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Abstract  

Adaptation to hypoxia is a critical cellular event both in pathological settings, such as 

cancer and ischemia, and in normal development and differentiation. Oxygen is thought 

to be not only an indispensable metabolic substrate for a variety of in vivo enzymatic 

reactions including mitochondrial respiration, but also a key regulatory signal in tissue 

development and homeostasis by controlling a specific genetic program. Hypoxia-

inducible transcription factors (HIFs) HIF-1 and HIF-2 are central mediators of the 

homeostatic response that enables cells to survive and differentiate in low-oxygen 

conditions. Genetically altered mice have identified important roles for HIF-1 and HIF-2 

as well as vascular endothelial growth factor-A (VEGF)—a potent angiogenic factor and 

a downstream target of the HIF pathway—in the regulation of skeletal development, bone 

homeostasis and haematopoiesis. In this Review, we summarize the current knowledge of 

HIF signalling in cartilage, bone and haematopoiesis, and pay particular attention to the 

complex relationship between HIF and VEGF in these tissues based on data collected in 

animal models. The study of these models expands our understanding of the cell 

autonomous, paracrine and autocrine effects that mediate the homeostatic responses 

downstream of HIFs and VEGF. This knowledge can also be relevant for diseases like 

cancer and ischemia.  
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Key points 

• Oxygen levels regulate specific signalling cascades, such as the hypoxia-inducible 

factor (HIF) signalling pathway 

• HIFs are essential mediators of the complex homeostatic responses that enable 

hypoxic cells to survive and differentiate  

• VEGF is a downstream target of the HIF pathway and a potent angiogenic factor 

• HIFs and VEGF have critical roles in skeletal development and bone homeostasis, 

as well as in haematopoiesis 

• HIFs and VEGF are also crucial for bone regeneration and are involved in 

osteoarthritis and metastasis of tumours to bone  
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[H1] Introduction  

The ability of a cell to adapt to hypoxic conditions is critical both in pathological settings, 

such as cancer and ischemia, and in normal development and differentiation. Oxygen is 

thought to be not only an indispensable metabolic substrate in a variety of enzymatic 

reactions in vivo including mitochondrial respiration, but also a key regulatory signal in 

tissue development and homeostasis. For example, during embryonic development, 

cellular differentiation as well as organ growth and final shape are thought to be 

modulated by oxygen gradients, which, at least in part, rely on the hypoxia-inducible 

factor (HIF) signalling pathway to mediate their effects.
1,2

 The transcription factors HIF-1 

and HIF-2 are central mediators of the homeostatic responses that enable hypoxic cells to 

survive and differentiate.
1,2

 These proteins trigger a range of autonomous, autocrine, 

paracrine and endocrine effects with the overall goal of increasing oxygen delivery to 

tissues while decreasing their oxygen consumption.
3,4,5 

 

HIF-1
6-10

 consists of two basic helix–loop–helix proteins of the PER–ARNT–SIM 

subfamily, HIF-1α and HIF-1β,
9–11

 which are ubiquitously expressed.
12

 HIF-1α is 

activated when oxygen levels drop to <5%, which is detected by a class of 

2-oxoglutarate-dependent and Fe
2+

-dependent prolyl hydroxylases (Figure 1).
13-18

 By 

contrast, HIF-1β is constitutively expressed in an oxygen-independent manner. In tissues 

where the oxygen tension is >5%, the half-life of HIF-1α is very short (<5 min). 

However, under hypoxic conditions, HIF-1α protein accumulates, translocates to the 

nucleus, dimerizes with HIF-1β, and, upon recruitment of various transcriptional co-

activators, binds to hypoxia response elements within the promoters of hypoxia-



	
   4	
  

responsive genes.19 Of note, “normoxia” and “hypoxia” are relative concepts, depending 

on the tissues and/or organs of interest.  

The HIF-2α homologue is regulated by oxygen tension in a similar way to HIF-1α and 

can also form a transcription complex with HIF-1β.19 However, HIF-2α and HIF-1α 

have overlapping and unique biological functions.9,19 For example, regulation of 

expression of enzymes of the glycolytic pathway is a unique HIF-1α function, whereas 

control of erythropoiesis in vivo appears to be specific to HIF-2α; last, modulation of 

angiogenesis is a common function of both HIF-1α and HIF-2α.19 Interestingly, 

expression of either HIF-1α or HIF-2α can be controlled by growth factors in a hypoxia-

independent manner.
20,21

 The intracellular oxygen tension is, therefore, not the only 

upstream regulator of HIF-1α and HIF-2α.  

Alongside their involvement in hypoxia adaptation, important roles have been identified 

for HIF-1α and HIF-2α in the regulation of bone development and homeostasis, as well 

as in haematopoiesis.
22,23

 HIF-1α and HIF-2α have also been implicated in human 

regenerative processes and disorders; increased levels of at least one of the two proteins 

are clinically associated with fracture healing, osteoarthritis and metastasis of tumours to 

bone.
23

 To date, more than 100 putative HIF target genes have been identified that are 

involved in a variety of biological processes,
23,24,25-28

 such as anaerobic metabolism and 

angiogenesis.
27,29

 Included amongst these is VEGF, the main angiogenic factor induced 

by the HIF signalling pathway, which has important roles in various physiological and 

pathological conditions.
30

 VEGF is a homodimeric glycoprotein 45 kDa in size that 

belongs to the dimeric cysteine-knot growth factor superfamily.
30

,31 The VEGF gene 

encodes various differentially spliced protein isoforms: the three main ones in mice are 
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VEGF120, VEGF164, and VEGF188.
30

,31 In contrast to VEGF188, the soluble isoform 

VEGF120 does not bind to the extracellular matrix component heparan sulfate or the co-

receptor neuropilin.
30

,31 VEGF164, however, is both soluble and able to bind heparan 

sulphate and neuropilin, which implies this isoform shares biological and biochemical 

properties with both VEGF120 and VEGF 188.
30

,31 In the mouse embryo very strict 

regulation of the levels of VEGF signalling is essential for normal angiogenesis.
32,33

  

In this Review, we summarize the current knowledge of HIF signalling in cartilage, bone 

and haematopoiesis, and pay particular attention to the complex relationship between HIF 

and VEGF in these tissues based on data collected in animal models.  

 

[H1] Cartilage and bone development 

During embryonic development, the HIF signalling pathway has an essential role in 

coordinating organogenesis and angiogenesis. The growing tissues of the embryo rapidly 

deplete local oxygen and nutrient supplies provided via diffusion, which establishes 

oxygen gradients.
2
 The hypoxic regions promote formation of blood vessels.

2
 Skeletal 

development offers a paradigm of this concept. Most bones (including all the long bones 

of the axial and appendicular skeleton) develop in the embryo through intermediate 

cartilaginous templates, in a process called endochondral ossification.34,35 These 

templates direct the growth of endochondral bones, initially as cartilaginous anlagen that 

subsequently develop into the foetal growth plates, and are unique, avascular 

mesenchymal tissues that become hypoxic as they grow.
36

 Chondrocytes are remarkably 

competent at surviving and differentiating in this hypoxic environment, at least in part by 

virtue of the actions of HIFs.36 However, chondrocytes themselves also promote 



	
   6	
  

localized vascularization at the periphery of the cartilage, and this process is required for 

the continued development and growth of bone.30 In fact, the process of endochondral 

ossification is itself driven by vascularization, as terminally differentiated chondrocytes 

induce an angiogenic switch that coordinates the breakdown of cartilage and its 

controlled replacement by vascularized bone tissue.
37

 Findings of the past decade 

collectively show that formation of all types of bone occurs in close spatial and temporal 

association with vascularization of the ossified tissue, a concept now termed angiogenic–

osteogenic coupling.
38,39

  

Endochondral ossification begins with mesenchymal cells condensing at the site of the 

future cartilage template; these cells then differentiate into chondrocytes. Chondrocytes 

in the initial cartilaginous moulds (and later in the foetal growth plates) synthesize a 

characteristic extracellular matrix that is rich in type II collagen. These cells are highly 

proliferative, piling up to form columnar layers of cells (Figure 2). The most distal cells 

of this layer stop dividing and differentiate into hypertrophic chondrocytes that produce 

type X collagen and mineralize their surrounding matrix. Proliferative chondrocytes are 

resistant to vascular invasion because of the presence of angiogenic inhibitors such as 

chondromudulin 1 and tenomodulin produced by these cells.
40

 In mice, therefore, the 

centre of the cartilage mould becomes increasingly hypoxic as the foetal growth plate 

expands in the absence of blood vessels.
36,41

 In contrast, the differentiation of 

chondrocytes to hypertrophic chondrocytes coincides with production of angiogenic 

stimuli (such as VEGF) by these cells and attraction of blood vessels.30 Along with the 

invading blood vessels, osteoblast precursors and specialized osteoclasts called 

chondroclasts enter the region of the terminal hypertrophic chondrocytes and mediate 
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erosion of the underlying cartilage.
34,42

 Differentiating osteoblasts lay down bone matrix, 

which is dominated by type I collagen, on top of the calcified matrix deposited by the 

hypertrophic chondrocytes.
34,42

 Altogether, these events establish the primary ossification 

centre, which consists of the primitive bone and bone marrow cavity, in the central region 

of developing long bones.
34,42

  

The conversion of avascular cartilage anlagen into highly vascularized bone and marrow 

tissues involves various vascularization processes.34 35 
30

 
37

 
42

 Invasion by blood vessels 

from the surrounding perichondrium is the initial trigger for primary ossification.34 35 
30

 

37
 
42

 Progressive capillary invasion at the metaphyseal border of the growth plate cartilage 

mediates further rapid bone lengthening.34 35 
30

 
37

 
42

 Another blood vessel network 

overlies the avascular cartilage at the ends of the bones (epiphyses) and expands on the 

surface of the cartilage mass as it grows. 34 35 
30

 
37

 
42

 Postnatally, these vessels invade the 

epiphyseal cartilage and initiate formation of the secondary ossification centres, in each 

end of the long bones, as a prelude to the end of longitudinal bone growth.
37

.
41

  

 

[H2] HIF and VEGF involvement  

The crucial roles of HIF and VEGF in governing the survival of hypoxic cartilage, its 

invasion by blood vessels and the vascularization of growing endochondral bones have 

been elucidated in a number of studies over the past decade.
36

,	
  
37

,
22,23

 Use of genetically 

modified mice has shed light on how HIF-1 and VEGF modulate endochondral bone 

development in vivo. Although much of the underlying mechanisms remain to be 

clarified, the functional features and interactions are beginning to be unravelled. 
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As a prime mediator of chondrogenesis, HIF-1α expression and function are necessary 

for the survival of chondrocytes in their hypoxic environment; conditional deletion of this 

protein in chondrocytes causes massive cell death in the inner, most hypoxic zones of 

developing growth plates.
36

 The mechanism underlying this role of HIF-1α in cell 

survival is likely to involve a number of factors, but some evidence suggests that HIF-1α 

turns on genes that enable chondrocytes to switch to oxygen-sparing metabolic 

pathways.
1,43

 As such, by activating anaerobic glycolysis in cartilage, HIF-1α prevents 

overconsumption of scarce oxygen in this challenged avascular tissue.
43

 The oxygen 

tension, therefore, is held within a likely narrow though optimum range for hypoxic 

chondrocytes to survive and differentiate normally.
43

 

In addition to its effects on metabolism, HIF-1α improves the efficiency of post-

translational modifications of type II collagen, which is the main constituent of the 

cartilaginous matrix.44 These modifications include hydroxylation of the collagen proline 

residues by a family of collagen prolyl-hydroxylases distinct from the family of prolyl-

hydroxylases that hydroxylate HIFs. Proline hydroxylation is a critical step in the 

formation of the collagen triple helix.44 Enhanced expression of these enzymes by 

hypoxia might explain the positive effect of HIF-1α on matrix accumulation by 

chondrocytes.
45

 44 Moreover, promoting the formation of an appropriately structured 

extracellular matrix might be one of the modalities by which HIF-1α ensures 

chondrocyte survival by modulating cell-matrix interactions.
45

 44 

A role for hypoxia and HIFs in chondrocyte proliferation and differentiation, as well as in 

joint development, has also been observed.
46,47

 Conditional knockout of HIF-1α in the 

limb bud mesenchyme of mice indicated that HIF-1α expression is probably not required 
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for the initiation of mesenchyme condensation.
46,47

 However, HIF-1α is critically 

involved in the timely differentiation of the mesenchymal cells into chondrocytes, via 

mechanisms that are still largely unknown, although regulation of SOX-9 (a principal 

transcription factor involved in chondrogenesis) might be involved.
48,46

 In addition, lack 

of HIF-1α delays the terminal differentiation of chondrocytes, which is probably a 

downstream effect of delays in the initiation of chondrogenesis.
46,47

 Notably, conditional 

HIF-1α -knockout mice also showed a striking impairment of joint development,
46,47

 a 

defect that could also be related to SOX-9 because (at least in vitro) hypoxia increases 

matrix accumulation by chondrocytes of the articular surface, in a manner dependent on 

this transcription factor.
49

 Finally, consistent with the notion that hypoxia leads to arrest 

of growth,
50

 HIFs seem to negatively modulate chondrocyte proliferation.
36

 Altogether, 

conditional knockout of HIF-1α in chondrocytes or limb bud mesenchyme led to 

dwarfism and marked shortening of the limbs.
36,47,46

 

In contrast to HIF-1α -knockout, HIF-2α -knockout causes only a modest and transient 

delay in endochondral bone development.51,
21

 Embryos heterozygous for a null allele at 

the locus encoding HIF-2α (Epas1
+/–

) were mildly dwarfed, but this phenotype was no 

longer detectable by 2 weeks after birth in comparison with wild-type (Epas1
+/+

) 

littermates.
21

 Moreover, conditional deletion of HIF-2α in the mouse limb bud 

mesenchyme resulted in a mild and transient delay in endochondral bone development,
51

 

via mechanisms that are still largely unknown. Taken together, these findings indicate 

that HIF-1α is necessary for growth plate development, whereas HIF-2α is not essential. 
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VEGF is a classic target of HIFs and expressed, like HIF-1α, in the central hypoxic zone 

of the foetal growth plate, albeit at low levels.
41,52,53

 Conditional knockout of VEGF in 

mouse chondrocytes or global inactivation of the soluble VEGF isoforms (VEGF120 and 

VEGF164) resulted in a phenotype characterized by cell death at the centre of the foetal 

growth plate that closely mimicked that observed in animals with HIF-1α -­‐deficient 

growth plates.
41,53

 In vitro, hypoxia increased VEGF accumulation in chondrocytes in a 

manner dependent on HIF-1α.
54,55

 Hence, the survival-promoting functions of HIF-1α in 

hypoxic chondrocytes could potentially be mediated, fully or in part, via its downstream 

target VEGF. However, testing of this hypothesis revealed that the lethal effect of 

HIF-1α -knockout in chondrocytes could not be completely rescued by transgenic 

expression of VEGF164, which implied the involvement of VEGF-independent, cell-

autonomous mechanisms.
43

 Still, expression of VEGF164 in proliferating chondrocytes is 

required to ensure an adequate oxygen supply to the cartilage, which is achieved by 

inducing angiogenesis in the surrounding perichondrium.
43

 Upregulation of VEGF 

expression in proliferating chondrocytes by hypoxia and/or HIF-1α, could thus be critical 

to enable appropriate vascularization of the perichondrium, through diffusion of the 

soluble VEGF isoforms produced by chondrocytes.
41,43

  

In addition to regulating blood vessel formation in the soft tissue surrounding cartilage, 

VEGF also induces vascularization within the endochondral bones during skeletal 

development and growth.
56–57

 VEGF is expressed at high levels by hypertrophic 

chondrocytes in the foetal growth plates, where it is critical for blood vessel invasion and 

replacement of cartilage by bone.
56–57

 Osteoblasts and osteoclasts express several VEGF 

receptors and respond to VEGF signalling by enhanced recruitment, differentiation, 
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activity and/or survival (Figure 3).
30,37,58

 These pleiotropic actions of VEGF on various 

cells in the bone environment might contribute to the tight coordination of 

vascularization, ossification and matrix resorption that is characteristically seen in 

endochondral bone development and growth.  

 

[H1] Bone homeostasis  

Adult bone continuously undergoes remodelling, which enables the maintenance of 

skeletal and mineral homeostasis.
73

 The balance between bone formation by osteoblasts 

(of mesenchymal origin) and bone resorption by osteoclasts (of hematopoietic origin) is 

critical in bone remodelling and failure to coordinate these processes can result in either 

porotic or sclerotic bone.
59

 Unlike cartilage, the bone marrow is highly vascularized, and 

although the role of this plentiful blood supply in bone modelling and remodelling is 

poorly defined, it is likely to go beyond being a mere source of nutrients.
38

 Indeed, these 

blood vessels deliver both osteoclasts
60

 and osteoblast precursors to the bone .
42,61

  

Modulation of the HIF pathway in cells of the osteoblast lineage revealed that this 

pathway has important roles in bone formation (Figure 3).
62

 Conditional loss of HIF-1α 

or HIF-2α in mouse osteoblasts caused a significant decrease in bone volume,
63

 whereas 

increased levels of HIF-1α and HIF-2α resulting from knockout of the von Hippel–

Lindau (VHL) tumour suppressor led to an augmentation of bone volume.
62

 Notably, the 

changes in bone volume correlated positively with changes in bone vascularization and 

VEGF expression, suggesting a possible link between angiogenesis and 

osteoblastogenesis.
38

 Specifically, bone pericytes could be the link between these 

processes as they reside in the blood vessel wall and are precursors to osteoblasts.
61
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Furthermore, in adult mice, conditional induction of VEGF expression in cells of the 

osteoblast lineage dramatically increased bone volume and caused aberrant 

vascularization.
64

 Despite mounting evidence of an important role for angiogenesis in 

increasing bone volume via upregulation of the HIF pathway, autonomous cellular 

mechanisms downstream of HIF, such as regulation of anaerobic metabolism, might be 

important too since anaerobic metabolism is one of the main HIF targets as extensively 

discussed above.  

 

[H1] Haematopoiesis  

In adult mammals, haematopoiesis occurs almost exclusively in the bone marrow, which 

suggests that this environment regulates the process. Genetic studies in mice have shown 

that bone and the bone marrow are complex, dynamic microenvironments populated by 

multiple cell types, including hematopoietic stem cells (HSCs), which contribute to 

myelopoiesis and lymphopoiesis.65,66 For example, some evidence indicates that 

osteoblasts regulate the number of HSCs as well as their differentiation along the 

lymphoid lineage by activating the Notch signalling pathway and secreting cytokines 

such as IL-7, respectively.
65

 In addition, independently of their property to deliver 

osteoblast precursors, bone marrow blood vessels have been identified as a critical niche 

for HSC survival and differentiation.
66,67

  

Despite its high degree of vascularization, bone marrow is relatively hypoxic compared 

to other adult tissues,
68,69

 which is probably the result, at least in part, of oxygen 

consumption by the high number of hematopoietic cells that populate the bone marrow. 

Mathematical models have shown that a layer only three cells deep of myeloid progenitor 
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cells is enough to consume most of the oxygen delivered by nearby blood vessels.
70

 

Notably, HSCs seem to localize at the endosteal surface of bone, which is considered to 

be highly hypoxic (Figure 3).
71

 A role of hypoxia and the HIF pathway in the regulation 

of HSCs and haematopoiesis is becoming increasingly evident. For example, HSCs are 

capable of surviving on glycolysis (in a manner dependent on HIF-1α activity) instead of 

mitochondrial respiration.
72

 Moreover, HSCs seem to maintain cell cycle quiescence, and 

persist in adequate numbers, through tight control of HIF-1α levels; induction of 

conditional loss of HIF-1α in mice (Mx1-Cre driven) resulted in loss of HSC quiescence 

and decreased HSC numbers, particularly in conditions of increased stress, whereas the 

corresponding knockout of VHL protein (which results in supranormal levels of HIF-1α) 

induced HSC quiescence, but it also impaired the engraftment of transplanted cells.
73

  

VEGF also has a survival-promoting function in HSCs, acting through an internal, but 

not yet fully elucidated, autocrine loop that does not require extracellular binding of 

VEGF to its cell surface receptor.
74

 Moreover, impairment of the HIF-dependent 

expression of VEGF in HSCs alters the function of these cells in vivo, as demonstrated by 

their impaired regenerative capacity in transplantation assays.
75

  

Despite this evidence, the precise mechanisms of how the HIF signalling pathway and/or 

VEGF regulate the microenvironments inhabited by HSCs or marrow osteoblasts are yet 

to be determined. It is tempting to speculate that both HIFs and VEGF could affect the 

survival and/or differentiation of HSCs by modifying the osteoblast and/or the vascular 

niches.  

 

[H1] Bone regeneration and disease 
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The HIF signalling pathway and VEGF have been implicated in a number of pathological 

conditions, including osteoarthritis, and in regenerative processes, such as fracture repair.  

 

 [H2] Fracture repair 

Successful fracture repair largely recapitulates the various stages of bone development; 

the appropriate development of blood vessels is, therefore, essential. Bone repair can 

occur through the two major processes of bone development: ntramembranous 

ossification, which occurs when the bone segments are stabilized or during distraction 

osteogenesis and is characterized by direct differentiation of mesebchymal cells into 

osteoblasts,, or endochondral ossification (for mechanically unstable fractures). Several 

angiogenic factors, including VEGF, are upregulated during fracture healing.76 In mice, 

treatment with a soluble VEGF receptor (VEGFR) or VEGF antagonist resulted in 

impaired bone formation, whereas local VEGF administration successfully increased both 

types of bone healing.
77

 VEGFR-1 and VEGFR-2 are critically involved in angiogenesis 

as well as bone formation during fracture repair.
78

 During angiogenesis, VEGF stimulates 

tip cell induction and filopodia formation via VEGFR-2, whereas VEGFR-1 is 

predominantly expressed in stalk cells and is involved in guiding and limiting tip cell 

formation.
79

 However, VEGFR-1 is not only expressed by endothelial cells but also by 

monocytes, macrophages, mesenchymal progenitor cells, osteoblasts and osteoclasts, 

which all contribute to the process of fracture healing.80 The role of VEGFR-1 in fracture 

healing is emphasized by the fact that mice lacking the VEGF homolog placental growth 

factor (PlGF, a pleiotropic cytokine that exerts its effects solely through VEGFR-1), 

showed impaired bone repair (Figure 4).
81

  Several cell types in the bone and marrow 
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environment, including osteogenic cells,	
  macrophages, and (pre)osteoclasts, can secrete 

PlGF. 
82
	
  
83

 Genetic studies revealed that endogenous PlGF is not necessary for vascular 

development and physiological vessel maintenance in healthy adults.84 However, in 

various pathological conditions such as cancer PlGF is greatly upregulated by various 

stimuli, including hypoxia, and contributes to angiogenesis and to attract inflammatory 

cells, both critical events in fracture healing.
85,82

 PlGF-knockout mice show impaired 

fracture healing caused by decreased inflammation, osteogenic response and callus 

remodelling (Figure 4).
81

  

From a therapeutic perspective, interfering with the HIF signalling cascade might offer a 

physiological strategy for improving fracture healing. Genetic activation of the HIF-1α 

pathway in mature osteoblasts improved bone formation and angiogenesis in a distraction 

osteogenesis model; the reverse was observed in animals whose osteoblasts lacked 

HIF-1α.
86

 Small molecule inhibitors of the prolyl hydroxylases that normally target 

HIF-1α for destruction can be used to block HIF-1α degradation, which activates the HIF 

pathway and in turn increases VEGF production.
86,87

 In general, these inhibitors interfere 

with the co-factors required by these prolyl hydroxylases (either iron chelators or 

2-oxyglutarate analogues). Inhibition of the prolyl hydroxylases resulted in increased 

vascularity and accelerated bone healing in endochondral as well as intramembranous 

fracture repair,
86,87

 suggesting that this approach can be used widely in the clinical 

management of skeletal repair.  

[H2] Osteoarthritis 

In articular cartilage from osteoarthritic joints, the expression of VEGF, HIF-1α and 

HIF-2α is increased.
88

 Intra-articular transplantation of genetically modified, muscle-
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derived stem cells that express both bone morphogenetic protein 4 (which induces 

cartilage and bone formation) and soluble VEGFR-1 improved cartilage repair in a rat 

model of osteoarthritis.
89

 Evidence from transgenic animal studies in support of a role for 

HIF-1α in osteoarthritis is still lacking, but HIF-2α aploinsufficiency prevents cartilage 

degradation and osteophyte formation in mice.21 Furthermore, overexpression of HIF-2α 

achieved by transgenic overexpression is sufficient to trigger cartilage destruction in this 

model (Figure 5). 90 Notably, the increase in HIF-2α activity in articular cartilage appears 

to rely on NF-κB signalling rather than regulation by prolyl hydroxylase activity.
21,90

 

Therefore, a likely sequence of events is that mechanical stress and/or the presence of 

proinflammatory cytokines induce HIF-2α expression in articular chondrocytes, which 

promotes the expression of proteins involved in chondrocyte hypertrophy as well as 

multiple proteases that degrade the cartilaginous extracellular matrix (Figure 5). It is an 

open question whether changes in oxygen tension could also play a role. All in all, these 

findings could have important therapeutic implications for this common form of arthritis, 

as they indicate that inhibition of the HIF-2α signalling pathway could be beneficial for 

the treatment of osteoarthritis.  

[H2] Metastasis to bone 

Bone is a common site for the settlement and growth of metastasizing cells, especially of 

breast and prostate cancers.91 Tumour cells that engraft in the bone can remain clinically 

dormant for several years. In response to still unknown triggers, however, these latent 

tumour cells can achieve full metastatic competence and stimulate osteoclast activity. 

During resorption of the bone matrix, embedded growth factors are released and these, in 

turn, promote tumour growth.91 Micrometastases require adequate vascularization to 
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grow,
92

 which is achieved in metastatic bone lesions through the expression of VEGF.
93

 

Indeed, blockade of VEGF with bevacizumab in a rat model of metastatic breast cancer 

reduced the size of osteolytic lesions and inhibited further tumour growth, presumably by 

inhibiting angiogenesis.
93

 Furthermore, PlGF is secreted by osteogenic cells; blocking 

bone-derived PlGF activity in mice reduced size and number of osteolytic bone 

metastases by decreasing engraftment of tumour cells in the bone and inhibiting the 

activation of osteoclasts by tumour cells (Figure 6).
83

  

The hypoxic bone microenvironment might also favour metastatic tumour growth. 

Overexpression of HIF-1α in breast tumour cells promoted the progression of osteolytic 

bone metastases,
94

 whereas the reverse effect was observed with HIF-1α knockdown.
95

 

Targeting angiogenic factors, such as VEGF and PlGF, or the HIF signalling cascade 

might, therefore, provide an effective strategy for the treatment of bone metastases 

(Figure 6), although appropriate preclinical testing is warranted given the modest results 

of antiangiogenic therapy in patients with cancer.
96

  

In a related arena, the HIF signalling pathway is potentially involved in the initiation and 

progression of human chondrosarcomas.
97–98

 Mutations that affect isocitrate 

dehydrogenases 1 and 2 occur in human chondrosarcomas,
97–98

 and lead to depletion of 

the co-factor α-ketoglutarate—which, in turn, could lead to increased accumulation of 

HIFs through inhibition of HIF prolyl hydroxylases.99 The HIF signalling pathway might, 

therefore, be altered in chrondrosarcomas, which could contribute, at least in part, to the 

initiation and/or progression of these malignancies.  

 

[H1] Conclusions 
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Mouse models in which the HIF signalling pathway has been genetically manipulated in 

the limb bud mesenchyme, chondrocytes, osteoblasts and hematopoietic bone marrow 

have indicated a critical role for this pathway in bone development, regeneration and 

disease. Regulation of angiogenesis by VEGF, a key downstream target of HIFs, has also 

been critically implicated in each of these processes. Identification of the molecular 

mechanisms that govern the complex mosaic of biological effects of the HIFs needs to be 

pursued further. In particular, an interesting and informative avenue of research will be 

investigations of the role of glycolysis and mitochondria in the HIF signalling pathway 

and its control of cell survival and differentiation.  

 

Review criteria 

We searched the PubMed database, using the following search terms (alone or in 

combination): “cartilage”, “bone”, “hematopoietic marrow”, “HIF”, “VHL”, “VEGF”, 

“PlGF”, “hypoxia”, “chondrocyte”, “osteoblast”, “osteoclast”, “bone development”, 

“fracture”, “osteoarthritis”, “bone metastasis” and “chondrosarcomas”. Results were not 

limited by date of publication, but only full-text papers published in English were 

selected.  
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Figure 1. The HIF-1α pathway. In normoxia, the cellular oxygen sensors PHDs 

hydroxylate specific proline residues (Pro402 and Pro564) of HIF-1α, leading to its 

proteosomal degradation mediated by pVHL, an E3 ubiquitin ligase. During hypoxia, 

HIF-1α is not ubiquitinylated or degraded, and acts as a transcription factor that binds to 

HREs to induce expression of a plethora of target genes, including VEGF, which 

promotes angiogenesis, and genes involved in anaerobic metabolism. Abbreviations: HIF, 

hypoxia-inducible transcription factor; PHD, prolyl hydroxylases (Egl nine homologs 1 

and 2); pVHL, von Hippel–Lindau protein; HRE, hypoxia response element. 

 

Figure 2. The roles of HIF-1α and VEGF in regulating the oxygenation of cartilage 

during embryonic development. Being an avascular tissue, the central portion of the 

foetal growth plate becomes hypoxic as it grows (blue). Hypoxia, partly via HIF-1α, 

induces expression of VEGF by chondrocytes within the growth plate, which stimulates 

angiogenesis and increases oxygen supply to the chondrocytes. HIF-1α also exerts 

VEGF-independent functions that regulate the survival of hypoxic chondrocytes, 

including activating the glycolytic metabolic pathway. Both HIF-1α and VEGF have 

multiple effects at different stages of endochondral bone development, although the 
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molecular mechanisms responsible for these pleiotropic functions are still largely 

unknown. Abbreviations: HIF-1α, hypoxia-inducible transcription factor 1α; VEGF, 

vascular endothelial growth factor-A. 

 

Figure 3. The HIF and VEGF signalling pathway in bone. The oxygen gradient in the 

bone marrow renders the osteoblastic HSC niche at the endosteal surface hypoxic. 

Osteoblasts express HIFs, which modulate bone development and homeostasis and 

angiogenesis. Some of the effects of HIFs on bone and angiogenesis are mediated by 

VEGF.. Abbreviations: HSC, hematopoietic stem cell; HIF, hypoxia-inducible 

transcription factor; VEGFR, VEGF receptor.  

 

Figure 4. Role of the HIF–VEGF–PlGF pathway in fracture repair. As a consequence of 

fracture blood vessels in the bone rupture, causing the fracture site to become hypoxic. 

VEGF and PlGF expression stimulates the angiogenic response. Together with other 

cytokines, PlGF recruits inflammatory cells to clear cellular debris, and induces the 

proliferation of periosteal cells (a source of osteogenic cells). In the subsequent phases of 

soft and hard callus formation, PlGF contributes to the turnover of the cartilage matrix 

and remodelling of the newly formed woven bone by controlling osteoclast formation. 

Abbreviations: HIF, hypoxia-inducible transcription factor; PlGF, placental growth 

factor. 

 

Figure 5. Role of the HIF pathway in osteoarthritis. Mechanical stress and/or 

proinflammatory cytokines activate NF-κB signalling that controls HIF-2α expression in 
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articular chondrocytes. HIF-2α promotes the expression of proteins involved in 

chondrocyte hypertrophy (IHH and collagen type X) as well as MMP13, which degrades 

the cartilage extracellular matrix, and VEGF. The result is thinning of the articular 

cartilage at the centre of the joint and osteophyte formation at the periphery. 

Abbreviations: HIF, hypoxia-inducible transcription factor; IHH, Indian hedgehog 

homolog; MMP13, matrix metalloproteinase-13. 

 

Figure 6. Role of the HIF–VEGF–PIGF pathway in tumour metastasis to bone. PlGF 

secreted by osteogenic cells favours tumour cell engraftment in the bone 

microenvironment. Surviving tumour cells form micrometastases and induce PlGF 

secretion in osteogenic cells. Increased PlGF levels advance the switch to the osteolytic 

phase by stimulating osteoclastogenesis, which controls the formation of 

macrometastases. HIF and VEGF also contribute to the angiogenic switch during 

metastatic growth. Abbreviations: HIF, hypoxia-inducible transcription factor; PlGF, 

placental growth factor. 
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