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The relationship between hypoxia and 
inflammation
The appearance and accumulation of gaseous molecular oxygen 

(O
2
) in the Earth’s atmosphere approximately 2.3 billion years 

ago, which occurred as a result of the expansion of oceanic pho-

tosynthetic cyanobacteria, resulted in near eradication of the 

planet’s biomass due to its highly reactive chemistry (1). Howev-

er, a subset of unicellular organisms, which evolved following the 

incorporation of mitochondria during an early symbiotic event, 

developed the ability to withstand the toxic effects of oxygen (2). 

In fact, these primitive organisms adapted to an oxygen-rich envi-

ronment by developing the capacity to utilize oxygen’s inherent 

chemical energy to increase their metabolic potential. This played 

a major role in providing the capacity for satisfying the bioener-

getic demands required for the subsequent evolution of eukaryotic 

metazoan life on Earth (2, 3). Of note, in early unicellular organ-

isms, the processes of metabolism and primitive immunity shared 

many common features such as phagocytosis and proteolysis, 

and therefore there exists an ancient and intimate relationship 

between these two fundamental processes (4).

O
2
 plays a vital role in eukaryotic metabolism as the terminal 

electron acceptor of the mitochondrial electron transport chain, 

which is responsible for generating the majority of ATP produced 

by a cell (5). Indeed, eukaryotic cells have developed a strong 

degree of dependence upon the availability of sufficient levels of 

O
2
 to maintain biological activity and remain viable.

Hypoxia occurs when oxygen demand exceeds supply, and 

as such represents a significant threat to bioenergetic homeo-

stasis and cell survival. A number of recent studies have demon-

strated that the microenvironment at sites of inflammation 

often becomes profoundly hypoxic. Inflammatory pathologies 

in which tissue hypoxia has been documented include athero-

sclerosis, rheumatoid arthritis, obesity, infection, ischemic dis-

ease, cancer, and inflammatory bowel disease (6). The occur-

rence of hypoxia at sites of inflammation is due to a combination 

of increased oxygen demand and decreased supply. Oxygen 

consumption is elevated at inflammatory sites due to the high 

metabolic demand associated with active inflammation, which 

is necessary to sustain the synthesis of inflammatory medi-

ators, enzymes, and cytokines (6, 7). In addition, infiltrating 

neutrophils at sites of inflammation contribute to hypoxia, as 

these cells require high levels of oxygen to support the oxida-

tive burst that is used as an endogenous antimicrobial strategy 

(8, 9). Reduced oxygenation of inflamed tissues is of particular 

relevance in chronic inflammatory diseases of the intestine, 

such as inflammatory bowel disease, where the development of 

thrombosis, fibrosis, and associated vascular dysfunction often 

leads to diminished tissue perfusion (10, 11). Therefore, hypox-

ia is a common feature of the microenvironment of chronically 

inflamed tissues.

It has recently become clear that, rather than simply being 

a consequence of inflammation, hypoxia can actively affect 

inflammatory processes through the regulation of oxygen-sen-

sitive signaling pathways in multiple immune cell subtypes that 

are either resident within the inflamed tissue or have migrated 

from the oxygen-rich bloodstream to the hypoxic inflammatory 

milieu (6, 12). In this review, we will discuss these pathways and 

the implications of their activation for the regulation of immu-

nity and inflammation.

Hypoxia-responsive pathways in inflammation
Cellular responses to hypoxia are governed by a marked change in 

the cellular transcriptome (13). Pan-transcriptomic analyses have 

identified hundreds of hypoxia-responsive genes, with equivalent 

numbers of genes having increased or decreased expression levels 

(14, 15). Over 15 distinct transcription factors display sensitivity to 
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trol of the HIF pathway include metabolism, erythropoiesis, and 

angiogenesis and, because of its activation in the hypoxic regions 

of growing tumors, the HIF pathway has been heavily implicated 

in tumor growth and the progression of cancer (13).

It has recently come to be appreciated that the metabolic 

status of an immune cell is intimately linked with its phenotype 

and function (20–22). Therefore, in the context of immunity and 

inflammation, the sentinel role of HIF in the regulation of meta-

bolic processes is of primary importance. HIF both regulates and 

is regulated by metabolism. For example, HIF is a strong driver of 

glycolytic gene expression and a repressor of oxidative phosphory-

lation (23), while metabolic intermediates including fumarate and 

succinate can modulate HIF-dependent signaling. Dysregulation 

of metabolic enzymes involved in the production of these interme-

diates in the tumor setting are associated with altered HIF-depen-

dent signaling (24, 25). In the context of infection, LPS-dependent 

activation of macrophages leads to metabolic reprogramming, 

succinate release, and elevated IL-1β production downstream of 

HIF (26). Therefore, HIF sits in a prime position to link metabolic 

and immune/inflammatory processes.

HIF and immunity
Recently, a major role for HIF has emerged in multiple aspects 

of immune cell function and survival (Figure 1). This is perhaps 

unsurprising considering that many immune cells leave the oxy-

gen-rich vasculature as they migrate to hypoxic sites of inflamma-

tion, where they carry out their immunological function and are 

therefore regularly subject to a sharp drop in oxygen levels and 

must adapt accordingly.

While HIF-1 appears to be expressed in all immune cell 

types, HIF-2 is more selectively expressed in cells such as neu-

trophils, NK cells, tumor-associated macrophages, and activated 

hypoxia and likely contribute, to varying degrees, to driving the 

global transcriptional response (16). While our understanding of 

the factors controlling gene repression in hypoxia is currently lim-

ited, both HIF and NF-κB are prominent, well-described hypoxia- 

responsive transcriptional activators.

Hypoxia-inducible factor. HIF is considered to be a master reg-

ulator of the cellular response to hypoxia (13, 17). HIF is a heterodi-

meric transcription factor consisting of a labile α subunit and a sta-

bly expressed β subunit (HIF-1β/ARNT). Oxygen sensitivity of the 

HIFα subunit is conferred by a family of dioxygenases termed HIF 

hydroxylases, which comprises three prolyl hydroxylases (PHD1–

3) and a single asparagine hydroxylase termed the factor inhibit-

ing HIF (FIH) (13, 17–19). In normoxia, when cellular oxygen sup-

ply exceeds demand, PHDs hydroxylate HIF on proline residues 

(Pro-402 and Pro-564 on HIF-1α) and target it for ubiquitination, 

which is mediated by the von Hippel-Lindau (VHL) E3 ubiquitin 

ligase, and subsequent proteasomal degradation, thereby main-

taining HIF in a largely repressed state in normal physiological 

conditions. A second level of HIF repression is provided by FIH, 

which hydroxylates HIF on an asparagine residue (Asn-803 in 

HIF-1α), thereby preventing its interaction with the transcription-

al co-activating proteins CBP and p300 (18, 19). In hypoxia, where 

oxygen is a limiting factor, the activity of the HIF hydroxylases is 

reduced, leading to the stabilization of HIFα subunits, which bind 

to HIF-1β and form stable HIF dimers that are then free to bind 

to CBP and p300, initiating the formation of a functionally active 

transcriptional complex (18). There are two main transcriptionally 

active isoforms of HIF, termed HIF-1 and HIF-2, which are differ-

entiated by whether they comprise a HIF-1α or a HIF-2α subunit in 

combination with HIF-1β, respectively. HIF-1 and HIF-2 have dis-

crete tissue expression profiles and overlapping but distinct sets of 

target genes (15). Physiological processes that are under the con-

Figure 1. Regulation of immune cells by HIFs. Functional immune cells differentiate from hematopoietic stem cells (HSC). Immune cells are frequently 

exposed to hypoxia when they enter the hypoxic niche of the inflammatory lesion where HIF can influence differentiation and function (shown in red).
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phosphorylation for ATP production (28). 

Not surprisingly, both HIF-1 and HIF-

2 play important regulatory functional 

roles in the control of motility, bactericid-

al activity, and tumorigenic potential in 

macrophages (29–31). However, it remains 

unclear exactly how HIF-1 and HIF-2 par-

ticipate in the skewing of macrophages 

towards an M1 or M2 phenotype (20, 22). 

While HIF-1–dependent glycolysis favors 

polarization to an M1 phenotype, recent 

work has indicated that M2 polarization is 

independent of either HIF isoform, at least 

in a model of sterile tissue damage (32). 

Therefore, while it is likely that HIF acti-

vation contributes to macrophage polar-

ization, the specific roles of individual HIF 

isoforms require further investigation.

In neutrophils, HIF-1 and HIF-2 are crit-

ical in the control of cell survival and apopto-

sis. HIF-1 promotes neutrophil survival and 

bactericidal activity (33, 34). Similarly, HIF-2 

appears to support neutrophilic inflammation 

through the promotion of cell survival (35). 

Of interest, HIF-2 expression in neutrophils 

is elevated in patients with inflammatory dis-

ease (35). Therefore, in the context of inflam-

mation, HIF-1/2 activation in neutrophils can 

be considered to be largely proinflammatory.

In dendritic cells (DCs), HIF-1 has been 

shown to promote cell survival, interferon 

synthesis, differentiation, and migration (36–38). Furthermore, 

recent studies have suggested a role for HIF-1α in determining 

the antigen-presenting function of DCs. Additionally, HIF-1 has 

been implicated in promoting Treg expansion while limiting the 

expansion of CD8+ T cells (39, 40). These latter studies support a 

predominantly antiinflammatory function for HIF-1 in DCs. Lit-

tle is known about the expression or function of HIF-2 in DCs. In 

NK cells, HIF-2 limits cellular cytotoxicity, indicating an antiin-

flammatory role (41). Therefore, HIFs play a key role in multiple 

aspects of innate immune cell development and function.

HIF and barrier function
Epithelial cells are important and often-neglected innate immune 

cells that play a key role as a first line of defense against external 

microbes in tissues such as the lung, skin, and gastrointestinal 

tract. Indeed, epithelial barrier function is a key aspect of innate 

immunity. In epithelial cells of both the intestine and the skin, 

HIF-1 and HIF-2 have been shown to be crucial to regulating bar-

rier function and wound healing capacity, although the different 

isoforms may perform opposing roles (42–45). Strong data now 

exist demonstrating that HIF-1 is associated with improved epi-

thelial barrier function in the gastrointestinal tract, making HIF 

a potential target in inflammatory bowel disease, which is associ-

ated with epithelial barrier dysfunction (46). Therefore HIFs are 

key regulators of epithelial barrier function, an important aspect 

of innate immunity.

T cells under conditions of hypoxia (22). Studies utilizing trans-

genic mice, in which the genes encoding individual HIF sub-

units have been deleted in distinct immune cell subtypes, have 

elucidated some of the specific roles of HIF-1α and HIF-2α in 

immunity and inflammation. A dominant and consistent theme 

that has evolved is that HIFs play a central role in the regulation 

of immune cell development and function; consequently, HIFs 

should be considered key regulators of immunity and inflamma-

tion. These studies revealed cell type–specific roles for HIF in the 

regulation of a number of processes central to immune cell activ-

ity (27). While our understanding of the role of HIFs in immune 

cell function is expanding, it is notable that during inflammation, 

hypoxia occurs not in isolation but in the complex milieu of the 

inflammatory lesion. As such, a number of other factors such as 

the presence of cytokines and chemokines will combine with 

hypoxia to potently regulate immune cell development and func-

tion and the ultimate effects of hypoxia will depend upon which 

of these co-stimuli are present.

HIF in innate immunity
Macrophages can differentiate into M1 or M2 phenotypes, which 

are associated with first-line (proinflammatory) antibacterial 

defense and wound healing (antiinflammatory) respectively. 

Additionally, these macrophage phenotypes employ distinct 

metabolic strategies. M1 macrophages are largely reliant on gly-

colysis, while M2 macrophages are largely reliant on oxidative 

Figure 2. Potential sites for functional hydroxylation in the NF-κB pathway. NF-κB–dependent 

signaling can be activated by several proinflammatory factors that bind to discrete membrane-asso-

ciated receptors and activate discrete pathways. Putative sites for functional hydroxylation in these 

pathways are outlined in red.
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crosstalk between mature B cells (plasma 

cells) and the microenvironment in tumors 

(55). Finally, depletion of HIF-1β leads to 

alterations in homeostasis and hematopoi-

etic stem cell viability (56). Therefore, in 

the context of adaptive immune cell activ-

ity, HIFs play a key role, which appears to 

be predominantly antiinflammatory for T 

cells and prosurvival for B cells.

The studies discussed above provide 

strong evidence that HIF-1 plays a com-

plex and pleiotropic role in cells of the 

immune system. A consistent observation 

throughout these studies is that the effect 

of genetic HIF depletion from both innate 

and adaptive immune cell types markedly 

alters multiple aspects of their function. 

The discrete and common roles of HIF-

1α and HIF-2α in the differentiation and 

function of certain immune cell subtypes 

are summarized in Figure 1. The conclu-

sion from the studies outlined above is 

that the HIF pathway should be consid-

ered an important regulator of both innate 

and adaptive immune cell function and the inflammatory pro-

cesses that are activated during inflammation.

NF-κB. NF-κB is a hypoxia-sensitive transcription factor that 

plays an important role in the control of the inflammatory response 

(57). The NF-κB signaling pathway consists of distinct canonical 

and noncanonical branches that play a complex and pleiotropic 

role in the control of inflammation and can regulate both pro- and 

antiinflammatory processes, depending upon the context. The 

canonical (but not the noncanonical) branch of the NF-κB path-

way has been demonstrated to respond to hypoxia (58). NF-κB 

serves as a master regulator of the immune response through the 

regulation of key aspects of immune cell function in macrophages, 

epithelial cells, neutrophils, DCs, T cells, and B cells. The potent 

role of NF-κB in the regulation of immunity and inflammation has 

been extensively reviewed elsewhere and will not be covered in 

detail here (59). For the purpose of this review, we will focus on our 

evolving understanding of the mechanistic link between hypoxia 

and NF-κB activity.

As will be discussed in more detail below, the same hydroxy-

lases responsible for conferring oxygen dependence upon the HIF 

pathway also regulate hypoxia-dependent NF-κB activity (60), 

although the exact mechanisms by which this occurs remain to be 

fully elucidated. Of interest, a number of hydroxylation sites have 

been identified on components of the NF-κB pathway, supporting 

a possible role for functional, oxygen-dependent hydroxylation 

outside of the HIF pathway (Figure 2; refs. 60–64). While hypox-

ia or pharmacological hydroxylase inhibition causes a moderate 

increase in basal NF-κB activity in several cell types, it suppresses 

the activation of NF-κB activity in cells following treatment with 

cytokines such as IL-1β or bacterial products such as LPS. These 

effects reflect a complex regulatory role for hypoxia in relation to 

the NF-κB pathway (65, 66). However, it is now clear that along 

with HIF, NF-κB is a second hypoxia-responsive transcription 

HIF in adaptive immunity
The important role that HIF plays in the regulation of the adap-

tive immune response and the implications of this regulation 

for inflammation and cancer have been recently reviewed (21, 

22). Depending on environmental cues, CD4+ T cells can differ-

entiate into Tregs, Th1, Th2, or Th17 cells, which have distinct 

immunological functions. HIF-1 has been reported to regulate T 

cell survival, proliferation, and differentiation (47). HIF-1 acti-

vation promotes a metabolic shift to glycolysis as well as altered 

transcriptional responses in differentiating T cells (via regulation 

of the nuclear hormone receptor RORγt and the transcriptional 

regulator FOXP3), creating an environment favorable for the dif-

ferentiation to Th17 cells rather than Tregs (21, 48). In activated 

T cells, HIF-1 promotes cytolytic, migratory, and co-stimulatory 

properties (22, 49), although HIF-1 has recently been reported to 

negatively regulate Th1 cell function in some conditions (50). The 

impact of HIF-1 in Treg function is less clear. One study reports 

that HIF-1–driven FOXP3 is required for Treg function and cells 

lacking HIF-1α have reduced antiinflammatory capacity and 

lose their ability to control inflammation (51). A separate study 

demonstrated that VHL depletion in Tregs leads to HIF-1 activa-

tion, which drives their transformation to Th1 effector killer cells, 

thereby promoting inflammation (52). In summary, HIF-1 plays a 

key role in T cell differentiation by promoting glycolytic metabo-

lism and directing key aspects of T cell function, and as such is a 

key mediator of adaptive T cell–mediated immunity.

In terms of B cell biology, HIF-1α–/– Rag2–/– chimeric mice dis-

play B cell lineage defects, including abnormal B1-like lympho-

cytes and evidence of autoimmunity (53). More recently, HIF-1α 

has been shown to be important for the expression of TASK-2 

potassium channels in B cells. These channels are vital for a 

number of cellular functions including proliferation, survival, 

and cytokine production (54). Furthermore, HIF-1α is critical for 

Figure 3. Mechanisms of therapeutic action of hydroxylase inhibitors in inflammation. Pharma-

cological hydroxylase inhibition influences inflammatory processes by (1) enhancing barrier function 

(in infectious inflammation), (2) altering immune cell differentiation, and (3) altering innate and 

adaptive immune cell function.
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86). Interestingly, the expression of these enzymes was reported 

to be altered in inflammatory bowel disease, where the intestinal 

barrier is significantly perturbed (85–87). In keratinocytes, loss 

of PHD2 alters cell migration and subsequent wound healing in 

a HIF-dependent manner (88). In lymphocytes, loss of PHD2 is 

associated with altered cytokine production and immune activity 

(89). Therefore, multiple studies support a key role for hydroxy-

lases and their downstream targets in the regulation of immunity 

and inflammation.

Hydroxylase-independent pathways activated  
in hypoxia
It is worth noting that in addition to HIF and NF-κB, a number 

of other important hypoxia-sensitive regulators of inflammation 

are also activated at sites of inflammation, independent of altered 

hydroxylase activity, and are likely contributors to control of the 

overall inflammatory state. These regulators do not directly sense 

changes in oxygen but are sensitive to the sequelae downstream of 

hypoxia-dependent changes in glucose transport, ATP availabili-

ty, acidosis, oxidative stress, or altered levels of metabolic inter-

mediates. Some examples are given below.

AMPK is a metabolic sensor that is activated in response 

to ATP depletion that occurs as a result of the metabolic crisis 

caused by hypoxia, and has recently emerged as a key regulator 

of inflammatory cell activity (90). The glucocorticoid receptor 

(GR), which plays a key role in the activation of antiinflammatory 

genes and the suppression of proinflammatory genes, is activated 

in response to hypoxia and likely contributes to the overall con-

trol of inflammation, although the mechanisms underpinning the 

activation of the GR by hypoxia remain unclear (91, 92). Members 

of the cAMP response element–binding protein (CREB) family, 

including CREB and ATF4, have been shown to be regulated by 

hypoxia and can in turn regulate the expression of inflammatory 

genes in immune cells (93, 94). The mTOR pathway, which is acti-

vated in response to hypoxia, likely plays a key role in immune cell 

activity during inflammation (95). Acidosis, which is a feature of 

the inflammatory microenvironment, is a known regulator of the 

hypoxic response (96) Indeed, lactate, which is produced during 

anaerobic respiration, has recently been reported to induce a 

hypoxic response independent of HIF, via NMYC downstream–

regulated gene 2 (NDRG2) and Raf/ERK signaling (97).

Therefore, multiple hypoxia-sensitive but hydroxylase-inde-

pendent pathways in addition to HIF and NF-κB likely contribute 

to the complex and multifaceted effects of hypoxia on immune 

cell activity during active inflammation. The complexity of these 

interactions make the crosstalk between hypoxia and inflamma-

tory pathways an attractive topic for developing a systems biolo-

gy approach to advance our understanding of the temporal and 

dynamic aspects of this relationship (98).

Intermittent hypoxia and inflammation
Most studies into hypoxia-dependent transcription have utilized 

models of continuous or sustained hypoxia, whereas in vivo it is 

likely that cells experience bouts of fluctuating hypoxia and reoxy-

genation, as oxygen consumption and delivery is a highly dynam-

ic process both in health and disease. In a number of conditions 

(exemplified by obstructive sleep apnea syndrome, of which sys-

factor that plays a key role in the regulation of inflammation and 

immunity through its prominent role in the control of immune 

cell function. Whether NF-κB induces a pro- or antiinflammatory 

response depends on the cell type and the degree and duration of 

its activity in the context of a specific inflammatory lesion.

While both HIF and NF-κB play distinct roles in terms of reg-

ulating inflammatory processes, the two pathways have also been 

shown to display a significant degree of interdependence (67–70). 

For example, HIF transcription can be upregulated by NF-κB 

through its binding to a response element present in the HIF1A 

promoter (71–74); thus, NF-κB activation may serve to amplify the 

HIF response under conditions of hypoxic inflammation. Con-

versely, in neutrophils, HIF has been demonstrated to regulate 

NF-κB activity, although this appears to be a more cell type–spe-

cific role, as HIF-dependent NF-κB activity has not been reported 

in other cell types (33).

In summary, HIF and NF-κB are two interdependent hypox-

ia-responsive transcription factors that play a vital role in the con-

trol of immune cell function and perform an important bridging 

role between the microenvironment, metabolism, and the control 

of immune cell function. Importantly, a common feature of HIF 

and NF-κB is their regulation by oxygen-sensing hydroxylases, 

thus identifying these oxygen sensors as potentially important 

therapeutic targets in inflammatory disease.

Regulation of immune cell function by PHDs
The identification of hydroxylases as the sensors underpinning 

oxygen dependence of the HIF pathway was first reported in 

2001 (75, 76). These studies demonstrated that oxygen-depen-

dent proline hydroxylation of HIF by a family of hydroxylases led 

to its ubiquitination by the pVHL ubiquitin ligase and subsequent 

proteasomal degradation in normoxia (18). Another study identi-

fied FIH as a second, oxygen-dependent hydroxylase that targets 

HIF (77, 78). Subsequent studies demonstrated that while HIF is 

clearly the major pathway regulated by hydroxylation, signaling 

components of other pathways such as NF-κB are also subject to 

enzymatic hydroxylation, although the functional consequences 

of hydroxylation for non-HIF targets remains an area under inves-

tigation (62–64, 79).

Because of the role of hydroxylases in the regulation of 

hypoxia- responsive transcription factors, these enzymes also play 

a key role in the regulation of immune cell activity (27). While our 

understanding of the role of HIF hydroxylases in the regulation of 

immune cell function is far from complete, recent studies inves-

tigating individual HIF hydroxylase isoforms in discreet immune 

and epithelial cell subtypes have identified isoform-specific roles 

(80–89). Notably, these phenotypes are not fully accounted for 

by downstream HIF-dependent effects, further supporting the 

existence of alternative hydroxylase-regulated pathways such as 

NF-κB in immune cells.

In macrophages, PHD2 loss or haplodeficiency alters M1/

M2 cell differentiation in an NF-κB–dependent manner (80, 81), 

whereas PHD3 loss alters apoptosis and proinflammatory activ-

ity (82, 83). In neutrophils, PHD3 regulates apoptosis, although 

this effect appears to be NF-κB independent (84). In intestinal 

epithelial cells, PHD1 and PHD3 have been linked with the reg-

ulation of apoptosis and tight-junction integrity, respectively (85, 
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temic inflammation is a feature), cells clearly experience a more 

intermittent profile of hypoxia and reoxygenation (99). Indeed, it 

is likely that other hypoxic pathologies including chronic inflam-

mation and cancer also involve exposure to an intermittent rather 

than a sustained pattern of hypoxia. Intermittent hypoxia rep-

resents a significantly different physiological stimulus than sus-

tained hypoxia, as it also involves repeated exposure to bouts of 

reoxygenation and associated oxidative stress. Studies into the 

impact of intermittent hypoxia on cellular signaling pathways have 

implicated both HIF and NF-κB pathways in response to intermit-

tent hypoxia, although sustained hypoxia favors activation of the 

HIF pathway while intermittent hypoxia is more selective for the 

activation of NF-κB–driven inflammation, likely as a result of oxi-

dative stress (99–102). Little is known about the differential effects 

of intermittent and sustained hypoxia on immune cell function, 

although this is likely of importance for a full understanding of the 

impact of physiologically relevant patterns of hypoxia on inflam-

mation and immunity.

Preclinical studies of hydroxylase inhibitors
The evidence outlined above, which supports key roles for hypox-

ia- and hydroxylase-sensitive transcriptional pathways in immuni-

ty and inflammation, indicates that pharmacological interference 

with these pathways would likely have immunological consequenc-

es. However, given the complex and pleiotropic roles of hypoxia-re-

sponsive pathways in distinct immune cell types, a prediction of 

whether hypoxia and/or hydroxylase inhibition would ultimately 

be pro- or antiinflammatory is difficult to make without testing the 

impact of pharmacological hydroxylase inhibition in vivo.

Studies implicating hypoxia-responsive pathways in inflam-

matory disease are supported by data demonstrating the impact of 

targeting the HIF pathway with pharmacological hydroxylase inhib-

itors for the treatment of inflammatory disease (12, 103). Initial 

work in this area demonstrated a beneficial effect of hydroxylase 

inhibition on disease progression in mouse models of colitis (104, 

105). This protective effect was found to be due primarily to the 

promotion of intestinal epithelial barrier function through the inhi-

bition of apoptosis and the expression of genes that enhance barri-

er function (46, 106). Subsequent studies demonstrated a broader 

antiinflammatory effect of pharmacological hydroxylase inhibition 

in diseases such as ischemic acute kidney injury and sepsis, leading 

to the conclusion that other mechanisms of therapeutic action may 

also be involved (65, 107). Indeed, recent studies have implicated 

hydroxylase inhibitors in the suppression of cytokine-activated 

NF-κB–dependent proinflammatory pathways, which may under-

pin a more general antiinflammatory effect of these drugs (64). 

Therefore, while hypoxia-sensitive pathways clearly play a complex 

and multifaceted role in the regulation of immunity and inflamma-

tion, the pharmacological activation of these pathways through the 

application of hydroxylase inhibitors provides a strong, net anti-

inflammatory effect in multiple models (Figure 3). Future clinical 

studies are likely to be directed towards investigating the potential 

of hydroxylase inhibitors as a new class of antiinflammatory agents.

In addition to reported antiinflammatory effects, pharmaco-

logical hydroxylase inhibition has been shown to ameliorate symp-

toms associated with infectious disease (108). For example, mice 

treated with the PHD inhibitor dimethyloxalylglycine, N-(me-

thoxyoxoacetyl)-glycine methyl ester (DMOG) are protected in 

a murine model of respiratory infection with the gram-negative 

opportunistic pathogen Pseudomonas aeruginosa (109). Consis-

tent with these findings, loss of HIF-1α in mice increases suscep-

tibility to P. aeruginosa–mediated keratitis (110). In other models 

of infection including Clostridium, Streptococcus, Staphylococcus, 

and Acinetobacter species, HIF has also been largely found to be 

protective against pathogens (111–115). Given the evolving issue 

of antimicrobial resistance in multiple pathogens, future studies 

will undoubtedly expand on the fascinating potential of targeting 

host oxygen-sensing pathways for the purpose of regulating host 

immunity in infectious disease.

Clinical potential of hydroxylase inhibitors
Hydroxylase inhibitors have recently been entered into clinical 

trials for the promotion of erythropoiesis in models of chronic 

kidney disease–associated anemia (116–118). In these studies, 

the delivery of systemic doses of hydroxylase inhibitors was 

well tolerated by patients, paving the way for the possible use 

of these reagents for the treatment of inflammatory disorders 

and/or infectious disease. Notably, while systemic exposure of 

a patient to a hydroxylase inhibitor would be beneficial in ane-

mia in order to promote erythropoiesis, the local delivery of 

these drugs would be desirable in the treatment of tissue-spe-

cific inflammation in order to avoid unwanted systemic effects 

such as erythropoiesis. Such a targeted delivery–based approach 

has recently been demonstrated in a murine model of colitis, in 

which localized delivery of the hydroxylase inhibitor DMOG to 

the colon using an emulsion-based drug delivery system provid-

ed tissue protection at lower doses than the doses needed for 

systemic delivery and without associated systemic erythropoi-

esis (119). Mechanisms for targeted colonic delivery (e.g., Multi 

Matrix System [MMX]) of antiinflammatory agents such as ami-

nosalicylates (5ASA) and budesonide are already used in the 

clinical care of the inflammatory disorder ulcerative colitis (120, 

121). These studies provide proof of concept for the treatment of 

intestinal inflammation based on local release formulations to 

maximize drug concentrations in diseased tissue while limiting 

any potential systemic side effects.

Perspectives
Since the identification of HIF as a ubiquitous regulator of the 

cellular transcriptional response to hypoxia and the subsequent 

identification of hydroxylases as the key oxygen sensors in this 

pathway, our appreciation of the role of hypoxia as a driver of 

immunity and inflammation has expanded exponentially. The 

therapeutic payoff for a quarter of a century of basic research in 

this field is reflected by the recent entry to the clinic of hydroxylase 

inhibitors for the treatment of anemia. The potential for repurpos-

ing these drugs for inflammatory diseases such as inflammatory 

bowel disease, rheumatoid arthritis, and ischemia is a real possi-

bility in the near future.

Some key aspects of the biology of hypoxia-dependent path-

ways in inflammation require further investigation. These include 

extensive characterization of the safety and side effects of sys-

temically administered hydroxylase inhibitors and the possibili-

ty of developing more targeted, tissue-specific delivery systems. 
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The differential roles of HIF-1– and HIF-2–dependent activity in 

immune cell subpopulations in both resting and activated states 

requires further investigation, particularly using comparative 

studies. Furthermore, the association between hypoxia and oth-

er key aspects of the inflammatory microenvironment such as the 

prevailing cytokine/chemokine milieu and altered carbon dioxide 

levels and associated changes in pH need to be considered (122, 

123). Finally, comparative studies of intermittent versus sus-

tained patterns of hypoxia in immune cells will strengthen our 

understanding of the role of physiologically relevant patterns of 

hypoxic exposure during inflammation. The near future will pro-

vide us with these and other exciting new insights into the ancient 

association between hypoxia, metabolism, and immunity, which 

will lead to the development of new therapeutic opportunities for 

inflammatory and infectious disease.
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