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	e cardiovascular system ensures the delivery of oxygen and nutrients to all cells, tissues, and organs. Under extended exposure
to reduced oxygen levels, cells are able to survive through the transcriptional activation of a series of genes that participate in
angiogenesis, glucose metabolism, and cell proliferation. 	e oxygen-sensitive transcriptional activator HIF-1 (hypoxia-inducible
factor-1) is a key transcriptional mediator of the response to hypoxic conditions. 	e HIF-1 pathway was found to be a master
regulator of angiogenesis.Whether the process is physiological or pathological, HIF-1 seems to participate in vasculature formation
by synergistic correlations with other proangiogenic factors such as VEGF (vascular endothelial growth factor), PlGF (placental
growth factor), or angiopoietins. Considering the important contributions of HIF-1 in angiogenesis and vasculogenesis, it should
be considered a promising target for treating ischaemic diseases or cancer. In this review, we discuss the roles of HIF-1 in both
physiological/pathophysiological angiogenesis and potential strategies for clinical therapy.

1. Angiogenesis

	e circulatory system is the 
rst biological system that is
established during mammalian development [1]. Vessel for-
mation occurs via only two basicmechanisms: vasculogenesis
and angiogenesis [2]. During embryonic development, the
primary vascular plexus is formed by vasculogenesis. 	is
phenomenon involves de novo blood vessel formation from
precursor cells called angioblasts (precursors of endothelial
cells), whereas angiogenesis is the process by which blood
vessels are formed from preexisting vessels. 	is process
involves the remodelling of blood vessels into the large and
small vessels that are typical for networks containing arteries,
capillaries, and veins [3, 4]. Angiogenesis occurs in adult
organisms and in embryos during development [3].

Angiogenesis consists of several basic steps. Brie�y, bio-
logical signals such as hypoxia, ischaemia, and/or blood
vessel damage upregulate the expression of proangiogenic
growth factors that activate their receptors [5, 6]. Vascular
permeability increases in response to VEGF, thereby allowing
the extravasation of plasma proteins that form a primitive

sca�old for migrating endothelial cells [7]. Angiopoietin-
1 and angiopoietin-2 (Ang-1 and Ang-2) exert antagonistic
functions during vessel development. Ang-1, which is a
known natural inhibitor of vascular permeability, protects
against plasma leakage, whereas Ang-2 is involved in vessel
destabilisation via the detachment of smooth muscle cells
and the promotion of permeabilisation [8, 9]. Subsequently,
matrix metalloproteinases (MMPs) enhance angiogenesis
through the degradation of matrix components [10]. Pro-
liferating endothelial cells migrate to distant sites and then
assemble as a solid cord that subsequently forms a lumen
[11]. Integrins �� promote endothelial cell adhesion and
migration, whereas VE-cadherin increases cell survival and
promotes endothelial cell adhesion [12–14]. Once the vessels
are formed, pericytes and smooth muscle cells surround the
newly created capillaries to stabilise the walls and to prevent
leakage. Other factors such as Ang-1, PDGF-BB (platelet-
derived growth factor BB), and PDGFR (platelet-derived
growth factor receptor) participate in thematuration of blood
vessels [8, 15]. Further expansion of the lumen diameter is
called arteriogenesis [11].

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 549412, 13 pages
http://dx.doi.org/10.1155/2015/549412



2 BioMed Research International

Angiogenesis occurs in physiological states such as
embryonic development, wound healing, or vessel penetra-
tion into avascular regions and in pathological states such
as solid tumours formation, eye diseases, or chronic in�am-
matory disorders such as rheumatoid arthritis, psoriasis,
and periodontitis [16, 17]. Pathophysiological angiogenesis
exhibits di�erences in molecular pathways in comparison
to physiological angiogenesis. Mutations in oncogenes and
tumour suppressor genes and disruptions in growth factor
activity play crucial roles during tumour angiogenesis [17].
	e activation of the most prominent proangiogenic factor
VEGF might be due to physiological stimuli such as hypoxia
or in�ammation or due to oncogene activation and tumour
suppression function loss [18, 19]. Additionally, physiological
angiogenesis such as that which occurs during embryonic
development or wound healing seems to be dependent on
VEGF signalling, whereas tumour angiogenesis adopts the
ability to shi� its dependence from VEGF to other proan-
giogenic pathways, for example, through the recruitment of
myeloid cells and the upregulation of alternative vascular
growth factors (PlGF and FGF, 
broblast growth factor) [17].
Moreover, tumour vessels are distinct from normal vascula-
ture because they are disorganised and tortuous. Many mor-
phological and functional di�erences exist between normal
and tumour vasculature. For instance, tumour vessels are
leakier than normal vessels, and endothelial cells growing
within tumours carry genetic abnormalities [20, 21]. Elucidat-
ing the molecular mechanism of pathological angiogenesis
might lead to the identi
cation of potential therapeutic
targets.

Angiogenesis is a multistep process that requires the
involvement ofmany biological signals and stimuli regardless
of whether it is a physiological or pathological action. Proan-
giogenic factors are activated in response to some physical
signals. Blood vessel damage, infarction, and blood �ow
reduction lead to decreases in O2 supply [11]. 	is state is
called hypoxia, which is a potent angiogenic trigger that
stimulates proangiogenic factor activity.

2. Hypoxia

2.1. O2 Homeostasis. Constant oxygen supply is essential for
proper tissue function, development, and homeostasis. 	us,
the vasculature network plays a crucial role in delivering oxy-
gen particles (O2), nutrients, and other molecules within the
entire human body [22]. Signi
cantly, the 
rst physiological
system that becomes functional during mammalian embry-
onic development is the circulatory system. Governing O2
homeostasis in tissues by supplying an oxygen concentration
adequate for the demand generated by the metabolic outputs
of the tissue is essential. Oxygenic balance can be upset by
rapid cellular division during embryonic development, by
tumour growth, or by vasculature dysfunction due to vessel
occlusion or rupture [23]. Notably, normal physiological O2
concentrations vary greatly from normal oxygen tension in
the air depending on the type of tissue. For instance, arterial
blood has a normal pO2 of 14%; myocardium, 10%; and
skeletalmuscle, 5%. In contrast, the natural pO2 levels of bone
marrow, thymus, and cartilage are at or below 1% [24, 25].	e

state when the O2 level decreases relative to physiological lev-
els (characteristic for particular tissues) is called hypoxia [1].

2.2. Hypoxia-Inducible Factor-1. Adaptation to low oxygen
tension (hypoxia) in cells and tissues requires the acti-
vation of several genes that participate in angiogenesis,
cell proliferation/survival, glucose and iron metabolism. In
eukaryotic cells, hypoxia-inducible factor-1 (HIF-1) is a pri-
mary transcriptional mediator of the hypoxic response and
master regulator of O2 homeostasis [26]. Hypoxia-inducible
factor-1 was 
rst discovered as a transcription factor that
regulates erythropoietin (EPO) expression in response to low
oxygen levels in the blood [27, 28]. HIF-1 consists of two
di�erent subunits, � and � (also known as aryl hydrocarbon
nuclear receptor translocator (ARNT)); both subunits are
members of the basic helix-loop-helix Per-Arnt-Sim (bHLH-
PAS) transcription factor family [29, 30]. PAS and bHLH
motifs are required for heterodimerisation between the HIF-
1� and HIF-1� subunits [31]. Additionally, the bHLH domain
of the HIF-1�/ARNT dimer is essential for DNA binding
on hypoxia response elements (HREs) with the consensus
sequence (G/ACGTG) in the promoters or enhancers of
target genes [32]. Transcriptional activation and interactions
with coactivators (such as CBP/p300) of HIF-1� aremediated
by two domains, that is, C-TAD andN-TAD, which are on the
C-terminus of the protein [33–35]. HIF-1� is a constitutively
expressed subunit, whereas HIF-1� is translated continuously
and degraded subsequently through ubiquitination under
normoxic conditions [36, 37].	us far, three isoforms ofHIF-
� have been discovered (Figure 1(a)), that is, the previously
discussed subunit HIF-1� and two other subunits, HIF-2�
(also called endothelial PAS protein (EPAS)) and HIF-3�
(IPAS). 	e second isoform is expressed constitutively in the
endothelium, lung, and cartilage and shares 48% amino acid
sequence identity with HIF-1�. 	e third protein, HIF-3�,
also called inhibitory PAS (IPAS), is a negative regulator of
HIF-1 that dimerises with the HIF-1� subunit and prevents
its DNA-binding activity. 	e entire set of HIF-� subunits
dimerises with ARNT and binds to HREs [38–40].

Under extended exposure to hypoxic conditions, HIF-
1� is expressed as long as a balance between O2 supply
and usage in tissues cannot be reached [36, 37]. When
oxygen tension is su�cient, de novo synthesised cytoplasmic
HIF-1� is hydroxylated by a family of prolyl hydroxylase
enzymes (PHDs) on proline 402 and 564 residues located
within ODDD (O2-dependent degradation domain) [41, 42].
	e hydroxylation of the abovementioned prolines is the
key mechanism of negative regulation of HIF-1� activity
and results in the binding of the von Hippel-Lindau (VHL)
E3 ligase complex, which ubiquitinates HIF-1�, targeting
it to proteasomal degradation [43–45]. 	e second major
mechanism that modulates HIF-1� activity is the hydrox-
ylation of asparagine residue 803 (Asn803) in the C-TAD
domain. In this case, asparagine is hydroxylated under
normoxic conditions by factor inhibiting HIF-1 (FIH-1),
which prevents the interaction of HIF-1� within CBP/p300
(CREB-binding protein/E1A binding protein p300) [46–49].
Hydroxylases (PHDs and FIH-1) are strictly Fe(II)- and
2-oxoglutarate-dependent dioxygenases that are activated
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Figure 1: Schematic representation of HIF-� gene structures andDNA binding. (a) HIF-1� andHIF-2� contain the following domains: a nuclear
localisation domain (NLS), DNA binding and dimerisation domains (bHLH/PAS), oxygen-dependent degradation domain (ODDD), and
cofactor interaction and transcriptional activity domains (N-TAD/C-TAD). HIF-3� lacks a C-TAD domain. NLS: nuclear localisation signal;
bHLH: basic helix-loop-helix domain; PAS: Per-ARNT-Sim motif; ODDD: oxygen-dependent degradation domain; N-TAD: N-terminal
transactivation domain; C-TAD: C-terminal transactivation domain. (b) Dimerisation of HIF-1� with HIF-1� under hypoxic conditions
results in the formation of the HIF-1 transcription factor, which binds to hypoxia response elements (HREs) and activates the transcription
of O2-dependent genes (according to [134]).

only in the presence of molecular oxygen. Under hypoxic
conditions, substrates and coactivators of hydroxylation such
as O2, Fe(II), and 2-oxoglutarate become limited, which leads
to the attenuation of HIF-1� hydroxylation [50, 51]. HIF-1�
accumulates in the cytosol and is subsequently translocated
into the nucleus where it dimerises with the HIF-1� subunit.
	e HIF-1�/� dimer binds to HREs that are located within
O2-regulated genes (Figure 2) [34, 35]. HIF-1 target gene
members include a stress response gene family that mediates
the adaptation of cells/tissues to chronic or acute hypoxia; this
family includes glucose transporters, glycolytic enzymes, and
angiogenic and haematopoietic growth factors [52].

2.3. HIF-1 Activity and Target Genes. Recently, HIF-1 has
been shown to regulate more than 2% of genes in vascular

endothelial cells either directly or indirectly [53]. 	e mod-
ulation of cell responses is followed by the transcriptional
activation of target genes by theHIF-1�/� dimer (Figure 1(b))
[54, 55]. For example, hypoxia upregulates the expression of
erythropoietin (EPO), which is required for red blood cell
production.	e generation of new erythrocytes increases the
delivery of oxygen to tissues to reach O2 homeostasis [56].
Additionally, low oxygen levels in�uence glucosemetabolism
in cells. Under hypoxic conditions, cells generate only 2
ATP molecules by oxygen-independent glycolysis instead of
38 ATP molecules by the oxygen-dependent tricarboxylic
acid cycle (TCA) under normoxic conditions [57, 58]. To
maintain the energetic balance under hypoxic conditions,
cells increase their ability to produce ATP by increasing
glucose uptake via the enhancement of glycolytic enzyme and
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Figure 2: HIF-1� under normoxic and hypoxic conditions. In the presence of molecular oxygen, 2-oxoglutarate, and Fe2+, HIF-1� is
hydroxylated on proline 402 and 564 residues located within ODDD (O2-dependent degradation domain) by prolyl hydroxylase enzymes
(PHDs). Hydroxylation results in the binding of the von Hippel-Lindau (VHL) E3 ligase complex, which ubiquitinates HIF-1�, targeting it
to proteasomal degradation. 	e hydroxylation of the asparagine residue prevents CBP/p300 binding to HIF-1�. Under hypoxic conditions,
substrates and coactivators of hydroxylation such as O2, Fe(II), and 2-oxoglutarate become limited, which leads to the attenuation of HIF-
1� hydroxylation. HIF-1� accumulates in the cytosol and is subsequently translocated into the nucleus where it dimerises with the HIF-1�
subunit. 	e HIF-1�/� dimer binds to HREs and regulates target gene expression.

transporter expression [59–61]. Furthermore, cell prolifera-
tion and survivalmay be enhanced under hypoxic conditions.
Factors such as IGF-2 (insulin growth factor-2) and TGF�
(transforming growth factor) are upregulated through HIF-
1 activity [62, 63]. Additionally, myoblasts cultured under
hypoxic conditions show increased proliferation compared
to cells maintained under normoxic conditions. Myogenic
gene expression analysis revealed that the genes MyoD and
Myf5 (both involved in myogenic cell proliferation and
di�erentiation) were upregulated in hypoxic cells, whereas
no signi
cant in�uence of myogenic gene expression was
observed in normoxic cells [64].

3. Hypoxia-Induced Angiogenesis

3.1. Physiological Vasculogenesis and Angiogenesis under Hyp-
oxic Conditions. Vasculogenesis is a characteristic embryonic
process that involves de novo blood vessel formation and that
leads to establishing a primary vascular plexus. O2 tension

plays a crucial role in organogenesis and vasculogenesis
during embryonic development [1]. During the 
rst stage
of embryogenesis, before the circulatory system develops,
the oxygen tension is relatively low and does not exceed
3% [65, 66]. 	e developing embryo requires an increase in
the oxygen level, which leads to the formation of primary
vessels from angioblasts. Because the uterine environment is
hypoxic it is thereby obvious that hypoxiamay be the primary
stimulus of vessel formation [3, 4]. Hypoxia also stimulates
EC (endothelial cell) behaviour. Under in vitro conditions,
HIF-1� promotes the arterial di�erentiation of endothe-
lial progenitor cells (EPCs) over venous di�erentiation by
regulating the expression of genes that inhibit the venous
speci
cation factor Coup-TFII (Hey2 and delta-like ligand 4
(DII4)) [67]. In contrast, HIF-1� enhances the di�erentiation
of hemangioblasts frommesodermal progenitors [68].Mouse
model studies have demonstrated the participation of both
HIF-1 dimer subunits in vasculogenesis [69, 70]. For instance,
HIF-1�- orHIF-1� (ARNT) de
cientmouse embryos showed
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aberrant placental architecture with fewer foetal blood vessels
[71–73]. Additionally, a lack of the HIF-1� gene results in
defective vascular development in the yolk sac, branchial
arches, cranium, and somites [74, 75].	ese defects are lethal
for embryos at day 10.5. HIF-1 subunit de
ciencies markedly
decrease VEGF mRNA and protein expression, leading to
defects in blood vessel formation and neural fold termination
[70, 74, 75].

Current studies have indicated that hypoxia and HIF-
1 expression in adult organisms may contribute to angio-
genesis in the following ways: by transcriptionally activating
several angiogenic genes and their receptors (VEGF, PlGF,
PDGFB, ANGPT1, and ANGPT2) [76, 77]; by regulating
proangiogenic chemokines and receptors (SDF-1�, stromal
cell derived factor 1�, and S1P, sphingosine-1-phosphate, and
receptors CXCR4, C-X-C chemokine receptor type 4, and
S1PRs, sphingosine-1-phosphate receptors), thus facilitating
the recruitment of endothelial progenitor cells to the site
of hypoxia [78]; and by enhancing EC proliferation and
division (regulating genes involved in the cell cycle and DNA
replication) [53]. Summarising these 
ndings, we conclude
that HIF-1 can orchestrate the process of angiogenesis.

HIF-1 participates in every step of angiogenesis. Cross
activity between HIF-1 and proangiogenic factors is a basic
relationship during capillary formation under hypoxia. Every
step of the vessel formation cascade is supported by HIF-1.
Notably, vascular endothelial growth factor isoforms (VEGF-
A, VEGF-B, VEGF-C, and VEGF-D) are the primary factors
that participate in angiogenesis [79], and angiogenesis ini-
tiated by hypoxia and by HIF-1 is o�en VEGF-dependent
primarily because HIF-1 is a master stimulator of vascular
endothelial growth factor. 	e sprouting of new vessels is
a complex process that involves a wide range of proangio-
genic factors and their receptors. Under hypoxic conditions,
HIF-1 accumulation upregulates the principal proangiogenic
factor VEGF directly [80, 81]. VEGF activity induces the
expression of Flt-1 (fms-related tyrosine kinase) and KDR
(kinase insert domain receptor) receptors [82, 83]. As long
as the oxygen balance is disrupted, VEGF will bind its
receptors and stimulate capillary outgrowth. Additionally,
VEGF is known as a factor that enhances the expression
of other proangiogenic factors such as PlGF and FGF. We
can assume that when the blood �ow is su�cient to supply
oxygen to cells and tissues, HIF-1� will be degraded, thereby
inhibiting VEGF gene and protein expression and stopping
the entire cascade of proangiogenic factors. In conclusion,
HIF-1 may regulate the expression of proangiogenic factors
either directly (by binding to HREs) or indirectly (cascade
e�ect) [84]. Aside from VEGFs, other factors participate
in angiogenesis, including placental growth factor (PlGF),
platelet-derived growth factor (PDGF), angiopoietins 1 and
2 (ANGPT1 and ANGPT2), andmetalloproteinases (MMPs).
Receptors such as Flt-1, KDR, Tie 1, and Tie 2 that transduce
these signals and thereby maintain the cascade of new vessel
formation are also important. Analyses of proangiogenic
genes revealed the presence of HREs within the promoters
of some genes [85, 86].

As was mentioned above, angiogenesis is a multistep
process [87]. During the 
rst step, hypoxia and HIF-1

stimulate VEGF and their receptors directly, and the cascade
of new vessel creation begins. Second, the extracellular
matrix must be degraded by metalloproteinases to allow the
migrating endothelial cells to form tubes. Metalloproteinase
2 (MMP-2) expression has been shown to be enhanced
by HIF-1� [88]. Next, integrins �� (induced by HIF) [89]
stimulate endothelial cell proliferation and adhesion, and
HIF-1 controls EC behaviour. 	e Manalo group examined
the in�uence of hypoxia and HIF-1 on the endothelial cell
transcriptome. Microarray analysis demonstrated the upreg-
ulation of several genes that are responsible for the cell cycle
and DNA replication. Additionally, it was proven that ECs
cultured under low density and hypoxic conditions exhibit
increased proliferation. In conclusion, HIF-1 can stimulate
cell proliferation and division under hypoxia-induced angio-
genesis by transcriptionally regulating the genes involved
in the basic biological functions of cells [53]. Finally, the
last step of angiogenesis is vessel maturation, which involves
the recruitment of vascular supporting cells (pericytes and
smooth muscle cells) and the formation of the basement
membrane. In this case, HIF-2� is a primary enhancer of
genes that determine blood vessel stabilisation. For example,

bronectin is a component of the basement membrane,
and HIF-2� is involved in the upregulation of this gene
[90]. Considering these 
ndings, we can assume that HIF-1
regulates almost every step of capillary formation.

Increasing knowledge regarding the in�uence of HIF-
1 on angiogenesis has been applied to in vitro studies that
attempt to develop treatments for ischaemic diseases. For
example, the adenoviral transfer of HIF-1� and HIF-2� into
rabbit ischaemic limbs resulted in an increase in blood �ow
followed by induction of vessel sprouting. Additionally, these
capillaries were highly enlarged compared to those of rabbits
transduced with VEGF-A. As another consequence of VEGF
gene transfer, the newly formed vessels were leaky, and the
area of transfer was surrounded by oedema compared to
animals treated with AdHIF-1� and AdHIF-2� [91]. In turn,
in vivo studies demonstrated that the deletion of HIF-2� in
murine ECs caused VEGF-induced acute vessel permeability.
Furthermore, immortalised HIF-2�-de
cient ECs exhibited
decreased adhesion to extracellular matrix proteins and
diminished expression of 
bronectin, integrins, endothelin
B receptor, angiopoietin-2, and delta-like ligand 4 (Dll4)
[90]. Arti
cial hypoxia induced by CoCl2 (0.5mM) stimu-
lates angiogenic responses in SCAPs (stem cells from apical
papilla) cocultured with HUVECs (human umbilical vein
endothelial cells). Hypoxic conditions induced upregulated
HIF-1� and VEGF expression in HUVECs, whereas ephrin-
B2 gene was enhanced in SCAPs. Notably, this gene plays
a central role in heart morphogenesis and angiogenesis by
regulating cell adhesion and cell migration. Additionally,
synergistic e�ects between HIF-1, VEGF, and ephrin-B2 led
to an increase in the endothelial tubule number, vessel length,
and branching points [92].

In conclusion, hypoxia-induced angiogenesis is a com-
plex process that has been tested in both in vitro and in vivo
studies. Moreover, the application of HIF-1 therapy in phase I
clinical studies of critical limb ischaemia resulted in complete
recovery of the ischaemic region [93]. Increased knowledge
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of the role of HIF-1 in angiogenesis may provide promising
treatment methods for ischaemic diseases as partly described
in Section 4.1 of this paper.

3.2. �e E�ect of Hypoxia on Pathophysiological Angiogenesis
and the Role of HIF-1 in Tumour Angiogenesis. Low oxygen
tension has been linked with many pathophysiological disor-
ders and human diseases. Hypoxia is a component of tumour
development and metastasis, while angiogenesis is principal
for tumour growth and progression [94, 95]. Current studies
have suggested that in terms of malignant transformation the
activation of HIF-dependent angiogenesis in cancer occurs
in two basic ways: by hypoxic conditions prevailing in the
tumour cell mass or by genetic alterations caused by tumour
transformation, genetic disorders, or molecular interactions
that stimulate HIF activity, irrespective of oxygen tension.
Undeniably, HIF plays a critical role in stimulating angio-
genesis. However, notably, proangiogenic activity is directly
linked with HIF-dependent VEGF activation, which results
in an “angiogenic switch” in growing tumour masses [96].

Hypoxia is best characterised as an HIF activator. When
intensively proliferating cells form a solid tumour, the balance
between oxygen supply and demand is impaired; therefore,
hypoxic environments (intratumoural hypoxia) prevail in
growing cell masses. 	is prevalence is the reason why
newly activated HIF-1� is not ubiquitinated and targeted to
proteasomal degradation. Accumulating HIF-1 upregulates
the expression of a number of proangiogenic genes including
VEGF and their receptors Flt-1, Flk-1, Ang-1, Ang-2, and Tie-2
receptor, and all of these genes are essential for sprouting new
vessels. Among these factors, VEGF is considered a primary
e�ector of tumour angiogenesis. Moreover, the expression
of VEGF can enhance the expression of other proangio-
genic factors and their receptors; thus, vessel outgrowth is
stimulated by multiple factors [95, 97]. 	is phenomenon,
which is called “angiogenic switching,” allows tumour cells to
induce angiogenesis, thereby stimulating tumour progression
by supplying oxygen and nutrients through the newly created
capillaries [96].

	e above-presented data suggest that hypoxia directly
enhances angiogenesis by promoting VEGF expression. In
contrast, HIF-1-dependent angiogenesis can be activated
by factors other than hypoxia. HIF-1� accumulation does
not always occur under low O2 tension. 	us, HIF-1 can
also be regulated by oxygen-independent mechanisms. 	e
malignant transformation of cells may cause a whole range
of genetic alterations that block the ubiquitination and
proteasomal degradation of HIF-1� [84, 98]. Carcinogenesis
is linked with aberrations in tumour suppressor genes also
known as antioncogene genes. 	e protein products of these
genes may control cell division, the cell cycle, or apoptosis.
When cells exhibit DNA damage, these proteins are respon-
sible for repressing the cell cycle or cell division or for pro-
moting apoptosis. 	e most important tumour suppressors
are pRb, p53, p21, and PTEN. Some evidence has indicated
that altered antioncogenes can enhance angiogenesis viaHIF-
dependent VEGF stimulation. For instance, deleting the p53
tumour suppressor gene in a human cancer cell line promotes
the neovascularisation and growth of tumours in mice. 	is

vascularisation was followed by increased HIF-1� levels and
augmented HIF-1-dependent transcriptional activation of
vascular endothelial growth factor (VEGF) [99]. Addition-
ally, mutation in the tumour suppressor gene PTEN led to
hypoxia-independent HIF-1� accumulation and to activated
HIF-1-mediated proangiogenic gene expression [100]. In
breast cancer, HER2 (receptor tyrosine kinase) signalling
induces HIF-1� protein synthesis rather than inhibiting its
degradation, thus manifesting a novel mechanism of HIF-1-
dependent VEGF expression regulation [101]. 	ese 
ndings
suggest that not only the hypoxic environment can lead
to angiogenesis in the case of malignant transformation.
Additionally, the genetic alteration of single gene may be
a cause of hypoxia-independent stimulation of HIF. Some
evidence has indicated that genetic diseases are involved
in the activation of HIF and thereby the stimulation of
angiogenesis. von Hippel-Lindau is a genetic disease that
predisposes individuals to benign and malignant tumours
[102]. 	is condition is de
ned by a mutation in the VHL
gene; thus, pVHL is not translated. 	is protein is a ligase
that ubiquitinates HIF-1� and causes its degradation by
proteasomes; thus, maintaining the balance of HIF-1 under
normoxia is crucial. A loss of pVHL allows HIF-1� to
dimerise with HIF-1� and to activate the transcription of a
number of proangiogenic genes, including VEGF. Patients
su�ering from this disease have frequent malignancies in the
central nervous system and/or retinal hemangioblastomas
or clear cell renal carcinomas [103–106]. However despite
homology between HIF-1� and HIF-2� there are evidences
that in VHL-defective renal cell carcinoma HIF isoforms
exhibit di�erent or opposite e�ect on gene expression and
proliferation of tumour cells [107]. Genetic predisposition is
not the only factor that can stimulate oxygen-independent
HIF angiogenesis involving VEGF gene activation. Cases
where some other molecules can stimulate HIF-dependent
angiogenesis have been demonstrated. As an example, we can
recall a phenomenon based on the feedback loop of HIF-
1 and a product of the anaerobic metabolic pathway. 	e
abovementioned mechanism that activates HIF-1-dependent
angiogenesis in cancer cells is the phenomenon called the
Warburg e�ect. Because anaerobic conditions prevail in
tumour cell masses, cancer cells produce energy primarily by
glycolysis. As a side e�ect, cells also produce high levels of
lactates and pyruvates. 	ese molecules have been reported
to increase HIF-1� accumulation and to regulate hypoxia-
inducible gene expression, thus promoting VEGF transcrip-
tion and translation and resulting in tumour angiogenesis
[108].

Strong interactions between HIF-1� and VEGF lead to
the rapid activation of the vessel formation cascade; however,
these vessels exhibit several dysfunctions. 	e process of
intratumoural vessel formation is a consequence of imbal-
anced activity of angiogenic activators and inhibitors. 	ese
vessels are not fully functional and exhibit structural abnor-
malities. A loss of stabilisation with pericytes and smooth
muscle cells and a lack of an arterial and venous phenotype
lead to leakage, poor blood �ow, and perfusion [109, 110].
However, these vessels are able to deliver nutrients and
oxygen to growing tumour cell masses. 	us, we can also
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conclude that tumours with vasculature are more sensitive to
various therapies. Due to vascularisation, chemotherapeutics
and inhibitors may be better distributed across tumour cells,
thus leading to the inhibition of malignant cell growth.

4. Hypoxia as a Potential Therapeutic Tool

Hypoxia-inducible factor-1 has been considered a potential
therapeutic target in many diseases. Predominantly, HIF-1
therapies focus on diseases common to developing countries
such as ischaemic disorders (including cardiovascular disease
and limb ischaemia) and cancer. Nonetheless, HIF-1 is also
a potential therapeutic agent for treating endometriosis and
blindness. Depending on the type of disease and the expected
therapeutic e�ect, HIF-1 therapies have di�erent approaches.
	e function of HIF-1 in therapies can be classi
ed into two
di�erent strategies: HIF-1 upregulation (ischaemia) and HIF-
1 inhibition (cancer and endometriosis) (Figure 3).

4.1. Activation of HIF-1-Dependent Angiogenesis in Ischaemic
Diseases. 	e neovascularisation of ischaemic regions is a
fundamental assumption of therapeutic angiogenesis. 	e
induction of capillary outgrowth for therapeutic purposes
is stimulated by the administration of angiogenic growth
factors or sequences that encode these proteins. 	us far,
multiple angiogenic factors such as VEGF, PlGF, FGF, and
PDGF have been applied in in vitro studies and in preclinical
and clinical trials [111–114]. However, therapies using only one
proangiogenic agent to initiate angiogenesis were shown to
be insu�cient; thus, these therapies may require supplemen-
tation with other factors that can stabilise new capillaries.
	erefore, hypoxia-induced angiogenesis may be a successful
strategy [115].HIF-1 regulates cell-type speci
c proangiogenic
factors and cytokines either directly or indirectly. Promoting
HIF-1 activity is essential in ischaemic diseases. 	us far,
HIF-1 therapies have been based on two approaches: the
administration of HIF-1�/2� or the induction of HIF-1
expression by the modi
cation/administration/inhibition of
molecules associated with HIF activity.

Basic strategies of therapeutic angiogenesis involve the
administration of proangiogenic factors using vectors, com-
bined therapies with stem cells or fusion/recombinant pro-
teins. Hypoxia-inducible gene transfer led to the enhance-
ment of angiogenesis in both myocardium and ischaemic
skeletal muscles. Additionally, AdHIF-1� and AdHIF-2�
injection did not induce tissue oedema in contrast to regions
treated with AdVEGF. In conclusion, HIF application in
this case resulted in the formation of stable and mature
vessels compared to VEGF treatment, where the newly
formed vessels were leaky [91]. To prevent oxygen-dependent
degradation of HIF-1�, attempts to modify this subunit were
made. An alternative approach of applying AdCA5 aden-
ovirus encoding a constitutively active form of the HIF-1�
subunit due to a deletion and a point mutation in the region
responsible for O2-dependent degradation was proposed.
In a model of endovascular limb ischaemia, intramuscular
injection of AdCA5 improved the recovery of blood �ow
by stimulating both angiogenesis and arteriogenesis [116].

Furthermore, therapy with AdCA5 induced the upregulation
of several proangiogenic genes/proteins that are targets for
therapeutic angiogenesis in hindlimb and cardiac ischaemia
models, including FGF-2, hepatocyte growth factor, MCP-1,
PDGF-B, PlGF, SDF-1, and VEGF. Moreover, AdCA5 injec-
tion intomouse eyes enhanced neovascularisation inmultiple
capillary beds, including those not responsive to VEGF alone.
Due to the upregulation of PlGF and VEGF expression
a�er AdCA5 treatment, both genes acted synergistically,
which led to neovascularisation of the retina [117]. Combined
therapy using AdCA5 gene therapy and prolyl-4-hydroxylase
inhibitor dimethyloxalylglycine- (DMOG-) treated BMDACs
(bone marrow-derived angiogenic cells) acted synergistically
to increase the recovery of blood �ow a�er femoral artery
ligation, thereby preventing tissue necrosis. 	is synergistic
e�ect is due to AdCA5 enhancement of BMDAC homing,
whereas DMOG treatment increases the retention of gra�ed
cells in the ischaemic tissues. Another combined therapy
with modi
ed stem cells was applied in cerebral ischaemia.
Rat bone marrow-derived mesenchymal stem cells (BMSCs)
were infected with adenoviral particles containing consti-
tutively expressed HIF-1� due to mutations in proline 564
and asparagine 803 sites. Genetically modi
ed cells were
transplanted in a rat middle cerebral artery occlusion model
(MCAO). At 7 days a�er intervention, improved motor
function, reduced cerebral infarction, and increased VEGF
protein expression that led to revascularisationwere observed
[118]. 	e stabilisation and administration of HIF-1� may be
achieved by the construction of a fusion protein. For instance,
DNA-binding and dimerisation domains of HIF-1� were
fusedwith the transactivation domain of herpes simplex virus
(VP16). A plasmid vector encoding this structure was used
in a rabbit hindlimb ischaemia model. 	e administration
of HIF-1�/VP16 resulted in the improvement of blood �ow
in the ischaemic region as determined by an increase in the
number of blood vessels [119]. Additionally, using promoters
speci
c for particular cells or tissues, angiogenesis could
have occurred in the designated site. 	e construction of a
vector encoding O2-independent HIF-1� under the keratin
14 promoter (K14-HIF-1ΔODD) resulted in the upregulation
of HIF-1� in a skin. 	e activation of HIF-1� increased
skin capillary density. Moreover, the new vessels were not
leaky, and enhanced skin vascularity was not associated with
oedema compared to the capillaries that formed a�er K14-
VEGF therapy [120].

Another approach leading to HIF-1-dependent angio-
genesis is associated with the modi
cation/administration
of molecules that regulate HIF-1� activity. 	e stabilisation
of HIF-1� under normoxic conditions is focused on the
inhibition of prolyl hydroxylase activity. Asmentioned above,
PHDs require O2, Fe(II), and 2-oxoglutarate (2-OG) for their
enzymatic activity [50, 51]. 	e delivery of small molecules
such as an iron chelator (DFO) or 2-OG analogue (N-
oxalylglycine) may inhibit the enzyme activity [121, 122].
For instance, HIF-1 can be enhanced by the suppression
of prolyl hydroxylase activity using dimethyloxalylglycine
(DMOG).	e systemic administration of DMOG in amouse
model of hindlimb ischaemia results in the elevation of HIF-
1� protein expression, which leads to neovascularisation in
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Figure 3: Di�erent strategies in HIF-1� therapies. Depending on the type of disease and the expected therapeutic e�ect, di�erent approaches
are used in HIF-1 therapies: HIF-1 upregulation (ischaemia) to induce angiogenesis or HIF-1 inhibition to attenuate angiogenesis (cancer).
DMOG: dimethyloxalylglycine; DFO: 2-OG analogue (N-oxalylglycine); PR39: macrophage-derived peptide; AdHIF-1� and AdHIF-2�:
adenoviral vector; AdCA5: adenovirus encoding a constitutively active form of the HIF-1�; BMDAC: bone marrow-derived angiogenic cells;
HIF-1�/VP16: DNA-binding and dimerisation domains of HIF-1� fused with the transactivation domain of herpes simplex virus; K14-HIF-
1ΔODD: vector encoding O2-independent HIF-1� under the keratin 14 promoter. Silibinin: nontoxic �avonoid; topotecan: chemotherapeutic
agent that is a topoisomerase inhibitor; SAHA and FK228: histone deacetylase inhibitors; acri�avine, bortezomib; amphotericin B: anti-HIF
drugs.

the infarcted region [121]. 	en, capillary growth is followed
by HIF-induced VEGF and Flk-1 upregulation. A novel
strategy involves the preconditioning of rat bone marrow-
derived mesenchymal stem cells (BMSCs) using DMOG to
enhance their survival and therapeutic e�cacy a�er trans-
plantation into infarcted rat hearts. A�er DMOG treatment,

these cells exhibited enhanced expression of survival and
proangiogenic factors such as HIF-1�, vascular endothelial
growth factor, and glucose transporter 1.	us, the transplan-
tation of DMOG-treated BMSCs reduced heart infarction
size and promoted angiogenesis in the ischaemic region [123].
An alternative to the use of PHD inhibitor molecules is
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the administration of a molecule that stabilises HIF-1� under
normoxic conditions. PR39, which is a macrophage-derived
peptide, achieved this e�ect by inhibitingHIF-1� degradation
through the ubiquitin-proteasome system. 	e introduction
of the PR39 peptide resulted in a signi
cant increase in
HIF-1� protein levels irrespective of ischaemia or hypoxia.
	erefore, angiogenesis can be induced in the postinfarcted
myocardium of transgenic mice [124].

4.2. Inhibition of HIF-1-Dependent Angiogenesis in Cancer
�erapies. Cancer therapies are based on the targeted inhibi-
tion of proangiogenic factors. Current treatments are focused
on the inhibition of VEGF activity. Because of studies regard-
ing VEGF antiangiogenic therapy, patients were treated
with bevacizumab (VEGF inhibitor) or sunitinib (VEGFR2
inhibitor) [125]. Since the discovery that the HIF-1 pathway
regulates the activation of many proangiogenic factors in
tumours and may promote metastasis, the HIF-1� subunit
has been considered an attractive target for new cancer
therapeutics.	e inhibition ofHIF-1-dependent angiogenesis
involves the regulation of HIF-1� activity by molecules that
modulate HIF-1� transcription and transcriptional activity,
HIF-1� and HIF-1� dimerisation, HIF-1� protein translation,
HIF-1� DNA binding, and HIF-1� protein degradation [24,
126].

	us far, the Food andDrugAdministration has approved
several anti-HIF drugs. For instance, bortezomib and ampho-
tericin B functionally inhibit HIF-1�, thereby preventing
p300 recruitment by enhancing the interaction between
FIH-1 and the HIF-1� C-terminal transactivation domain
(C-TAD) [127, 128]. In contrast, silibinin is a nontoxic
�avonoid that is able to inhibit hypoxia-dependent HIF-1�
accumulation and to inhibit HIF-1 transcriptional activity
in HeLa and hepatoma cells [129]. Silibinin is also a potent
inhibitor of cell proliferation. Two other drugs, SAHA and
FK228, are histone deacetylase inhibitors that were found to
promote HIF-1� degradation by upregulating p53 and VHL.
	ese drugs have been successfully used in the United States.
HIF-1 activity might also be attenuated by previously used
chemotherapeutics such as anthracycline and doxorubicin,
which act by inhibiting HIF-1� DNA-binding activity, and
acri�avine, which prevents HIF subunit dimerisation [130,
131].

Clinical trials are presently focused on other drugs
that may attenuate HIF-1-dependent angiogenesis. Currently,
�avopiridol (Alvocidib) is in phase III clinical trials. 	is
synthetic �avonoid, which is derived from an alkaloid Indian
plant, was found to be a potent inhibitor of the transcription
of HIF-1� and of many other genes involved in cell cycle
arrest [132, 133]. Other clinical studies (phases I and II) are
being conducted with many other drugs that involve HIF-1
degradation, downregulation, or inactivation.
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