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Abstract
Based on available evidence, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a neuroinvasive virus. 
According to the centers for disease control and prevention (CDC), coronavirus disease 2019 (COVID-19) may cause epi-
lepsy. In this line, COVID-19 can stimulate hypoxia-inducible factor-1 alpha (HIF-1α) and activate P2X7 receptor. Both 
HIF-1α and P2X7 receptors are linked to epileptogenesis and seizures. Therefore, in the current study, we suggested that 
COVID-19 may have a role in epileptogenesis and seizure through HIF-1α stimulation and P2X7 receptor activation. Con-
sequently, pharmacological targeting of these factors could be a promising therapeutic approach for such patients.
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Introduction

Coronavirus Disease 2019 (COVID-19) is caused by infec-
tion with the severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) and affects billions of people around the 
world [1–7]. SARS-CoV-2 has been increasingly reported 
to attack not only the respiratory system and lead to respira-
tory complications [8] but also the central nervous system 

(CNS), causing neurological symptoms [9–12], and progres-
sion of multiple cancers [13, 14]. According to retrospective 
investigations, 36.4% of SARS-CoV-2-infected individuals 
presented neurological manifestations such as acute cerebro-
vascular diseases, disturbed consciousness, and paresthesia 
[15].

Epilepsy is one of the most common chronic neurological 
conditions, characterized by the spontaneous recurrence of 
unprovoked seizures. Approximately 0.7–1.0% of the popu-
lation is affected, with the incidence being highest among 
elderly people and children [16]. Epilepsy can be triggered 
by a variety of reasons, including posttraumatic epilepsy 
caused by a traumatic brain injury (TBI) [17], various infec-
tions [18], and hereditary factors [19]. According to the 
centers for disease control and prevention (CDC), SARS-
CoV-2 is one of the viruses that might induce epilepsy or 
worsen the condition in epileptic people [20]. In this study, 
we suggested that there is possibly an association between 
hypoxia-inducible factor-1 alpha (HIF-1α) stimulation and 
P2X7 receptor hyper-activation by COVID-19 and epilepsy 
progression that can provide new insight into targeting these 
factors for the treatment of epileptic patients (Fig. 2).
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Association between COVID‑19 and epilepsy

An acute symptomatic seizure may result from a poor health 
condition, mainly a fever, caused by an infection. As one of the 
major concerns for neurologists and emergency physicians, 
infection with COVID-19 may also result in such a complica-
tion. Although various studies have looked at the incidence of 
acute symptomatic seizures induced by COVID-19, more com-
prehensive research is necessary considering the multiple patho-
logical impacts of COVID-19 on the disease severity and other 
factors. The incidence of acute symptomatic seizures caused 
by COVID-19 has been reported to be less than 1% [21–23]. In 
addition, SARS and Middle East respiratory syndrome (MERS) 
has previously been associated with seizure rates of 2.7% and 
8.6%, respectively [24, 25]. While acute seizures are sympto-
matic, epilepsy is a chronic condition characterized by recur-
rent seizures. Recently, it has been suggested that the risk of 
increased seizure frequency is higher in patients with tumor-
related, drug-resistant epilepsy, insomnia, and financial troubles 
[26].

In a healthy young man without any epileptic seizures, 
seizures with lymphocytosis during SARS-CoV-2 infection 
have been observed [27]. In the mornings, a patient with-
out altered consciousness presented to Klinikum Altmühlf-
ranken Weißenburg Hospital, Germany, with painful muscle 
spasms in the left upper and lower limbs. A full physical 
exam, radiological imaging, electroencephalography, lum-
bar puncture, and autoimmune profile are either normal or 
inconsistent with the patient's symptoms. The patient's fol-
low-up revealed fever and severe cough on day 4 and a diag-
nosis of focal epilepsy [28]. In another case, an immuno-
compromised woman in her 78 s experienced seizure-like 
symptoms during infection with COVID-19. Her cerebro-
spinal fluid (CSF) showed inflammation through increased 
cytokines such as interleukin-6 (IL-6), interleukin-8 (IL-8), 
and interferon-gamma-induced protein-10 (IP-10) without 
any indication of a viral infection [29]. Moreover, other 
studies revealed that many COVID-19 patients had epilep-
tiform discharges or seizures in their electroencephalograms 
(EEGs) [22, 30, 31]. COVID-19-positive patients had nearly 
35% higher new onset encephalopathy than the COVID-
19-negative patients [31]. In individuals with COVID-19, 
seizures may occur as a result of hypoxia, metabolic distur-
bances, organ failure, medications, or brain damage [32].

Possible link between COVID‑19 
hyper‑activated P2X7 receptor and epilepsy

The purinergic receptors are divided into adenosine-sensi-
tive P1 receptors (A1, A2A, A2B, A3) which are activated 
by extracellular adenosine, and adenine-receptor-like P2 

receptors (P2X and P2Y) which are activated by extracel-
lular adenine and uridine nucleotides (e.g., ATP). There 
are seven mammalian P2X receptor subtypes (P2X1 to 
P2X7), which all respond to ATP. In neurons and glial 
cells, including microglia and astrocytes, purines such 
as ATP and adenosine are released actively or passively 
through exocytotic and non-exocytotic mechanisms. Dur-
ing the exocytotic mechanism, nucleotides must be stored 
in secretory/synaptic vesicles via the vesicular nucleotide 
transporter (VNUT), while different types of channels, 
such as pannexins and connexin, can release nucleotides 
through the non-exocytotic mechanism. Unlike ATP, aden-
osine can also be released into the extracellular space via 
two different processes: Concentrative Nucleoside Trans-
porters (CNTs) and Equilibrative Nucleoside Transporters 
(ENTS). The released nucleotides act on the P2X (ligand-
gated) and P2Y (G protein-coupled) receptors located on 
neuronal or glial membranes and activate them. In turn, 
adenosine generated by the ectonucleotidases, such as 
NTPDases, NPPases, and alkaline, phosphatase activate 
P1 (G protein-coupled) receptors as a result of the nucleo-
tide hydrolysis (Fig. 1) [33–36].

In the CNS, P2X7 receptors, as ATP-gated ion channels, 
are also activated by viral infections and lead to molecu-
lar (mainly activation of the neuroimmune response, for-
mation of reactive oxygen species (ROS), and glutamate 
release) behavioral and mental disorders. In 2002, Vianna 
et al. explored the expression of P2X7 receptors during 
epilepsy using pilocarpine-induced chronic epileptic rats. 
They found that the expression of P2X7 receptors was 
elevated in the hippocampus, specifically in mossy fib-
ers and the dentate gyrus in chronic epileptic rats [37]. 
Furthermore, a subsequent rodent study indicated that 
immuno-reactivity of the P2X7 receptor and ATP respon-
siveness in microglia were enhanced after status epi-
lepticus [38]. When compared to age-matched controls, 
samples with hypoxic/ischemic encephalopathy (HIE) or 
seizures had higher transcript levels of the P2X7 recep-
tors [39]. According to Dona et al. study, a higher level 
of P2X7 receptor immunoreactivity was found in epilep-
tic rats during acute and chronic phases of the condition 
[40]. Intracerebroventricular injection of P2X7 receptor 
agonists increased the severity of seizures during status 
epilepticus triggered by intra-amygdala kainic acid in mice 
[41]. Therefore, activation of P2X7 receptors may aggra-
vate seizures. Accordingly, in response to P2X7 recep-
tor antagonists, the expression of interleukin (IL)-1β and 
damage to the hippocampus following seizures were also 
reduced. Moreover, pre-or early post-treatment of mice 
with P2X7 receptor antagonists significantly decreased the 
severity of seizures [42]. It has been revealed that inhi-
bition of the P2X7 receptor by the antagonist A-438079 
prevents seizures and neocortical damage [43]. Other 
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P2X7 receptor inhibitors have been suggested for thera-
peutic approaches such as JNJ47965567, AZ11645373, 
GW791343, oxidized ATP, and anti-P2X7 receptor mono-
clonal antibodies (mAb) (Fig. 2) [44–48].

COVID-19 patients develop an inflammatory condition 
caused by a cytokine storm syndrome [49]. The inflamma-
tory processes are closely associated with hyper-activation of 
P2X7 receptors, which are stimulated by released ATP from 
distressed cells and in turn lead to activation of inflammas-
omes [50, 51]. Following the studies that have indicated the 
potent effects of P2X7 receptors-targeted drugs on the modula-
tion of seizures, researchers have become increasingly inter-
ested in the role of P2X7 receptors in the pathophysiology of 
epilepsy [42]. As a result of recent studies, it has been hypoth-
esized that neuroinvasion through the BBB and stimulation 
of neuro-inflammatory responses observed during COVID-19 
infection can be mediated by P2X7 receptors hyper-activation 
that leads to stimulating NLR family pyrin domain contain-
ing 3 (NLRP3) (NACHT, LRR, and PYD domain-containing 
protein 3) inflammasome and subsequently, cause the release 
of several proinflammatory cytokines such as IL-1β, IL-18, 

IL-1α, IL-36α [43, 49, 52]. It has been also thought that neu-
rodegenerative diseases and psychiatric disorders caused 
by the COVID-19 virus are possible consequences of this 
cascade [50]. Moreover, the P2X7/NLRP3 axis is involved 
in pyroptosis (osmotic lysis and release of proinflammatory 
content), which is a type of cell death characterized by cas-
pase activation such as caspase-1 and caspase-11 in mice as 
well as caspase-1, caspase-4, and caspase-5 in humans [53]. 
In addition, P2X7 receptor stimulation promotes the release 
of other cytokines and chemokines, including IL-6, tumor 
necrosis factor-alpha (TNF-α), IL-8, chemokine (C–C motif) 
ligand (CCL) 2, CCL3, and CXCL2 as well as pro-fibrotic 
factors such as TGF-β, and extracellular matrix remodeling 
factors, such as metalloproteinase-9 and tissue inhibitor of 
metalloproteinase (TIMP)-1 [54, 55]. In this line, according 
to the evidence presented and discussed now, infection with 
SARS-CoV-2 may result in an immense release of ATP, the 
earliest and most ubiquitous damage-associated molecular pat-
tern (DAMP) released at all inflammatory sites, in the cellular 
microenvironment that is high enough to activate the P2X7 
receptor [53] (Fig. 2). Therefore, using data derived from 

Fig. 1  The illustration shows the purinergic system and related sign-
aling overview: from ATP release mechanisms to ATP receptors. 
(A) Neurons and glia release ATP via transporters, membrane chan-
nels, and exocytosis. P2X7 channels (P2X7R) can also release ATP. 
Once released, ATP will be converted into adenosine through the 

intermediates ADP and AMP via ectoenzymes including alkaline 
phosphatase, NPPases, and NTPDases. Extracellular ATP receptors 
are P2X (ligand-gated) and P2Y (G protein-coupled) receptors. ADP 
receptors are subtypes of P2Y receptors. Adenosine can activate P1 
(G protein-coupled) receptors [35]
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clinical observations related to patients with COVID-19 and 
other human beta-coronavirus infections, we suggest a possible 
role of the P2X7 receptor/NLRP3 inflammasome pathway of 
SARS-CoV-2 infection in the immunopathogenesis of epilepsy 
and seizures.

Possible link between HIF‑1α stimulated 
by COVID‑19 and epilepsy

Seizure is a non-linear process, with slow accumula-
tion and an immediate release process of energy flux, as 
when earthquakes occur [56]. Ion channels open during 
seizures, causing an unequal balance between inhibitory 
and stimulatory neurotransmitters, which in turn increases 
energy consumption and neuronal excitability. According 
to functional Magnetic resonance imaging (MRI), glucose 
metabolism and blood flow increase, as does oxygen con-
sumption, while the levels of deoxyhemoglobin and blood 
oxygen decrease [57, 58]. The evidence indicates that 

seizures increase energy consumption and the energy sup-
ply is limited in epileptic seizures. To compensate for this 
shortfall, the body increases ATP synthesis via glycolysis 
and aerobic metabolism (Krebs cycle). In seizures, the brain 
is forced into a relatively hypoxic environment, resulting in 
a decline in aerobic metabolism. So far, there is evidence 
that the activity of the main enzymes in the tricarboxylic 
acid cycle (TCA cycle) decreases with epileptic seizures 
[59, 60] as well as mitochondrial oxidative stress, resulting 
in electron transport chain (respiratory chain) dysfunction 
and reduced ATP production, as a barrier in the supply of 
energy to the brain [61]. Furthermore, earlier research has 
shown that during epileptic seizures, the CNS's energy con-
sumption increases, while impediments to aerobic metabo-
lism reduce the CNS's energy supply [59–61]. HIF-1α plays 
a key role in the cellular responses to hypoxic conditions 
[62, 63] (Fig. 2). HIF-1α regulates a variety of physiologi-
cal processes, including metabolism, angiogenesis, and cell 
proliferation [64–66]. HIF-1α was recently observed to be 
increased in the hippocampus of patients with temporal lobe 

Fig. 2  The potential role of 
SARS-CoV-2 in the progression 
of epilepsy by hyper-activating 
the P2X7 receptor. In addition 
to NLRP3 activation contrib-
uting to severe inflammation 
response and pyroptosis, SARS-
CoV-2 mediated hyper-activa-
tion of P2X7 receptor leads to 
ectopic stimulation of HIF-1α 
and its down-stream targets 
mainly glycolytic enzymes that 
facilitate the virus replication 
and subsequently, more epilepsy 
complications. On the other 
hand, during P2X7 receptor 
hyperactivation, released storm 
Ca2 + leads to mit-ROS which 
itself contributes to more stimu-
lation of HIF-1α and an increase 
in expression of P2X7R, Sp1, 
glycolytic enzymes, GLUTs, 
and SURI-TRPM4. P2X7R 
inhibitors can potentially be 
used to inhibit P2X7R hyper-
activation in epileptic patients 
with COVID-19 to block these 
processes
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epilepsy as well as in animal models [67, 68], showing that 
HIF-1α plays a crucial role in changing hippocampal struc-
ture during epilepsy. Furthermore, it revealed that HIF-1α 
promotes apoptosis of hippocampal neurons and expression 
of TNF-α during epilepsy [69, 70], as well as apoptosis in 
other cells [62]. Jiang et al. found that mRNA and protein 
levels of HIF-1α in epileptic brain tissues were significantly 
greater than in control subjects [71].

Besides that, to replicate and spread quickly and effi-
ciently, viruses alter the metabolism of host cells. A good 
example would be the enhanced uptake of nutrients such as 
glucose in order to maintain metabolic signaling, namely 
aerobic glycolysis, which is the primary metabolic path-
way for glucose and its byproducts for biosynthesis [42]. 
Krishnan et al. determined that glycolysis is crucial  for 
the replication of the virus, and interfering with these meta-
bolic pathways led to a substantial decrease in virus prolif-
eration. Accordingly, they hypothesized that SARS-CoV-2 
results in toxic metabolite efflux and plays a role in dis-
ease severity by utilizing and rewiring pathways governing 
central carbon metabolism. Their recent studies have also 
shown that SARS-CoV-2, like hypoxic condition, affects 
phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target 
of rapamycin (mTOR) signaling as well as HIF-1α signal-
ing in infected cells, resulting in up-regulation of glucose 
transporters (GLUTs), glycolysis enzymes, and subsequently 
glycolysis hyper-activation [72].

According to recent studies, human cell lines infected 
by SARS-CoV-2 express high levels of HIF-1α and inflam-
matory cytokines [73]. So, COVID-19 pathogenesis may 
be influenced by HIF-1α as it is also involved in glycolysis 
and the inflammatory response [74, 75]. Recently, it has 
been suggested that the ORF3a protein of SARS-CoV-2 
can stimulate HIF-1α production by damaging mitochon-
dria and increasing mitochondrial reactive oxygen species 
(Mito-ROS). Consequently, HIF-1α promotes viral infection/
replication and aggravation of inflammatory responses [73, 
76]. In ROS production, Fenton and Huber-Weiss reactions 
play a crucial role. When ferrous iron  (Fe2+) reacts with 
hydrogen peroxide (H2O2), Fenton's reaction causes the for-
mation of ferric iron  (Fe3+) and hydroxyl radicals. In high 
concentrations, O2 and H2O2 can trigger the Haber–Weiss 
reaction to produce highly reactive species such as hydroxyl 
radicals, which have a great affinity for guanine in DNA and 
the nucleotide pool, resulting in the formation of 8-oxo-dG 
[77]. In both chronic and acute epilepsy models, it has been 
demonstrated that the level of 8-hydroxy-2 deoxyguanosine 
(8-oxo-dG) increases when seizures occur [78]. On the other 
hand, SUR1-TRPM4 channels are upregulated in response 
to HIF-1α activation. This channel has also been shown to 
be upregulated during acute status epilepticus and may con-
tribute to seizures by increasing sodium conductivity [79] 
(Fig. 2). There is an Abcc8 promoter region where Sp1, a 

member of a damage-activated transcription factor family, 
might bind and potentially upregulate this ion channel. The 
Sp1 can also be regulated by HIF-1α since the promoter 
region of Sp1 contains an HRE region [80].

In addition, in a hypoxia-independent manner, P2X7-
mediated upregulation of HIF-1α and ischemic tolerance 
was reported after ischemic insult in astrocytes, so P2X7 
modulation reduced HIF-1α [81]. In fact, activated P2X7 
receptors upregulate HIF-1a via activation of PI3K/Akt/
mTOR signaling [46, 82–85]. On the other hand, it has also 
indicated that P2X7 receptor-dependent HIF-1α upregula-
tion has a positive effect on the expression of P2X7 receptors 
in the hypoxic microenvironment as a cyclic pathway [46, 
86–88]. Moreover, Over-produced Sp1 mediated by HIF-1α 
binds to the CG-rich binding site of the P2X7R promoter in 
neuronal cell lines and has been related to epileptic crises 
[89]. So, we hypothesize that undesirable conditions, such as 
metabolism reprogramming, mitochondrial damaging/dys-
function, and increasing sodium conductivity, occurring in 
epilepsy are governed by hyper-activation of P2X7 receptors 
and their downstream factors, HIF-1α, that could be severed 
by SARS-CoV-2.

Conclusion and future directions

The evidence regarding the interactions between COVID-
19 and epilepsy needs to be kept up to date daily by clini-
cians. Also, further investigation is needed into the molec-
ular signaling pathways of COVID-19 on epileptogenesis. 
Glycolysis induced by HIF-1α up-regulation plays a criti-
cal role in epileptogenesis and virus replication. Hence, 
metabolic disruption of these processes can hinder SARS-
CoV-2 replication and epileptogenesis/seizures associated 
with COVID-19. In addition, it is known that P2X7 recep-
tor hyper-activation is associated with an increase in the 
severity of epilepsy and seizures. Everything considered 
we hypothesized that there might be a link between P2X7 
receptor hyper-activation following SARS-CoV-2 infection 
and the occurrence of epilepsy/seizures. We also propose 
that the antagonists of P2X7 receptors might be considered 
as a promising strategy for the prevention or treatment of 
neurological complications in COVID-19 patients suffer-
ing from epilepsy or seizures. However, further investiga-
tions are required in order to identify the role of stimu-
lated HIF-1α and hyper-activated P2X7 receptors in the 
neuropathies of patients with epilepsy during or following 
COVID-19 infection.
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