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Hypothesis Testing in Time Series via the Empirical 
Characteristic Function: A Generalized Spectral 

Density Approach 
Yongmiao HONG 

The standardized spectral density completely describes serial dependence of a Gaussian process. For non-Gaussian processes, 
however, it may become an inappropriate analytic tool, because it misses the nonlinear processes with zero autocorrelation. By 
generalizing the concept of the standardized spectral density, I propose a new spectral tool suitable for both linear and nonlinear 
time series analysis. The generalized spectral density is indexed by frequency and a pair of auxiliary parameters. It is well defined 
for both continuous and discrete random variables, and requires no moment condition. Introduction of the auxiliary parameters 
renders the spectrum able to capture all pairwise dependencies, including those with zero autocorrelation. The standardized spectral 
density can be derived by properly differentiating the generalized spectral density with respect to the auxiliary parameters at the 
origin. The consistency of a class of Parzen's kernel-type estimators for the generalized spectral density is established, and their 
optimal convergence rates are derived using the integrated mean squared error criterion. A data-dependent asymptotically optimal 
bandwidth (or lag order) is introduced. The kernel estimators and their derivatives are applied to construct a class of asymptotically 
one-sided N(O, 1) tests for generic serial dependence and hypotheses on various specific aspects of serial dependence. The latter 
include serial uncorrelatedness, martingale, conditional homoscedasticity, conditional symmetry, and conditional homokurtosis. All 
of the proposed tests, which include Hong's spectral density test for serial correlation, can be derived from a unified framework. 
An empirical application to Deutschemark exchange rates highlights the approach. 

KEY WORDS: Asymptotic normality; Bandwidth; Empirical characteristic function; Generalized spectral density; Hypothesis 
testing; Kernel function; Nonlinear dependence; Spectral density; Time series. 

1. INTRODUCTION 

Measuring and detecting serial dependence has long been 
of interest in time series analysis. Serial dependence is of- 
ten characterized by the autocorrelation function, or equiv- 
alently by the standardized spectral density function. Fre- 
quency domain analysis is convenient and enlightening 
(Priestley 1981). When a stochastic process is serially in- 
dependent, for example, its standardized spectral density is 
uniform. Any deviation of the spectral density from uni- 
formity is evidence of serial dependence. This fact can 
be used to form consistent tests against serial correla- 
tion of unknown form (see, e.g., Anderson 1993; Hong 
1996). 

The standardized spectral density captures all serial de- 
pendencies of a Gaussian process. For non-Gaussian pro- 
cesses, however, it may become an inappropriate analytic 
tool, because it misses the nonlinear processes with zero au- 
tocorrelation. Well-known examples are autoregressive con- 
ditional heteroscedastic (ARCH), bilinear, nonlinear mov- 
ing average, and threshold autoregressive processes (see, 
e.g., Tong 1990). It has been widely recognized that many 
time series arising in practice display non-Gaussian and 
nonlinear features (see, e.g., Brock, Hseih, and Le Baron 
1991; Granger and Anderson 1978; Granger and Terasvirta 
1993; Priestley 1988; Subba Rao and Gabr 1984; Tong 
1990). 

Yongmiao Hong is Associate Professor, Department of Economics and 
Department of Statistical Science, Cornell University, Ithaca, NY 14853. 
The author thanks the editor, an associate editor, and two referees for 
valuable comments and suggestions that have led to significant improve- 
ments in the manuscript. He also thanks W. Barnett, A. Bera, H. Bierens, 
M. Carrasco, N. Kiefer, T. Lee, J. McCulloch, J. Pinkse, J. Ramsey, P. 
Robinson, M. Stinchcombe, and M. Wells for helpful comments and dis- 
cussions on the earlier versions. 

The development of nonlinear time series analysis has 
been advancing rapidly, but there are relatively few useful 
analytic tools (Granger and Terasvirta 1993). Higher-order 
spectra, which are the Fourier transforms of higher-order 
cumulants, have been proposed to capture nonlinear depen- 
dencies (Brillinger 1965; Brillinger and Rosenblatt 1967a, 
b; Hinich 1982; Hinich and Patterson 1992; Subba Rao and 
Gabr 1980, 1984). Although they can effectively capture 
many nonlinear dependencies, they may miss some impor- 
tant ones. The bispectrum, for example, may fail to capture 
ARCH processes because their third-order cumulants can 
be identically 0. Moreover, higher-order spectra need re- 
strictive moment conditions (e.g., the existence of a sixth 
moment). These features make higher-order spectra less ap- 
pealing in practice (Granger and Terasvirta 1993, p. 22). 

By generalizing the concept of the standardized spectral 
density, I propose a new spectral tool suitable for both linear 
and nonlinear time series analysis. The generalized spectral 
density can capture all pairwise dependencies while main- 
taining the nice features of the conventional spectrum. It 
is indexed by frequency and a pair of auxiliary parameters. 
The conventional spectral density can be derived as a special 
case by differentiating the generalized spectral density with 
respect to the auxiliary parameters at the origin. One of the 
central contributions of this article is to show that the intro- 
duction of the auxiliary parameters provides much flexibil- 
ity for spectral analysis, rendering the spectrum able to cap- 
ture all pairwise dependencies. The generalized spectrum 
can be estimated consistently by a class of Parzen's (1957) 
kernel-type estimators. I derive their optimal convergence 
rates using the integrated mean squared error (IMSE) crite- 
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rion, and introduce a data-dependent asymptotically optimal 
bandwidth that provides the choice of a lag order for any 
given sample size. 

Unlike the standardized spectral density, the generalized 
spectral density needs no moment condition. It applies to 
time series generated from either discrete or continuous 
distribution with possibly infinite moments, as is often en- 
countered in high-frequency economic and financial data 
(see, e.g., Fama and Roll 1968). Moreover, as a consequence 
of analyticity of the complex-valued exponential function, 
one can use the derivatives of the generalized spectrum 
to capture various specific aspects of serial dependence. 
I illustrate how the generalized spectrum and its deriva- 
tives can be used to test various hypotheses. These include 
tests of serial independence, serial uncorrelatedness, mar- 
tingale, conditional homoscedasticity, conditional symme- 
try, and conditional homokurtosis. All of the proposed tests 
are derived from a unified framework and have a conve- 
nient null asymptotic one-sided N(0, 1) distribution. Hong's 
(1996) spectral density test is obtained as a special case by 
differentiating the generalized spectral density with respect 
to the auxiliary parameters at the origin. 

My approach essentially uses empirical characteristic 
functions (ECFs) and their derivatives in a time series 
framework. The ECF has been widely used to test various 
hypotheses in the context of independent and identically 
distributed (iid) samples (Epps 1993). These include good- 
ness of fit, symmetry, and sample heterogeneity (see, e.g., 
Baringhaus and Henze 1988; Csorg6 1984; Epps and Pul- 
ley 1983; Epps and Singleton 1986; Feigin and Heathcote 
1976; Feuerverger and Mureika 1977; Hall and Welsh 1983; 
Heathcote 1972; Henze and Wagner 1997; Koutrouvelis 
1980; Koutrouvelis and Kellermeier 1981). Cs6rg6 (1985) 
and Feuerverger (1987, 1993) considered tests of indepen- 
dence among the components of an iid random vector. Epps 
(1987, 1988) was the first to use the ECF in a time series 
context to test whether a stationary time series is Gaussian 
or vice versa. Feuerverger (1987) noted the possibility of 
using the ECF to test serial independence. Pinkse (1998) 
considered a chi-squared test for first-order serial depen- 
dence via a characteristic function principle, although he 
did not use the ECF. This article differs from the afore- 
mentioned works in several ways, particularly in that I use 
spectral analysis and derivatives. 

In Section 2, I introduce the generalized spectral density 
and a class of Parzen's (1957) kernel-type estimators for the 
generalized spectrum. I establish consistency of the kernel 
estimators and derive their optimal convergence rates us- 
ing the IMSE criterion. A data-dependent asymptotically 
optimal bandwidth is introduced. In Sections 3 and 4 I 
use the kernel estimators and their derivatives to develop 
tests for generic serial dependence and various hypothe- 
ses of interest. I derive asymptotic normality of the pro- 
posed tests in Section 5 and study their asymptotic power 
in Section 6. In Section 7 I give an empirical application 
to Deutschmark exchange rates. Conclusions are provided 
in Section 8, and all the proofs are given in the Appendix. 
Throughout, C E (0, oo) denotes a generic constant that 

may differ from place to place; IAII A*, Re(A), and Im(A) 
denote the usual Euclidean norm, complex conjugate, and 
real and imaginary parts of A. Unless indicated, all con- 
vergencies are taken as the sample size n -X o0, and all 
unspecified integrals are taken over the entire Euclidean 
space with proper dimension. 

2. GENERALIZED SPECTRAL DENSITY 

Consider a stationary time series {Xt R I, t c N} 
with marginal characteristic function (p(u) - Eeiuxo and 
pairwise characteristic function j (U, v) = Eei(UXo+vXij), 
where N is the set of integers, i = -,j c N, and 
(U, V) c R2. Often, serial dependence of {Xt} is described 
by its autocorrelation function, p(j), or by its standardized 
spectral density, 

00 

h(w + = 1 p(j)e-3, w [-7r]. 
j=-00 

Both h(w) and p(j) are the Fourier transforms of each other, 
containing the same information of serial dependence of 
{Xt}. It has been long known that nonlinear time series 
may have zero autocorrelation but display strong nonlinear 
dependence, and both h(w) and p(j) fail to capture such pro- 
cesses. Higher-order spectra have been proposed to capture 
nonlinear dependencies (Brillinger 1965). They can detect 
nonlinear dependencies but may still miss such important 
ones as ARCH. Moreover, they require restrictive moment 
conditions and relatively large sample sizes for reasonable 
estimation. 

To avoid the undesired features of higher-order spectra 
and to enable capture of a wider range of nonlinear de- 
pendencies, I propose a new spectral tool. I first transform 
the original time series {Xt } by {eiuxt }, and then consider 
orj (u, v) _ cov(eiuxtI eivXt-Ijl), the covariance function be- 
tween eiuxt and eivxtiLii. Straightforward algebra yields 

orj (u, v) = i jlI (u, V) - (u) >p (V), (1) 

the difference between the joint characteristic function of 
(Xt, Xt 1) and the product of their marginals. Hence 
ofj(u, v) = 0 for all (u, v) c 1R2 if and only if Xt and Xt-I jI 
are independent (Lukacs 1970). Consequently, orj (U, V) is 
able to capture all pairwise dependencies, including those 
with zero autocorrelation. 

Suppose that SuP(u,v)cR2 z?? oj(u, v) < oo, which 
holds when, for example, {Xt } is oe mixing with 
L3=?00 a (j)(Vjl)/v < o0 for some v > 1. Then the Fourier 
transform of o-j (u, v) exists: 

I 
00 

f(w,u,v) = 27L E 0cj(u,v)e-iiW w c [-I,w]. (2) 
j=-00 

Both (1) and (2) contain the same information of serial de- 
pendence of {Xt}. In contrast to the standardized spectral 
density h(w), f(w, u,v) can capture all pairwise dependen- 
cies. It requires no moment condition and is well defined 
for both discrete and continuous random variables. When 
var(Xt) = 2 exists, h(w) can be obtained by differentiating 
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f(w, u, v) with respect to (u, v) at (0, 0); that is, 

1 092 
h(w)=- 2- fE < (WIU V) I(u,V)=(o,o) - 

For this reason, I call f (w, u, v) a "generalized spectral den- 
sity function" of {Xt }, although it does not have the math- 
ematical properties of a probability density function. 

To estimate f(w, u, v), I define the empirical measure 

(U, Iv) = (pj(u, v) - j(u, 0) pj(OI v), 

j = O,+ 1, .- . ., +(4-1), (3) 

where pj (u,v) _ (n - j ) t L- +1ei(uXt?vXt iji) is 
an unbiased estimator for pj(u,,v). I introduce a class of 
Parzen's (1957) smoothed kernel estimators, 

fn (WI Ul V) 
n-I 

2- E3 (1- j I/n)l/2k(jlp)j(u, v)e-iJw, (4) 
j=1-n 

where k(.) is a kernel function or "lag window" and p is a 
bandwidth or lag order. The factor (1 - j/n)1/2 could be 
replaced by unity, but it gives better finite-sample perfor- 
mance. 

I study the consistency property of (4) using the IMSE 
criterion, 

IMSE(fj, f) 

E J f i(W,u,V) - f(w,u,v) 2 dwdW(u,v), (5) 

where W(u, v) is a weighting function. The following reg- 
ularity conditions are imposed. 

Assumption A.](r). {Xt c R} is a strictly stationary 
a6-mixing process with L1i 0 jrc(j)(v-l)/v < oo for some 
v > 1, where r > 0. 

Assumption A.2. W R 2 -X R+ is nondecreasing with 
bounded total variation. 

Assumption A.3. k R -X [-1,1] is symmetric and is 
continuous at 0 and all but a finite number of points, with 
k(O) =1l,k2f1?00 k2(z)dz < oo and Ik(z)I < CIzb for 

large z, where b > 2. 

Assumption A.4. There exists q c (0, oc) that is the 
largest real number such that k(q) =limjzj,O{l - k(z)}/ 
ZIq c (0, ??). 
In Assumption A. 1 (r), I allow both discrete and contin- 

uous random variables and require no moment condition. 
The mixing condition governs smoothness of f(w, u, v). It 
ensures the existence of the generalized partial rth deriva- 
tive of f(w, u, v) with respect to w, 

100 

f(r O O ) 
~27 (. E, 

v - ~ r j( , ) i 6 
3 -0 

Note that (6) is not the same as the ordinary rth partial 
derivative of f(w, u, v) with respect to w. If r is even, then 
f(rOO,0) (w, u, v) = (_1)r/2&rf (W, u, v)/&wr, but if r is odd, 
then there is no simple relation between the two. 

Assumption A.2 ensures the existence of the integral 
(5). Assumption A.3 is standard for k(.). It allows k(.) 
with bounded or unbounded support. Examples include the 
truncated, Bartlett, Daniell, Parzen, quadratic-spectral (QS), 
and Tukey kernels (Priestley 1981). Assumption A.4 is a 
smoothness condition on k(.) at 0; q is called the "charac- 
teristic exponent" of k(.). For Bartlett kernel, q = 1; for 
Daniell, Parzen, QS, and Tukey kernels, q = 2. Zurbenko 
(1986) considered kernels with q > 2. 

Theorem 1. (a) Suppose that Assumptions A.1(2) and 
A.2-A.3 hold, and p = cnA for c c (0, oc) and A c (0,1). 
Then IMSE(fn, f ) -X 0. 

(b) If, in addition, Assumptions A. 1 (q) and A.4 hold and 
p= cn l/(2q+l), then 

lrn r2q/(2q+l)IMSB( n-~oo 
7r 

ck2 ReJJ f(wI u, -u)f(w, v, -v) dw dW(u, v) 
-1r 

+ (k(q) /cq)2 j If(q,O,O) (w, u, v) 12 dw dW(u, v). (7) 

The right side of (7) consists of the variance and bias- 
squared components of fn(w, u( v). The rate p = cnl/(2q+l) 
balances the variance and squared bias, so that the optimal 
convergence rate n- 2/(2q+l)I is attained for IMSE(fJ, f). 
Such an optimal rate depends on smoothness of f(w, u, v) 
and smoothness of k(.) at 0. For the Bartlett kernel, this rate 
is n-2/3; for the Daniell, Parzen, QS, and Tukey kernels, it 
is n-r4/5 

In practice, the choice of tuning constant c is crucial, as 
it governs smoothness of fn (w, u, v). The IMSE criterion 
provides a basis for choosing an optimal c in (7). It can be 
obtained by setting to 0 the derivative of (7) with respect 
to c: f _fr f(q,0,) (W, U, V))12 1 1/(2q+l) 

CO 2q(k (q) ) 2 x dw dW(u, v) 
k2 Re f f f(w, u_ -u) 

x f (w, v, -v) dw dW(u, v) 
(8) 

This delivers the theoretically optimal bandwidth po = 
conl/(2q+l) that minimizes (5) asymptotically. Because 
f(w, u, v) and f(q,O,O) (w, u, v) are unknown, po is infeasible. 
One can, however, plug in (8) the following "pilot" estima- 
tors of f (w, u, v) and f (q,0,0) (wI u, v) based on a preliminary 
bandwidth p-: 

f( u, v) 

-7 E3 (1 - j /r)l/2k(j/p-)6rj(uv)e-iiw (9) 
j=l-n 
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and 

f(q,O,O) (W, u, v) 

n-I 

=- E-~3 (1 - jj/rj1/2k(j/jp) j Qj(u,v)e-iJw (10) 2,7 j=l-n 

where k(.) is a kernel not necessarily the same as that used 
in (4) and satisfying the following. 

Assumption A.5. k: R -? [-1,1] is symmetric and is 
continuous at 0 and all but a finite number of points, with 
k(O) = 1,f z2k2(z) dz < oo and Ik(z) ? Czb for 
large z, where b > q + 2 and q is as in Assumption A.4. 

This yields a consistent estimator for co: 

S_r I' '?) (WU V) 12 1/(2q+l) 

2q(k (q))2 x dwdW(u,v) 
k2 Re ffir fn(w, u, -u) j 

x fn(w, vI -v) dw dW(u, v) 
1/(2q+1) 

|n-1 (niJ)k2(j/p)I 12q 

_ _2q(k(q))2 x f &j (u, v) 2 dW(u, v) 
k2 Ej=--n (n - Jlk jp) 

x Re f &j (u, -U)Qj (v, -v) 
x dW(u, v) J 

(1 1) 

where the last equality follows by Parseval's identity. 

Theorem 2. Suppose that Assumptions A.1 (max(2, q)), 
A.2, and A.5 hold, and - = p(n) -? oc,p2q+l/n -X 0. 
Then ao -? co and Poo/po -X 1 in probability, where Po 

1On/(2q+l). 

The estimator ao delivers a data-dependent bandwidth Po, 
which provides the choice of a lag order for a given sam- 
ple size n and is asymptotically optimal in terms of IMSE 
despite the fact that f(w, u, v) is unknown. Note that Po is 
real valued, but the effect of integer clipping of Po is likely 
to be negligible. Nonparametric plug-in methods for select- 
ing bandwidths are not uncommon in smoothed nonpara- 
metric estimation. Such methods do not completely avoid 
arbitrariness in choosing a preliminary bandwidth. There 
is, however, some evidence in both probability and spectral 
density estimation (see, e.g., Newey and West 1994; Sil- 
verman 1986, p. 58) that the final choice of a bandwidth 
is not very sensitive to the choice of a preliminary band- 
width. In an empirical application in Section 7, I study the 
effect of choosing different p on both Po and fn (W, u, v). It 
is found that Po is not very sensitive to the choice of p- for 
some commonly used kernels, and that related test statistics 
are robust to the choice of p- over a relatively wide range 
of -j. 

3. HYPOTHESIS TESTING IN TIME SERIES 
To illustrate the scope and merits of the generalized spec- 

trum. I apply fn (w, u,v) and its derivatives to test generic 
serial dependence and hypotheses on various specific as- 
pects of serial dependence. Detecting various forms of se- 

rial dependence has been a long-standing problem. A fea- 
ture of the present approach is that all of the proposed tests 
for various hypotheses of interest are derived from a unified 
framework. 

Under serial independence of {Xt}, f (w, u, v) becomes a 
constant function of frequency w, 

fo (w it, v) = 
I 

co-o(U Iv), V w [7r, 7r], (12) 

where o-o(it, v) = (u + v) - (p(u) p(v). This can be esti- 
mated consistently by 

fo(w, u, v) = 2 rO(u,v), Vw c [-7, 7]. (13) 

To test serial independence, one can compare fn (w, u, v) 

and fo(w, u, v) via, for example, an L2 norm. Such tests can 
detect all pairwise dependencies. They are useful, for exam- 
ple, in identifying nonlinear time series models, in testing 
the random walk hypothesis, and in situations where se- 
rial dependence is of unknown form. In addition to generic 
serial dependence, one may also be interested in testing 
hypotheses on various specific aspects of serial depen- 
dence, such as serial uncorrelatedness, martingale, condi- 
tional homoscedasticity, conditional symmetry, and condi- 
tional homokurtosis. Such hypotheses have their own rights. 
For example, market efficiency hypothesis is often equiv- 
alent to a martingale hypothesis. The analyticity of the 
complex-valued exponential function allows one to test 
these hypotheses by comparing the derivative estimators, 

f(Oml) (W, u, v) 

= 2 S (1 - jj/n)1/2k(j/n)8YTh1)(u v)e-ijw (14) 
j=l-n 

and 

fO) WI )(WulV) =- &M'1) v), (15) 

where o1(m'l)(u,v) = <9r+1&j(u,v)/o9n-uo91v. As is illus- 
trated in Section 4, (14) can only capture certain aspects 
of serial dependence, depending on the order (m, 1). The 
order to choose is dictated by the aspect of serial depen- 
dence in which one is interested. When no prior informa- 
tion about possible alternatives is available, for example, 
one may be interested in generic serial dependence and set 
(m, 1) = (0, 0). Alternatively, one can set (m, 1) = (1, 0) to 
test the martingale hypothesis, or set (mI, 1) = (1, 1) to test 
serial correlation. Note that for m, I > 0, proper moment 
conditions on {Xt} are needed to ensure the existence of 
derivative f(O,mnl) (w, u, v) = 09?7?lf(w, u, v)/oumovl; see 
Assumption A.6 later. 

Consider a squared L2 norm between (14) and (15); 
namely, 

JJ2!(Oml)()mv) - j(Oml)( ) 
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(,7F)J [Z-l LnElk2 (jlp) (I -_j/n) Ijnml) (u v) 2] 

x dW(u,v), (16) 

where the second equality follows by Parseval's identity. 
I integrate out (w, u, v) over [-w, ] x R2 rather than use 
finitely many gridpoints. This ensures a reasonable omnibus 
test. Note that numerical integration over frequency w is not 
needed in (16). One could also use divergence measures 
other than the L2 norm, but they would generally involve 
numerical integrations over w as well as (u, v). 

My test statistic is a properly standardized version of 
(16): 

X dW(u, v) a(m,l) Ek2(j/p) } j=1=l 

n-2 z 1/2 (17) 

where 

CO, ) Jv( m(u rU)6-(1 )(v,-v) dW(u,v) 

and 

b(7n l) J { 3(m,M) (U. U')C(11 (v, vI) 12 + &_(m,m) -U I 

X ill) (V, -V/) 12} dW(u, v) dW(u', v'). 

Note that D(m,l) involves a four-dimensional integration. 
For simplicity, one can use 

W(u, v) = WI (u)W2 (v), (18) 

where the Wj: R -? R+ weight sets symmetric about 0 
equally. This is analogous to a multiplicative symmetric 
kernel function commonly used in multivariate smoothed 
nonparametric estimation (Silverman 1986). With the use 
of (18), (17) simplifies to 

M(m, l, p) k E 2(j jlp) (n j ) I (t v) l12] 

x dWQ (u) dW2 (v) k2l (Z k p)} 
j=K ) 

where 

c(mo v- 
J 1mm) (u,-u)dW1(u) J <'1 (v,-v)dW2(v) 

and 

D('0 =2 X 0o )()u)1 dW, (u) dW, (u') 

x X l (1,0) (v v/) 12 dW2(v) dW2(v/). 

Now 4m(l) involves only two-dimensional integrations. 

4. TEST STATISTICS 

The choices of (m, 1) and {WI(u), W2(v)} provide much 
flexibility in capturing various aspects of serial depen- 
dence. I now illustrate how different choices of (m, 1) 
and {WI (u), W2(v)} deliver tests for various hypothe- 
ses of interest. Throughout, I assume that Wo: R X- 

R+ is nondecreasing and weights set symmetric about 0 
equally. 

4.1 Testing Generic Serial Dependence 

Put (m,l) = (O,O),W1( ) I W2(.) = Wo(.). Then 

_f [n-li 

M(O,0,p) = - E 2(j/p)( _ 
j)I j(8 V)12 

Lj=1n J 
n-I 

x dWo (u) dWo (v) - Co') E k2(j/p) 
j=1 

n-2 l /2 
Do Ek (j1/P) (20) 

j=l 

where 

60, ?) - [J o(u, - u) dWo (u)1 
and 

Do7)=2 [J X&0o(u, ?Ji) 12 dWo (u) dWo (u')1 

This tests generic serial dependence, which is useful when 
no prior information about the alternative is available. For 
any continuous and increasing Wo (.) with unbounded sup- 
port, (20) is consistent against all pairwise dependencies. 
When boj (u, v) is analytic, which requires a finite moment- 
generating function of (Xt, Xt-j), (20) is consistent against 
all pairwise serial dependencies even if WIVo(.) has bounded 
support. This follows because two distributions are iden- 
tical if and only if their analytic characteristic functions 
coincide for all (u, v) in a neighborhood of the origin. For 
a nonanalytic characteristic function, bounded support may 
lead to inconsistent tests. This follows because two distinct 
distributions can have the same characteristic functions on 
a finite interval (Chung 1974, pp. 184-185). 
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There have been a number of tests for generic serial 
dependence using various nonparametric time domain ap- 
proaches, including those by Brock et al. (1991), Chan 
and Tran (1992), Delgado (1996), Hjellvik and Tj0stheim 
(1996), Hong (1998), Robinson (1991), and Skaug and 
Tj0stheim (1993a, b, 1996). These tests are based on cor- 
relation dimension in the chaotic theory, smoothed density 
estimation, and EDFs. Nearly all of these tests deal with 
serial dependence of a finite order and thus are not consis- 
tent against all pairwise dependencies. Pinkse (1998) con- 
sidered a test for first-order serial dependence by using an 
upper bound of f 1&1 (u, v) I2 dW(u, v) rather than the ECF 
directly. 

Like the EDF, the ECF involves no smoothed nonpara- 
metric estimation at each lag j. It is well known (Feigin and 
Heathcote 1976) that ECF- and EDF-based tests for good- 
ness of fit have different powers in the iid context: EDF- 
based tests have good power against shifts in mean but low 
power against changes in scale, whereas ECF-based tests 
have omnibus power against the two. A time series analog 
is documented for ECF- and EDF-based tests of serial inde- 
pendence. Hong (1998) and Skaug and Tjostheim (1993a) 
found that EDF-based tests have good power against lin- 
ear time series but low power against ARCH. A simulation 
study of an earlier version of this article found that the 
ECF-based test M(O, 0, p) has omnibus power against both 
time series processes. Moreover, EDF-based tests may have 
no power against some types of serial dependence of any 
order when Xt is a discrete random variable (see Skaug and 
Tj0stheim 1993a for an example). 

4.2 Testing Serial Correlation of Unknown Form 

Put (m,l) = (1,1), and suppose that W1(.) and W2() 
have a density function d: JR R JR+, where 5(.) is the Dirac 
delta function; that is, d(u) 0 if and only if u :8 0 and 
f d(u) du = 1. Straightforward algebra yields 

J l)(u, v) 2 6(u) 6(v) du dv al (0o) 2 

c( 9= [J5(1l(u,-u ,6(u) du f?2 (0)) 
and 

5(11l) - 2 [J 1(1 (u, U) 12 5(u) (u') du du'l 2 2R4(0), 

where 
n 

RI(j) (n - j) [Xt- XI(j)][Xt -j X2(j) 
t=j+l 

n 

X1(;)V=r(n_j>- z Xt 
t=j+l 

and 
n 

XI2(j) = (n_- j)- E xt_j 
t=j+l 

It follows that 

n-I n-I 

M(1, l,p)= k2(j/p)(r - j)>l2(j) _ E k2(j/p) 
-j=l j=l 

n-2 ~~1/2 

[2zki/j , (21) 
j=l 

where PI(j) = R?(j)/R1I(O) is the sample autocorrelation 
function of {Xt }nt=. This is a slightly modified version 
of Hong's (1996) spectral density test, which is consistent 
against serial correlation of unknown form. When uniform 
weighting (i.e., k(z) = 1 if lzl < 1 and 0 otherwise) is 
used, then (21) delivers generalized portmanteau tests of 
Box and Pierce (1970). As shown by Hong (1996), however, 
uniform weighting is not optimal when p is large. Note 
that Anderson (1993), Andrews and Ploberger (1996), and 
Durlauf (1991) also considered consistent tests for serial 
correlation of unknown form. 

4.3 Testing for the Martingale Hypothesis 

To test the martingale difference sequence hypothesis that 
E[(Xt - f)lXt-j,j > 0] = 0 a.s., where , = E(Xt), one 
can put (m,l) = (1,0). Suppose that W1 (.) has a Dirac 5(.) 
density and W2(.) = Wo(.). Then 

x dW (v)j- na(1 0) E k2(i/p) 

jjl 

,(n 0 2 1 j/2 

(1[0) Ek4 (j/p , (22) 
j=l 

where 

COl,) 
- RI (0) J o (v, -v) dWo (v), 

.D (') = 2Rf2 (0) X&o (v, v') 12 dWo (v) dWo (v'), 

and 
n 

6 
(17?) (0, V) = (n 

- j) 1 E Xt [eivxt-i - (j (0, V)] 
t=j+l 

Note that 6fjlo) (0, v) is consistent for ofjlO) (0, v) = E[(Xt - 

/l)eiVXt-i]. This delivers a test for the martingale hypoth- 
esis in spirit similar to Bierens's (1982) and Bierens and 
Ploberger's (1997) integrated conditional moment tests for 
model specification. Unlike the Bierens and Ploberger tests, 
whose null limit distributions are a sum of weighted chi- 
squared variables with weights depending on the unknown 
data-generating process and thus cannot be tabulated, (22) 
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has a convenient one-sided N(O, 1) limit distribution. It has 
power against alternatives that have zero autocorrelation 
but a nonzero mean conditional on the Xt-j, such as some 
bilinear and nonlinear moving average processes. This is 
illustrated in an empirical application to Deutschemark ex- 
change rates in Section 7, where tests based on the conven- 
tional spectrum fail. Therefore, (22) may be more useful 
than conventional spectral tests, which have been widely ap- 
plied to test the martingale hypothesis in practice (see, e.g., 
Durlauf 1991). Hinich and Patterson (1992) also proposed 
a test for the martingale hypothesis using the bispectrum. 

4.4 Testing for Linear ARCH 

Put (m, 1) = (2,2) and suppose that both W1 (.) and W2(.) 
have a Dirac 5(Q) density function. Then 

n-I n-I 

M(2,2,p) [E k2(i/p) (n -_j) 2 (j)-E k2 (j/P 
j=l j=l 

n-2 1/2 

2 1:k (/) ,(23) 
j=1 

where p2 (j) is the sample autocorrelation function of {Xt2} 
defined analogously as P1(j). This is consistent against all 
linear ARCH processes; that is, all autocorrelations in Xt2. 
When uniform weighting for k(.) is used, (23) delivers a 
generalized version of McLeod and Li's (1983) test. The 
tests of Engle (1982) and Granger and Anderson (1978) are 
similar in spirit to McLeod and Li's test. They are asymp- 
totically equivalent under proper conditions (Granger and 
Terasvirta 1993, pp. 93-94). Again, nonuniform weight- 
ing for k(.) is asymptotically more powerful than uniform 
weighting for large p. 

4.5 Testing for Nonlinear ARCH 

Put (m, l) = (2, 0). Suppose that W1 (.) has a 5(.) density 
and W2(.) = WO(.). Then 

n-n1 

x dWo( j)C/0) n _j)k2(2/p) } 
Ljj=l J 

-/2 

Do , k 2/P j (24) 
j=l 

where 

C(2,0)= ()Xo(v vdW() O, = R2 (0) Jlo (v,- v) dWo (v), 

and 
n 

i2, 0, (Ov) ( -j1 E X2 [eivXt-j _- 17( 7)Ov) = (n j)-E xt2[iX (0,( v)] 
t=j+l 

Note that 8j2O) (0, V) is consistent for (2,0) (0, V) - 

E[(Xt2- EXt2)eivxt-i]. Besides linear ARCH, (24) can also 
detect the nonlinear ARCH processes for which {X2} has 
zero autocorrelation but a nonconstant mean conditional on 
the Xt-j, j > 0. An example is an ARCH process whose 
conditional variance follows a chaotic tent map process (see, 
e.g., Brock et al., 1991, pp. 11-12). 

4.6 Testing for Conditional Symmetry 

Put (m, ) = (3, 0). Suppose that W1 (.) has a 5(.) density 
and W2(.) = WO(.). Then 

M(3,01p) {J [Zk2i(/P>ii -j) &3'0)(o,V) 2j 
n-I1 

x dWo(v) - 0p3j0) E k2(3/p) } 
j=1 ~ jl 

n-2 1/2 

+ [(3'0 Z k4(ji/P) (25) 
j=l 

where 

C3,0) - R3(0) J o (v, -v) dWo (v), 

Do3'0- 2R3(0) J &o(v, v') 2 dWo(v) dWo(v'), 

and 
n 

o-(3'0)(0, v) = (n - j)- E X3eVX--fj (0,) V) 
t=j+l 

where I3(j) is the sample autocovariance function of 
{X3 I}n= defined analogously as R1 (j). This checks whether 
the conditional third moment of {Xt } is time-varying, the 
so-called conditional heterocliticity. It can be used to test 
conditional symmetry. This is important in finance, for ex- 
ample, because conditional skewness has important im- 
plications for portfolio selections. It can also be used to 
test whether the innovation distribution of an ARCH pro- 
cess is symmetric, which is crucial for efficiency of quasi- 
maximum likelihood estimators (Newey and Steigerward 
1996). 

4.7 Testing for Conditional Heterokurtosis 

Put (m, 1) = (4, 0). Suppose that W1 (.) has a 5(.) density 
and W2 (.) = WO (.). Then 
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n-1 J 
xdWo (v)- Co' 0) k2jp 

j=l 

[n-2 1/2 

D(4') k4(j/P) (26) 
j=l 

where 

C(4'0) =R4 (0) J o (v, -v) dWo (v), 

D(4 '0) = 22 (0) X 0o (v, VI) 2 dWo (v) dWo (v'), 

and 
n 

v (0,i v) = (n - j)- E Xt4[iX- _ 27 (0) V) 
t=j+l 

where R4(j) is the sample autocovariance function of 
{Xt4}t=1 defined analogously as R1 (j). This checks whether 
the conditional fourth-order moment of {Xt } is time 
varying. 

Tests for other moments can be derived analogously. For 
example, the choice of (m, l) = (2, 1) with both W1 (.) and 
W2(.) having a Dirac 5(.) density will test whether the 
volatility of Xt depends on the levels of its own past history, 
the so-called "leverage effect." The choice of (m, 1) = (1, 2) 
with both W1(.) and W2(.) having a Dirac 5(.) density 
will test whether Xt depends on its volatility, the so-called 
"ARCH-in-mean effect." 

5. ASYMPTOTIC NULL DISTRIBUTION 

To derive the asymptotic distribution of M(m, 1, p), I im- 
pose the following conditions. 

Assumption A.6. EI XI 14d < oo, where d = max(m, 1). 

Assumption A.7. D(ml) > 0, where D(m"l) is as f m l) 
in (17) with &o(u,v) replaced by uoQ(u,v). 

Assumption A.6 ensures that the marginal characteris- 
tic function bo(.) has bounded continuous derivatives up 
to order 4d (Chung 1974, thm. 6.4.1). Note that no mo- 
ment of {Xt } is needed to test generic serial dependence 
(m, 1 = 0). To test serial correlation (m, 1 = 1) or the mar- 
tingale hypothesis (m = 1,1 = 0), EX4 < oo is needed. 
To test ARCH (m = 2,1 = 0, 2), EX8 < o0 is needed. As- 
sumption A.7 rules out the possibility that (Tmm) (u, V) 

o-(171'),v) = 0 for all (u,v) on the support of W(u,v), as 
can arise, for example, when the distribution of Xt is de- 
generate. This ensures that M(m, 1, p) is well behaved. 

Theorem 3. Suppose that Assumptions A.2-A.3 and 
A.6-A.7 hold, and p = cn+ for c c (0, o0) and A c (0,1). If 
{Xt} is iid, then M(m, l, p) -+ N(O, 1) in distribution. 

Theorem 3 allows a wide range of admissible rates for 
nonstochastic bandwidth p. In practice, one may like to 
choose p via such data-driven methods as pO in Theorem 

2, which lets data themselves determine an appropriate lag 
order. To justify the use of a data-dependent bandwidth p, 
I impose a Lipschitz condition on k(.). This includes most 
commonly used nonuniform kernels, but rules out the trun- 
cated kernel. 

Assumption A.8. lk(zi) - k(Z2)1 <? CI Z - Z2 for any 
Z1,Z2 cLR. 

Theorem 4. Suppose that Assumptions A.2-A.3 and 
A.6-A.8 hold, and p is data-dependent such that p/pl 
1 + Op (p- (3p/2)-1) for some 0 > (2b- )/(2b- 1), where 
b is as in Assumption A.3, and nonstochastic bandwidth 
p = cnA for c C (O, oo) and A C (O, (2b- 1)/(2b- )) If 
{Xt} is iid, then M(m, l,) -M(m, l,p) -X 0 in probability, 
and M(m, 1, jp) -X N(O, 1) in distribution. 

The use of p has an asymptotically negligible impact on 
the limit distribution of M(m, 1, p) provided that p/p -? 1 
in probability at a proper rate. For kernels with bounded 
support (e.g., the Bartlett, Parzen, and Tukey kernels), d > 1 
suffices, because b = oc. For the QS kernel (b = 2), 3> 

7 

suffices. For the Daniell kernel (b 1), 3 > 3 suffices. 
2 

These conditions are mild. With some additional conditions, 
Theorem 2 could be extended to obtain a convergence rate 
for Po to satisfy Theorem 4, but I do not do so for space 
considerations. 

The asymptotic normality of Theorems 3 and 4 gives 
quick and convenient inference. For small and finite sam- 
ples, however, asymptotic approximation may not be rea- 
sonable. In this case, bootstrap or permutation can be used. 
These methods are ideally suited to the present situation and 
can be expected to yield reasonably accurate sizes (Skaug 
and Tj0stheim 1996). I use the bootstrap in an empirical 
application in Section 7. 

6. ASYMPTOTIC POWER 

To state the consistency theorems for M (m, 1, p) and 
M(m, 1, p), I impose the following condition. 

Assumption A.9. EIXI I4d, < oo, where d = max(m, 1) 
and v > 1 is as in Assumption A.1. 

This is slightly stronger than Assumption A.6 if m or 
1 > 1. For (m, 1) = (0,0), no moment condition is re- 
quired. Following a reasoning analogous to Chung (1974, 
thm. 6.4.1), it is easy to show that Assumption A.9 ensures 
that ((m,l) (U, v) exists and is bounded and continuous in R2 
This, along with Assumption A. 1, ensures the existence of 
f (07m,l) (W) U)' V). 

Theorem 5. Suppose that Assumptions A.1(2), A.2-A.3, 
A.7, and A.9 hold, and p = cnr for c c (0, oc) and A c 
(0,1). Then, in probability, 

p1/2 
M(m,l,) -P) 

JFJ f(Oml)(w u, v) -fOml)(w u v) 2 dw 

* [Domal j k4(z) dzl 
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Thus M(m, 1, p) has asymptotic power 1 whenever the L2 
norm between f (Om,l) (w, u, v) and f(Oml) (w, u, v) is posi- 
tive. For concreteness and succinctness, I focus the discus- 
sion here on (m, 1) = (0, 0) only. In this case M(O, O, p) has 
asymptotic power 1 whenever 

2 JJ f(w u v) - fo(w, U, v)2 dw dW(u, v) 
00 = 3E I uQ(u,v)12dW(u,v) (27) 

j=l 

is positive. Suppose that W(u, v) is continuous and increas- 
ing with unbounded support, f I j(u, v) 2 dW(u, v) = 0 if 
and only if Xt and Xt-j are independent. It follows that 
(27) is 0 if and only if Xt and Xt-j are independent for all 
j * 0. Therefore, M(0, 0, p) is consistent against all pair- 
wise dependencies. A price for this is that M(0, 0, p) can 
only detect a class of local alternatives converging to the 
null hypothesis at a rate slightly slower than n-r/2. Nearly 
all of the existing nonparametric tests for serial dependence 
deal with a finite order and thus are not consistent for all 
pairwise dependencies. Note that Theorem 5 applies to both 
discrete and continuous random variables. This differs from 
some EDF-based tests (see, e.g., Delgado 1996; Hong 1998; 
Skaug and Tj0stheim 1993a), which may have no power 
against some types of serial dependence of any order when 
Xt is a discrete random variable. 

The test M(m,l,p) involves the choice of k(.). An 
interesting question is whether there exists an optimal 
k(.) that maximizes asymptotic power. Intuitively, because 

(ml) (u, v) - 0 as j -X oo, it seems more efficient to give 
more weights to lower-order lags. This is confirmed by the 
following asymptotic power analysis. Consider the class of 
kernels 

K(T)= {k(.): k(.) satisfies Assumption A.3, 

k (2) = _ > 0K( V) > O1 C R} (28) 

where K(S) (2F)1 f k(z)eidz dz is the Fourier transform 
of k(.). This class of kernels is often considered in deriv- 
ing the optimal kernel for spectral estimation (see, e.g., An- 
drews 1991; Priestley 1981). It includes the Daniell, Parzen, 
and QS kernels but rules out the truncated, Bartlett, and 
Tukey kernels. Theorem 6 shows that the Daniell kernel 
maximizes the asymptotic power of M(m, 1, p) over IK(T) 

in terms of Bahadur's (1960) asymptotic slope criterion, 
which is suitable for large sample sizes. 

Theorem 6. Under the conditions of Theorem 5, the 
Daniell kernel kD(z) = sin(3-Tz)/(V3Tz),z c R, max- 
imizes the asymptotic power of M(m,l,p) over IK(T) in 
terms of Bahadur's asymptotic slope criterion. 

Intuitively, Bahadur's (1960) asymptotic slope is the rate 
of minus twice the logarithm of the asymptotic significance 
level of a test statistic that goes to infinity under the fixed 
alternative. The larger the asymptotic slope, the more pow- 

erful the test. (For more discussion, see Bahadur 1960 and 
Geweke 1981.) It is well known that there is no good rea- 
son to use the Daniell kernel for spectral estimation (Han- 
nan 1970, pp. 279-280). Theorem 6, however, implies that 
for hypothesis testing, the Daniell kernel is more powerful 
than the QS kernel. The latter can be shown, using the meth- 
ods of Andrews (1991) and Priestley (1981), to be optimal 
over the same class IK(T) for the estimation of fn(w, u, v) in 
terms of the IMSE criterion. Note that the optimality of the 
Daniell kernel holds given any choices of function W(u, v) 
and derivative orders (m, 1), as well as any data-generating 
process satisfying Assumptions A. 1 and A.9. This general- 
izes the results of Hong (1996), who considered the special 
case (m, 1) = (1, 1) where a Parzen (1957) estimator for the 
conventional spectrum is used. 

Although the optimality of the Daniell kernel is of the- 
oretical interest, some kernels in IK(T) have rather similar 
asymptotic efficiency to the Daniell kernel. For example, 
the Bahadur asymptotic relative efficiencies of the Daniell 
kernel to the Parzen and QS kernels are (1.0961)1/(2-/) and 
(1.0079)1/(2->). Therefore, the choices of k(.) in IK(T) may 
have little impact on power, as is confirmed in an empirical 
application in Section 7. 

Finally, I justify the use of a data-dependent p under the 
alternative hypothesis. 

Theorem 7. Suppose that Assumptions A.1(2), A.2-A.3, 
and A.7-A.9 hold, and p/p = 1 + Op(p-0) for some 3 > 0, 
where the nonstochastic bandwidth p = cn/' for c c (0,1) 
and A c (0, 1). Then in probability, (p1/2//n){M(m, 1, p) - 
M(m,l,p)} 0 and 

p1/2 
P M(m,l,) P) 

I Jj I f (O,m,l) (w, u, V) f(Om,l) (W, U, V) 12 dw dWQu, v) 

* [D(ml j k4(z) dzl 

7. EMPIRICAL APPLICATION 

I now apply the proposed tools to Deutschemark ex- 
change rates, one of the most actively traded currencies 
in the foreign exchange market. The data are the weekly 
spot rates measured in units of U.S. dollars from the 
first week of 1976:1 to the last week of 1995:11, with 
a total of 1,039 observations. These are interbank clos- 
ing spot rates St on Wednesdays and are obtained from 
the Bloomberg L.P. Using the Wednesday data avoids the 
so-called weekend effect. Also, very few holidays occur 
on Wednesday; for these holidays, data on the following 
Thursdays are used. I use the logarithmic difference Xt 
100 ln(St/Sti1). 

The interest here is in testing the random-walk hypoth- 
esis and the martingale hypothesis as well as exploring a 
possible nonlinear dependence structure of Xt. It has been 
hypothesized (e.g., Meese and Rogoff 1983) that exchange 
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rates approximately follow a martingale process, so that the 
future changes are essentially unpredictable on the basis of 
public information. Such a hypothesis has been verified us- 
ing correlation tests and various data (see, e.g., Bollerslev 
1990; Brock et al., 1991; Engle, Ito, and Lin 1990; Meese 
and Rogoff 1983). 

I first estimate f(w, u, v) by fn(w, u, v) via the plug-in 
method of Theorem 2 with k(z) = (1 - Iz )1(z < 1), 
where 1 (.) is the indicator function. To examine the effect 
of the choice of preliminary bandwidth -, I consider - in the 
range of 6-15. I also consider four kernels: Bartlett, Daniell, 
Parzen, and QS, the latter three belonging to IK(T) with 
T = l/3-. The data-dependent bandwidth Po is invariant 
to T. Figure 1 reports Po and statistic M(O, 0, Po) using var- 
ious preliminary bandwidths p-. I use W(u, v) (u) (v), 
where 1>(.) is the CDF N(O, 1). The numerical integra- 
tions involved in Po and M(0, 0, Po) are calculated using the 
Gauss-Legendre quadratures INTQUAD1 and INTQUAD2 
in GAUSS software. I set the order of integration equal to 
24; it is found that numerical integrations are almost identi- 
cal for larger integration orders. It takes about 9.5 minutes 
to compute M(0, O,pio) for all four kernels k(.) and 10 pre- 
liminary bandwidths - together on a Pentium 500 personal 
computer. Figure 1 shows that given each p-, po is essen- 
tially the same for the Daniell, Parzen, and QS kernels but 
is significantly larger for the Bartlett kernel. This accords 
with the faster rate of the optimal bandwidth po oc n 1/3 for 
the Bartlett kernel. Given each k(.), po depends on p- in an 
increasing way, but by a small marginal rate. This is true 
especially for the Daniell, Parzen, and QS kernels. Thus the 
choice of Po is not very sensitive to the choice of p-. The 
statistic M(O, 0, Po) is relatively robust to the choice of p. 
The Daniell, Parzen, and QS kernels deliver rather similar 

values for M(O, 0, Po) for each p-. The Bartlett kernel gives 
a slightly larger value for M(O, 0, po), but this is not in- 
consistent with Theorem 6, because the Bartlett kernel is 
outside IK(T). 

Figure 2 reports statistics M(m, 1, Po) and their p val- 
ues for various (m, 1). I consider the preliminary bandwidth 
p- in the range of 6-15 again, but use the Daniell kernel 
only. Note that the data-dependent Po depends on (m, 1), be- 
cause the plug-in derivative estimators f( 'm l) (w, u, v) and 
f(ml) (w, u, v) depend on (im, 1). In addition to asymptotic 
p values, I also compute bootstrap p values for M(m, 1, Po). 
To compute each bootstrap statistic, I first use a GAUSS- 
386 random number generator to randomly draw a boot- 
strap sample {Xto }In1, with replacement, from the observed 
sample {Xt}ln . Based on {Xton=} 1, I then compute Po 
and M(m, I, po) for each (m, 1). The bootstrap p-values are 
based on 500 iterations. Figure 2 shows that both asymp- 
totic and bootstrap p-values of M(0,0,po) are essentially 
O for any given -, strongly rejecting the random-walk hy- 
pothesis. In contrast, although asymptotic and bootstrap p- 
values of the conventional spectrum-based test M (1, 1,p o) 
differ from each other, both of them are well above .2 
for all choices of p-, suggesting that {Xt} is serially un- 
correlated. This, however, does not necessarily imply that 
{Xt} is a martingale difference sequence (as most exist- 
ing studies conclude), because {Xt} may have zero au- 
tocorrelation but a nonzero conditional mean. Indeed, the 
martingale test M(1,0,po) strongly rejects the martingale 
hypothesis in terms of both asymptotic and bootstrap p- 
values. Therefore, the change of Deutschemark exchange 
rates, though serially uncorrelated, has a nonzero mean con- 
ditional on its past history. This evidence might be use- 
ful in modeling exchange rates. The sharp differences of 

(A) Plug-in Bondwidth Estimator (B) Test Statistic 

12 10 

M(0,0,pO)-BartlettM00pODnil 

pO-Bartlett 
9--~ M(0,0,pO)-Parzen 

/ { \ ~~~~~~~~~M (O, O,pO ) -Q S 

6 

6 PO* -QS[ 

3 ~~~ \ ~pO-Daniell 
3 

2 

0 0 
6 9 12 15 6 9 12 15 

Preliminary Bandwidth pbar Preliminary Bandwidth pbar 

Figure 1. (a) The Data-Driven Bandwidth iO as a Function of the Preliminary Bandwidth p. The figure displays how sensitive the value of pO is 
to the choice of p. Four kernels--Bartlett, Daniell, Parzen, and Quadratic-Spectral kernels are considered. (b) The test statistic M(O, 0, io) as a 
function of the preliminary bandwidth p. The figure displays how sensitive the value of M(O, 0, io) is to the choice of -, which affects M(O, 0, io) 
via the data-driven bandwidth p3. Four kernels--Bartlett, Daniell, Parzen, and Quadratic-Spectral kernels are considered. 
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(A) Test Statistics (B) Asymptotic P-Values 
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(C) Bootstrap P-Values 
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0.05 - - 
,M(22,2pO) _M(.PO 

0.00 '. M(0,0,p0) 

-0.05 
6 9 12 15 

Preliminary Bandwidth pbar 

Figure 2. (a) The Test Statistic M(m, 1, p0) as a Function of the Preliminary Bandwidth p. The figure shows how sensitive the value of M(m, 
1, i0) is to the choice of p. Only the Daniell kernel is considered. (b) The asymptotic p-value of the test statistic M(m, 1, i0) as a function of the 
preliminary bandwidth p. The figure shows how sensitive the asymptotic p-value of M(m, 1, j0) is to the choice of p. Only the Daniell kernel is 
considered. (c) The bootstrap p-value of the test statistic M(m, 1, p0) as a function of the preliminary bandwidth p. The figure displays how sensitive 
the bootstrap p-value of M(m, 1, i0) is to the choice of p. The bootstrap p-values are computed using 500 bootstrap samples. Only the Daniell 
kernel is used. 

M(,0j0 Po) and M(1,,0,PO) from M(1,1,IPO) clearly illus- 
trate that the generalized spectrum can detect the non- 
linear dependence structure that would be missed by the 
conventional spectrum. Finally, both asymptotic and boot- 
strap p-values of the ARCH test M(2, 2, po) are essentially 
0, suggesting a strong ARCH effect. On the other hand, 
although asymptotic p-values of the conditional symme- 
try test M(3, 3, po) are 0, its bootstrap p-values are only 
around .05, suggesting marginally significant conditional 
skewness. 

8. CONCLUSIONS 

Using the empirical characteristic function, I have pro- 
posed a generalized spectral tool suitable for both linear 
and nonlinear time series analysis. The generalized spec- 
tral density can capture all pairwise dependencies, requires 
no moment condition, and is well defined for both discrete 
and continuous random variables. The conventional spectral 
density can be derived as a special case by properly differ- 
entiating the generalized spectral density. I established con- 
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sistency of a class of Parzen's (1957) kernel-type estimators 
for the generalized spectrum and derived their optimal con- 
vergence rates using the IMSE criterion. A data-dependent 
asymptotically optimal bandwidth was introduced, which 
provides the choice of a lag order for a given sample sizes. 
The kernel estimators and their derivatives were applied 
to construct tests for generic serial dependence and hy- 
potheses on various specific aspects of serial dependence. 
The latter include serial uncorrelatedness, martingale, con- 
ditional homoscedasticity, conditional symmetry, and con- 
ditional homokurtosis. All of the proposed tests are de- 
rived from a unified framework and have a convenient null 
asymptotic one-sided N(O, 1) distribution. An empirical ap- 
plication to Deutschemark exchange rates highlighted the 
approach. 

APPENDIX: PROOFS 

Proof of Theorem 1 
I show (b) only; the proof of (a) is similar to that of Theorem 

2. Define the pseudoestimator 

anw , v) 

(27r) 3 E (1 - j/i I)l/2k(j/p)j(u v)e-jw, (A 1) 
ljlI<n 

where 3j(u,v) (n - jjj)-Z Etn jjj,, t(u)at_jij(v) and 
fPt(u) euXt - (o(u). Then IMSE(fn,f) = IMSE(fn,f) + 
IMSE(fn,fn) + 2Re(Rn), where Rn _ Effrj[fn(w,uv) - 

fn (WI u, v)][fn (w, u,v) -f*(w, u, v)] dw dW and dW _ dW(u, v). 
It suffices to show Theorems A. 1 and A.2, which imply Rnt= 
o{IMSE(fn, f)} by the Cauchy-Schwarz inequality. 

Theorem A.1 
Suppose that the conditions of Theorem 1 hold; then 

n2q/(2q+l)IMSE(fn, f) < 

ck2Re Jj f(WI u, -u)f (w, v, -v) dw dW 
-1r 

+ (k() J f(q o o) (W, u v) 12 dw dW. 

Theorem A.2 
Suppose that the conditions of Theorem 1 hold; then 

IMSE(fn, fn) = o{IMSE(fn, f)}. 

Proof of Theorem A.1 
Put An(w,u,vV) fn(w,u,v)- Efn(w,u,v) and Bn(W,u,v) 

Efn (w u, v) -f (w, u, v). Then 

IMSE(fjn f) ElAn(W,u,V)12dwdW 
-1r 

+ Jj IBn(w,u,v)12dwdW. (A.2) 

Given (A.1) and E3j(u,v) - 5;(u) v) 2i7B2(w, u, v) = 
B192(w, u, v) + B2n(w, U, v) -B392(w, u, v), where 

Bl?l(w, u,v) _3 [k(j/p)-](u v)-i 

B2n(w, u, v) [(1 - IjI/n) - _]k(j/p)uj(u, v)e-iwj 
lIjI<n 

and 
B3n (W, U, V)- E j (u, V)e-ii 

I jIl>n 

Using the mixing inequality oja(u,v)j < Ccv(j)(L-l)/v and As- 
sumption A. 1 (q), 

010 

E ljlq sup lfj (U, V)lI 
j=Zo o (u,v)Ep2 

< c E il3qa(j)(v)v <oc. (A.3) 
j=-00 

By (6), the triangle inequality, Assumption A.4, (A.3), and domi- 
nated convergence, 

lpqBln (W U, v) + 27rk(q)f (q,?o?) (w, U, v) I 

<E I -k(jlP) _k(q) I iI q 107j(u, 

+ k(q) E lj lqlj(u, v) _ -0 (A.4) 
Ij I >n 

uniformly in (w, u, v) e [-7r, 7r] x I1R2 as p -+ oo. Using analogous 
reasoning, 

sup InB2n(w, u, v) I= 0(1) and 
(w,u,v) 

sup rnqB3n(w,U,v)I < E Jilqa(j)(L-1)/I -+ 0, (A.5) 
(W,uIv) I >n 

where the supremum is taken over [-7r, 7r] x IRt2. Combin- 
ing (A.4)-(A.5) and p = cn1l/(2q+l) yields lpqBn (WU,V) + 
k(q)f(q?oo)(w,u, v)l - 0 uniformly in (w,u, v) C [-7r, 7r] x IRt2. 
Hence 

p2Jq j Bn(W,uv) 12 dwdW-? 
-17r 

(k(q) )2 Jj If(q, 0 ) (w, U, V) 12 dw dW. (A.6) 

Next, I consider the variance term in (A.2). By Parseval's iden- 
tity, 

Jj ElAn(w, u,v) 12 dwdW= (27r)- 3 E (1- IjI/n)k2(j/p) 
ijI<n 

x f EI j(u, v) _ uj(u,v) 12 dW. 

Let Kuvu*o* (O, j, , s) denote the fourth-order cumulant of 
the complex-valued stationary process {t/bt (u), v't-j (v), v /4, (u), 
ft/_4(v)}. Using the definitions of &j (u,v) and uj (u,v) and ex- 
pressing the moments by cumulants by well-known formulas 
(Hannan 1970, 5.1, p. 23, for real-valued processes), straightfor- 
ward algebra yields 

(n - ljl)El&j(u, v) - ) 12 

Re E {1 - Il/(n - jj)}{ufa(u, -u)u,(v, -v) 
I-rl<n-ljl 

+ uW?+lr-I (u, -V)ol j-lSr (-U, v)1(lrl ? lil) 

+ JIiL+jrl(u,-v)olT<-1yjv,-u)1(Lrl > lil) 

+ Kuvu*U* (?, Jil, Pri, Wi + Irl)}. (A.7) 
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Hence 21rn rf f9EIAn (W,u, V)12 dwdW = Aln + A2n + A3n, 
where 

Aln k2(j/p) 3 {1- Tl/(n- ) 
ljl<n lrl<n-ljl 

x Re a, v(u, u)a, (v, -v) dW, 

A2n _ k2(j/p) 3 {1- -Tl/(n- jj) 
lj<n 1-1<n-ljl 

x Re f1+iljl(u, -v){uljl 1,( -u,v)l(rI < lij) 

+ ? I7I-il (V,-u)l(LTl > jjj)} dW, 

and 

A3n k2(j/p) 3 {1- Tl/(n- ) 
ljl<n 1-1<n-ljl 

x Re uvu*v*(O, jj, rj, jj + rj)dW. 

Because p-1 Z1l<nk2 (j/p) -+ k2 and O < ReZ?=0 a,(u, 
00ln = 0 

p-AAln - k2 Re E Ja o(u,-u)u, (v, -v) dW 
T=-0o 

27rk2 Re J f(w u u)f(w, v, -v) dwdW (A.8) 
-17r 

by dominated convergence. Also, given lk(.)l < 1, (A.3), and As- 
sumption A.1(2), 

r00 82 

JA2nj < { (sup Ij2(u,v) < C (A.9) 

and 
00 00 00 

JA3 j= < E3 E E sup IKUVU*V* (?,j, S, t)I 
j=-00 8=-00 t=-00 u,)R 

< C, (A.10) 

where the fourth-order cumulants are absolutely summable uni- 
formly in (u, v) given Assumption A. 1(2) (Andrews 1991, lem. 1). 
Note that uniformity in (u, v) follows from the fact that {/t ()} is 
a bounded random variable. Combining (A.7)-(A. 10) and p -+ oo 
yields 

(n/p) Jj E An (w, u, v) 12 dwdW dW 
-1r 

k2 Re f(w,u,-u)f(w,v,-v)dwdW. (A.11) 
-17r 

The desired result follows from (A.2), (A.6), (A. 11), and p 
1n/(2q+l) 

Proof of Theorem A.2 

By straightforward algebra, 

(n - -_ )2{ (U V) _&(u V) 

- {Z btU {ZE bt_ii(v)}. (A.12) 

It follows from the Cauchy-Schwarz inequality that 

(n- ljl)4 El&j (u, v) - &j (u, v) I' 
/ ~~~~4 4 1/2 

< { EZ bt (u) EB j } u 
t=ljl+l t=1j1+l 

< C(nr- j-)2 (A. 13) 

where EI Etnjj_+_ ,t(U)j4 < C(n - lil)2 given Assumption 
A. 1(2). 

Now, by Parseval's identity, (A. 13), and f dW < oo from As- 
sumption A.2, 

IMSE(jn, Jn) = (27r)-l E (1- Jjj/n)k 2(j /p) 

ljlI<n 

x E f1ij (u, v) -&j (u, v) 12 dW 

< Cn- E anj= O(p/n 2) 
l jlI<n 

- o{IMSE(jn,f)}, (A.14) 

where and hereafter anj (n - I ) -j1k2 (j/p) and 

E an <? {p/(n - 1)}p-1 3 k2(j/p) + C2n-Ip2b 

ljlI<n li 1_< 

x 5 {(n- jjj) 1 + jjj-1jjjj-2b+ 
1<ljI<n 

O(p/n) (A. 15) 

given Ik(z)f < CIzI-b for large z,p = cnA for A e (0,1), and 
choosing 1 = p(lnrn)1/(2b-) 

Proof of Theorem 2 

The convergence ao -+P co follows if IMSE(fnq?o) f(q?,?) ) n 

0 and IMSE(fn, f) - 0, the latter implying ff" Ifn (w, u, -u) 
- (w, u, -u) 12 dwdW -P 0 and ff Ifn(w) v -v) - f (w v, 

-v) 2dw dW -+P 0. Thus it suffices to show that IMSE(fnT'0', 
f (roo)) - ?0 for r e [0, q]. Define the pseudoestimator 

jn(rO,0) (w, u, v) 

(27r) 1 E (1 - j/n) k(jl C- 

By the C, inequality, 

I 
IMSE(fjn70'0o) f(r,0,)) 4 
< IMSE(fnX'0'0), Ef(TO?O)) 

+ IMSE(EfnXoo), f(r,O,O)) 

+ IMSE(fnr??oo), jn(r,O,O)). (A. 16) 

Now, by Parseval's identity, (n - Ijf)EI&j(u,v) -_ j(u,v)12 < 
C from (A.7)-(A.10), and Assumption A.5, for the first term 
in (A.16), 

IMSE(fnr?o?), Ef/ roov) ) 

< (-r+/ -- 
Ek2j/)l/-2rj(jr1/)<An7 
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Similarly, by (6), Parseval's identity, (A.3), Assumption A.5, and 
dominated convergence, 

IMSE(EfXT'O o), (r O O)) 

- E3 {(1 - j/n)-k(jl-) - 1}2 
liI<n 

x I j 1j2ryj(U, V) 2dW 

+ S Ij 12rj (U,V) 12 dW o O (A.18) 
jij>n 

as p -? oo. Finally, for the last term of (A. 16), by Parseval's 
identity and (A.13), 

IMSE(fn('01), Jn(rO?))) 

GP I1-2 
{P(1_|j l / 

-l 
2(p) lj/pl 

2r} < 
n2 

p (I - 
Jjj/nl 

) 
Ik< 

=o(2r+l/n2) (A.19) 

where the quantity inside {.} is 0(1) given Assumption A.5 by 
reasoning similar to (A. 15). The desired result follows from com- 
bining (A. 16)-(A. 19) and -22r+l /n - 0. 

Proof of Theorem 3 
I first show that replacing fj (u, v) with fj (u, v) in M(m, i, p) 

is a higher-order effect. Write 

(m,) (U I V)-12 _ I 4ml) (UV)12 

I ml (U, V) - 1m) (U, V) 12 

+ 2Re{[fm l) (u, v) - ffm,1) (u, v)]m) (u, v)*}. 

Under serial independence of {Xt } and Assumption A.6, 
(n _ j)2Ej&5mXl)(u,v) _ 

&ffml)(U,V)12 < C and (n - 

j) E I-(M'l () v) 12 < C uniformly in (u, v) R 22 can be obtained. 
It follows from Markov's inequality, the Cauchy-Schwarz inequal- 
ity, f dW < oo, and (A.15), that 

rn-I J {Zk2(ji/p)(n -j)[I&(ml)(U V)12 _-1&m,l)(U V)12 dW 
j=l 

- Op (p/nr /2) = op(p1/2) (A.20) 

given p/n -+ 0. Now define Vt(T'l)(u,v) _ C(m7')(u,v) + 

Ctj (u, v) *, where 

Ct(7" )(Ul V) = t( 8()) )()1)t j(V)v)( )j(V)*- 

Because C(71) (u, v) = C(mt) (u, v) *, Vt(m') (u, v) is real-valued t83 I stj ~~~ sj (,v 
and is symmetric in t and s; namely, Vt(/m') (u, v) V/7'1)(u,v). 
This leads to 

n-I 

3 k2 (j/p) (n _ j) 1&(m,l) (U V) 12 

j=1 

ra [ C(t) (U, V) + V&7'j (UV) 
j=l t=j+l ~~t-j+2 s=j+1 

- 
jmXl) (u ) ? V(mXl) (u.v), say. (A.21) 

I now consider the first term in (A.21). Observe that 
f C() (u, v) dW and f C (u, v) dW are independent un- 
less t = s or s + j, and that E f Ct('7) (u v) dW = C(m'1) 
f (mm) (u, -U)'( v, ) -v) dW. It follows that E{T=j 

[f C(7') (u, v) dW - E(ml)]}2 < C(n - j). Hence, by Markov's 
inequality, the Cauchy-Schwarz inequality, and (A.15), 

n-1 

] 7(m 1) (u, v) dW - C(ml) k2 (j/p) 

j=1 

n-1 n 
= L Lanj J Ct(m) (u, v) dW -C(m'l) 

j=l -t-j+l 

Op(p/nr1/2). (A.22) 

Combining (A.20)-(A.22) and putting f$ml) f J%(ml) (u, v) dW 
yields 

n-1 J k2 (jlp) (n -j) 16 (7M, 1) (U, v) 12 dW 
j=l 

n-1 
- C(m, ) o k2(j/p) + k(m,1) + Op (p/nlr2). (A.23) 

j=1 

Now, by rearrangement of indices (t, s, j), one can write 
f7m'l) =3 v M, where v ) t-1 Es' anfj Vt(sml) 

(u,v)dW. Because E[Vn(mXl) Ft_j] = 0 under serial indepen- 
dence of {Xt}, where {Yt} is the sequence of a- fields consisting 
of {X, s < t}, f{v7Omy) F } is an adapted martingale difference 
sequence. Because vn(m$l) is a triple sum of nonlinear functions 
of (Xt, Xt_j, X , Xsj), it is very difficult to apply a martingale 
limit theorem to vnrml) directly. I first use a truncation argument 
to partition vn(ml) into a sum over (t, s, j), where t - s > g e N 
and 1 < j < g plus a remainder term. The remainder term, as 
shown in Theorem A.3, is of a smaller order of magnitude if 
g _ g(n) -oo such that g/p -+ oo and g/n -+ 0: 

n t-g-1 g 

f/rml)n E E E n j Vt(sj) (U, v) dW + op (pl2) 
t=g+2 s=1 j=1 

- n(M l) + oP(p1/2) (A.24) 

where V(47'm) is a triple sum over (t, s, j), where t - s > g. Note 
that (Xt, Xtj) and (X,, X,j) are independent if t - s > g. 
This greatly simplifies verification of Brown's (1971) conditions. 
In fact, V(m ,) is a sum of degenerate dependent U statistics of 
processes (Xt, Xt-j), where lag order j can be as large as n - 1. 
Hjellvik and Tj0stheim (1996) and Skaug and Tj0stheim (1996) 
considered a degenerate U statistic of (Xt, Xtj) for fixed and 
finite j. 

With application of Brown's theorem, one can obtain (as shown 
in Theorem A.4) 

0 1 -1/2 

pDrni k4z d (m' l) +d N(0, 1), (A.25) 

where D(ml) is as in Assumption A.7. Combining (A.23)-(A.25), 

[pD~ ~00 k( d -1/2 

x { J [k2 (j/p) (n-j) dz m')(, v) 21 dW 
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n-1 

-C(m'1) k2 (j/p) d N(Ol, 1). (A.26) 
j=1 

Because C(m'1) C(m'1) = Op((1/2), as can be easily shown, 
and Ej=7l k2(j/p) = 0(p), replacing C(m,1) with a(m,l) in 
(A.26) has asymptotically negligible impact given p/n - 0. By 
Slutsky's theorem, one can also replace pD(mt) fJo0? k4(z) dz 
with b(m') E7lj k4(j/p), where Dom,l) *P D(m') and 

p-1 -1 k4(j/p) -* fo? k4(z) dz. It follows that M(m, i,p) --d 

N(O, 1). The proof will be completed provided that Theorems A.3 
and A.4 are proven. 

Theorem A.3 

Let VQm'l) and V(m,l) be defined as in (A.23)-(A.24), where g 
g(n) is such that g/p - oo, g/n - 0. Then f& 'm) = Q(j' () + 
Op (p1/2). 

Theorem A.4 

Let ii(m,l) be defined as in (A.24), and g _ g(n) be such that 
g/p -* oo,g/n - 0. Then [pDm ol) jOk4(z)dz]- 1/2v(l) d 

N(O, 1). 

Proof of Theorem A.3 

I first partition <(ml) into sums over 1 < j < g and g < j < 
n-2: 

g n t-1 n-2 n t-1 

,) j=l t=j+2 s=j+l j=g+l t=j+2 s=j+l 

x a j JVt(7 ) (u, V) dW-=-nmm + f?R(m' ), (A.27) 

where Mtml) is the contribution from the tail of k(j/p). Next, 
using the fact that the sum over (t, s), where 1 < s < t < n, can 
be partitioned into a sum over (t, s), where j < s < t < n and a 
sum over (t, s), where 1 < s < j and s <t <n, 

/ n t-1 9 j n\ 

* n(m'l) =t - 
j=1 t=2 s=1 j=1 s=1 t=s+l 

x an Vt(rr')(u, v) dW 

_Wn(m) )-R MmX), say. (A.28) 71 2n 

Furthermore, Wnmt ) can be partitioned into sums over t - s > g 
and t - s < g: 

9 n t-g-1 g g+1 t-1 9 n t-1\ 

K(M,l =E E E + E E E +E E E) j=1 t=g+2 s=1 j=1 t=2 s=1 j=l t=g+2 s=t-g 

x a71i JVt(m1) 
(u, 

v) dW 

n ?- R+1A , say, (A.29) 

where ftnml) and ftnml) are sums over (t, s, j) with t -s < g. 
Combining (A.27)-(A.29), yields f&nml) =rrnlg') ? (X) 

A2nptl +RAnmtl ?A$?nmpt) It remains to show that E[R(mn ij)]2 =o(p) 

for 1 < h < 4. First, by rearranging the indices (t, s, j) in R(n ), 
n t-1 s-1 

1( n) E E E ani vtsg 1 (U, v) dW 
t=g+3 [s=g+2 j=g+s 

n 

- R( ), say, 
t=g+3 

where {R(mj), FFt} is a martingale difference sequence because 
E(R(nt1) J.Ft- ) = O. Also, by straightforward but tedious algebra, 
it can be shown that fort > si > ii and t > S2 > j2, 

E [Vt(sm ") (u, V) Vt(m2 j) (u/ V ) 

E[Vt(ml)( 
)Vt)(I, )]6s1,s2 

if jil j2 

E E[Vt(m") (j 1) Vt(m ") (u,)St2 v- if il j2, 

where 6j1 1 for j = 1 and 6j, = 0 for j * 1. It follows that 

E(Rln ) 

n t-1 s-1 i 
2 

= E E anj Vt(sM'l) (U, v) dW 
t=g+3 Ls=g+2 j=g+1 ( 

n t-1 s-1 

S S 5 E a 2j E[Vt(ml)(u,v)Vt(sm)(u/,v/)]dWdW' 
t=g+3 s=g+2 j=g+i 

n t-1 25-1 

+2E E E anjl anj2 

t=g+3 j2=g+2 jl=g+l 

x E[Vt(,t'j2 31(tu v)Vt(tm') (u/ vl)] dWdW' 

n-1 n-1 \ 2 

< C ? k4(j/p) + C(n-g) E anj) 
j=g+l j=g+l 

=o(p) + ? (p2/n), 

where En1 7i+ k4(j/p) = o(p) by Assumption A.3 and g/p - 

oo. Similarly, E(Rf2(ml))2 O(pg/n + p2g/n2), E(Rkm?l))2 - 
O(pg2 /n2 +p 2g/n 2), and E(Rf?M,l) )2 = O(pg/n2 +p2/rn) can be 
obtained. All of these are o(p) given g/p - oo, g/n - 0. This 
finishes the proof. 

Proof of Theorem A.4 

Put SnM'") _ s(' + (S(ml) ) where n m lt lnt 

slnt ] tm) (u) [S anj t'j (v)G(mt 1 j (u v) dW, (A. 30) 

and G~)(u) Gt )*(1)j(v)*. Then write 
Vn(gm,l) 

- 
>jn=9+2 s(7'tm. Because {S(tml) ,Ft} is an adapted ng9 - t=g+2 ntn 

martingale difference sequence, one can apply Brown's (1971) 
theorem. First, compute A 2 (in, 1) var(VQ(l)). Observing that 

m)(.)b4l)j(.) and fbsm)(. )4()ji(.) are independent for t - s > g 
and 1 < j < g, one can obtain 

(m,2 ) = 
j=i 

j Dml k4(z) dz{1 ? o(1)} (A.31) 
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-1 n2 a22 given g/p -* oo, and g/n - 0, where p- n 

fjo k (z) dz. 
By Brown's theorem, V4'Ml)/An(m, 1) _d N(O, 1) if 

n 

An2(ml) E E(Sntm t > cAn(m,l)]} -0 

t=g+2 

Ve>0 (A.32) 

and 
n 

An-2(vl E E[(S(mt') )2lt_l] __p 1. (A.33) 
t=g+2 

Given (A.31), it suffices for (A.32) if Et=g+2 ElSnmtX"4 I o(p2). 
From (A.30), 

IS(m 1) i4 lnt 

< [EjXt (m) ()1 E anj +()j (v)Gt(m,l)lyvv dW} 

(A.34) 

by Minkowski's inequality. Now compute the second expectation 
inside (A.34). Put 

9 

Q( M,l) (U v; '/, v')-fb(l)()Gm ) M1 j2 v af( ),r(vl)* 
r=j+l 

X G (m ") 1r(/ V/ )* (A. 35) 

where 1 < j < g. Then 

g 4 

S anj () j (v)G(Mg1 j (u, v) 
j=1 

g 2 

< 2 E a 2j I +btl) (V) 12 1 G(mg- l1Xj (U) V) 1 
j=1 

g-1 2 

+ 8 E anjQ M)(u, v; u,V) v (A.36) 
j=1 

For the first term of (A.36), by Minkowski's inequality and inde- 
pendence between b(1)j(.) and G(ZgJii r( . , 1 < j,r < g 

E 5 a (i) 2j (V) 1 1 G 1,j (, V) 2 

j=1 

< Ct2p2 (p-1Ea2) (A.37) 

uniformly in (u, v) c R2, where I have used EIG(mg1J (u,v) 14 < 
Ct2 because Gtm7ij13j(u, v), 1 ? j ? g, is the sum of a martingale 
difference sequence with bounded fourth moment. 

I now consider the second term in (A.36). Given each 
t,E[Q"(u,'l(2v;u',v')jEtpi-] 0 for all 1 < j < g, and 
so {Q( 7j1) (u, v; tu', v'), Ft-3 } iS a martingale difference sequence. 
Moreover, conditional on secn tr(V) and {Gin )l,(A.3 )Gie e 
(u, v; ', v') is a sum of independent random variables. It follows 

that the second term of (A.36), 

g-1 2 

E EZanjEQ $2)(uv;u'U/') 
j=1 

g-1 

a a2jEIQ(m,l)( V; U/' V/)l2 

j=l 

g-1 9 

= anj an, E I)(1) j (v) V (1), (v) G G(mgl (u, v) 
j=1 r=j+l 

x 
t-g-l,r(U, ) 

<Ct2(p2 ( 1 a)2 (A.38) 

uniformly in (u, v, u', v') c ]R4, where I have used EIG(mg?) 1j 
(u,v)14 < Ct2. Combining (A.34) and (A.36)-(A.38), we have 
EIS(m,1) 4 < ct2p2(p-1 a2j)2 and so En EIS(m-1) 4 

O(p2/n) = o(p2). It follows that (A.32) holds. 
I now turn to verify (A.33), for which it suffices to show that 

n 2 

E E[(S t_) ] - E(S( 
t=g+2 

n 2 

+ E E[IS 2t_]-EIS()2 o(P2). 

Lt=g+2J 

I show the first condition only; the proof for the second one is 
similar. Given (A.30), (A.35) and E+/r) (u) r) (u) = (rr) (, u), 

M'))2~yI] E[(S(nt )2 |t_ 1] 

t g 

Um'm) u /) a2j vtl) j (vV)9(')j (v/)G(m )llj() V) 
j=1 

x G (mg) j(' v' 

g-1 

+ 2 ] m'm) (u,u) ZanjRe[Q$79")(u,v;u',v')] 
j=1 

nt + C l), say. (A.39) 

Putting t4(rr) (v, v/) _ (r) (V)>/(r) (v/) - u'rr) (v, v/), one can de- 
compose 

9 

z (M' 1) a ,/(M'M) ('U, U/)'7ol'l) (V, a/ 
2 

ajG(mg) 1 - (u, v) 
j=1 

x tmg-l)1j (Um v/ ) d W d WI 

9 
+ a /(mm) (u,u/)t'1)(v, v/)G(m )j .(u v) 

j= ) 

- nt ?) C2nt') say. (A.40) 
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Now, using the definition of Ggl1) j(,) given in (A.30), 

u(M, 1) = a2 (mm) (u, u')o U, ) (v, U) 
j=j 

t-g-1 

X E Vs (M) fs ) (MU/)*V)(1) (v)*v)(l) (v')* 

s=1r= 

9 
+ 2 a (M m) (, u )f)(v, v ) a2 

j=l 

t-g-1 s-1 

X : bSm (7(nm( UI)dWW 

8 s ) r )(u 91 (V) *,- 9() v/ 
8=1 r=l 

V(Ml) + c(m,l) ?Cm) sa 

nt 4nt 5t(A.41) 

and 

Vnt 

=C(t-g-1)E an( a using the Cr iality dW dWL 
l=1 

9 

E + E[(Sa2 I., m , ] (-) 2 E I (V, v 

+ E ni- 0cm,l op2 

j=l 

t-g-1 

x sj(m`)u,u)*dWdW/ 
8=h 

1) a2 a(m,m) (b, yUr/)'7(s th)e 

,?=1 

t-g-1 
X E ,ll(M,M)(U, /)*V)(1) (V)*V)(1) j(v/)* dW dWI 

s=l 

-E(S(nmtv))2 + C(nmtl) + C(nmtl)v say. (A.42) 

Combining (A.39)-(A.42) and using the C, inequality and Lemma 
A. 1, 

n 2 

E E E[(S(n' t_2 F -l ]E(S(mx)) 
t=g+2 

5 n 2 

h=t E _ E hnt 
h=s t=g+2 

Thus (A.33) holds, and [D(m'l)p fo?k4z dz]-/V ') N N(0, 
1) by Brown's theorem. 

Lemma A.1 

Let C (m ")) I < h < 5, be as in (A. 39)-(A. 42), and let 9gg(n) 
be such that glp -- oo), g/n -- O. Then El 5En c+ C(M, ) 12= 
o(p2) for 1 < h < 5. 

Proof of Lemma A. 1 

I only show the proof for C(t) By Minkowski's inequality 

and (A.38), 

EjC(Ml) 2 E lnt 1 

< {210 ()(U,)I 

x [E anjQntj )(u,v;u',v) 2 dWdW'} 

< Ct2 [E ai2 

Also, because E[Q(mt')(u,v;u',v').Ft-gij] 0 for 1 < j < 
g, E[C(n1tjl (C(ms))*] = 0 for t - s > g. It follows that 

n 2 

E E C1l - ) <2)(m 1) 2S1/2 
t=g+2 It-sI?g 

< C(n -9)39 (?i ani) 2 (2/n) 

Moreover, similar results can be obtained for 2 < h < 5. This 
completes the proof. 

To show the proofs of Theorem 4 and Theorem 7, I first state 
a lemma. 

Lemma A.2 

Suppose that Assumptions A.3 and A.8 hold. (a) If p/p =1 + 
Op(p-(3/2)) for some ,3 > (2b - ')/(2b - 1), where b is 
as in Assumption A.3 and p = cnA for c C (0, oo) and A C 
(0, (2b - 1)/(2b - )) then p-1 -'jf{k2(j/p)-k2(j/p)} 

op(P-1/2); (b) If p/p = 1 + Op(p-8) for some ,B > 0, then 
p-l -2{kr(j/lp) - kr(j/p)} -*P 0, where r = 2,4. 

Proof of Lemma A.2 

I show (a) only; the proof of (b) is similar. First, I write 
n-1 

-1 E {k2 (j /p) - k2 (j/p) } 

j=1 

d n-1\ 

= p-1 E + E ) k 2(j/lp)- k2(j/p)} 
j=1 j=d+l 

Aln + A2n, (A.43) 

where d- [p2b-l/2 ln n] l/(2b-1) . Note that d/p -* oo and d/n 
0. Further, 

d 

Aln =p1 5 {k(j/p) -k(jlp)2 
j=1 

d 

+ 2p-1 E {k(j/p) -k(j/p)}k(j/p) 
j=1 

Ailn + 2A12n. (A.44) 

Given the Lipschitz condition of k(.) in Assumption A.8, p3/p - 
1 Q p(p-(3/2p-l)),/3 > (2b -1/2)/(2b -1), and the Cauchy- 
Schwarz inequality, 

Kiilnl ? C2(p3/p -1)2(p/13)(d/p)3 =op(j71) (A.45) 
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and 

( d 1/2 

A12.1 < IA11.1 1/2 {-1 E k2(j/p) O = p(p-1/22) (A.46) 
j=l 

Next, consider the second term of (A.43). Noting Ik(z)I < CIzKb 
for large z, 

n-1 
<A2n < C{(3p/p)2b + 1}(p/d)2b-1 {d2 j (j/d<2b'} 

j=d+l 

Op((p/d)2b-1) = op(p-1/2). (A.47) 

The desired result follows by combining (A.43)-(A.47). 

Proof of Theorem 4 

Put Bfn _ j k {k2(j/-) k (j/p)}(n - j) f I 
(U, V) 12 dW. Then from (17), 

M(m, 1, -M(m, 1, p) 

r n-12 
=+iB (M' ) 2 

(j/p) j b l(j) p5k(/ 
j=1 

n-2 1/2 
+ (m,l) { ((j /p) -} 

j=l 

n-1 n-2 1/2 

+ M(m, j, p) E k4(j/p)/ ? k4p(j/p), 

/ n-2 1/2 
=Bn/ 1 (m'l ) k4 (j j/p) 1f + o p (l ) 

j=l 

where the second equality follows by Lemma A.2, M(m, 1, p) 
Op(1) from Theorem 3, Z k4(j/p) = p foJ k4(z)dz{1 + 

o(1)}, a(m,l) o*P COM'1) and f(mPl) *P D m ") > O. 
It remains to show p-1/2Bn = op(1). The proof is analogous 

to Lemma A.2. Write 

d n-1 

bn = , + , [k 2 (j /p) - k2 (j/p)] (n - j) 
j=1 j=d+l 

X I 
,/ l(M' ) U2 V) 12 dW 

= ?ln B2n, (A.48) 

where d I[p2bl/2ln(n)]l/(2b1). For the second term, given 
k(z)j < CIzI-b for large z, 

IB2 < C[(p/p)2b + l]p2b d2b 

x {d1 E j/dK-2b(ri- i) J 8im1)(U v)12 dW} 
j=d+l 

op(p dl ) = d /(A.49) 

where I have made use of (nr-j)E f Imal) (u, v) I2 dW(u, v) < C 
under independence. 

For the first term of (A.48), write Bln = Blln + 2Bl2n, 
where 

d 

f311n- [k(j/p) - k(j/p)]2(n - j) J &(m'l)(u,v) 12 dW 
j=1 

and 
d 

B3l2n- {k(j/p)-k(j/p)}k(j/p)(n-i) I/ M1 l (U')( V) 12 dW. 
j=1 

Given the Lipschitz condition of k(.), (n - j)f El (m,l) (u, v) 12dW 
C,p/p = 1 + Op(p-(3/2Il)) with ,3 > (2b - ')/(2b - 1), it 

can be shown that 

Bf11nI < C2((p/p - 1)2(p/p)2(d3/p2) op(1) (A50) 

and 

IBl2n | 

<_ lBlln |1l/2 k k2(j/lp) (n -j) / &sJM,1) (U) V) 12 dW} 

Op(p1/2). (A.51) 

Combining (A.48)-(A.51) yields p-1/2Bn XP 0. This completes 
the proof. 

Proof of Theorem 5 

The consistency result follows from (a) p-1 En1 k4(j/p) X 

foJ0 k4(j/p), (b) IMSE(f(Om l), f(O?m l)) -, 0, (c) 0(m,l) - 
Op(l), and (d) Dbm,l) -P Dm,l). Part (a) follows from Assump- 
tion A.3 and p _- oo, p/n - 0. The proof of (b) is the same as 
that of IMSE(fn, f) -* 0 in the proof of Theorem 2 and thus is 
omitted here. The proof of (c)-(d) is straightforward by Markov's 
inequality and Assumptions A.1(2) and A.9. 

Proof of Theorem 6 

By Theorem 3, M(m, I,p) --+d N(0, 1) under serial inde- 
pendence. Hence the asymptotic p-value of M(m,l,p) is 1- 
4[M(m,l,p)], where 4b(.) is the CDF N(0, 1). Put Bn(k) 
-21n{1 - 1[M(m,l,p)]}. Using Theorem 5 and ln[I -41(z)] 
-2z2{1 + o(1)} as z -* +oo, 

(p/n ) Bn (k) = 7r L2(f(,,)A(,,) 

[D(mt j k4(z) dzl +op(l). (A.52) 

Following Bahadur (1960), I call (7r/2)2L2(( I m ),VfOml))/ 
[D ml) fJ0?? k4(z) dz] the "asymptotic slope" of the test M(m, 1, p). 
Now consider two tests based on M(m, i, p) using two different 
kernels kl(.) and k2(.) in ]K(T) under the fixed alternative. Ba- 
hadur's asymptotic relative efficiency REF(k2: ki) of k2(.) to 
ki () is the limit ratio of the sample sizes for both tests to at- 
tain the same asymptotic significance level under the same fixed 
alternative. Given (A.52) and p =criA for A c (0, 1), 
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Thus k2(.) is more efficient than ki () if fj0 k2 (z) dz < 
fJo k 4(z) dz in terms of Bahadur's criterion. Hong (1996), in the 
proof of his theorem 5, showed that the Daniell kernel kD (z) 
sin(\3Tz)/\X3z minimizes fj0 k4(z) dz over the class of func- 
tions 

e(Tr) {k(.)Ik: ]R - [-1, 1] is symmetric and continuous 

at 0 and all except a finite number of points, 

with k(0) = 1,1 k2(z) dz < oo, 

2 

2() > OKQ() > 0V4 c t 

Because ]K(T) is a subset of e(T) and kD(z) c ]K(T), it fol- 
lows that kD(z) maximizes the asymptotic slope of M(m,l,p) 
over IK(T). 

Proof of Theorem 7 

Theorem 7 follows from Lemma A.2 (b), Theorem 5, C(m,l) 

Op(l), bom,l) (m D(m ") > 0,p = cn' for A c (0, 1), and 

n-1 

Hn =_ n-1 E [k2(j/p) - k2(j/p)]((n - j) 
j=1 

x J & 7M) (u, v) 2 dW --+ O. (A.53) 

I now show (A.53). First, observe that 

& a(M'l)(' V) 12 

< 2EI &(ml) (U V) _ - 1) (V, V) 12 + 215um'l)(u V) 12 

< C(n_ - ?1 + Ca(j)2(v- l)/V (A.54) 

where the first term is bounded by C(n - j)-1 given (A.13) and 
Ej(m1)(U V) - a(m,l)(U, V)12 < C(n - j)1 from (A.7)-(A.10); 
the second termfollows from I mal)(u,v)I < Ca (j)( -l)/l given 
Assumptions A.1(2) and A.9. To show (A.53), first write 

P n-1\ 

H = n-1 E+ E ) [k2(j/p)-k - (j/p)](n -j) 
j=l j=p+l 

X J &5'm>l) (U)2 dW _Hln +? H2nr (A.55) 

Given the Lipschitz condition of k(.), 

p 

- 2C113/p- 1I(p/j3)p10p yp2/ri+pZ,t(i) 2(L )/L ) 

=op(1), (A.56) 

where the first equality follows from (A.54) and Chebysev's in- 
equality, and the last equality follows from pl/p - = Op(p-0) 
for ,3 > O,p = cnA for A c (0, 1), and Assumption A.1(2). 

For the second term of (A.55), given jk(z)l < Clzl-b for 
large z, 

n-1 

IH2n < c2(p2b + p2b) E j-2b 

j=p+1 

x J &j (u, V) 12 dW(u, v) 

C2[(p/p)2b + 1] 

n-1 n-1 

x OP -1 E (j/p)-2b + E (X(j)2(v-1)/l) -p o 
j =p+ 1 j=p+1 

(A.57) 

where the first equality follows from (A.54) and the second follows 
from p = cnA for A c (0, 1) and Assumption A.1(2). Combining 
(A.55)-(A.57) yields (A.53). 

[Received July 1997. Revised April 1999.] 
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