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Hypoxia‑associated prognostic 
markers and competing 
endogenous RNA coexpression 
networks in lung adenocarcinoma
Lecai Xiong 1,3, Xueyu He 2,3, Le Wang 1,3, Peng Dai 2, Jinping Zhao 1, Xuefeng Zhou 2 & 
Hexiao Tang 2*

Lung adenocarcinoma (LUAD) is the most common form of non‑small cell lung cancer (NSCLC). 
Hypoxia has been found in 50–60% of locally advanced solid tumors and is associated with poor 
prognosis in various tumors, including NSCLC. This study focused on hypoxia‑associated molecular 
hallmarks in LUAD. Fifteen hypoxia‑related genes were selected to define the hypoxia status of LUAD 
by ConsensusClusterPlus based on data from The Cancer Genome Atlas (TCGA). Then, we investigated 
the immune status under different hypoxia statuses. Subsequently, we constructed prognostic 
models based on hypoxia‑related differentially expressed genes (DEGs), identified hypoxia‑related 
microRNAs, lncRNAs and mRNAs, and built a network based on the competing endogenous RNA 
(ceRNA) theory. Two clusters (Cluster 1 and Cluster 2) were identified with different hypoxia statuses. 
Cluster 1 was defined as the hypoxia subgroup, in which all 15 hypoxia‑associated genes were 
upregulated. The infiltration of CD4+ T cells and Tfh cells was lower, while the infiltration of regulatory 
T (Treg) cells, the expression of PD‑1/PD‑L1 and TMB scores were higher in Cluster 1, indicating an 
immunosuppressive status. Based on the DEGs, a risk signature containing 7 genes was established. 
Furthermore, three differentially expressed microRNAs (hsa‑miR‑9, hsa‑miR‑31, hsa‑miR‑196b) 
associated with prognosis under different hypoxia clusters and their related mRNAs and lncRNAs were 
identified, and a ceRNA network was built. This study showed that hypoxia was associated with poor 
prognosis in LUAD and explored the potential mechanism from the perspective of the gene signature 
and ceRNA theory.

Lung cancer has high morbidity and mortality, especially advanced or metastatic lung cancer, which often 
responds poorly to treatment. Non-small cell lung cancers (NSCLCs) account for almost 80% of lung cancers, of 
which approximately 50% are lung adenocarcinomas (LUADs)1. More research to clarify the molecular mecha-
nism and prognostic markers of LUAD is needed. Due to the rise of bioinformatics technology in recent years, 
numerous studies have emerged to explore the prognostic markers of LUAD from different perspectives. There 
are relevant tumor marker studies involving the tumor  microenvironment2, tumor  metabolism3, cell  cycle4, DNA 
 methylation5, etc., but few studies have been related to hypoxia. This study was conducted to investigate the 
signature associated with the prognosis of lung adenocarcinoma using hypoxia-related genes as a breakthrough.

Hypoxia is an inherent feature of the tumor microenvironment (TME) that arises from an imbalance between 
oxygen supply and  consumption6. An important factor that causes tumor hypoxia is the formation of non-
functional blood vessels, especially in rapidly growing tumors. Hypoxia status affects multiple cancer cellular 
responses, such as cell survival, proliferation, epithelial-to-mesenchymal transition (EMT), invasion, immune 
response, genomic instability, drug resistance, and  metastasis7. The hypoxia-inducible factor (HIF) family of 
transcription factors, especially HIF-1α, mediates the expression of multiple genes to drive the adaptation and 
progression of tumor  cells8. Many studies have shown that HIF-1α is overexpressed and is associated with poor 
survival in various solid malignant tumors, such as breast cancer, colon cancer, gastric cancer, and lung  cancer9,10. 
Hypoxia status also causes immunosuppression by controlling angiogenesis and favoring immune suppression 
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and tumor resistance, even related to therapy  resistance11. Therefore, providing markers to assess the degree of 
hypoxia and hypoxia-related prognosis in lung cancer patients is needed.

In recent years, numerous studies have shown that noncoding RNAs (ncRNAs), including long noncoding 
RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are involved in human  cancers12. 
MiRNA refers to a single-stranded ncRNA with a length of 20 nucleotides that is endogenously expressed and 
regulates gene expression at the posttranscriptional level. Over the past few decades, numerous experiments have 
been designed to validate the relevance of miRNAs in  disease13. A specific model (NCMCMDA, neighborhood 
constraint matrix completion for miRNA-disease association) has been constructed to predict the correlation 
between miRNA and disease and has demonstrated good accuracy in diseases such as esophageal and colon 
 neoplasms14. LncRNAs are transcripts that are longer than 200 nucleotides and control the expression of genes 
in the nucleus by interacting with DNA, chromatin-modifying complexes, or various transcriptional  regulators15. 
LncRNAs are involved in almost the entire cellular life cycle by different mechanisms and are therefore associ-
ated with the development of many diseases, and developing machine learning-based models is one of the most 
effective ways to explore their  roles16. The competitive endogenous RNA (ceRNA) hypothesis is one theory 
linking the function of protein-coding mRNAs to that of ncRNAs, which posits that ceRNAs can impair miRNA 
activity through  sequestration17, and lncRNAs are the most reported  ceRNAs18. The “lncRNA‒miRNA-mRNA” 
network has been confirmed in many human  cancers19. There has also been an increasing interest in ceRNA-
related research in lung adenocarcinoma in recent years. Most studies have used the TCGA database to find 
non-coding RNAs significantly associated with LUAD prognosis and have used a multigene regulatory model to 
identify upstream and downstream related genes and thus construct a network of related ceRNAs  network20–23. 
There is also a large body of research exploring the role of ceRNA networks in various pathological processes 
in LUAD, such as drug treatment  sensitivity24, tumor immune  processes25,26, tumor proliferation,  migration27, 
novel Cancer  Stemness28.

In this study, we used 15 hypoxia-related gene expression signatures to characterize the different hypoxia 
statuses of LUAD samples in The Cancer Genome Atlas (TCGA) and depicted the infiltration of 24 immune cell 
types and tumor mutational burden (TMB) in LUAD tissues under different hypoxia conditions. Furthermore, 
the differentially expressed hypoxia-associated miRNAs, lncRNA, mRNAs and related signaling pathways were 
analyzed. On this basis, a series of prognostic markers related to hypoxia were screened, and a ceRNA network 
in LUAD was constructed. These results have the potential to further improve the understanding of the regula-
tory mechanisms under hypoxia in LUAD.

Methods
Study cohort. We followed the methods of Zhang et al.29. The LUAD gene expression profile and miRNA 
mature strand expression RNAseq Illumina HiSeq data of TCGA were retrieved from UCSC Xena (TCGA-
LUAD)30, and the phenotype of LUAD samples was also obtained. The gene expression data included 59 normal 
samples and 515 tumor samples; among them, 565 samples had complete clinical data. Exchanging the accession 
number to the ID of miRNA was performed by the miRbase  database31 and miRBaseVersions.db R package. 
This study complied with the publication guidelines of TCGA, and ethics approval and informed consent were 
not needed.

Classification of hypoxia status. Fifteen hypoxia-related gene expression signatures were selected for 
our analysis according to published studies: ACOT7, ADM, ALDOA, CDKN3, ENO1, LDHA, MIF, MRPS17, 
NDRG1, P4HA1, PGAM1, SLC2A1, TPI1, TUBB6, and VEGFA, which are involved in the hypoxia  status32. Spear-
man’s rank correlation was performed to assess the correlation among these genes by the “corrplot” package (sig.
level = 0.001), and the PPI network was built using the STRING database (https:// string- db. org/). Two different 
hypoxia status groups (Cluster 1 and Cluster 2) among 515 TCGA-LUAD tumor samples were selected using the 
ConsensusClusterPlus package (parameters setting: reps = 50, pItem = 0.8, pFeature = 1, clusterAlg = "km", dis-
tance = "euclidean"). Principal component analysis (PCA) was performed and visualized by the “limma” pack-
age and the “ggplot2” package. The differential expression of these genes between tumor samples and normal 
samples, Cluster 1 and Cluster 2 were analyzed by the “limma” package with a cutoff P < 0.05 and then visualized 
by heatmap and vioplot.

Immune cell infiltration and tumor mutational burden (TMB) analysis. The data of 24 immune 
cell types and infiltration were acquired from ImmuCellAI  Database33. The mutation data of LUAD patients were 
obtained from the TCGA Xena Hub mentioned earlier. The TMB score for each sample was calculated using 
the following  formula34: TMB = (total mutation/total covered bases) ×  106. The relationship of immune cells/
TMB score and hypoxia status was analyzed by the “limma” package with a cutoff of |log2(fold-change)|> 1 and 
adjusted P value < 0.0535.

Identification of differentially expressed genes (DEGs) related to hypoxia. DEGs between Clus-
ter 1 and Cluster 2 were identified by the “limma” package with a cutoff of |log2(fold-change)|> 1 and adjusted P 
value < 0.01. Then, the PPI network of DEGs was constructed via the STRING database (https:// string- db. org/)36, 
and the crucial subnetwork was selected by the MCODE APP in Cytoscape 3.7.2 according to the following 
rules: degree cutoff = 10, node score cutoff = 0.2, max depth = 100, and k-score =  237. Gene Ontology (GO) and 
KEGG pathway enrichment  analyses38 of subnetworks were performed in the DAVID database (https:// david. 
ncifc rf. gov/ tools. jsp)39 and visualized by drawing bubble charts.

https://string-db.org/
https://string-db.org/
https://david.ncifcrf.gov/tools.jsp
https://david.ncifcrf.gov/tools.jsp
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Identification of DEGs and construction of prognostic models. We randomly divided 506 samples 
with complete clinical data into the training cohort and testing cohort. Univariate Cox regression analysis was 
performed on the training cohort, and then LASSO Cox  regression40 was employed to select powerful inde-
pendent prognostic markers with P < 0.05 for OS in LUAD and construct prognostic models. The risk score was 
calculated by the following formula:

where n represents the gene number in the module, Coef (i) is the coefficient of each gene, and X(i) is the mRNA 
expression level of each gene. When Coef (i) is less than 0, the corresponding gene has a protective effect on the 
patient. When Coef (i) is greater than 0, the gene represents the opposite trend for survival. All LUAD samples 
in the training cohort were divided into high- and low-risk groups. Then, the prognostic values of risk scores 
in the two groups were analyzed by the Kaplan‒Meier method, and sensitivity and specificity assessments were 
estimated using receiver operating characteristic (ROC) curves. The relationships between the risk score, immune 
cell infiltration, TMB score, and clinical characteristics were analyzed in all samples. The prognostic model was 
verified in a testing cohort and all sample cohorts.

Differential expression of miRNAs. The differentially expressed miRNAs between Cluster 1 and Cluster 
2 were analyzed by the “limma” package with an adjusted P value < 0.05 and |logFC|≥ 1. The prognostic values 
of differentially expressed miRNAs in LUAD were assessed with Kaplan‒Meier Plotter (https:// kmplot. com/ 
analy sis/), and the samples were divided into two groups by the best cutoff value by the tool automatically and 
calculated via Kaplan‒Meier analysis and the log-rank P test for the 120-month OS. We selected the miRNAs 
related to prognosis and identified the target genes via the mirDIP database (http:// ophid. utoro nto. ca/ mirDIP/ 
index. jsp)41. Target genes supported by four or more databases were regarded as candidate genes for further 
analysis. The intersecting genes of candidate genes and hypoxia-related differentially expressed genes were iden-
tified through a Venn diagram. The correlations between intersection genes and corresponding miRNAs were 
calculated via the StarBase database (https:// starb ase. sysu. edu. cn/ starb ase2/ index. php)41 based on the data from 
TCGA-LUAD. The prognostic values of selected candidate genes were analyzed by the Kaplan‒Meier Plotter 
database (http:// kmplot. com/ analy sis/), and miRNA-regulated genes related to the prognosis of hypoxia were 
identified.

Identification of target lncRNAs of candidate miRNAs. The target lncRNAs of candidate miR-
NAs were predicted via the StarBase  database42. LncRNAs that were negatively correlated with miRNAs (P 
value < 0.05, correlation coefficient <  − 0.1) and positively correlated with target genes (P value < 0.05, correla-
tion coefficient > 0.1) were  selected41, and the miRNA‒lncRNA network was constructed via Cytoscape 3.7.2.

Construction of the ceRNA network and related PPI network. The proteins related to microRNA-
regulated genes were predicted in the STRING database, and a network of proteins, miRNAs, and lncRNAs was 
built through Cytoscape 3.7.237.

Statistical analysis. All statistical calculations were performed in R software, SPSS or online bioinformatic 
databases and tools as mentioned. The Wilcoxon test was used to compare mRNA expression, the infiltration 
score of immune cells and the risk score. The chi-square test was used to compare clinical and pathological 
parameters and other categorical variables. Differentially expressed miRNAs and mRNAs were calculated by 
the “limma” R package. The Kaplan‒Meier curve and log-rank P test and univariable Cox and LASSO Cox 
regression were used to analyze the survival outcomes. ROC curves were utilized to assess the diagnostic effect. 
The visualization of the data was performed by R 3.6.3, GraphPad 8.0 and Cytoscape 3.7.2. The flowchart of the 
analysis process is shown in Fig. 1.

Results
Consensus clustering identified two clusters of LUAD with different hypoxia statuses. Fif-
teen hypoxia-related gene expression signatures were selected: ACOT7, ADM, ALDOA, CDKN3, ENO1, LDHA, 
MIF, MRPS17, NDRG1, P4HA1, PGAM1, SLC2A1, TPI1, TUBB6, and VEGFA. These were highly enriched for 
hypoxia-regulated  pathways32. First, we compared the expression differences of these genes in normal tissues 
and tumor tissues, and the results showed that 10 of them were highly expressed in LUAD (Fig. 2A, B). The 
interrelationships and correlations were analyzed (Fig. 2C), and the PPI network included 12 genes (Fig. 2D).

According to the expression similarity of these 15 hypoxia-related genes, 515 tumor samples were clustered 
into different hypoxia statuses by the consensus clustering method. In the CDF curve of the consistent matrix, 
although the middle section of the CDF curve was flat when K = 2 and K = 3 (Fig. 2E), the interference between 
subgroups could be minimized when K = 2 (Fig. 2F–I). Thus, two subgroups named Cluster 1 (n = 271) and 
Cluster 2 (n = 244) were identified. The PCA results suggested that there was a significant distinction between 
the two clusters (Fig. 2J). To show the hypoxia status of the two clusters more intuitively, we drew a heatmap 
and a violin map based on the expression of these 15 genes in the two clusters. The results showed that all 15 
hypoxia-related genes were upregulated in Cluster 1 (Fig. 2K, L), and we defined Cluster 1 as the “hypoxia sub-
group” compared with Cluster 2.

RS =

∑n

i=1
Coef (i)X(i)

https://kmplot.com/analysis/
https://kmplot.com/analysis/
http://ophid.utoronto.ca/mirDIP/index.jsp
http://ophid.utoronto.ca/mirDIP/index.jsp
https://starbase.sysu.edu.cn/starbase2/index.php
http://kmplot.com/analysis/
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Clinicopathological characteristics, immune cell infiltration, immune checkpoints, and TMB 
scores of LUAD patients with different hypoxia statuses. After excluding samples with incomplete 
clinical data, the associations between hypoxia status and clinicopathological characteristics were analyzed 
through the chi-square test in 475 samples. The results showed that the hypoxia status in LUAD was significantly 
associated with age, tumor TNM stage, T stage and N stage (Fig. 3A, Table 1). The data of 24 immune cell infiltra-
tion and infiltration scores in LUAD were obtained from the ImmuCellAI database. The differences in immune 
cell infiltration and infiltration scores are shown in Fig. 3B, C–F. Compared with Cluster 2, the infiltration of 
CD4+ T cells and follicular helper T cells (Tfhs) that promote tumor immunity was lower in Cluster 1 (both 
P < 0.01, Fig. 3C, D), while the infiltration of nTreg cells and iTreg cells that inhibit tumor immunity was higher 
in Cluster 1 (P = 0.049, 0.000; Fig. 3E, F). The results showed that hypoxia status is not conducive to the tumor 
immune process. Gene mutations are an important cause of tumorigenesis and development, and TMB is used 
to predict immune checkpoint blockade therapy  efficacy43. Hence, we evaluated the difference in TMB scores in 
Cluster 1 and Cluster 2. The TMB score for each sample was calculated according to the methods, and the results 
showed that the TMB score was higher in Cluster 1 than in Cluster 2 (Fig. 3G). Furthermore, the expression of 
PDCD1 (PD-1) and CD274 (PD-L1), the most common immune checkpoints, was higher in Cluster 1 (Fig. 3H, 
I).

Identification of hypoxia‑related differentially expressed genes (DEGs) and enrichment analy‑
sis. Up- and downregulated DEGs (|log2(fold-change)|> 1 and adjusted P value < 0.01) were selected accord-
ing to cluster. A total of 980 differentially expressed genes were selected, including 440 upregulated and 540 
downregulated genes (Fig. 4A). Due to the large number of DEGs, a crucial subnetwork with 119 nodes and 
6153 edges was selected by the MCODE app in Cytoscape 3.7.2, and the PPI network was constructed on the 
STRING database (Fig. 4B). The top 10 items of each GO (biological processes, molecular functions and cellular 
components) and KEGG pathway analysis are shown as bubble diagrams (Fig. 4C–F).

Construction of prognostic models based on hypoxia‑related DEGs. Of all 515 tumor samples, 
505 contained overall survival (OS) data. The entire set (n = 505) was randomly split into training (n = 253) 
and testing sets (n = 252) at a 1:1 ratio. The gene expression profiles and the corresponding survival informa-
tion of LUAD patients in the training set were screened step by step through univariate Cox regression analysis 
and LASSO Cox regression analysis. A total of 210 genes were identified through univariate Cox regression 
analysis (Table S1), and 7 genes were ultimately identified as key prognostic hypoxia-related genes (Fig. 5A–
C). The training set risk score for OS = (0.475429* expression level of CKS2) + (−  0.11256* expression level 
of ELF5) + (-0.15491* expression level of FAM184A) + (− 0.05916* expression level of GLB1L3) + (− 0.17306* 
expression level of GNMT) + (− 0.16417* expression level of IRX5) + (− 0.1664* expression level of RIC3).

Samples in the training set were divided into high- or low-risk groups according to the median risk score 
(1.0). The results of Kaplan‒Meier analysis showed that the high-risk group had a significantly worse prognosis 
than the low-risk group (Fig. 5D). ROC curves based on the training set were plotted to assess the sensitivity 
and specificity of the prediction, and the AUC value was 0.809 (Fig. 5E). The results of survival analysis and the 
AUC of the ROC curve in the testing and entire sets were similar to the above (Fig. S1A, B, E, F). Because the risk 
score has such a distinctive characteristic, can it become an independent predictor? Univariate and multivari-
ate analyses were performed in the training, testing and entire sets to test whether the risk signature could be 

Figure 1.  The flowchart of the analyzing process.
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Figure 2.  Consensus Clustering identified two clusters of LUAD with different hypoxia status. (A, B) The 
heatmap and violin plot of the 15 hypoxia related gene expression signature in TCGA-LUAD tumor and normal 
samples (Wilcox Test). (C) Spearman correlation analysis of the 15 hypoxia related gene expression signature. 
(D) The PPI network of the 15 hypoxia related gene expression signature. (E) The CDF value of consensus 
index. (F) Relative change in area under CDF curve for k = 2–9. (G) The tracking plot for k = 2 to k = 9. (H, I) 
Consensus matrix for k = 2 and k = 3. (J) Principal component analysis of the total RNA expression profile. (K-L) 
The heatmap and violin plot of the 15 hypoxia related gene expression signature in cluster1 and cluster2 (Wilcox 
Test). *P < 0.05, **P < 0.01, and ***P < 0.001.
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Figure 3.  Immune cell infiltration and TMB score of different hypoxia status in LUAD. (A) The heatmap of 
clinicopathological characteristics in cluster 1 and cluster 2. (B) The violin plot of infiltration score and 24 
immune cell types in cluster1 and cluster2 (Wilcox Test). (C–F) The infiltration of CD4+ T cell, Thf cell, iTreg 
cell, and nTreg cell in cluster1 and cluster2 (Wilcox Test). (G) The TMB score of cluster 1 and cluster 2. (H-I) 
The expression of PDCD1 (PD-1) and CD274 (PD-L1) in cluster 1 and cluster 2. *P < 0.05, **P < 0.01, and 
***P < 0.001.
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an independent predictor. All results showed that the risk score might be an independent risk factor in LUAD 
patients (all P < 0.05; Figs. 5F, G, S1C, D, G, H).

The expression levels of the 7 genes in all TCGA-LUAD samples (n = 475) were visualized in the heatmap 
(Fig. 5H), and all TCGA-LUAD samples were classified into high-risk and low-risk groups. The results showed 
that there were significant differences associated with the risk score regarding cluster (P < 0.0001), TNM stage 
(P = 0.0022), T stage (P < 0.0001), and N stage (P = 0.0016) (Fig. 5I). The results showed that Cluster 1 (relative 
hypoxia subgroup) had a higher risk score than Cluster 2, and the higher the tumor stage was, the higher the 
risk score.

Identification of prognosis‑related differentially expressed miRNAs under hypoxic condi‑
tions. Compared with Cluster 2, 11 upregulated miRNAs and 1 downregulated miRNA were identified 
(Fig. 6A, Table S2). The prognostic value of these 12 miRNAs was evaluated via the Kaplan‒Meier Plotter data-
base. There were 3 upregulated miRNAs associated with OS (hsa-miR-196b, hsa-miR-31, hsa-miR-9). Survival 
analysis showed that high expression of hsa-miR-196b, hsa-miR-31, and hsa-miR-9 in LUAD was associated 
with worse OS (Fig. 6B–D; HR = 1.68, 1.86, 1.49, respectively; all P < 0.01).

Identification of candidate target DEGs regulated by prognosis‑related miRNAs. Target genes 
of miRNAs (hsa-miR-9, hsa-miR-31, hsa-miR-196b) were obtained via the mirDIP database, and those sup-
ported by four or more databases were regarded as candidate target genes for further analysis (Fig. S2). The 
intersection of candidate target genes and the top 50% of downregulated genes was identified through a Venn 
diagram (Fig. 6E). Three target genes (PCSK2, FREM2, ALPL) in hsa-miR-9, two (ATP1A2, PRSS12) in hsa-
miR-196b, and one (CEBPA) in hsa-miR-31 were identified. Except for PRSS12, other target genes were related 
to prognosis, and we defined them as candidate target DEGs (PCSK2, FREM2, ALPL, ATP1A2, CEBPA). All 
candidate target DEGs were downregulated in the relative hypoxia group (Cluster 1), and low expression was 
associated with poor survival (HR=0.71, 0.59, 0.74, 0.67, 0.55, respectively, all P < 0.05, Fig. 6F–J).

Hypoxia‑related competitive endogenous RNA (ceRNA) regulation network. Target lncRNAs 
of hsa-miR-196b, hsa-miR-31, and hsa-miR-9 were predicted via the StarBase database, and those that were 
negatively related to the candidate miRNAs (Fig. 6K) and positively related to the candidate target DEGs were 
selected (Table 2). Finally, 6 candidate lncRNAs were selected (NEAT1, AC000123.3, ARHGAP27P1-BPTFP1-
KPNA2P3, AC020978.7, AC021078.1, MIR497HG). The local protein network between candidate target DEGs 
(PCSK2, FREM2, ALPL, ATP1A2, CEBPA) was constructed, and candidate miRNAs (hsa-miR-196b, hsa-miR-31, 
hsa-miR-9) and candidate lncRNAs (NEAT1, AC000123.3, ARHGAP27P1-BPTFP1-KPNA2P3, AC020978.7, 
AC021078.1, MIR497HG) were added (Fig. 6L). In this network, loss of candidate lncRNAs leads to an increase 
in candidate miRNAs, which suppress the expression of PCSK2, FREM2, ALPL, ATP1A2, and CEBPA, leading 
to worse survival in LUAD.

Table 1.  Clinicopathological characteristics of cluster 1 and cluster 2 in LUAD patients.

Characteristic Total

Cluster 1(n = 250) Cluster 2(n = 225)

P ValueNo. of patients % No. of patients %

Gender

Female 253 124 49.01 129 50.99 0.092

Male 222 126 56.76 96 43.24

Age

 ≤ 65 227 139 61.23 88 38.77  < 0.001

 > 65 248 111 44.76 137 55.24

TNM stage

Stage I–II 374 185 49.47 189 50.53 0.002

Stage III–IV 101 65 64.36 36 35.64

T stage

T1–T2 413 213 51.57 200 48.42 0.004

T3–T4 62 37 59.68 25 40.32

M stage

M0 317 169 53.31 148 46.69 0.418

M1 22 14 63.63 8 36.36

MX 136 67 49.26 69 50.74

N stage

N0–N1 404 205 50.74 199 49.26 0.001

N2–N3 71 45 63.38 26 36.62
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Discussion
Tumors are composed of cancer cells and TME, which contains tumor-infiltrating immune cells, cancer-
associated fibroblasts (CAFs), endothelial cells, the extracellular matrix, and a wide range of metabolites and 
 cytokines44. As the tumor grows, preexisting blood vessels cannot meet the demand, resulting in hypoxia and 
an acidic  environment45. Hypoxia can be rapidly sensed by tumor cells, and HIF-1α or HIF-2α activates a gene 
signature that orchestrates the cellular adaptation to  hypoxia46. Furthermore, the acidic environment caused 
by hypoxia impacts the metabolic and functional reprogramming of cancer cells and tumor-associated stromal 

Figure 4.  Identification hypoxic-related differentially expressed genes (DEGs) and enrichment analysis. 
(A) Volcano plot for DEGs in cluster1 and cluster2. Red and green dots represent up-regulated and down-
regulated DEGs in cluster1 relative to cluster2, respectively (P < 0.01, |logFC|> 1). (B) PPI network of a crucial 
sub-network with 119 nodes and 6153 edges among DEGs. (C–E) The top 10 items of GO analysis: biological 
processes, molecular functions and cellular components of the DEGs in the sub-network. (F) Pathway 
enrichment analysis of the DEGs in the sub-network.
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Figure 5.  Construction of prognostic models based on hypoxic-related DEGs. (A, B) LASSO Cox regression 
was conducted to construct the most powerful prognostic markers. (C) Identify 7 powerful prognostic markers 
and the coefficients by multivariate Cox regression via LASSO in train set (Wilcox Test). (D) Kaplan–Meier 
overall survival (OS) curves for patients in high- and low-risk group in train set (P < 0.001). (F) ROC curve and 
AUC value for risk score in train set. (F,G) Univariate and Multivariate Cox regression analysis of the associated 
between clinicopathological features (including risk score) in train set. (H) The heatmap shows the expression of 
the 7 powerful prognostic markers and the distribution of clinicopathological characteristics in high-risk group 
and low-risk group of all TCGA-LUAD samples (Chi-square Test). (I) The relationship between Rick score and 
cluster status, TNM stage, T stage and N stage (Wilcox Test). *P < 0.05, **P < 0.01, and ***P < 0.001.
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Figure 6.  Identification prognosis-related differentially expressed microRNAs and conduction of the ceRNA 
regulation network under hypoxic status. (A) Volcano plot for differentially expressed microRNAs in cluster1 
and cluster2. Red and green dots represent up-regulated and down-regulated in cluster1 relative to cluster2, 
respectively (P < 0.01, |logFC|> 1). (B–D) The overall survival curves of hsa-miR-196b, hsa-miR-31, hsa-miR-9 
in TCGA-LUAD. (E) Venn diagrams showing the intersection between predicted target genes of hsa-miR-196b/
hsa-miR-31/hsa-miR-9 and DEGs. (F–L) The overall survival curves of PCSK2, FREM2, ALPL, ATP1A2, CEBPA 
in TCGA-LUAD. (K) The microRNA-lncRNA networks of the target lncRNAs of hsa-miR-196b, hsa-miR-31 
and hsa-miR-9. (L) The ceRNA regulation network based on differentially expressed microRNAs and DEGs 
under hypoxic status.
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 cells47. Therefore, in connection with our research direction, the effect of hypoxia on lung adenocarcinoma is a 
topic worthy of further discussion. In this study, we not only verified that hypoxia plays an important role in the 
progression of lung adenocarcinoma from the perspectives of clinical characteristics, immune microenvironment, 
TMB score, etc., but also constructed a hypoxia-related prognosis model and ceRNA network. This is a relatively 
complete and multiangle study to explore the impact of hypoxia on the progression of lung adenocarcinoma. 
According to published  studies32,48, the 15-gene expression signature (ACOT7, ADM, ALDOA, CDKN3, ENO1, 
LDHA, MIF, MRPS17, NDRG1, P4HA1, PGAM1, SLC2A1, TPI1, TUBB6, and VEGFA) that performed best 
when classifying hypoxia status was selected. These 15 genes make up a common hypoxia signature that will be 
upregulated and are consistently coexpressed with previously validated hypoxia-regulated genes under hypoxic 
conditions in various  cancers49. In this study, based on the differences in the expression of these 15 genes, TCGA-
LUAD samples were clustered into different hypoxia statuses according to the expression of the 15 genes. All 
15 genes were upregulated in Cluster 1 (Fig. 2K–L), which was defined as the “hypoxic subgroup”. In analyzing 
the relationship between the hypoxia status of lung adenocarcinoma and clinicopathological characteristics, 
we found that hypoxia is associated with worse TNM staging, suggesting that hypoxia is associated with poor 
prognosis in LUAD (Fig. 3A, Table 1).

Numerous studies have indicated that the hypoxia of the TME promotes tumor immunosuppression and 
resistance to  immunotherapy50. The hypoxic tumor region can recruit immunosuppressive cells such as mye-
loid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils 
(TANs) and Tregs and negatively affect the activation of CD8+ T cells and CD4+ T  cells51. Hypoxic cancer cells, 
via HIF-1α, secrete the chemokine CCL28, which recruits CXCR10+ Tregs into  tumors52. TGF-β is a cytokine 
highly abundant in hypoxic regions of the  tumor53, leading to the development of TANs. TGF-β induces the 
production of Foxp3 and RORγt in CD4+ T cells, which induces the differentiation of Tregs and enhances 
 immunosuppression54. In this study, the infiltration of 24 immune cell types was compared in Cluster 1 and 
Cluster 2. The results showed that the infiltration of CD4+ T cells and Tfh cells was lower, while the infiltration 
of nTreg cells and iTreg cells was higher in Cluster 1 (Fig. 3), indicating that there is an immunosuppressive state 
in Cluster 1. A study in breast cancer showed that hypoxia increased TMB by driving genome instability and 
altering DNA damage repair  pathways55. The same phenomenon was observed in this study. The TMB score and 
PD-1 and PD-L1 expression in Cluster 1 were significantly higher than those in Cluster 2 (Fig. 3H), indicating 
an immunosuppressive status.

Under hypoxic conditions, tumor cells activate multiple adaptive pathways to promote the evolution of a more 
aggressive tumor phenotype, including the activation of DNA damage repair proteins, altered metabolism, and 
decreased  proliferation56. In this study, the differentially expressed genes between Cluster 1 and Cluster 2 were 
identified, and GO/KEGG analysis was performed. The results showed that the differentially expressed genes 
related to metabolism, such as ATP binding, cell cycle and proliferation, such as cell division, cell proliferation, 
G1/S/G2/M transition of the mitotic cell cycle, etc., were related to DNA damage repair, such as DNA replication 
and DNA repair, and immune regulation, such as the FoxO signaling pathway (Fig. 4). HIF is stably expressed 
under hypoxia and promotes angiogenesis through VEGF-A, glycolysis, and pH control through CA-IX57. There 
is extensive evidence showing the downregulation of numerous proteins involved in homologous recombina-
tion, mismatch repair, base excision repair, and nucleotide excision repair under hypoxic  conditions58. The 
FoxO signaling pathway is a pivotal regulator of Treg cell function, which promotes immune  suppression59. 
Furthermore, numerous DEGs were enriched in microtubule-based movement, protein kinase activity, the p53 
signaling pathway, microRNAs in cancer, etc., which are all related to tumor invasion and metastasis. These 
underlying mechanisms together lead to the negative impact of hypoxia on tumor prognosis. To better predict 
the prognosis of patients, we constructed a risk signature containing 7 genes by univariate Cox and LASSO Cox 
regression analysis, which showed a good predictive ability (Fig. 5).

MiRNAs and lncRNAs have been identified as key regulators of gene expression in various biological and 
pathological  processes60. With the development of computational biology and sequencing technologies, and 
the improvement of computer deep learning  capabilities61, numerous miRNAs and lncRNAs have been rapidly 
discovered, and gradually, the interaction between lncRNAs and miRNAs has received increasing attention, 
but little is known. Many studies have built multiple models to achieve the mutual prediction of lncRNAs and 
 miRNAs42,62, which is crucial to improving ceRNA network theory. Currently the two main types of prediction 

Table 2.  The correlation coefficient of lncRNA-microRNA and lncRNA-mRNA in TCGA-LUAD. 
ARHGAP27P1*, ARHGAP27P1-BPTFP1-KPNA2P3.

LncRNA MicroRNA Correlation coefficient P value mRNA Correlation coefficient P value

NEAT1 hsa-miR-196b-5p − 0.171 P < 0.001 ATP1A2 0.204 P < 0.001

AC000123.3 hsa-miR-196b-5p − 0.142 P < 0.001 ATP1A2 0.22 P < 0.001

ARHGAP27P1* hsa-miR-196b-5p − 0.185 P < 0.001 ATP1A2 0.277 P < 0.001

AC020978.7 hsa-miR-9-5p − 0.194 P < 0.001 PCSK2 0.137 0.0016

NEAT1 hsa-miR-9-5p − 0.087 0.0486 FREM2 0.213 P < 0.001

AC021078.1 hsa-miR-9-5p − 0.097 0.0276 FREM2 0.118 0.0066

AC020978.7 hsa-miR-9-5p − 0.194 P < 0.001 FREM2 0.321 P < 0.001

AC020978.7 hsa-miR-9-5p − 0.194 P < 0.001 ALPL 0.182 P < 0.001

MIR497HG hsa-miR-31-5p − 0.173 P < 0.001 CEBPA 0.206 P < 0.001
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models are namely network algorithm and machine learning-based  model63. We identified potential ncRNA 
regulatory pathways involving miRNAs, lncRNAs and mRNAs based on ceRNA theory and mature prediction 
models and built a PPI network that might promote the development of LUAD (Fig. 6). Studies have shown 
that hsa-miR-196b is a potential biomarker in  LUAD64, an ATP1A2 mutation is found in pulmonary carcinoid 
tumors and is involved in multiple biological processes, such as cellular metabolism and immune regulation, 
and NEAT1 functions as a competing endogenous lncRNA in multiple  tumors65. According to the results of 
this research, NEAT1, as a sponge of hsa-miR-196b, alleviates its repression of ATP1A2 and regulates multiple 
biological processes in LUAD. Similarly, hsa-miR-31 and its predicted target lncRNA (MIR497HG) and mRNA 
(CEBPA) are all involved in multiple  tumors66, and there is also a competing endogenous molecule between 
them in LUAD according to our results. The levels of hsa-miR-9 correlate with tumor grade and metastatic 
 status67, and its upregulation leads to enhanced NSCLC cell invasion and adhesion via the regulation of multiple 
 pathways68. According to this study, samples in TCGA-LUAD with high expression of hsa-miR-9 have worse 
survival, and various lncRNAs (AC020978.7, NEAT1, AC021078.1) and mRNAs (PCSK2, FREM2, ALPL) are 
all related to survival.

In conclusion, this study explored the role and potential mechanism of hypoxia in LUAD from the perspective 
of gene signature and ceRNA theory in silico analyses. The results showed that hypoxia promoted tumor progres-
sion and immunosuppressive status through multiple pathways, and the regulatory effect of ceRNA theory on 
LUAD was also observed. However, it is undeniable that our research still has some limitations. All our results 
are based on in silico analyses of TCGA and some website analyses. More functional experiments are needed to 
verify the results of this research, which will be the focus of our future studies.

Data availability
The datasets generated and analyzed during the current study are available in the TCGA (https:// portal. gdc. 
cancer. gov/ (Selection criteria: homepage, select Repository, Files Types select RNA-Seq, Cases types select 
TCGA-LUAD in bronchus and lung).

Received: 31 July 2022; Accepted: 5 December 2022

References
 1. Ferlay, J. et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 

144, 1941–1953. https:// doi. org/ 10. 1002/ ijc. 31937 (2019).
 2. Zhao, R., Ding, D., Yu, W., Zhu, C. & Ding, Y. The lung adenocarcinoma microenvironment mining and its prognostic merit. 

Technol. Cancer Res. Treat. 19, 1533033820977547. https:// doi. org/ 10. 1177/ 15330 33820 977547 (2020).
 3. Zhang, C., He, Z., Cheng, L. & Cao, J. Investigation of prognostic markers of lung adenocarcinoma based on tumor metabolism-

related genes. Front. Genet. 12, 760506. https:// doi. org/ 10. 3389/ fgene. 2021. 760506 (2021).
 4. Jiang, W. et al. Prognostic signature for lung adenocarcinoma patients based on cell-cycle-related genes. Front. Cell Dev. Biol. 9, 

655950. https:// doi. org/ 10. 3389/ fcell. 2021. 655950 (2021).
 5. Meng, J., Cao, L., Song, H., Chen, L. & Qu, Z. Integrated analysis of gene expression and DNA methylation datasets identified key 

genes and a 6-gene prognostic signature for primary lung adenocarcinoma. Genet. Mol. Biol. 44, e20200465. https:// doi. org/ 10. 
1590/ 1678- 4685- gmb- 2020- 0465 (2021).

 6. Abou-Khouzam, R. et al. Integrating tumor hypoxic stress in novel and more adaptable strategies for cancer immunotherapy. 
Semin. Cancer Biol. 65, 140–154. https:// doi. org/ 10. 1016/j. semca ncer. 2020. 01. 003 (2020).

 7. Schito, L. & Semenza, G. L. Hypoxia-inducible factors: Master regulators of cancer progression. Trends Cancer 2, 758–770. https:// 
doi. org/ 10. 1016/j. trecan. 2016. 10. 016 (2016).

 8. Wigerup, C., Påhlman, S. & Bexell, D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther. 
164, 152–169. https:// doi. org/ 10. 1016/j. pharm thera. 2016. 04. 009 (2016).

 9. Bos, R. et al. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J. Natl. Cancer Inst. 93, 309–314. https:// doi. 
org/ 10. 1093/ jnci/ 93.4. 309 (2001).

 10. Zhong, H. et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Can. Res. 
59, 5830–5835 (1999).

 11. Jing, X. et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18, 157. https:// doi. org/ 
10. 1186/ s12943- 019- 1089-9 (2019).

 12. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874. https:// doi. org/ 10. 1038/ nrg30 74 (2011).
 13. Chen, X., Xie, D., Zhao, Q. & You, Z. H. MicroRNAs and complex diseases: From experimental results to computational models. 

Brief. Bioinform. 20, 515–539. https:// doi. org/ 10. 1093/ bib/ bbx130 (2019).
 14. Chen, X., Sun, L. G. & Zhao, Y. NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix 

completion. Brief. Bioinform. 22, 485–496. https:// doi. org/ 10. 1093/ bib/ bbz159 (2021).
 15. Novikova, I. V., Hennelly, S. P., Tung, C. S. & Sanbonmatsu, K. Y. Rise of the RNA machines: Exploring the structure of long non-

coding RNAs. J. Mol. Biol. 425, 3731–3746. https:// doi. org/ 10. 1016/j. jmb. 2013. 02. 030 (2013).
 16. Chen, X., Yan, C. C., Zhang, X. & You, Z. H. Long non-coding RNAs and complex diseases: From experimental results to compu-

tational models. Brief. Bioinform. 18, 558–576. https:// doi. org/ 10. 1093/ bib/ bbw060 (2017).
 17. Qi, X. et al. ceRNA in cancer: Possible functions and clinical implications. J. Med. Genet. 52, 710–718. https:// doi. org/ 10. 1136/ 

jmedg enet- 2015- 103334 (2015).
 18. Thomson, D. W. & Dinger, M. E. Endogenous microRNA sponges: Evidence and controversy. Nat. Rev. Genet. 17, 272–283. https:// 

doi. org/ 10. 1038/ nrg. 2016. 20 (2016).
 19. Anastasiadou, E., Jacob, L. S. & Slack, F. J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 18, 5–18. https:// doi. org/ 10. 

1038/ nrc. 2017. 99 (2018).
 20. Hou, J. & Yao, C. Potential prognostic biomarkers of lung adenocarcinoma based on bioinformatic analysis. Biomed. Res. Int. 2021, 

8859996. https:// doi. org/ 10. 1155/ 2021/ 88599 96 (2021).
 21. Wu, X., Sui, Z., Zhang, H., Wang, Y. & Yu, Z. Integrated analysis of lncRNA-mediated ceRNA network in lung adenocarcinoma. 

Front. Oncol. 10, 554759. https:// doi. org/ 10. 3389/ fonc. 2020. 554759 (2020).
 22. Zhou, W., Bai, C., Long, C., Hu, L. & Zheng, Y. Construction and characterization of long non-coding RNA-associated networks 

to reveal potential prognostic biomarkers in human lung adenocarcinoma. Front. Oncol. 11, 720400. https:// doi. org/ 10. 3389/ fonc. 
2021. 720400 (2021).

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://doi.org/10.1002/ijc.31937
https://doi.org/10.1177/1533033820977547
https://doi.org/10.3389/fgene.2021.760506
https://doi.org/10.3389/fcell.2021.655950
https://doi.org/10.1590/1678-4685-gmb-2020-0465
https://doi.org/10.1590/1678-4685-gmb-2020-0465
https://doi.org/10.1016/j.semcancer.2020.01.003
https://doi.org/10.1016/j.trecan.2016.10.016
https://doi.org/10.1016/j.trecan.2016.10.016
https://doi.org/10.1016/j.pharmthera.2016.04.009
https://doi.org/10.1093/jnci/93.4.309
https://doi.org/10.1093/jnci/93.4.309
https://doi.org/10.1186/s12943-019-1089-9
https://doi.org/10.1186/s12943-019-1089-9
https://doi.org/10.1038/nrg3074
https://doi.org/10.1093/bib/bbx130
https://doi.org/10.1093/bib/bbz159
https://doi.org/10.1016/j.jmb.2013.02.030
https://doi.org/10.1093/bib/bbw060
https://doi.org/10.1136/jmedgenet-2015-103334
https://doi.org/10.1136/jmedgenet-2015-103334
https://doi.org/10.1038/nrg.2016.20
https://doi.org/10.1038/nrg.2016.20
https://doi.org/10.1038/nrc.2017.99
https://doi.org/10.1038/nrc.2017.99
https://doi.org/10.1155/2021/8859996
https://doi.org/10.3389/fonc.2020.554759
https://doi.org/10.3389/fonc.2021.720400
https://doi.org/10.3389/fonc.2021.720400


13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21340  | https://doi.org/10.1038/s41598-022-25745-7

www.nature.com/scientificreports/

 23. Zuo, H. et al. A novel circRNA-miRNA-mRNA hub regulatory network in lung adenocarcinoma. Front. Genet. 12, 673501. https:// 
doi. org/ 10. 3389/ fgene. 2021. 673501 (2021).

 24. Gao, L. & Zhang, L. Construction and comprehensive analysis of a ceRNA network to reveal potential prognostic biomarkers for 
lung adenocarcinoma. BMC Cancer 21, 849. https:// doi. org/ 10. 1186/ s12885- 021- 08462-8 (2021).

 25. Li, J. et al. The construction and analysis of ceRNA network and patterns of immune infiltration in lung adenocarcinoma. BMC 
Cancer 21, 1228. https:// doi. org/ 10. 1186/ s12885- 021- 08932-z (2021).

 26. Liu, Y. et al. Comprehensive ANALYSIS and validation of competing endogenous RNA network and tumor-infiltrating immune 
cells in lung adenocarcinoma. Comb. Chem. High Throughput Screen. 25, 2240–2254. https:// doi. org/ 10. 2174/ 13862 07325 66622 
03240 92231 (2022).

 27. Xia, W. et al. The TWIST1-centered competing endogenous RNA network promotes proliferation, invasion, and migration of lung 
adenocarcinoma. Oncogenesis 8, 62. https:// doi. org/ 10. 1038/ s41389- 019- 0167-6 (2019).

 28. Han, P. et al. Identification of a novel cancer stemness-associated ceRNA axis in lung adenocarcinoma via stemness indices analysis. 
Oncol. Res. 28, 715–729. https:// doi. org/ 10. 3727/ 09650 4020x 16037 12460 5559 (2021).

 29. Gong, P. J. et al. Hypoxia-associated prognostic markers and competing endogenous RNA co-expression networks in breast cancer. 
Front. Oncol. 10, 579868. https:// doi. org/ 10. 3389/ fonc. 2020. 579868 (2020).

 30. Rosenbloom, K. R. et al. The UCSC genome browser database: 2015 update. Nucleic Acids Res. 43, D670-681. https:// doi. org/ 10. 
1093/ nar/ gku11 77 (2015).

 31. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 47, 
D155-d162. https:// doi. org/ 10. 1093/ nar/ gky11 41 (2019).

 32. Ye, Y. et al. Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy. Nat. Metab. 1, 431–444. 
https:// doi. org/ 10. 1038/ s42255- 019- 0045-8 (2019).

 33. Miao, Y. R. et al. ImmuCellAI: A unique method for comprehensive T-cell subsets abundance prediction and its application in 
cancer immunotherapy. Adv. Sci. 7, 1902880. https:// doi. org/ 10. 1002/ advs. 20190 2880 (2020).

 34. Liu, J. et al. Exploration of a novel prognostic risk signatures and immune checkpoint molecules in endometrial carcinoma micro-
environment. Genomics 112, 3117–3134. https:// doi. org/ 10. 1016/j. ygeno. 2020. 05. 022 (2020).

 35. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 
43, e47. https:// doi. org/ 10. 1093/ nar/ gkv007 (2015).

 36. Szklarczyk, D. et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly acces-
sible. Nucleic Acids Res. 45, D362-d368. https:// doi. org/ 10. 1093/ nar/ gkw937 (2017).

 37. Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L. & Ideker, T. Cytoscape 2.8: New features for data integration and network 
visualization. Bioinform. (Oxf., Engl.) 27, 431–432. https:// doi. org/ 10. 1093/ bioin forma tics/ btq675 (2011).

 38. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https:// doi. org/ 10. 1093/ 
nar/ 28.1. 27 (2000).

 39. Dennis, G. Jr. et al. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4, P3 (2003).
 40. Ma, C. et al. Identification of a novel tumor microenvironment-associated eight-gene signature for prognosis prediction in lung 

adenocarcinoma. Front. Mol. Biosci. 7, 571641. https:// doi. org/ 10. 3389/ fmolb. 2020. 571641 (2020).
 41. Li, J. H., Liu, S., Zhou, H., Qu, L. H. & Yang, J. H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA 

interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97. https:// doi. org/ 10. 1093/ nar/ gkt12 48 (2014).
 42. Zhang, L., Liu, T., Chen, H., Zhao, Q. & Liu, H. Predicting lncRNA-miRNA interactions based on interactome network and graphlet 

interaction. Genomics 113, 874–880. https:// doi. org/ 10. 1016/j. ygeno. 2021. 02. 002 (2021).
 43. Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. 

Oncol. 30, 44–56. https:// doi. org/ 10. 1093/ annonc/ mdy495 (2019).
 44. Maman, S. & Witz, I. P. A history of exploring cancer in context. Nat. Rev. Cancer 18, 359–376. https:// doi. org/ 10. 1038/ s41568- 

018- 0006-7 (2018).
 45. Casazza, A. et al. Tumor stroma: A complexity dictated by the hypoxic tumor microenvironment. Oncogene 33, 1743–1754. https:// 

doi. org/ 10. 1038/ onc. 2013. 121 (2014).
 46. Palazon, A., Goldrath, A. W., Nizet, V. & Johnson, R. S. HIF transcription factors, inflammation, and immunity. Immunity 41, 

518–528. https:// doi. org/ 10. 1016/j. immuni. 2014. 09. 008 (2014).
 47. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241. 

https:// doi. org/ 10. 1016/j. cell. 2015. 08. 016 (2015).
 48. Haider, S. et al. Genomic alterations underlie a pan-cancer metabolic shift associated with tumour hypoxia. Genome Biol. 17, 140. 

https:// doi. org/ 10. 1186/ s13059- 016- 0999-8 (2016).
 49. Buffa, F. M., Harris, A. L., West, C. M. & Miller, C. J. Large meta-analysis of multiple cancers reveals a common, compact and 

highly prognostic hypoxia metagene. Br. J. Cancer 102, 428–435. https:// doi. org/ 10. 1038/ sj. bjc. 66054 50 (2010).
 50. Riera-Domingo, C. et al. Immunity, hypoxia, and metabolism-the ménage à trois of cancer: Implications for immunotherapy. 

Physiol. Rev. 100, 1–102. https:// doi. org/ 10. 1152/ physr ev. 00018. 2019 (2020).
 51. Multhoff, G. & Vaupel, P. Hypoxia compromises anti-cancer immune responses. Adv. Exp. Med. Biol. 1232, 131–143. https:// doi. 

org/ 10. 1007/ 978-3- 030- 34461-0_ 18 (2020).
 52. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475, 226–230. 

https:// doi. org/ 10. 1038/ natur e10169 (2011).
 53. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 

16, 183–194. https:// doi. org/ 10. 1016/j. ccr. 2009. 06. 017 (2009).
 54. Zhou, L. et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453, 

236–240. https:// doi. org/ 10. 1038/ natur e06878 (2008).
 55. Hassan Venkatesh, G. et al. Hypoxia increases mutational load of breast cancer cells through frameshift mutations. Oncoimmunol-

ogy 9, 1750750. https:// doi. org/ 10. 1080/ 21624 02x. 2020. 17507 50 (2020).
 56. Samanta, D. & Semenza, G. L. Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors. Biochim. 

Biophys. Acta Rev. Cancer 15–22, 2018. https:// doi. org/ 10. 1016/j. bbcan. 2018. 07. 002 (1870).
 57. Loboda, A., Jozkowicz, A. & Dulak, J. HIF-1 and HIF-2 transcription factors–similar but not identical. Mol. Cells 29, 435–442. 

https:// doi. org/ 10. 1007/ s10059- 010- 0067-2 (2010).
 58. Scanlon, S. E. & Glazer, P. M. Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment. DNA Repair 

32, 180–189. https:// doi. org/ 10. 1016/j. dnarep. 2015. 04. 030 (2015).
 59. Ouyang, W. et al. Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature 491, 554–559. https:// doi. 

org/ 10. 1038/ natur e11581 (2012).
 60. Tay, Y., Rinn, J. & Pandolfi, P. P. The multilayered complexity of ceRNA crosstalk and competition. Nature 505, 344–352. https:// 

doi. org/ 10. 1038/ natur e12986 (2014).
 61. Sun, F., Sun, J. & Zhao, Q. A deep learning method for predicting metabolite-disease associations via graph neural network. Brief. 

Bioinform. 2022, 23. https:// doi. org/ 10. 1093/ bib/ bbac2 66 (2022).
 62. Zhang, L., Yang, P., Feng, H., Zhao, Q. & Liu, H. Using network distance analysis to predict lncRNA-miRNA interactions. Inter-

discipl. Sci. Comput. Life Sci. 13, 535–545. https:// doi. org/ 10. 1007/ s12539- 021- 00458-z (2021).

https://doi.org/10.3389/fgene.2021.673501
https://doi.org/10.3389/fgene.2021.673501
https://doi.org/10.1186/s12885-021-08462-8
https://doi.org/10.1186/s12885-021-08932-z
https://doi.org/10.2174/1386207325666220324092231
https://doi.org/10.2174/1386207325666220324092231
https://doi.org/10.1038/s41389-019-0167-6
https://doi.org/10.3727/096504020x16037124605559
https://doi.org/10.3389/fonc.2020.579868
https://doi.org/10.1093/nar/gku1177
https://doi.org/10.1093/nar/gku1177
https://doi.org/10.1093/nar/gky1141
https://doi.org/10.1038/s42255-019-0045-8
https://doi.org/10.1002/advs.201902880
https://doi.org/10.1016/j.ygeno.2020.05.022
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.1093/bioinformatics/btq675
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.3389/fmolb.2020.571641
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1016/j.ygeno.2021.02.002
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1038/s41568-018-0006-7
https://doi.org/10.1038/s41568-018-0006-7
https://doi.org/10.1038/onc.2013.121
https://doi.org/10.1038/onc.2013.121
https://doi.org/10.1016/j.immuni.2014.09.008
https://doi.org/10.1016/j.cell.2015.08.016
https://doi.org/10.1186/s13059-016-0999-8
https://doi.org/10.1038/sj.bjc.6605450
https://doi.org/10.1152/physrev.00018.2019
https://doi.org/10.1007/978-3-030-34461-0_18
https://doi.org/10.1007/978-3-030-34461-0_18
https://doi.org/10.1038/nature10169
https://doi.org/10.1016/j.ccr.2009.06.017
https://doi.org/10.1038/nature06878
https://doi.org/10.1080/2162402x.2020.1750750
https://doi.org/10.1016/j.bbcan.2018.07.002
https://doi.org/10.1007/s10059-010-0067-2
https://doi.org/10.1016/j.dnarep.2015.04.030
https://doi.org/10.1038/nature11581
https://doi.org/10.1038/nature11581
https://doi.org/10.1038/nature12986
https://doi.org/10.1038/nature12986
https://doi.org/10.1093/bib/bbac266
https://doi.org/10.1007/s12539-021-00458-z


14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21340  | https://doi.org/10.1038/s41598-022-25745-7

www.nature.com/scientificreports/

 63. Wang, C. C., Han, C. D., Zhao, Q. & Chen, X. Circular RNAs and complex diseases: From experimental results to computational 
models. Brief. Bioinform. 22, bbab286. https:// doi. org/ 10. 1093/ bib/ bbab2 86 (2021).

 64. Liu, Y., Xie, D., He, Z. & Zheng, L. Integrated analysis reveals five potential ceRNA biomarkers in human lung adenocarcinoma. 
PeerJ 7, e6694. https:// doi. org/ 10. 7717/ peerj. 6694 (2019).

 65. Yu, M., Zhang, X., Li, H., Zhang, P. & Dong, W. MicroRNA-588 is downregulated and may have prognostic and functional roles 
in human breast cancer. Med. Sci. Monit. 23, 5690–5696. https:// doi. org/ 10. 12659/ msm. 905126 (2017).

 66. Nagy, Á., Lánczky, A., Menyhárt, O. & Győrffy, B. Validation of miRNA prognostic power in hepatocellular carcinoma using 
expression data of independent datasets. Sci. Rep. 8, 9227. https:// doi. org/ 10. 1038/ s41598- 018- 27521-y (2018).

 67. Maniadakis, N., Fragoulakis, V., Pallis, A. G., Simou, E. & Georgoulias, V. Economic evaluation of docetaxel-gemcitabine versus 
vinorelbine-cisplatin combination as front-line treatment of patients with advanced/metastatic non-small-cell lung cancer in 
Greece: A cost-minimization analysis. Ann. Oncol. 21, 1462–1467. https:// doi. org/ 10. 1093/ annonc/ mdp551 (2010).

 68. Han, S. H. et al. MicroRNA-222 expression as a predictive marker for tumor progression in hormone receptor-positive breast 
cancer. J. Breast Cancer 20, 35–44. https:// doi. org/ 10. 4048/ jbc. 2017. 20.1. 35 (2017).

Acknowledgements
Thank you very much for the technical support provided by Mr. Pengju Gong.

Author contributions
L.C.X. , X.Y.H. and H.X.T. contributed to the conception of the study. L.C.X., X.F.Z., J.P.Z. contributed to experi-
mental technology and experimental design. L.C.X., X.Y.H., X.F.Z., and P.D. performed the data analyses. L.C.X., 
X.F.Z., and P.D. wrote the manuscript. H.X.T. and J.P.Z. supervised the study. L.W. made a great contribution to 
the modified version. All authors contributed to the article and approved the submitted version.

Funding
This project was supported by the Program of Excellent Doctoral (Postdoctoral) of Zhongnan Hospital of Wuhan 
University [Grant No. ZNYB2019002] and Natural Science Foundation of Hubei Province [2020CFB703].

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 25745-7.

Correspondence and requests for materials should be addressed to H.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1093/bib/bbab286
https://doi.org/10.7717/peerj.6694
https://doi.org/10.12659/msm.905126
https://doi.org/10.1038/s41598-018-27521-y
https://doi.org/10.1093/annonc/mdp551
https://doi.org/10.4048/jbc.2017.20.1.35
https://doi.org/10.1038/s41598-022-25745-7
https://doi.org/10.1038/s41598-022-25745-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Hypoxia-associated prognostic markers and competing endogenous RNA coexpression networks in lung adenocarcinoma
	Methods
	Study cohort. 
	Classification of hypoxia status. 
	Immune cell infiltration and tumor mutational burden (TMB) analysis. 
	Identification of differentially expressed genes (DEGs) related to hypoxia. 
	Identification of DEGs and construction of prognostic models. 
	Differential expression of miRNAs. 
	Identification of target lncRNAs of candidate miRNAs. 
	Construction of the ceRNA network and related PPI network. 
	Statistical analysis. 

	Results
	Consensus clustering identified two clusters of LUAD with different hypoxia statuses. 
	Clinicopathological characteristics, immune cell infiltration, immune checkpoints, and TMB scores of LUAD patients with different hypoxia statuses. 
	Identification of hypoxia-related differentially expressed genes (DEGs) and enrichment analysis. 
	Construction of prognostic models based on hypoxia-related DEGs. 
	Identification of prognosis-related differentially expressed miRNAs under hypoxic conditions. 
	Identification of candidate target DEGs regulated by prognosis-related miRNAs. 
	Hypoxia-related competitive endogenous RNA (ceRNA) regulation network. 

	Discussion
	References
	Acknowledgements


