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Increased oxidative stress, defined as an imbalance between prooxidants and

antioxidants, resulting in molecular damage and disruption of redox signaling, is

associated with numerous pathophysiological processes and known to exacerbate

chronic diseases. Prolonged systemic hypoxia, induced either by exposure to terrestrial

altitude or a reduction in ambient O2 availability is known to elicit oxidative stress

and thereby alter redox balance in healthy humans. The redox balance modulation is

also highly dependent on the level of physical activity. For example, both high-intensity

exercise and inactivity, representing the two ends of the physical activity spectrum,

are known to promote oxidative stress. Numerous to-date studies indicate that

hypoxia and exercise can exert additive influence upon redox balance alterations.

However, recent evidence suggests that moderate physical activity can attenuate

altitude/hypoxia-induced oxidative stress during long-term hypoxic exposure. The

purpose of this review is to summarize recent findings on hypoxia-related oxidative

stress modulation by different activity levels during prolonged hypoxic exposures and

examine the potential mechanisms underlying the observed redox balance changes. The

paper also explores the applicability of moderate activity as a strategy for attenuating

hypoxia-related oxidative stress. Moreover, the potential of such moderate intensity

activities used to counteract inactivity-related oxidative stress, often encountered in

pathological, elderly and obese populations is also discussed. Finally, future research

directions for investigating interactive effects of altitude/hypoxia and exercise on oxidative

stress are proposed.

Keywords: redox balance, altitude, hypoxemia, exercise, prooxidant, antioxidant

INTRODUCTION

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are constantly produced within
the living cells (Allen and Tresini, 2000). The imbalance between antioxidants and prooxidants in
favor of the latter, which results in disruption of redox signaling and/or molecular damage as a
consequence of ROS and RNS overproduction, is referred to as oxidative stress (Sies and Jones,
2007). In order to counteract oxidative stress and thereby maintain the prooxidant/antioxidant
balance, humans possess an elaborate antioxidant defense system comprising of endogenous
antioxidant enzymes and non-enzymatic antioxidants (Powers and Jackson, 2008). Increased
oxidative stress levels have been associated with numerous pathophysiological mechanisms (Zuo
et al., 2015). In particular, excessive ROS production has been implicated in the development
and exacerbation of pulmonary (Zuo et al., 2012), cardiovascular (Dhalla et al., 2000), metabolic
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(Roberts and Sindhu, 2009), and neurodegenerative (Sorce and
Krause, 2009) disorders, as well as cancer (Liao et al., 2007).

It is of note however, that although excessive ROS production
can lead to harmful effects including DNA damage and lipid
peroxidation (Zuo et al., 2015), ROS and NOS are important
agents involved in cell signaling (Sen and Packer, 1996) and
mediate cell growth, repair and gene expression (Valko et al.,
2007). ROS are also involved in cellular stress responses (Allen
and Tresini, 2000) and in the systemic defense responses
to pathogens (Tschopp, 2011). In addition, ROS production
has been shown to play an important role in physiological
adaptations to exercise. Numerous studies demonstrated that
attenuating exercise-induced oxidative stress via antioxidant
supplementation during training interventions blunted beneficial
training-related adaptations of the skeletal (Ristow et al., 2009)
and cardiovascular (Gliemann et al., 2013) system. Moreover,
elevated ROS levels are also involved in stabilization of hypoxia-
inducible factor-1α (HIF-1α) (Guzy et al., 2005), which is crucial
for its function as the chief regulator of cellular responses to
low O2 availability. Finally, the importance of ROS as messenger
and signaling molecules, involved in cellular muscle adaptations
to both, exercise (Allen and Tresini, 2000) and muscle disuse
(Ji et al., 2006), is also well established. Based on the above it
is clear, that the changes in oxidative stress and redox balance
induce important, long-reaching effects on human health and
performance.

Redox balance is importantly modulated by external factors
such as environmental hypoxia (Magalhães et al., 2005) and
physical activity (Ji, 1996). Both of these have been shown to
augment oxidative stress in a dose-dependent manner (Goto
et al., 2003; Debevec et al., 2015). On the other hand, hypoxia and
exercise are also involved in improvement of antioxidant capacity
and might therefore beneficially influence redox balance (Powers
et al., 2016). While for long, the interactive effects of hypoxia and
exercise on oxidative stress modulation did not received much
attention, a number of recent studies scrutinized the potential
combined effects of both factors (Quindry et al., 2016). Given
the importance of redox balance for performance and health,
these interactive effects are not only of interest for athletes
employing different hypoxic training modalities but are also
highly pertinent for certain patient population (e.g., heart failure,
chronic obstructive pulmonary disease) that are concomitantly
hypoxic and inactive.

The purpose of this review is to briefly summarize recent
findings on hypoxia-related oxidative stress modulation by
different activity levels. In addition, the paper also explores
the applicability of moderate activity as means of attenuating
hypoxia-induced oxidative stress and the potential of moderate
activity to counteract inactivity-related oxidative stress, often
encountered in pathological, elderly and obese populations.

ALTITUDE/HYPOXIA-INDUCED OXIDATIVE
STRESS

Hypoxia associated with high altitude exposure is known to elicit
excess ROS and RNS production and thereby alter redox balance

(Magalhães et al., 2005). Indeed, both acute (Magalhães et al.,
2004; Pialoux et al., 2009d; Faiss et al., 2013) as well as long-term
hypoxic exposures (Joanny et al., 2001; Askew, 2002; Dosek et al.,
2007) have been shown to augment oxidative stress. Although
increased oxidative stress has been observed both in response
to hypobaric (i.e., terrestrial altitude) (Magalhães et al., 2005) as
well as normobaric hypoxia (i.e., simulated altitude) (Debevec
et al., 2014) recent evidence suggest that hypobaric hypoxia
might induce higher oxidative stress levels than normobaric
hypoxia (Faiss et al., 2013; Debevec et al., 2015; Ribon et al.,
2016). While several differences in physiological responses
between normobaric and hypobaric hypoxia have previously
been reported (Millet et al., 2012) three distinct mechanisms
seem directly involved in ROS modulation. First, ventilation
is lower in hypobaric than normobaric hypoxia, with a lower
tidal volume and a higher respiratory frequency (Savourey et al.,
2003; Faiss et al., 2013). The higher alveolar physiological dead
space in hypobaric hypoxia is also associated with ventilatory
alkalosis and hypocapnia. Second, greater hypoxemia induced by
hypobaric hypoxia could also play a role as negative correlation
between hemoglobin oxygen saturation and oxidative stress
levels has been demonstrated (Bailey et al., 2001). Finally, lower
levels of exhaled NO were reported in hypobaric as compared to
normobaric hypoxia (Hemmingsson and Linnarsson, 2009). This
might be underlined by a higher NO back-diffusion to the alveoli
and subsequently to the hemoglobin in hypobaric compared to
normobaric hypoxia, suggesting that hypobaria promotes higher
levels of NO recapturing by the blood compartment.

Oxidative stress response to environmental hypoxia depends
on both the intensity and the duration (i.e., hypoxic dose)
(Debevec et al., 2014, 2015). In fact, it seems that significant
deleterious effects of hypoxia-induced oxidative stress are
limited to high hypoxic doses (i.e., prolonged exposure to high
altitude). It is also important to note that exogenous antioxidant
supplementation does not seems to counteract hypoxia-induced
oxidative stress during extended high altitude exposures
(Subudhi et al., 2004). Furthermore, given the established role
of oxidative stress in hypoxic ventilatory response modulation
(Pialoux et al., 2009a), the use of antioxidant supplementation
might even prove harmful and blunt ventilatory acclimatization
to hypoxic condition. While the underlying mechanisms of
hypoxia-induced ROS overproduction are not entirely clear,
reductive stress within the mitochondria (Duranteau et al., 1998),
augmented catecholamine production (Mazzeo et al., 1998),
decreasedmitochondria redox potential (Kehrer and Lund, 1994)
and xanthine oxidase pathway activation (Yuan et al., 2004) are
likely involved in this phenomenon.

PHYSICAL ACTIVITY AND OXIDATIVE
STRESS

The fact that acute exercise induces oxidative cell damage and
thereby contributes to systemic oxidative stress has been initially
established almost four decades ago by Dillard et al. (1978).
Up-to-date investigations have clearly shown that both, acute
and chronic exercise training increases oxidative stress levels
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predominantly within the skeletal muscle and the blood (Powers
et al., 2011a, 2016). However, it is important to note that exercise
modulates oxidative stress in a dose-dependent manner (Goto
et al., 2003). In particular, the oxidative stress responsemagnitude
does seem to be mainly related to the relative exercise intensity
(i.e., higher intensity, higher exercise-related oxidative stress)
and to a lesser extent the exercise duration (Johnson et al.,
2012). Also, the magnitude of redox balance alterations differs
between various exercise modes (e.g., endurance, resistance or
concurrent) although they all seem to promote both, ROS
overproduction and antioxidant system up-regulation (Azizbeigi
et al., 2014). Several mechanisms have been proposed to explain
the causes of exercise-induced ROS overproduction (Powers
and Jackson, 2008). In particular, significantly increased O2

delivery to the working muscles can increase superoxide anion
(O◦−

2 ) generation and other oxygen-derived intermediates (Sen,
1995) production in the mitochondria, and thereby promote
oxidative damage within the cells (Guzy and Schumacker,
2006). Furthermore, exercise-induced increase in oxidative
phosphorylation and catecholamine release are also potent
sources of free radicals in response to physical exercise
(Urso and Clarkson, 2003). Significantly increased phagocytic
white cells concentration in the blood, following (eccentric)
muscle damaging exercise is another source of exercise-related
ROS overproduction (McArdle et al., 2004). In addition,
ischemic reperfusion activates the xanthine oxidase within the
endothelium and anti-inflammatory-related changes in NADPH
oxidase have also been shown to generate large amounts of
O◦−
2 during physical exercise (Gomes et al., 2012). Finally, while

exercise-induced oxidative stress within the tissues seems to be
adequately reflected in the blood (Margaritelis et al., 2015), its
role as an reactive species generator and redox balancemodulator
during exercise needs to be taken into account (Nikolaidis and
Jamurtas, 2009).

While acute exercise of sufficient intensity is known to
elicit increased oxidative stress, chronic exercise training
seems beneficial for restoring redox balance (Radak et al.,
2008). Chronic exercise was shown to significantly up-regulate
primary antioxidant enzymes concentration within the skeletal
and cardiac muscles (Powers et al., 2016). This exercise-
related increase in antioxidant capacity also seems dose-
dependent (Criswell et al., 1993) and exerts an important
cardio-protective effect (French et al., 2008). It is therefore
not surprising that highly trained endurance athletes have
higher enzymatic antioxidant defense than their less trained
counterparts (Marzatico et al., 1997). However, regardless of
their higher baseline antioxidant capacity, the antioxidant system
can also be importantly impaired in highly trained individuals
following acute and chronic high-intensity or overload exercise
training (Palazzetti et al., 2003).

Inactivity or muscle unloading represent the other side of
the physical activity spectrum. However, similarly to exercise,
inactivity seems to promote free radical, ROS and RNS
overproduction and can also blunt antioxidant capacity (Laufs
et al., 2005; Powers et al., 2012). It has been demonstrated
that both, whole body (Dalla Libera et al., 2009; Agostini
et al., 2010; Rai et al., 2011) and regional/limb unloading

(Reich et al., 2010) result in augmented oxidative stress and
altered redox balance. While the mechanisms of inactivity-
induced oxidative stress seem multifactorial and are currently
not fully understood (Powers et al., 2011b), alterations in muscle
protein synthesis/proteolysis are likely to be among the key
modulators (Powers et al., 2007). It is also important to note that
increased systemic and local (muscular) levels of oxidative stress
can significantly blunt muscle protein re-synthesis rate (Zhang
et al., 2009) and promote proteolysis within the skeletal muscles
(Smuder et al., 2010), which in turn result in muscle atrophy
(Powers et al., 2011b). This is especially important in regards to
the aging populations where inactivity-induced oxidative stress
might be one of the central drivers of age-related sarcopenia
(Derbre et al., 2014).

INTERACTIVE EFFECTS OF HYPOXIA AND
EXERCISE ON OXIDATIVE STRESS

As mentioned previously, both exercise (Ji, 1996) and hypoxia
(Magalhães et al., 2005) can acutely augment oxidative stress.
Recently, investigations also focused on the potential interactions
between these two stressors (Quindry et al., 2016). It is nowadays
well established that similarly to exercise performed in normoxia,
hypoxic exercise induces ROS and NOS overproduction and
increases markers of oxidative stress (Powers and Jackson, 2008).
Importantly, acute hypoxic exercise of high-intensity (Møller
et al., 2001; Pialoux et al., 2006) as well as moderate/low-
intensity (Vasankari et al., 1997) does seem to augment oxidative
stress. When interpreting the intensity-related aspects of hypoxic
exercise, one also has to keep in mind that for the same
absolute intensity the relative workload significantly increases as
a function of reduced O2 availability in hypobaric or normobaric
hypoxic conditions. Collectively, the data from the above studies
suggest that at least at altitudes up to 5,000m (or corresponding
simulated altitudes), exercise likely drives more oxidative stress
than systemic hypoxia per se. This hypothesis is congruent with
the findings of Sinha et al. (2009) showing that graded exercise
to exhaustion exerts a significantly greater additive increase in
multitude of oxidative stress markers as compared to altitude
exposure only.

Besides increasing oxidative stress, acute hypoxic exercise
may also, at least transiently, alter antioxidant capacity (Quindry
et al., 2016). In particular, studies indicate that an acute bout
of hypoxic exercise augments circulating levels of uric acid
(Sinha et al., 2009; Peters et al., 2016) known to be one of the
key antioxidants involved in ROS and RNS plasma scavenging
capacity (Cao and Prior, 1998). The uric acid increase following
strenuous hypoxic exercise has also been shown to be related
to an increase in plasma ferric reducing antioxidant potential
(FRAP) (Quindry et al., 2008). Taken together, and in line
with recent comprehensive review on the topic (Quindry et al.,
2016), acute hypoxic exercise might concomitantly promote ROS
and RNS production and increase antioxidant capacity. The
latter mechanism is especially prominent when exercise bout
is performed at low absolute exercise intensities [i.e., ≤60%
peak oxygen consumption (VO2peak)]. The following section
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recaps the up-to-date studies scrutinizing the influence of activity
during prolonged hypoxic/altitude exposures.

Several studies assessed the redox balance changes in response
to chronic exercise training during prolonged high altitude
sojourns (Miller et al., 2013; Lewis et al., 2014) or within the
context of endurance events held at high altitudes (Quindry
et al., 2008). However, given the numerous potential confounding
factors inherent to field investigations, the present review was
limited to the studies performed in a controlled and standardized
manner. In particular, the Medline andWeb of Science databases
were utilized for the identification of pertinent papers using the
following keywords: hypoxia or altitude, exercise or training,
combined with oxidative stress and/or antioxidant capacity. The
search yielded six eligible studies that also reported activity
and nutritional-intake levels. These studies are summarized in
Table 1. One of the first studies that investigated the effects
of prolonged hypoxic exposure and concomitant daily exercise
was performed at Pikes Peak high altitude research facility
(Subudhi et al., 2004). While their purpose was to assess the
effectiveness of antioxidant cocktail supplementation comprising
β-carotene, α-tocopherol acetate and ascorbic acid on reducing
altitude-induced oxidative stress, the study clearly indicated that
high altitude residence augments blood and urine markers of
oxidative stress. In addition, this study reported that prolonged
submaximal exercise (2 h @ 50% VO2peak) performed upon acute
exposure and following 13-day of acclimation did not increase
oxidative stress. It is also important to note that the employed
oral antioxidant supplementation was inefficient in reducing
hypoxia-induced oxidative stress. Very informative data on the
effects of chronic exercise training during prolonged hypoxic
exposures on oxidative stress and antioxidant status have also
been derived from investigations related to altitude training
in (mostly) endurance athletes. The vast majority of these
studies were performed using the Live-High Train-Low altitude
training modality (LHTL) first introduced by Levine and Stray-
Gundersen (1997), combining prolonged hypoxic exposures
with concomitant chronic exercise training performed at lower
altitudes. The initial study by Pialoux et al. (2009c) clearly showed
that performing high intensity training sessions during 18-days
exposure to simulated altitude significantly augments oxidative
stress mostly via reduced antioxidant capacity (Table 1). A
follow-up study indicated that the blunted antioxidant capacity
might persist up to 2 weeks following the training camp
(Pialoux et al., 2010). The fact that repetition of high-intensity
exercises during LHTL training increases oxidative stress was
also confirmed in a later study investigating potential differences
between the normobaric and hypobaric LHTL protocols in highly
trained triathletes (Debevec et al., 2015). While both protocols
elicited significant disturbances in redox balance, it is of note that
the LHTL protocol performed in hypobaric (terrestrial) hypoxia
induced higher oxidative stress levels, most probably due to a
higher overall hypoxic dose.

In contrast to the above, 13-day LHTL protocol in swimmers,
using moderate/low intensity chronic exercise training did not
affect antioxidant status or significantly alter redox balance
(Pialoux et al., 2009b). This suggests that low intensity endurance
training performed during the LHTL might act as an antioxidant

system up-regulation stimulus and can thereby reduce hypoxia-
induced oxidative stress. This is in line with acute investigations
suggesting increased levels of certain endogenous antioxidants
following both high (Sinha et al., 2009) and moderate intensity
hypoxic exercises (Peters et al., 2016). This has been further
supported by laboratory-based and strictly controlled hypoxic
confinement studies scrutinizing the independent and additive
effects of hypoxia and chronic exercise in healthy male (Debevec
et al., 2014) and female (Debevec et al., 2016) individuals.
It has to be noted however, that during the LHTL training
camps (Pialoux et al., 2009b,c, 2010), the exercise sessions
were performed in normoxic conditions. This is in contrast
to prolonged confinement (Debevec et al., 2014, 2015, 2016)
or terrestrial altitude studies (Subudhi et al., 2004) where the
exercise sessions were performed in hypoxia. As mentioned
above, this needs to be taken into account when interpreting
the influence of the relative exercise intensity on redox balance
responses.

Similarly to studies in trained athletes (Pialoux et al.,
2009b), the moderate exercise intensity (2 h·day−1 @ 50%
VO2peak) performed twice daily throughout the 10-day hypoxic
confinement period was shown to improve antioxidant capacity
and thereby blunt hypoxia-related oxidative stress in untrained
individuals (Table 1). This was further corroborated by our
recent investigation indicating that even a low intensity physical
activity levels, simulating habitual daily activity as opposed to
inactivity, can enhance endogenous antioxidant status in healthy
females (Debevec et al., 2016). Taken together, these data suggest
that during hypoxic exposures, physical activity significantly
modulates systemic redox balance in humans. Whereas high
intensity exercise performed during prolonged hypoxia leads to
higher cumulative oxidative stress levels, moderate-low intensity
physical activity may blunt hypoxia-induced oxidative stress.
One of the key underlying mechanisms seems to be the
exercise-induced up-regulation of enzymatic and non-enzymatic
antioxidant capacity, especially augmented uric acid and FRAP
reported following both acute (Sinha et al., 2009; Peters
et al., 2016) and chronic (Debevec et al., 2014, 2016) hypoxic
exposures.

INACTIVITY, HYPOXIA AND OXIDATIVE
STRESS

As mentioned before, inactivity significantly affects redox
balance (Laufs et al., 2005; Powers et al., 2012). While the
combination of inactivity and hypoxia is rarely encountered in
healthy individuals, both factors often characterize numerous
chronic diseases and are also observed in aging population
(Levine et al., 1997). Muscle unloading due to inactivity is
often associated with chronic respiratory disease (Rittweger
et al., 2016) and heart failure (Tsutsui et al., 2011), both
known to also induce persistent systemic hypoxemia. It is well
established that such chronic conditions increase ROS and RNS
production as well as decrease antioxidant system capacity
(White et al., 2006). Given the well-established detrimental
effects of continuously elevated oxidative stress levels in

Frontiers in Physiology | www.frontiersin.org 4 February 2017 | Volume 8 | Article 84

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Debevec et al. Hypoxia, Exercise, and Oxidative Stress

TABLE 1 | Summary of the key findings from the controlled studies on the combined effects of prolonged hypoxia and physical activity on oxidative

stress and antioxidant markers.

Study setup/participants Exercise Oxidative

stress markers

Antioxidant

markers

Conclusions References

13-day HH exposure to

4,300m

Daily habitual

activity—non-structured

↑ LPO

↓ 8-OhdG

↑ α-tocopherol

↑ β-carotene

Hypoxia augments oxidative

stress.

Subudhi et al., 2004

Healthy untrained individuals

(N = 18)

2 × 2-h cycling @ 55% VO2peak

Days 1 and 13

No additive effect of

exercise.

18-day LHTL in NH

(2,500–3,000m)

Control group LLTL

(1,100m)

Elite runners (N = 12)

1-h·day−1—high intensity

running (70–90% VO2peak )

Only Control Both groups LHTL associated with high

intensity training significantly

augments oxidative stress.

Pialoux et al., 2009c

(Following

exercise test)

↓ FRAP

↓ α-tocopherol

↓ MDA ↓ β-carotene

↓ AOPP ↓ lycopene

13-day LHTL in NH

(2,500–3,000m)

Control group LL-TL

(1,100m)

Elite swimmers (N = 18)

4-h·day−1—low-moderate

intensity swimming (50–70%

VO2peak )

Both groups Both groups

↔ FRAP

↔ α-tocopherol

LHTL associated with

moderate intensity training

does not alter redox

balance.

Pialoux et al., 2009b

(Following

exercise test)

↓ MDA

↓ AOPP

No differences at

rest

18-day LHTL in HH

(2,225m) or 18-day LHTL in

NH

(≈2,225m)—Well-trained

trathlethes (N = 24)

3-h·day−1—moderate-high

intensity running, cycling,

swimming (70–90% VO2peak )

HH group

↓ AOPP

↑ Nitrotyrosine

HH group LHTL associated with high

intensity training significantly

augments oxidative stress.

HH LHTL seems to provoke

higher oxidative stress than

NH LHTL.

Debevec et al., 2015

↑ SOD

↑ UA

NH group

↓ FRAP

↑ Catalase

10-day NH exposure to

≈4,000m Healthy untrained

individuals

2 × 1 h·day−1 moderate

intensity cycling (≈50% VO2peak )

Control group

↑ AOPP

↑ Nitrotyrosine

Exercise group

↑ SOD

↑ Catalase

↑ GPX

Control group

↑ GPX

Two hours of moderate

intensity exercise per day

blunts prolonged

hypoxia-induced oxidative

stress.

Debevec et al., 2014

Training gr. (N = 8)

Control gr. (N = 6)

10-day NH exposure to

≈4,000m

Healthy untrained females

NBR and HBR—bed

rest-induced inactivity. HAMB—2

× 20 min·day−1 low intenisty

stepping, cycling (≈20–40%

VO2peak )

NBR

↑ AOPP

↑ MDA

HBR

↑ AOPP

HAMB

↓ Nitrotyrosine

HBR

↑ Catalase

↓ GPX

HAMB

↑ SOD

↑ Catalase

Hypoxia additively

augments oxidative stress

during inactivity. Habitual

activity levels seem to blunt

hypoxia-induced oxidative

stress.

Debevec et al., 2016

NBR group (N = 11)

HBR group (N = 12)

HAMB gr. (N = 8)

HH, Hypobaric hypoxia; NH, Normobaric hypoxia; VO2peak , peak oxygen consumption; LPO, Lipid hydroperoxides; 8-OHdG, 8-hydroxydeoxyguanosine; MDAm, malondialdehyde;

AOPP, advanced oxidation protein products; FRAP, ferric-reducing antioxidant power; SOD, superoxide dismutase; UA, Uric acid; GPX, glutathione peroxidase; LHTL, Live-High Train-

Low; LLTL, Live-Low Train-Low; NBR, Normoxic bed rest; HBR, Hypoxic bed rest; HAMB, Hypoxic ambulatory confinement; ↓, significantly decreased; ↑, significantly increased; ↔,

no significant changes.

many pathologic conditions, mitigation strategies aiming at
reestablishing the redox balance are warranted (Zuo et al.,
2015). Indeed, physical exercise may be one of the key stimuli
in restoring prooxidant/antioxidant balance in chronic disease
patients (Mercken et al., 2005). In this context, regular physical
activity is likely superior to oral antioxidant supplementation
in regards to redox balance restoration (Urso and Clarkson,
2003). The effectiveness of exercise is not surprising, given that
inactivity-induced oxidative stress seems to be chiefly related to
alterations in muscle protein synthesis/proteolysis (Powers et al.,
2007).

Obesity is also often associated with combined inactivity
and hypoxia. Besides having high relative levels of fat tissue,
obese individuals also tend to be significantly less active as
compared to their non-obese counterparts (Janssen et al., 2005).
The cytokine release from the excessive white adipose tissue
and various other processes related to metabolic syndrome
are known to elicit continuously elevated levels of oxidative
stress (Trayhurn et al., 2008). In addition, higher occurrence
of obstructive sleep apneas in obese individuals (Bradley
and Floras, 2009) is associated with significant local and
systemic hypoxia episodes which again augment oxidative
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stress. Indeed, extensive body of literature, reviewed by
Vincent and Taylor (2006) highlights significant correlation
between obesity and oxidative stress. While oxidative stress
reduction strategies in obese individuals include and combine
activity, dietary, pharmacological and surgical interventions,
exercise per se has been shown to be a potent modulator of
beneficial redox balance adaptation (Vincent et al., 2007).
Besides its effect on fat mass reduction, exercise also seems to
reduce systemic oxidative stress by augmenting antioxidant
system and improving glycemic control. Interestingly,
exposure to environmental hypoxia (Kayser and Verges,
2013) as well as exercising in hypoxia (Millet et al., 2016)
have recently been proposed as compelling treatment
strategies for obesity and related metabolic abnormalities.
However, careful application of hypoxia in obese and other
patient populations, known to exhibit systemically elevated
oxidative stress values, is warranted in order to avoid potential
harmful environmental hypoxia-induced effects on redox
balance.

Our recent study on the combined effects of inactivity
and hypoxia in healthy females (Debevec et al., 2016) also
provided some further insight into this topic. Briefly, it
was shown that the addition of hypoxia (simulated altitude
4,000m) during 10-day of bed rest-induced inactivity additively
increases oxidative stress mostly via antioxidant capacity
reduction. Contrastingly, as already mentioned in the previous
section, hypoxia-induced oxidative stress was overrun by
beneficial effects of habitual levels of physical activity. In
summary, moderate to low intensity exercise training is likely
beneficial for reducing elevated levels of oxidative stress caused
independently or combined by inactivity and hypoxia. This
is an important consideration in regards to numerous patient
populations as well as aging individuals that are often inactive
due to their underlying medical condition. Given that even
low levels of physical activity might contribute to restoring

redox balance, regular exercise should be encouraged in these
populations.

PERSPECTIVES

It is clear from the above-summarized studies that altered
physical activity level differentially affects systemic oxidative
stress and antioxidant capacity levels. There is strong
experimental evidence, derived from well-controlled prolonged
hypoxic studies, that low-to-moderate intensity exercise training
exerts a positive influence on redox balance (i.e., reduced
oxidative stress levels), mostly underlined by augmented
antioxidant capacity. On the other hand, performing exercise of
higher-intensities seems to additively increase hypoxia-induced
oxidative stress. This might compromise adaptations to hypoxic
training in athletes and also prove detrimental for individuals
who exhibit chronically elevated systemic oxidative stress
levels. These observations need to be taken into account while
providing expert-advice on altitude/hypoxic training, as well as
guidelines for high altitude sojourns in vulnerable populations.
Given that the exact mechanisms of the interactive effects of
hypoxia and physical activity on redox balance are not entirely
clear, future well-controlled investigations should scrutinize
different dose-response effects of both in healthy as well as
patient populations.
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