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Hypoxia induces epithelial-mesenchymal transition
via activation of SNAI1 by hypoxia-inducible
factor -1α in hepatocellular carcinoma
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Abstract

Background: High invasion and metastasis are the primary factors causing poor prognosis of patients with

hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying these biological behaviors have

not been completely elucidated. In this study, we investigate the molecular mechanism by which hypoxia

promotes HCC invasion and metastasis through inducing epithelial-mesenchymal transition (EMT).

Methods: The expression of EMT markers was analyzed by immunohistochemistry. Effect of hypoxia on induction

of EMT and ability of cell migration and invasion were performed. Luciferase reporter system was used for

evaluation of Snail regulation by hypoxia-inducible factor -1α (HIF-1α).

Results: We found that overexpression of HIF-1α was observed in HCC liver tissues and was related to poor prognosis of

HCC patients. HIF-1α expression profile was correlated with the expression levels of SNAI1, E-cadherin, N-cadherin and

Vimentin. Hypoxia was able to induce EMT and enhance ability of invasion and migration in HCC cells. The same

phenomena were also observed in CoCl2-treated cells. The shRNA-mediated HIF-1α suppression abrogated CoCl2-induced

EMT and reduced ability of migration and invasion in HCC cells. Luciferase assay showed that HIF-1α transcriptional

regulated the expression of SNAI1 based on two hypoxia response elements (HREs) in SNAI1 promoter.

Conclusions: We demonstrated that hypoxia-stabilized HIF1α promoted EMT through increasing SNAI1 transcription in

HCC cells. This data provided a potential therapeutic target for HCC treatment.
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Background

Metastasis is the main cause of deaths for patients with

many solid cancers. Approximately 90% of deaths caused

by cancers result from the metastatic spread of primary

tumors [1]. Therefore, it is critical to understand the

mechanisms of metastasis and to identify new targets for

therapy. Recently, two mechanisms of metastasis have

received significant attention: (1) epithelial mesenchymal

transition (EMT) and mesenchymal epithelial transition

(MET) [2-8] and (2) interactions between tumor cells

and microenvironment [9-15]. EMT is believed to be a

major mechanism by which cancer cells become migra-

tory and invasive. A variety of cancer cells display features

of EMT. In addition, multiple steps of metastasis are

influenced by the tumor microenvironment which may

determine the course and severity of metastasis [16-23] .

Hypoxia is a critical microenvironment in tumor patho-

genesis. It occurs in series of distinct steps that include

tumor cell invasion, intravasation, extravasation and pro-

liferation. There is a close relationship between hypoxia

and tumor metastasis and poor prognosis. Several mecha-

nisms have been proposed to explain how hypoxia might

lead to a poor prognosis in the clinical settings, and none

of which are mutually exclusive [4,24-27].

This hypoxic response is mainly regulated by the

hypoxia-inducible factor 1 (HIF-1), a basic HLH
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transcription factor composed of two subunits, HIF-1α

and HIF-1β. The HIF-1α subunit is regulated by oxy-

gen tension, whereas HIF-1β is constitutively

expressed [28-32]. Over-expression of HIF-1α is a

common feature of malignant cells and links to poor

prognosis in both lymph-node positive [33] and

lymph-node negative [34] breast carcinoma. Therefore,

the exploration of target genes by HIF-1 may lead to a

better understanding of the contribution of hypoxia to

tumor progression.

HIF-1α activation correlates with metastasis in many

kinds of tumors and promotes metastasis through the

regulation of key factors governing tumor cell meta-

static potential. E-cadherin is a key molecule related to

metastatic potential in the majority of epithelial cancers.

It is a cellular adhesion molecule that regulates cell–cell

adhesion and stimulates anti-growth signals through inter-

actions with β-catenin in cytoplasm [35]. It has been pro-

posed that HIF-1α mediates repression of E-cadherin

expression through the upregulation of E-cadherin-specific

repressors Snail and SIP1 [36]. Similarly, hypoxia promotes

EMT and metastatic phenotypes in human cancer cells via

direct induction of the E-cadherin repressor twist [2].

Hepatocellular carcinoma (HCC) is one of the most

common cancers worldwide. Invasion and metastasis in

early-stage HCC is an important feature and a crucial un-

favorable prognostic factor. Therefore, in this work we in-

vestigated how hypoxia could induce EMT and promote

metastasis of HCC cells.

Methods
Immunohistochemistry

Human liver tissues were obtained from surgical resec-

tion specimens of HCC patients in the Institute of

Hepatobiliary Surgery, Southwest Hospital, Third Military

Medical University. The procedure of human sample col-

lection was approved by the Ethical Committee of Third

Military Medical University. A tissue microarray block

containing 66 HCC tissues was constructed by using a tis-

sue microarrayer. Immunostaining was performed on tis-

sue microarray slides following the routine protocol. The

following antibodies were used: mouse anti-human HIF-

1α monoclonal antibody (BD Clontech, USA), mouse

anti-human E-cadherin monoclonal antibody, mouse anti-

human N-cadherin monoclonal antibody, mouse anti-

human Vimentin monoclonal antibody, rabbit anti-human

Twist polyclonal antibody and rabbit anti-human SNAI1

polyclonal antibody (Santa Cruz Biotech, USA). Assess-

ment of the staining was based on the percentage of posi-

tively stained cells and the staining intensity.

Cell culture

Human HCC cell lines HepG2 and SMMC-7721 were pur-

chased from Shanghai Cell Collection (Shanghai, China).

Human embryonic kidney cell line HEK293 was obtained

from Microbix Biosystems (Toronto, ON, Canada). The

cells were cultured in Dulbecco’s modified Eagle’s

medium supplemented with 10% fetal bovine serum

(FBS; GIBCO-BRL) at 37°C under a 5% CO2 condition.

CoCl2 was purchased from Sigma-Aldrich (St. Louis, USA).

Fluorescent immunostaining

Cells were cultured in 24-well plates at 5 × 104 cells per

well. At the indicated time points, media were removed

from the cultured cells followed by three washings with

PBS. Cells were fixed with 4% polyoxymethylene solu-

tion for 20 min and washed with PBS three times. Cells

were incubated with primary antibodies and then their

corresponding lumophore-conjugated secondary anti-

bodies. DAPI was used for nuclei staining. Finally, cells

were observed under a fluorescent microscope or a con-

focal microscope.

Adenoviral vector-mediated HIF-1α silencing

The shRNA specifically targeting HIF-1α mRNA was

generated by annealing the following primers: Forward:

5'-aGTCGGACAGCCTCACCAAAtttt-3'; Reverse: 5'-aT

TTGGTGAGGCTGTCCGACtttt-3', followed by its in-

sertion into pSES-HUS that was digested by SfiI to gen-

erate HIF-1α siRNA pSES-HUS. After digestion of PacI,

HIF-1α siRNA pSES-HUS was transfected into E. Coli

BJ5183 with pAdEasy-1 to obtain recombination plasmid

pAdeasy-HIF-1α siRNA. After identification, pAdeasy-

HIF-1α siRNA was transfected into HEK293 cells for the

production of recombinant adenovirus Ad-HIF-1α siRNA

(Ad-shHIF-1α). The control adenovirus containing a non-

function shRNA (Ad-scrambled) (Forward: 5'-aGACTTC

ATAAGGCGCATGCtttt-3' Reverse: 5'-aGCATGCGCCT

TATGAAGTCtttt-3') is constructed in a similar protocol.

The adenoviruses were harvested and purified with the

CsCl gradient centrifugation method. The titers of adeno-

viruses were quantified through TCID50 assay on HEK293

cells.

Quantitative real-time PCR (qRT-PCR)

The SMMC-7721 cells were harvested at the indicated

time points. Total RNA was extracted by using Trizol

(Invitrogen) according to the manufacturer’s protocol.

Reverse transcription was performed according to the

protocol of RevertAidTM First Strand cDNA Synthesis

Kits (Fermentas). Quantitative PCR was performed by

using SYBR premix Ex Taq (TaKaRa) and Applied

Biosystems 7300 Real-Time PCR System (Applied

Biosystems, USA) supplied with analytical software.

The primers used for this study were listed in Additional

file 1: Table S6.
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Immunoblotting

Total proteins were separated on 8–12% polyacrylamide

gels and transferred onto 0.45 μm nitrocellulose in a buf-

fer containing 25 mmol/L Tris–HCl (pH 8.3), 192 mmol/L

glycine, 20% methanol and blocked with 5% fat-free dry

milk in PBS for 2 h. The membranes were incubated with

primary antibodies, as described in Immunohistochemis-

try. β-actin was used as internal control.

Cell migration and invasion assays

The invasion assays were performed using Millicell inserts

(Millipore, Billerica, MA, USA) coated with Matrigel (BD

Biosciences, Sparks, MD, USA). 2.5 × 104 cells were

seeded per upper chambers in serum-free DMEM whereas

the lower chambers were loaded with DMEM containing

5% FBS. After 24 hrs, the non-migrating cells on the upper

chambers were removed by a cotton swab, and cells in-

vaded through the matrigel layer to the underside of the

membrane were stained by crystal violet. The cell num-

bers were counted. Cell migration assays were performed

similarly, but without Matrigel.

Cell cycle analysis

For identifying cells at different stages of cell cycle, vec-

tor infected cells were prepared as a single cell suspen-

sion of 1–2 × 106 cells/mL in PBS. After the cells were

fixed with pre-cold 70% ethanol for 2 hrs, the cells were

washed two times with PBS and were stained with

Propidium Iodide (PI) at the final concentration of

50 μg/mL with RNase at 20 μg/mL in PBS. Treated cells

were then evaluated by FACS analysis.

Colony formation assay

Colony formation assay was performed by using mono-

layer culture. Cells were plated in a 6-well plate and then

cultured under hypoxic condition. Colonies (>50 cells/

colony) were counted after staining with crystal violet

solution. All the experiments were performed in tripli-

cate wells three times.

Luciferase reporter vector construction

We used genomic DNA of human normal liver as tem-

plate to amplify the promoter of SNAI1 gene. The se-

quences of primer sets were provided upon requested.

The PCR products were digested by KpnI and XhoI,

followed by being inserted into pGL3-basic. The resulting

plasmids harboring various lengths of SNAI1 promoter

were transfected into CoCl2-treated SMMC-7721 cells.

The activity of luciferase was examined at the indicated

time points.

Statistical analysis

Each experiment was performed at least two times. All

values were presented as means ± SD. The statistics was

analyzed by unpaired, two-tailed t-test. Data were con-

sidered to be statistically significant when p < 0.05 (*)

and p < 0.01 (**).

Results

Expression of hypoxia and EMT related genes in human

HCC

In order to know whether hypoxia status is related to

EMT in HCC, we firstly investigated expression levels of

HIF-1α, HIF-2α, SNAI1, Twist, E-cadherin, N-cadherin

and Vimentin in a tissue array containing 66 HCC samples

from human patients by immunohistochemistry. HIF-1α

and SNAI1 expression was detected in 65% (43/66) and

59% (39/66) of tumor samples, respectively. Coexistence

of HIF-1α and SNAI1 was observed in 50% of the cases

(33/66) and their expression level was significantly posi-

tively correlated (P < 0.01) (Additional file 1: Table S1). In

addition, we observed the significant correlations between

HIF-2α and SNAI1 and Twist (Additional file 1: Table S1).

We also compared the expression profiles between EMT

markers and HIF-1α as well as SNAI1. In the HIF-1α posi-

tive samples of HCC patients (n = 43), expression of

E-cadherin and N-cadherin was found in 10 and 34 samples,

respectively. There was a significant negatively correl-

ation in expression level between HIF-1α and E-cadherin

(P < 0.01) and positive correlation between HIF-1α and

N-cadherin (P < 0.01) (Additional file 1: Table S2).

Analysis on SNAI1 expression also showed its correl-

ation with EMT markers in these HCC samples (P < 0.01)

(Additional file 1: Table S2). Our data also showed that

expression of E-cadherin was significant negative correlated

to the expression of N-cadherin and Vimentin (P < 0.01)

(Additional file 1: Table S3).

Overexpression of HIF-1α and SNAI1 in HCC predicts poor

prognosis

Overexpression of HIF-1α and SNAI1 in HCC samples

were shown to be correlated with pathological classifica-

tion, TNM staging and tumor volume (P < 0.05). In

addition, HIF-1α expression profile was also correlated with

severity of cirrhosis (P < 0.05) (Additional file 1: Table S4).

Consistent to previous studies, EMT phenotype in HCC

samples was found to be significantly correlated with

pathological classification, TNM staging, numbers of tumor

nodule and tumor size (Additional file 1: Table S5). Progno-

sis of the HCC patients with HIF-1α expression level was

also investigated in our work. Our data showed that

disease-free survival was shorter in HIF-1α positive group

(n = 43, 824 days) compared with HIF-1α negative group

(n = 23, 1144 days, P = 0.0496) (Figure 1). This data suggest

that HIF-1α is correlated with SNAI1 expression and EMT

phenotype of HCC samples and can predict poor prognosis

of HCC patients after surgery.
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Hypoxia induced EMT of HCC cells while reversion

occurred under reoxygenation

The correlation between overexpression of HIF-1α and

EMT induction in HCC tissues suggested that hypoxia

may regulate the EMT of HCC cells. Therefore, we in-

vestigated induction of EMT by hypoxia. We observed

morphological changes with characteristic of obtaining

mesenchymal phenotype and losing epithelial feature in

HCC cell lines under 1% O2 condition. When cells were

returned to normoxic conditions, its epithelial morph-

ology was regained (Figure 2A and Additional file 2:

Figure S1). Immunohistological staining showed that E-

cadherin protein was lost in majority of HCC cells,

whereas expressions of N-cadherin and Vimentin were

extensively detected in these cells under hypoxia

(Figure 2B). Immunofluorescent staining also confirmed

the enhanced expression of N-cadherin and Vimentin in

HCC cells under hypoxia (Additional file 3: Figure S2).

Figure 2 Hypoxia induced EMT of HCC cells while reversion occurred under reoxygenation. (A) Morphological changes of hypoxia and

reoxygenation-treated SMMC-7721 cells were recorded by light microscope (×200). (B) Immunohistochemical analysis of E-cadherin, N-cadherin

and Vimentin expression was performed on both hypoxically and normoxically cultured SMMC-7721 (×200). (C) mRNA levels of E-cadherin, N-

cadherin and Vimentin in SMMC-7721 was determined under the conditions of normoxia, hypoxia and reoxygenation by qPCR. GAPDH was used

as endogenous reference and mRNA level of SMMC-7721 under normoxia was used as control. Data were shown as mean ± SD of three

independent experiments. (D) Protein expression of E-cadherin, N-cadherin and Vimentin in SMMC-7721 cells undergoing normoxia, hypoxia and

reoxygenation was determined by immunoblotting. β-actin was used as endogenous control. (E) The numbers of invasive and migrating SMMC-

7721 cells undergoing normoxia, hypoxia and reoxygenation was calculated with crystal violet staining. The average numbers of ten random

microscopic fields (×400) was recorded in each experiment. Data was shown as mean ± SD of three independent experiments. Representative

images of each group were shown.

Figure 1 Overexpression of HIF-1α in HCC is correlated with the level of SNAI1 and EMT markers and predicts poor prognosis.

Immunohistochemistry was performed for determining the expression profile of various proteins, including HIF-1α (A, F), SNAI1 (B, G), E-cadherin

(C, H), N-cadherin (D, I) and Vimentin (E, J), on HIF-1α+ (A-E) and HIF-1α- (F-J) HCC samples (A, D, F, I: ×200; B, C, E, G, H, J: ×400). (K) Disease-free

survival after surgery was compared between HIF-1α positive (n = 43) and HIF-1α negative (n = 23) HCC patients.
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Subsequently, we used qRT-PCR to quantify mRNA

levels of EMT markers. Expression of E-cadherin was

gradually suppressed when HCC cells were hypoxically

cultured. Consistently, expression of N-cadherin and

Vimentin were increased. Recovery to normoxia reversed

the changes in the mRNA levels of these EMT markers

(Figure 2C). Immunoblotting analysis was used to detect

the expression of E-cadherin, N-cadherin and Vimentin

on protein level, showing a consistent expression profile

of these markers (Figure 2D). These data indicate that in-

duction of EMT by hypoxia is reversible.

Cancer cells underlying EMT have been documented to

possess a high motility. Thus, we evaluated the effect of hyp-

oxia on HCC motility. Our data showed that ability of mi-

gration and invasion was significantly increased when HCC

cells were cultured in hypoxic condition, as compared with

HCC cells cultured in normoxic condition (Figure 2E).

Moreover, ability of migration and invasion was significantly

decreased when hypoxia-cultured HCC cells were returned

to normoxic condition. In addition, we also investigated the

influence of hypoxia on colony formation capacity and cell

cycle progression of HCC cells, finding G0/G1 cell cycle ar-

rest (Additional file 4: Figure S3) and decreased numbers of

colony under this condition (Additional file 5: Figure S4).

These data indicate that hypoxia can induce EMT and in-

crease capacity of migration and invasion in HCC cells

CoCl2-induced HIF-1α stabilization promotes SNAI1

expression, EMT and invasion capacity of HCC cells

We intended to reveal the molecular mechanisms by which

hypoxia induced HCC cells to undergo EMT. Thus, we

treated SMMC-7721 cells with CoCl2 (100 μM) to prevent

the degradation of HIF-1α and estimated the mRNA

expression of E-cadherin, N-cadherin and Vimentin in

Figure 3 CoCl2-induced HIF-1α stabilization promotes SNAI1 expression, EMT and invasion capacity of HCC cells. (A) mRNA expression

level of E-cadherin, N-cadherin, Vimentin, HIF-1α and SNAI1 was determined in SMMC-7721 cells with and without CoCl2 exposure (100 μM) by

qPCR. GAPDH was used as endogenous control and mRNA level of untreated SMMC-7721cells was used as control. Data were shown as mean ±

SD of three independent experiments. (B) Protein expression of E-cadherin, N-cadherin, Vimentin, HIF-1α and SNAI1 in SMMC-7721 cells with or

without CoCl2 treatment (100 μM) was determined by immunoblotting. β-actin was used as endogenous reference. (C) The numbers of invasive

and migrating SMMC-7721 cells with and without CoCl2 exposure (100 μM) was calculated with crystal violet staining. The average numbers of

ten random microscopic fields (×400) was recorded in each experiment. Data was shown as mean ± SD of three independent experiments.

Representative images of each group were shown.
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CoCl2-treated cells. The data demonstrated the same changes

in mRNA and protein levels of these genes as those found in

hypoxia-treated SMMC-7721 cells (Figure 3A and B). After

removal of CoCl2, expression of these genes was returned

to the basic level. Interestingly, mRNA and protein levels

of SNAI1 was elevated in SMMC-7721 cells after treat-

ment with CoCl2 and was returned to the basic level after

removal of CoCl2 (Figure 3A and B).

CoCl2-induced HIF-1α stabilization also affected the bio-

logical behaviors of SMMC-7721 cells. Cells treated with

CoCl2 were shown to have an increased ability of migration

and invasion, as compared with controls. After removal of

CoCl2, the increased ability of migration and invasion was

returned to normal (Figure 3C). These data indicate that

HIF-1α stabilization is able to promote SNAI1-involved

EMT in HCC cells and facilitate their invasion.

HIF-1α silencing in HCC cells inhibits SNAI1-mediated EMT

and invasion under CoCl2 treatment

To confirm the role of HIF-1α in SNAI1 expression and

EMT induction, we knockdowned expression of HIF-1α

in HCC cells by adenoviral vector expression shRNA

against HIF-1α and study expression of EMT related

genes. Our result showed that expression of SNAI1, N-

cadherin and Vimentin was reduced in CoCl2-treated

HCC cells after infection with Ad-shHIF1α, whereas E-

cadherin was increased in CoCl2-treated HCC cells after

infection with Ad-shHIF1α (Figure 4A and B). Silencing

of HIF-1α could significantly reduce migration and inva-

sion of HCC cells (Figure 4C). This data indicated that

HIF-1α played a key role in hypoxia-induced EMT and

cell migration as well as invasion.

HIF-1α promotes transcription of SNAI1 under hypoxic

condition

To further elucidate the mechanism underlying HIF-1α

triggered SNAI1 upregulation, we screened the sequence

of SNAI1 promoter by bioinformatics analysis and found

two putative HIF-1α responsive elements (HREs) local-

ized in −651 and −541 of this region (Figure 5A). The

existence of HERs in SNAI1 promoter raised the possi-

bility that HIF-1α may regulated the transcription of

Figure 4 HIF-1α silencing in HCC cells inhibits SNAI1-mediated EMT and invasion under CoCl2 treatment. (A) mRNA levels of HIF-1α,

SNAI1, E-cadherin, N-cadherin and Vimentin were determined in CoCl2-treated SMMC-7721 cells infected with Ad-scrambled or Ad-shHIF1α

(10 MOI) by qRT-PCR. GAPDH was used as endogenous reference and mRNA level of untreated SMMC-7721cells was used as standard. Data were

shown as mean ± SD of three independent experiments. (B) Protein levels of E-cadherin, N-cadherin and Vimentin in CoCl2-treated SMMC-7721

cells infected with Ad-scrambled or Ad-shHIF1a was determined by immunoblotting. β-actin was used as endogenous reference. (C) The

numbers of invasive and migrating CoCl2-treated SMMC-7721 cells infected with Ad-scrambled or Ad-shHIF1α was calculated with crystal violet

staining. The average numbers of ten random microscopic fields (×400) was recorded in each experiment. Data was shown as mean ± SD of

three independent experiments. Representative images of each group were shown.
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SNAI1 by binding these sites. Therefore, we constructed

a series of reporter vectors (P1-P4) where luciferase ex-

pressions were driven by SNAI1 promoters of various

lengths (Figure 5A). Luciferase activity was quantified

after SNAI1 promoter-driven vectors were transfected

into CoCl2-pretreated HCC cells. Our results showed

that short form of SNAI1 promoters containing two

HRE or one HRE at −541 had a slightly reduced activity,

whereas the shortest form of SNAI1 promoter without

HRE sites almost lost its activity (Figure 5B).

To further confirm the regulatory role of −541 HRE in

SNAI1 transcription, we generated several reporter vec-

tors containing mutant HRE sites (M1, M2 and MM)

(Figure 5A). Our results showed that SNAI1 gene pro-

moter only containing mutant HRE site at −651 had

slight reduced activity, whereas SNAI1 gene promoter

only containing mutant HRE site at −541 had significant

reduced activity. SNAI1 gene promoter containing mu-

tant HRE sites at −651 and −541 had the lowest activity

(Figure 5B). These data indicate that HRE at −541 site

plays an important role in transcription of SNAI1 by

HIF-1α. Taken together, we conclude that HIF-1α pro-

motes the expression of SNAI1 through recognizing the

HRE in its upstream region.

Discussion

In this study, we found the increased expression of HIF-

1α in HCC samples obtained from surgical resection. Ec-

topic expression profile of HIF-1α is correlated with poor

prognosis and enhanced HCC invasion and metastasis.

Further analysis showed that increased HIF-1α level was

associated with loss of E-cadherin and overexpression of

SNAI1, N-cadherin and Vimentin. Our data suggest that

hypoxia may induce EMT of cancer cells in HCC.

To test this hypothesis, we treated HCC cells under

hypoxic condition. We found that hypoxia could induce

EMT in HCC cells and enhance cell migration and inva-

sion. Furthermore, we found that induction of EMT by

hypoxia was reversible when cells were returned to

normoxic condition. In addition, we confirmed that hyp-

oxia led to G0/G1 arrest of HCC cells, which is coincident

with previous reports [37-41]. CoCl2-induced HIF-1α

stabilization also promoted EMT in HCC cells. And

shRNA-mediated HIF-1α suppression was able to prevent

EMT. All these data confirm that HIF-1α is an important

stimulatory factor of EMT process in HCC cells.

The downstream target genes regulated by HIF-1α are

involved in angiogenesis, hypoxic metabolism, cancer

cell survival and invasion [10,42-46]. HIF-1α is also doc-

umented to be an upstream regulatory factor of many

EMT modulators, such as SNAI1, twist, Zeb1, SIP1 and

LOX [47]. Recent studies revealed that HIF-1α-induced

LOX overexpression promoted the metastasis of breast

cancers in a mouse model and was correlated with poor

prognosis of ER negative patients [48]. Response to hyp-

oxia was also utilized in tumor therapy in the field of

gene therapy. Oncolytic adenoviruses were shown to se-

lectively and effectively proliferate in cancer cells, when

Figure 5 HIF-1α promotes transcription of SNAI1 under hypoxia condition. (A) Schematic diagram of SNAI1 promoter-luciferase construct

was shown with the location of HRE. (HRE: hypoxia response element) (B) SMMC-7721 cells were transfected with pGL3-basic vector or a series of

pGL3 vectors containing truncated SNAI1 promoters or promoters with mutated HRE (P1, P2, P3, P4, M1, M2 and MM) along with renilla luciferase

expression vector. Luciferase assay was performed after 2 days. The firefly luciferase activity was normalized by renilla luciferase activity. Data were

shown as mean ± SD of three independent experiments. (C) A model was shown for effect of HIF-1.alpha; on SNAI1-mediated EMT in HCC.
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its E1B gene expression was driven by HRE-modulated

promoters [49]. It is well demonstrated that SNAI1 is an

inducer of EMT and it plays an important role in induc-

tion of EMT in HCC cells [50,51]. Thus, we investigated

the potential effect of HIF-1α on SNAI1 expression.

Bioinformatics analysis on SNAI1 promoter identified

two putative HREs, providing the possibility that HIF-1α

can directly bind these sites and promoter SNAI1 tran-

scription. Using luciferase report systems, we deter-

mined that vectors containing either of these two HREs

had high luciferase activity in CoCl2-treated HCC cells.

The vector containing -651 bp HRE apparently had

higher luciferase expression than that harboring -541 bp

HRE. Previous study has shown that hypoxia could in-

duce Snail expression during EMT [52]. Recently, Luo

et al. demonstrated that HIF could directly regulated

mouse Snail expression [53]. Furthermore, it was reported

that hypoxia induced EMT in melanoma via regulation of

Snail by HIF-2α [54]. So we confirmed that HIF-1α pro-

moted the transcription of one of central EMT-inducer,

SNAI1, in hypoxia-simulating HCC model.

Collectively, we present our hypothesis of hypoxia

participating in EMT of HCC cells (Figure 5C). In hyp-

oxic conditions of the primary solid tumor, the oxygen

required for proline hydroxylase activity is absent. HIF-

1α in turn escapes proteolysis, allowing for its entry

into the nucleus. Then, it can dimerize with HIF-1β to

form the active transcription-stimulating complex,

which binds HRE in SNAI1 promoter to promote SNAI1

expression. The tumor cells acquire mesenchymal

phenotype, disseminate from the primary tumors, pene-

trate extracellular matrix (ECM) and enter blood or

lymphatic vessels. As soon as some of these tumors cells

penetrate ECM and enter the parenchyma of targeting

tissues or organs on the condition of reoxygenation,

HIF-1α is rapidly oxidized at either or both of two

proline residues by a proline hydroxylase enzyme. This

hydroxylation permits the binding of the von hippel-

landau protein (pVHL) to HIF-1α. Once bound, HIF-1α

is polyubiquitinated and subsequently degraded in the

proteasome. Subsequently, the mesenchymal tumor cells

undergo MET. HIF-1α may play a central role in EMT

induced by hypoxia. HIF-1α-SNAI1-EMT may be one of

the key signal pathways.

Conclusion
We found that in HCC, hypoxia-induced HIF-1α stabi-

lization promoted SNAI1-mediated EMT process, and led

to the enhanced HCC invasion and metastasis and poor

prognosis of patients. Further investigations to illuminate

the intimate mechanisms of hypoxia and reoxygenation in-

ducing solid tumors metastasis may lead to new molecular

therapies besides conventional treatments against malig-

nant solid tumors.
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