse data such as binary data, the
performance of the test is less satisfactory. This is mainly due to the less satisfactory performance of the
Laplace approximation for the score statistic and the implicit Gaussian fourth-moment assumption when
estimating the variance of the score statistic. As the binomial denominator increases, its performance in
terms of size and power quickly improves. The performance is slightly affected by the magnitude of the
variance component.

We have used the PQL approach of Breslow and Clayton (1993) to obtain approximate REML
estimates of the parameters under the null GLMM and used them to calculate the score test statistic
(16) for the polynomial test. These estimates can be obtained using the existing software such as SAS
macro %GLIMMIX. When the dimension of the random effects is manageable, one can also obtain the
exact MLE of those parameters to remove one source of the bias in the score statistic using the existing
software such as the SAS procedure NLMIXED. It is also of substantial interest in future research to
calculate the exact score statistic (14) by numerically evaluating the required integral, for example, using
adaptive Gaussian quadrature or Monte Carlo simulation methods.

We have also proposed in this paper an equivalence test for testing whether nonparametric functions
are the same in two groups for correlated non-Gaussian data. This test extends the previous work of
Zhanget al. (2000) for correlated Gaussian data to correlated non-Gaussian data. Our simulation results
show that the proposed test perform reasonably well even for correlated binary data. As the binomial
denominator increases, its performance rapidly improves. The performance of the test is slightly affected
by the magnitude of the variance component.

The proposed test can be easily extended to test for the equivalence of nonparametric functions for
more than two groups, as discussed in Zhanget al. (2000). It is of future research interest to extend other
test procedures of the equivalence of nonparametric functions, such as the bootstrap test (Härdle and
Marron, 1990) and the adaptive Neyman test (Fan and Lin, 1998), to SAMMs.

We have used the simple scaled chi-square distribution to approximate the distribution of the
proposed test statistics. This approximation procedure can be improved and made a little more flexible by
approximating their distribution by that ofξ + κχ2

ν , where constantsξ, κ andν are obtained by moment
matching technique as described in the paper.

Both the polynomial test and the equivalence test have been implemented in SAS macros. They are
available from the authors upon request.
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APPENDIX A

Distribution of the Score Statistic for the Linearity Test for Gaussian Data

To study the asymptotic distribution of the score statisticUτ (γ̂ ) underτ = 0, it is sufficient to study
the asymptotic distributionUτ (γ0) underτ = 0, whereγ0 = (βT

0 , θT
0 , φ0)

T denotes the true value ofγ .
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This is because underτ = 0 and standard regularity conditions, the MLEγ̂ is a
√

m consistent estimator
of γ0.

In what follows, we assume that the null hypothesisH0 : τ = 0 holds, which implies that the null
linear mixed model (10) is true. LetM = (1/2)V −1N�N T V −1. Then we can writeUτ (γ0) as

Uτ (γ0) = (y − Xβ0)
T M(y − Xβ0) − tr(V

1
2 MV

1
2 )

= ỹT V
1
2 MV

1
2 ỹ − tr(V

1
2 MV

1
2 )

whereỹ = V − 1
2 (y − Xβ0) is distributed as N(0, I ).

Let ψ1 � · · · � ψr > 0 be the ordered non-zero eigenvalues ofV
1
2 MV

1
2 and� = diag(ψi ). Let H

be ar × n matrix consisting of the corresponding eigenvectors ofψi such thatH H T = I . We then have

Uτ (γ0) = ỹT H T � H ỹ − tr(�) =
r∑

i=1

ψi (z
2
i − 1)

wherez = (z1, . . . , zc)
T = H ỹ andzi are independent random variables following a standard normal

distribution.
check
lling.

or

Demmler and Reisch (1975) and Hastie and Tibshirani (1990)showed for cubic smoothing splines
(h = 2) the eigenvalues of the smoothing matrix are dominated by the first few large ones and decrease

rapidly to zero. Similar results hold for the eigenvalues of�. SinceV
1
2 MV

1
2 = V

1
2 N�N T V

1
2 , it follows

that the eigenvaluesψi would have a similar behavior. Therefore the ratio

max1�i�r {var[ψi (z2
i − 1)]}∑r

i=1 var[ψi (z2
i − 1)] = ψ2

1∑r
i=1 ψ2

i

would not go to zero asr , the number of distinct values ofti j goes to infinity. It follows that the Lindeburg
condition, which is a necessary and sufficient condition for asymptotic normality, fails. As a consequence,
the standardized score statistic ofUτ (γ0) is not asymptotically normal whenm, r → ∞ (Serfling, 1980,
Section 1.9).

APPENDIX B

Derivation of equation (16)

In what follows we assume that the null hypothesisτ = 0 holds. Denote

Ub
τ = (y − µb)T �W N�N T W�(y − µb) − tr(W N�N T ).

Wecan writeUτ in (14) as

Uτ = 1

2

∫ ∫
Ub

τ exp{�(y|β, b) + �(b)} db dβ∫ ∫
exp{�(y|β, b) + �(b)} db dβ

. (B.1)

Givenθ , let (β̂, b̂) be the maximizer of−κ(β, b) = �(y|β, b) + �(b).
We apply the Laplace method to both the numerator and the denominator of (B.1) by approximating

−κ(β, b) by a quadratic expansion about(β̂, b̂)

−κ(β, b) ≈ −κ(β̂, b̂) − 1

2
{(β − β̂)T , (b − b̂)T }Q

{
β − β̂

b − b̂

}
, (B.2)
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where

κ ′′(β̂, b̂) ≈ Q =
(

X T W X X T W Z
Z T W X Z T W Z + D−1

)
.

Denote byY = Xβ + Zb + �(y − µb) the working vector under the null GLMM (15). It follows that
(B.1) can be approximated by

Uτ ≈ 1
2E{(Y − Xβ − Zb)T W N�N T W (Y − Xβ − Zb) − tr(W N�N T )}, (B.3)

where the expectation is taken with respect to(β, b) ∼ N {(β̂, b̂), Q−1}. Further approximatingY andW
by their values at (̂β, b̂), some calculations show that (B.3) becomes

Uτ ≈ 1
2{(Y − X β̂ − Zb̂)T W N�N T W (Y − X β̂ − Zb̂) − tr[{W − W (X, Z)Q−1(X, Z)T W }N�N T ]}

= 1
2{(Y − X β̂)T V −1N�N T V −1(Y − X β̂) − tr(P N�N T )},

whereV = Z DZ T + W −1 andP = V −1 − V −1X (X T V −1X)−1X T V −1.
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