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Hypoxia Induces Transforming Growth Factor-β1 Gene Expression in the
Pulmonary Artery of Rats via Hypoxia-inducible Factor-1α
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Abstract        The present study was undertaken to investigate the dynamic expression of hypoxia inducible
factor-1α (HIF-1α) and transforming growth factor-β1 (TGF-β1) in hypoxia-induced pulmonary hypertension
of rats. It was found that mean pulmonary arterial pressure (mPAP) increased significantly after 7 d of
hypoxia. Pulmonary artery remodeling index and right ventricular hypertrophy became evident after 14 d of
hypoxia. HIF-1α mRNA staining was less positive in the control, hypoxia for 3 d and hypoxia for 7 d, but
began to enhance significantly after 14 d of hypoxia, then remained stable. Expression of HIF-1α protein in
the control was less positive, but was up-regulated in pulmonary arterial tunica intima of all hypoxic rats.
TGF-β1 mRNA expression in pulmonary arterial walls was increased significantly after 14 d of hypoxia, but
showed no obvious changes after 3 or 7 d of hypoxia. In pulmonary tunica adventitia and tunica media,
TGF-β1 protein staining was less positive in control rats, but was markedly enhanced after 3 d of hypoxia,
reaching its peak after 7 d of hypoxia, and then weakening after 14 and 21 d of hypoxia. Western blotting
showed that HIF-1α protein levels increased significantly after 7 d of hypoxia and then remained at a high
level. TGF-β1 protein level was markedly enhanced after 3 d of hypoxia, reaching its peak after 7 d of
hypoxia, and then decreasing after 14 and 21 d of hypoxia. Linear correlation analysis showed that HIF-1α
mRNA, TGF-β1 mRNA, TGF-β1 protein were positively correlated with mPAP, vessel morphometry and
right ventricular hypertrophy index. TGF-β1 protein (tunica adventitia) was negatively correlated with
HIF-1α mRNA. Taken together, our results suggest that changes in HIF-1α and TGF-β1 expression after
hypoxia play an important role in hypoxia-induced pulmonary hypertension of rats.
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Hypertension occurs as a result of narrowing of the
lumen of the pulmonary arteries due to vasoconstriction
or hyperplasia of pulmonary vascular smooth muscle cells.
Primary pulmonary hypertension (PPH) is a condition of
unknown etiology, whereas secondary pulmonary hyper-
tension can accompany a number of chronic hypoxic lung
disorders [1]. Vascular smooth muscle cells and endothelial
cells play important roles in the development of pulmonary
hypertension [2]. Increased plasma levels of several

factors that are responsible for the regulation of pulmonary
vascular tone and smooth muscle cell proliferation have
been associated with pulmonary hypertension, including
interleukin (IL)-1, IL-6, endothelin-1, and prostanoids [3,
4]. The production of prostanoids can act as a negative-
feedback mechanism, in the same way that prostaglandin
(PG) E2 and PGI2 are potent vasodilators and inhibitors of
vascular remodeling [5,6].

Transforming growth factor-β (TGF-β) is a polypep-
tide cytokine that exists in three isoforms: TGF-β1, TGF-
β2 and TGF-β3. TGF-β isoforms, particularly TGF-β1,
can regulate smooth muscle cell proliferation and vascular
remodeling [7]. In experimental settings systemic adminis-
tration of TGF-β1 resulted in rich in extracellular matrix
proteins [8]. Conversely, anti-TGF-β1 neutralizing anti-
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bodies reduced extracellular matrix proteins, which is fur-
ther evidence of the important role of TGF-β1 in vascular
repair [9]. Hypoxia inducible factor 1 (HIF-1) is a poten-
tial mediator of pulmonary responses to hypoxia [10]. HIF-
1 is a heterodimeric transcription factor composed of a
hypoxia inducible factor 1 alpha (HIF-1α) functional sub-
unit and hypoxia-inducible factor 1 beta (HIF-1β) consti-
tutional subunit. Hypoxia induces the expression of HIF-
1α, which then activates the transcriptions of some hy-
poxia-responsive genes. However, the role of HIF-1α and
TGF-β1 in the development of hypoxia-induced pulmo-
nary hypertension and the accompanying vascular remod-
elling is not completely understood. In this study, we in-
vestigated the expression of the HIF-1α and TGF-β1 genes,
as well as their relationship to each other, in pulmonary
arterial walls of rats at different phases of hypoxia-induced
pulmonary hypertension development.

Materials and Methods

Animals and hypoxia model

The protocol for exposure of rats to hypoxia and
normoxia was identical to that reported previously by our
laboratory [11]. In the present study, we used 40 male
Wistar rats purchased from the Animal Experimental Centre
of Central South University (Changsha, China). The animals
weighed 220±10 g and the average age was 6−8 weeks.
They were randomly divided into five groups (eight rats in
each group). Each group of hypoxic rats was exposed for
a specified time period (3, 7, 14, or 21 d) with 8 h per day
intermittently to normobaric hypoxia (10.0%±0.5%
oxygen) in a ventilated chamber. Age- and weight-matched
control rats were maintained in normobaric 21% oxygen
(fresh air). To establish the hypoxic conditions the chamber
was flushed with a mixture of room air and nitrogen from
a liquid nitrogen reservoir. An oxygen analyzer (HT-6101;
Kanda Electrical, Chengdu, China) was used to monitor
the chamber environment. Carbon dioxide was removed
with soda lime, excess humidity removed by anhydrous
calcium chloride, and boric acid was used to keep
ammonia levels within the chamber to a minimum. The
normoxic control rats were not kept in the chamber but
they were housed in the same room and treated in the
same way as the hypoxia rats.

Mean pulmonary arterial pressure measurement

Mean pulmonary arterial pressure (mPAP) was measured
as described previously [12]. After rats were anesthetized

with pentobarbital sodium (40 mg/kg intraperitoneally),
a specially designed single-lumen catheter was inserted
into the main pulmonary artery through the right jugular
vein, at which point the position of the catheter was judged
by the waveform of the pressure signal. The mPAP was
measured with PowerLab monitoring equipment (AD
Instruments, Milford, USA).

Right ventricular hypertrophy index

After the measurement of mPAP, the rats were killed
and their lungs were collected for morphometry analysis,
in situ hybridization and immunohistochemical
examination; their hearts were collected for measurement
of right ventricular hypertrophy index (RVHI). For right
ventricular hypertrophy measurement, hearts were excised
and atria were removed. The right ventricular free wall
was dissected, and each chamber weighed. The ratio of
right ventricular (RV) weight to the weight of left ventricle
(LV) plus septum (S) (WRV/WLV+S) was used as an index of
right ventricular hypertrophy.

Vessel morphometric analysis

Lung sections (4-μm thick) were embedded in paraffin,
stained with hematoxylin-eosin, then examined using light
microscopy. At least five representative pulmonary
arterioles (outer diameter approximately 100−150 μm),
chosen from three different sections from each animal,
were independently examined. The images of the arterioles
were captured and analyzed with PIPS-2020 Image soft-
ware (Tianhai Co., Chongqing, China). To evaluate hypoxic
pulmonary vascular remodeling, the ratio of vascular wall
area to external diameter, the ratio of vascular lumen area
to total area, the number of smooth muscle cell nuclei in
pulmonary arteriole tunica media (SMC, per 1000 μm2)
and pulmonary artery media thickness were obtained.

In situ hybridization of HIF-1α and TGF-β1

In situ hybridization was carried out using a detection
kit (Boster Biological Technology Co., Wuhan, China). The
oligonucleotide probes (Boster Biological Technology Co.)
were designed according to the HIF-1α and TGF-β1
sequences of rat. The sequences of probes against
HIF-1α mRNA were: 5'-TTATGAGCTTGCTCATC-
AGTTGCCACTTCC-3'; 5'-CTCAGTTTGAACTAACTG-
GACACAGTGTGT-3'; 5'-GGCCGCTCAATTTATGAAT-
ATTATCATGCT-3'. The sequences of probes against
TGF-β1 mRNA were: 5'-ACCTGCAAGACCATCGACA-
TGGAGCTGGTG-3'; 5'-TGTACAACAGCACCCGCGAC-
CGGGTGGCAG-3'; 5'-CTACCAGAAATATAGCAACAA-
TTCCTGGCG-3'.
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Hybridization was carried out on serial sections of
formalin-fixed (containing 0.1% diethylpyrocarbonate)
paraffin-embedded lung tissues according to the
manufacturer’s instructions. Briefly, sections were digested
with pepsin for 20 min at 37 ºC. After 2 h of prehy-
bridization , sections were incubated with digoxin-labelled
single-stranded oligonucleotide probes for 16 h at 38 ºC
(the negative control was incubated with blank probes
solution). After unbound probes were washed off, sections
were incubated with rabbit antibodies against digoxin and
with biotinylated goat anti-rabbit secondary antibodies.
Afterwards, sections were incubated with streptavidin-
horseradish peroxidase (HRP) and visualized by a color
reaction with diaminobenzidine (Boster Biological
Technology Co.). Brown and yellow colors indicated
positive results. Finally, the sections were counterstained
with hematoxylin and mounted. Expression levels of mRNA
were quantified by the pathology image analysis system
(PIPS-2020).

Immunohistochemistry analysis of HIF-1α and TGF-β1

A streptavidin-biotin complex kit (Boster Biological
Technology Co.) was used for immunohistochemisty,
which was carried out similar to that described previously
with minor modifications. Briefly, serial sections of
formalin-fixed paraffin-embedded lung tissues were
digested with 3% H2O2 for 20 min at room temperature,
then preincubated with 10% non-immunized serum.
Sections were incubated with rabbit anti-HIF-1α or anti-
TGF-β1 antibody (at a working dilution of 1:100) over-
night at 4 ºC (the negative control was incubated with
PBS only). After unbound antibodies were washed off,
the sections were incubated with biotinylated goat anti-
rabbit secondary antibodies and thereafter incubated with
streptavidin-HRP. Subsequently, sections were visualized
by a color reaction with diaminobenzidine as the substrate.
Brown and yellow colors indicated positive results (mainly
cytoplasm). Finally, the sections were counterstained with
hematoxylin (resulting in blue nuclei) and mounted.
Expression levels of protein were quantified by a pathology
image analysis system (PIPS-2020).

Western blot analysis of HIF-1α and TGF-β1

Rat lung tissues were homogenized (50 g/L) in lysis
buffer (10 mM Tris, 50 mM NaCl, 0.03 μM sodium
pyrophosphate, 50 mM sodium fluoride, and 1% Triton
X-100) containing 1 mM phenylmethylsulfonyl fluoride,
20 mg/L aprotinin, and 1 mM sodium vanadate [13]. After
homogenization, samples were centrifuged at 15,000 g for
15 min. The supernatants were taken for further analysis.

Protein concentration was determined by the Bradford
method [14]. Approximately 10 μg of the total protein was
separated by 12% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred to nitro-
cellulose membranes. The membranes were probed with
polyclonal anti-HIF-1α or anti-TGF-β1 rabbit antibody (Cell
Signaling, Beverly, USA). Immunoreactive bands were
visualized by the addition of horseradish peroxidase-
conjugated antibodies against rabbit Fab and chemi-
luminescent substrates (Pierce, Rockford,  USA),
according to the manufacturer’s instructions.

Statistical analysis

Data were expressed as mean±SD. The group t-test
was used to compare data between two groups. ANOVA
was used to determine statistically significant differences
among multiple groups, with Newman-Keuls test
comparing the statistical significance between the two
groups. P<0.05 was considered as statistically significant.

Results

Chronic hypoxia increased mPAP

Mean pulmonary arterial pressure was measured as an
indicator of pulmonary artery pressure in conscious rats.
mPAP in normoxic rats was 14.02±0.41 mmHg. As
expected, the hypoxic animals developed pulmonary
hypertension after 7 d of exposure to hypoxia (P<0.05),
reaching its peak level after 14 d of hypoxia, and thereafter
remaining at a high level (Table 1).

Chronic hypoxia led to hypoxic pulmonary vascular
remodeling and right ventricle hypertrophy

As shown in Table 1, pulmonary arterioles in normoxic
animals were thin, whereas after 7 d of hypoxic exposure,
they developed increased medial thickness characteristic
of pulmonary hypertension. Quantification of these
structural changes in several lung sections of all of the
animals exposed to each of the different hypoxia time
periods (3, 7, 14 or 21 d) revealed significantly increased
medial thickness of pulmonary arterioles in hypoxic animals
in comparison with normoxic controls. Right ventricular
hypertrophy resulting from right ventricle pressure
overload is a hallmark of pulmonary hypertension. After
14 d of hypoxia, RVHI was significantly increased in
comparison with the control (P<0.05). RVHI had increased
further after 21 d of hypoxia. This result indicated right
ventricular hypertrophy had developed after 14 d of
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exposure to hypoxia.

Hypoxia induces HIF-1α and TGF-β1 mRNA expres-
sion in pulmonary arterial walls

Table 2 shows that HIF-1α mRNA levels in pulmonary
arterial walls had increased significantly by 14 d of hypoxia
and remained stable, but had shown no obvious changes
by 7 d of hypoxia or normoxia (Fig. 1). HIF-1α mRNA

was located mainly in the tunica intima and tunica media.
Control pulmonary arterioles displayed low-level expres-
sion of TGF-β1 transcripts in medial SMCs. Adventitial
fibroblasts also showed a paucity of TGF-β1 transcripts,
TGF-β1 mRNA expression in pulmonary arterial walls was
increased significantly after 14 and 21 d of hypoxia, but
showed no obvious changes after 3 or 7 d of hypoxia
(Fig. 2).

Table 1        Effects of different time periods of hypoxia on mean pulmonary arterial pressure (mPAP), right ventricle (RV)
hypertrophy, and pulmonary arteries remodeling in rats

Group mPAP (mmHg) LA (%) WA (%) SMC PAMT (μm) WRV/WLV+S (%)

Control 14.02±0.41 64.5±1.3 35.5±1.3 5.5±1.0 11.9±0.6 23.6±0.5
3 d 14.58±0.28 63.0±0.9 37.0±0.8 5.8±0.8 12.0±0.5 23.3±1.7
7 d 18.41±0.37ac 52.2±0.8ac 47.8±0.8ac 6.1±0.8 12.3±0.5 24.0±0.9
14 d 21.17±0.23acd 39.7±0.4acd 60.3±0.4acd 7.1±0.8acd 15.0±0.3acd 25.0±1.8ac

21 d 22.24±0.21bcd 35.0±0.7bcde 65.0±0.7acde 9.1±0.8acde 23.0±0.8acde 27.7±1.0bcd

a P<0.05 compare with the control group, b P<0.01 compare with the control group, c P<0.05 compared with hypoxia for 3 d, d P<0.05 compared with hypoxia for
7 d, e P<0.05 compared with hypoxia for 14 d. LA, the ratio of vascular lumen area to total area; PAMT, pulmonary artery media thickness; SMC, the number of smooth
muscle cell nuclei in pulmonary arteriole media per 1000 μm2; WA, the ratio of vascular wall area to external diameter. Data are represented as mean±SD (n=8).

Fig. 1        In situ hybridization of hypoxia inducible factor (HIF)-1α mRNA expression in the pulmonary arteries of rats
(A) Control. (B) Hypoxia for 7 d. (C) Hypoxia for 14 d. Blank arrow, arterial intima; black arrow, arterial media. Magnification, 200×.

Table 2        Effects of different hypoxia time periods of hypoxia on expression of hypoxia inducible factor (HIF)-1α and transforming
growth factor (TGF)-β1 gene in the pulmonary arteries of rats

Group Absorbance of different sample

HIF-1α protein HIF-1α mRNA TGF-β1 protein TGF-β1 mRNA

Control 0.05±0.01 0.05±0.01 0.042±0.012 0.145±0.018
3 d 0.20±0.02a 0.06±0.02 0.198±0.031a 0.163±0.021
7 d 0.22±0.02ab 0.05±0.02 0.267±0.035ab 0.176±0.026
14 d 0.16±0.01abc 0.20±0.02abc 0.143±0.026abd 0.385±0.028abd

21 d 0.10±0.01abc 0.18±0.01abc 0.125±0.015abd 0.413±0.025abd

a P<0.01 compared with control group, b P<0.01 compared with 3 d of hypoxia, c P<0.05 compared with 7 d of hypoxia, d P<0.01 compared with 7 d of hypoxia. Data
are represented as mean±SD (n=8).
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Hypoxia induces HIF-1α  and TGF-β1 protein
expression in pulmonary arterial walls

The HIF-1α protein level varied between the pulmonary
arterial tunica media and tunica intima. In pulmonary
arterial tunica media, HIF-1α protein levels were poorly
positive in control rats, but had increased markedly by 3
d and further by 7 d of hypoxia, then lessened by 14 d
and even further by 21 d of hypoxia. In pulmonary arterial
tunica intima, however, HIF-1α staining was poorly

positive in control rats, but strongly positive in all hypoxic
rats (Table 2 and Fig. 3). In pulmonary arterioles tunica
adventitia and tunica media, TGF-β1 protein staining was
poorly positive in control rats, but was markedly enhanced
after 3 and 7 d of hypoxia, then weakened after 14 and
21d of hypoxia (Fig. 4). In Western blot analysis, HIF-1α
protein levels increased significantly after 7 d of hypoxia
then remained at a high level. TGF-β1 protein levels were
markedly enhanced after 3 d of hypoxia, reached a peak
after 7 d of hypoxia, and then decreased after 14 and 21 d

Fig. 2        In situ hybridization of transforming growth factor (TGF)-β1 mRNA expression in the pulmonary arteries of rats
(A) Control. (B) Hypoxia for 7 d. (C) Hypoxia for 14 d. Blank arrow, arterial intima; black arrow, arterial media. Magnification, 200×.

Fig. 3        Immunohistochemistry of hypoxia inducible factor (HIF)-1α protein expression in the pulmonary arteries of rats
(A) Control. (B) Hypoxia for 14 d. (C) Hypoxia for 21 d. Blank arrow, arterial intima; black arrow, arterial media. Magnification, 200×.

Fig. 4        Immunohistochemistry of transforming growth factor (TGF)-β1 protein expression in the pulmonary arteries of rats
(A) Control. (B) Hypoxia for 7 d. (C) Hypoxia for 14 d. Blank arrow, arterial intima; black arrow, arterial media. Magnification, 200×.
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of hypoxia (Fig. 5).

Analysis of linear correlation

The linear correlation analysis was carried out between
different parameters for hypoxia rats. Linear correlation
analysis showed that HIF-1α mRNA, TGF-β1 mRNA and
TGF-β1 protein were positively correlated with mPAP,
vessel morphometry and RVHI (r=0.811−0.931, P<0.05).
TGF-β1 protein (tunica adventitia) was negatively
correlated with HIF-1α mRNA (r=−0.836, P<0.05).

Discussion

Chronic hypoxia in the pulmonary vasculature is known
to result in vascular remodeling characterized by pro-
liferation and migration of smooth muscle cells, as well as
by an increased accumulation of extracellular matrix. The
present results demonstrate that the hypoxic animals
developed pulmonary hypertension after 7 days of exposure
to hypoxia and hypoxia groups (hypoxia for 14 and 21 d)
revealed significantly increased medial thickness of
pulmonary arterioles and the muscularization of non-
muscular pulmonary arterioles in hypoxic animals compared
with normoxic controls.

Several factors induced by hypoxia have been implicated
as modulators or mediators in the vascular remodeling of
hypoxia-induced pulmonary hypertension. These include
endothelin-1 [15], vascular endothelial growth factor [16],
angiotensin II [17], and nitric oxide (NO) [11], HIF-1α
[11,12,16] and TGF-β1 [18]. Of these, TGF-β1 is a
member of the TGF-β  cytokine superfamily that
coordinates differentiation of mesenchymal stem cells
during such distinct processes as organogenesis, bone and
neuronal tissue formation, and myofibroblast activation [19].
Furthermore, TGF-β1 gene polymorphisms are associated
with chronic obstructive pulmonary disease in the Chinese
population [20]. Recently we have shown that TGF-β1
can induce transdifferentiation of fibroblasts into
myofibroblasts, which is an important cause in hypoxic
pulmonary vascular remodeling [21]. In this study, hypoxia
induced dynamic changes in TGF-β1 expression, with the
initial changes involving the adventitia and media, as
reflected by in situ hybridization and immunohisto-
chemistry findings. The increase in TGF-β1 mRNA in
adventitial and medial cells was apparent as early as 3 d
after hypoxia. The question can be raised as to the
mechanism(s) of TGF-β1 induction after vascular hypoxia,
in that normal adventitial fibroblasts are devoid of this
cytokine. The ability of TGF-β1 to induce its own
expression suggests that its release from degranulated
platelets and activated macrophages might initiate TGF-β1
upregulation in adventitial fibroblasts [22]. Furthermore,
platelet-derived growth factor released from platelets early
after vascular insult could contribute to the induction of
TGF-β1 [23]. Interestingly, the TGF-β1 mRNA was not
significantly increased until 14 d after hypoxia, yet TGF-
β1 protein was markedly increased after only 3 d of
hypoxia. Moreover, 14 and 21 d of hypoxia, when the
TGF-β1 mRNA levels are at their highest, protein levels,
in fact, start to drop. This suggests a major alteration in

Fig. 5        Western blot detection of hypoxia inducible factor
(HIF)-1α and transforming growth factor (TGF)-β1 levels re-
spectively (n=3)
The histogram showed the comparisons of optical density odds among different
groups. 1, control group; 2, hypoxia for 3 d group; 3, hypoxia for 7 d group; 4,
hypoxia for 14 d group; 5, hypoxia for 21 d group. aP<0.01 compared with the
control group; b P<0.01 compared with hypoxia for 3 d;c P<0.05 compared with
hypoxia for 7 d.
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post-transcriptional regulation.
Previously we have shown that HIF-1α is one of the

pivotal mediators in the pathogenesis of hypoxia-induced
pulmonary hypertension development in rat, and most
presumably through target genes such as the inducible nitric
oxide synthase gene, vascular endothelial growth factor
gene and heme oxygenase-1 gene [11,12,16]. Recently we
have shown that HIF-1α, HIF-2α and HIF-3α may not
only confer different target genes, but also play key
pathogenetic roles in hypoxic-induced pulmonary hyper-
tension [24]. In this study we detected steady-state levels
of HIF-1α mRNA up to hypoxia for 7 d, but the levels
increased dramatically after 14 and 21 d of hypoxia. This
accumulation of mRNA was limited to the tunica intima
and media, whereas HIF-1α protein levels in pulmonary
artery tunica media increased significantly by 3 d of hypoxia,
reaching a peak around 7 d of hypoxia and then declining
to a lower level as the hypoxia continued. HIF-1α protein
in tunica intima was strongly positive in all hypoxic groups.
Low O2 tension is known to regulate the expression of a
number of genes, such as growth factors and cytokines
[25]. In addition, the responses of a particular gene to low
O2 tension have also been shown to be dependent on the
cell type [26]. The mechanisms by which low O2 levels
regulate gene expression have recently been investigated.
Cis-acting sequences responsible for the induction of gene
transcription by hypoxia for the erythropoietin gene have
been identified. The transacting factor HIF-1 binds to an
enhancer located in the 38-flanking region of the erythro-
poietin gene and is required for induction by hypoxia [27,
28]. This DNA binding protein is a heterodimer composed
of HIF-1α and HIF-1β subunits [26]. Both subunits are
induced by hypoxia and rapidly decay on return to normoxia
[29]. HIF-1 DNA binding activity has been shown to be
phosphorylation and redox dependent [30]. Functionally
important binding sites for HIF-1 (consensus, 58-RCGTG-
38) have been found in a number of genes known to be
regulated by hypoxia, including those encoding vascular
endothelial growth factor [16]; the glycolytic enzymes
aldolase A, enolase-1, lactate dehydrogenase A, and
phosphoglycerate kinase-1 [31]; and heme oxygenase-1
[12].

The regulation of TGF-β1 gene expression in response
to low O2 tension may be important in several physiological
and pathological conditions in which O2 availability is
compromised. In the present study, TGF-β1 expression
has been shown to correlate with the development of the
remodeling process. The mechanism by which TGF-β1
is increased in chronic hypoxia-induced models of
pulmonary hypertension is unknown. Our studies indicate
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