
© 2008 Kaur et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article 
which permits unrestricted noncommercial use, provided the original work is properly cited.

Clinical Ophthalmology 2008:2(4) 879–889 879

R E V I E W

Hypoxia-ischemia and retinal ganglion cell damage

Charanjit Kaur1

Wallace S Foulds2

Eng-Ang Ling1

1Department of Anatomy, Yong Loo 
Lin School of Medicine, National 
University of Singapore, Singapore; 
2Singapore Eye Research Institute, 
Singapore

Correspondence: Charanjit Kaur
Department of Anatomy, Yong Loo Lin 
School of Medicine, Blk MD10, 4 Medical 
Drive, National University of Singapore, 
Singapore 117597
Tel +65-65163209
Fax +65-67787643
Email antkaurc@nus.edu.sg

Abstract: Retinal hypoxia is the potentially blinding mechanism underlying a number of 

sight-threatening disorders including central retinal artery occlusion, ischemic central retinal 

vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia 

is implicated in loss of retinal ganglion cells (RGCs) occurring in such conditions. RGC death 

occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible 

factor-1α and its target genes such as vascular endothelial growth factor (VEGF) and nitric 

oxide synthase (NOS). Increased production of VEGF results in disruption of the blood retinal 

barrier leading to retinal edema. Enhanced expression of NOS results in increased production 

of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release 

in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of 

ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to 

initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation 

and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC 

loss. Excess production of proinfl ammatory cytokines also mediates cell damage. Besides the 

above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an 

imbalance between antioxidant- and oxidant-generating systems. Although many advances have 

been made in understanding the mediators and mechanisms of injury, strategies to improve the 

damage are lacking. Measures to prevent neuronal injury have to be developed.
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Introduction
The structural and functional integrity of the retina depends on a regular oxygen sup-

ply. Being one of the most metabolically active tissues, retina consumes oxygen more 

rapidly than other tissues (Cohen and Noell 1965) such as the brain (Anderson and 

Saltzman 1964; Ames 1992). The presence of a dual circulation (Osborne et al 2004) 

makes retinal oxygenation unique. The photoreceptors and the greater portion of the 

outer plexiform layer receive nourishment from the choriocapillaris indirectly whereas 

the inner retinal layers are supplied by the superfi cial and deep capillary plexuses 

formed by branches of the central artery of the retina. Inner layers of the retina are 

known to show highest sensitivity to hypoxic challenges (Janáky et al 2007), whereas 

the outer retina is more resistant to a hypoxic stress (Tinjust et al 2002).

Retinal hypoxia occurs in ocular conditions such as central retinal artery occlu-

sion and ischemic central retinal vein thrombosis. Hypoxia is also implicated in the 

development of glaucoma (Flammer 1994; Tielsch et al 1995; Chung et al 1999; Osborne 

et al 1999b; Costa et al 2003; Tezel and Wax 2004), diabetes (Linsenmeier et al 1998), 

and is thought to underlie many of the sight-threatening complications of diabetic eye 

disease including retinal and optic nerve head neovascularization. Systemic causes 

of retinal hypoxia include the cardiovascular effects of chronic obstructive airways 

disease, the ocular ischemic syndrome associated with arterial obstructive condi-

tions such as carotid artery stenosis (Brown and Magargal 1988) and Takayasu’s 

arteritis (Shelhamer et al 1985), hyperviscosity syndromes (Ashton et al 1963) or 

following trauma (Purtscher’s retinopathy; Purtscher 1912; Buckley and James 1997). 
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Retinal hypoxia associated with the above conditions is a 

common cause of visual impairment and blindness (Osborne 

et al 2004). Retinal ganglion cells (RGCs) have been reported 

to be particularly sensitive to acute, transient, and mild 

systemic hypoxic stress (Kergoat et al 2006). Loss of RGCs 

occurs in many ophthalmic conditions such as glaucoma 

and diabetes (Sucher et al 1997; Abu-El-Asrar et al 2004), 

hypoxia being implicated in such a loss (Wax and Tezel 

2002; Tezel and Wax 2004; Chen et al 2007). This review 

details some of the molecular and cellular mechanisms which 

may be involved in RGC death in ocular conditions associ-

ated with hypoxia-ischemia. A better understanding of the 

mechanisms causing hypoxic damage to RGCs may aid the 

development of therapies aimed at reducing blindness from 

retinal hypoxic-ischemic visual loss.

A number of systemic and cellular responses such as gly-

colysis, angiogenesis, vasodilation, and erythropoiesis enable 

the organisms to respond to hypoxia (Harris 2002). The neu-

ral tissue is capable of inducing protective mechanisms under 

hypoxic-ischemic conditions (Kitagawa et al 1990) which are 

induced within minutes and are of putative importance for 

limiting the damage. However, these protective mechanisms 

are lost within hours of the hypoxic-ischemic insult (Prass 

et al 2003) following which cell death and tissue damage 

occur. Transcriptional activator hypoxia-inducible factor-1α 

(HIF-1α) is a master regulator of cellular O
2
 homeostasis 

(Iyer et al 1998). Hypoxia is known to induce HIF-1α and 

its target genes (Bernaudin et al 2002) such as vascular 

endothelial growth factor (VEGF) and nitric oxide synthase 

(NOS) in many tissues. Overproduction of these factors has 

been implicated in neuronal death in hypoxic-ischemic con-

ditions. In addition, enhanced extracellular accumulation of 

glutamate and infl ammatory cytokines damage the neurons. 

Upregulated expression of HIF-1α, VEGF, and various 

isoforms of NOS has been reported in the retina following 

hypoxic injury (Kaur et al 2006) and in the glaucomatous 

retina (Tezel and Wax 2004).

Retinal ganglion cell death 
in hypoxia ischemia
RGC death has been reported to occur in many experimental 

studies using different methods to induce retinal ischemia 

(Adachi et al 1996; Goto et al 2002; Lafuente et al 2002; 

Wang et al 2002; Chidlow and Osborne 2003). Neuronal 

degeneration resulting from retinal hypoxia-ischemia, caused 

by oxygen and substrate deprivation, may be mediated by 

free oxygen radicals (Block and Schwarz 1997; Muller 

et al 1997; Szabo et al 1997), glutamate excitotoxicity 

(Louzada-Junior et al 1992; Osborne et al 2004; Kaur et al 

2006), infl ammation (Hayashi et al 1996) as well as disrup-

tion of the blood retinal barrier (Kuroiwa et al 1985; Kaur 

et al 2007).

Based on morphological, histochemical, and biochemical 

criteria, cell death has been classified as apoptotic 

or necrotic in hypoxic-ischemic conditions (Mehmet et al 

1994; Charriaut-Marlangue et al 1996a, 1996b; Chopp and 

Li 1996; Macaya 1996; Yue et al 1997; MacManus and 

Linnik 1997; Banasiak and Haddad 1998; Pulera et al 1998; 

Renolleau et al 1998; Nakajima et al 2000). In necrotic death, 

swelling of cell body, disruption of plasma membrane, and 

irregularly scattered condensation of nuclear chromatin 

occur (Dessi et al 1993; Gwag et al 1997; Sohn et al 1998). 

In apoptosis, on the other hand, nuclear condensation and 

contraction occurs early with the membrane and organelles 

remaining intact until the fi nal stages. Similar necrotic (Buchi 

1992; Joo et al 1999) and apoptotic changes in RGCs have 

been observed in experimental hypoxic-ischemic conditions 

(Buchi 1992; Joo et al 1996, 1999) as well as in elevated intra-

ocular pressure (Garcia-Valenzuela et al 1995; Quigley et al 

1995) and glaucoma (Kerrigan et al 1996) where ischemia is 

involved in retinal damage directly or indirectly.

Ischemia is known to induce several apoptosis-regulatory 

genes in cells. Upregulated expression of  Bax, a bcl-2 homo-

log that effects apoptosis in neurons destined to die, after 

global ischemia (Krajewski et al 1995; Chen et al 1996) and 

expression of antiapoptotic gene bcl-2 in neurons that survive 

ischemia (Shimazaki et al 1994; Chen et al 1997) has been 

reported suggesting that endogenously induced apoptosis-

regulatory genes may play a role in determining the fate of 

ischemic neurons. Caspases play a key role in cell death by 

apoptosis (Jacobson and Evan 1994). Among the caspases, 

caspase-3 is activated by many cell death signals and cleaves 

a variety of important cellular proteins (Jänicke et al 1998; 

Namura et al 1998). Caspase-3-like protease activation is 

likely to be relevant in neuronal apoptosis in ischemic injury 

(Fink et al 1998; Namura et al 1998). Caspase-2 and -3 

(Kurokawa et al 1999; Lam et al 1999) and Bax (Kaneda 

et al 1999) have been reported to be involved in retinal cell 

loss after ischemic insult.

Hypoxia-ischemia, retinal edema, 
and vascular endothelial growth 
factor
Hypoxia-ischemia underlies various blinding ocular condi-

tions such as diabetic retinopathy and may play a role in the 

wet form of age-related macular degeneration and in the visual 
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loss from retinal detachment (Tso 1982; Yanoff et al 1984; 

Marmor 1999; Bressler et al 2001; Davis and Blodi 2001; 

Jackson et al 2003). It is associated with fl uid accumulation 

in the extracellular spaces (vasogenic edema) or intracellulary 

(cytotoxic edema) in the neural retina (Yanoff et al 1984; 

Marmor 1999). The extracellular spaces in the inner retina 

consist of the narrow clefts between the tightly packed cellu-

lar elements (Hamann 2002). Fluid leaking out from damaged 

capillaries in the inner retina accumulates in the extracellular 

spaces displacing the retinal cellular elements and disrupting 

the normal anatomy of the neuronal connections (Hamann 

and La Cour 2005). Factors implicated in pathogenesis of 

macular edema are retinal ischemia, oxidative stress, and 

infl ammation (Bresnick 1983; Guex-Crosier 1999; van Dam 

2002; Miyake and Ibaraki 2002). Increased permeability of 

blood-retinal barrier (BRB) resulting in fl uid accumulation 

has been reported to contribute to retinal neuronal degen-

eration by compression (Cunha-Vaz and Travassos 1984; 

Antcliff and Marshall 1999; Marmor 1999; Reichenbach et al 

2007). Excess production of VEGF, nitric oxide (NO) and 

aquaporin-4 in hypoxic-ischemic insults causes dysfunction 

of the BRB in the inner retina resulting in serum leakage 

into the retinal tissues (Marmor 1999; Kaur et al 2007) and 

retinal edema (Hamann and La Cour 2005). In addition to 

an increase in vascular permeability, hypoxia has also been 

correlated with endothelial cell death, leukocyte plugging of 

vessels, and microaneurysms (Linsenmeier et al 1998).

VEGF, also known as vascular permeability factor 

(Senger et al 1983), is a key player of angiogenesis in health 

and disease (Ferrara 2001; Carmeliet 2003). VEGF binds to 

two tyrosine kinase receptors, VEGFR-1 or fms-like tyrosine 

kinase Flt-1 and VEGFR-2 or fetal liver kinase receptor Flk-1 

to exert its actions (De Vries et al 1992; Quinn et al 1993; 

Neufeld et al 1999; Shibuya 2001). VEGF is inducible by 

hypoxia-ischemia in vitro and in vivo and has been suggested 

as a likely candidate for the development of vasogenic brain 

edema (Schoch et al 2002). A 3–12-fold increase in VEGF 

gene expression has been reported in hypoxia (Ikeda et al 

1995; Levy et al 1995; Stein et al 1995).

Increased expression of VEGF has been reported in 

hypoxic brains (Schoch et al 2002; Kaur et al 2006), and 

astrocytes were identifi ed as the cells expressing VEGF 

(Kaur et al 2006). Upregulation of endogenous VEGF in 

astrocytes in hypoxia-ischemia is believed to interact with 

receptors for VEGF on the vessels and contribute to the dis-

ruption of blood-brain barrier (BBB) resulting in vascular 

leakage (Zhang et al 2000, 2002). Inhibition of VEGF is 

known to reduce the BBB permeability (Zhang et al 2000). 

Similar to the brain, increased production of VEGF and 

enhanced permeability of BRB was recently reported in 

the hypoxic retina and inhibition of VEGF production 

with melatonin reduced BRB permeability (Kaur et al 

2006, 2007).

In addition to its role in increasing vascular permeability, 

VEGF has also been described as an infl ammatory media-

tor which contributes to infl ammatory responses observed 

in cerebral ischemia (Croll et al 2004). The disruption of 

BBB by VEGF allows contact of normally sequestered 

central nervous system antigens with blood-borne immune 

mediators altering the immune privileged status of the brain 

(Proescholdt et al 1999). VEGF enhances the adhesion of 

leukocytes to vascular walls and increases intercellular cell 

adhesion molecule-1(ICAM-1) and vascular cell adhesion 

molecule-1 (VCAM-1) expression in the brain and retina 

(Melder et al 1996; Lu et al 1999; Min et al 2005). Overex-

posure of normal neural tissue to VEGF has been shown to 

enhance ICAM-1 and major histocompatibility complex class 

I and II expression (Proescholdt et al 2004). Many changes 

induced by diabetes such as ICAM-1 up-regulation, leukocyte 

adhesion and increased vascular permeability in the retina 

(Murata et al 1996; Amin et al 1997) have been reported to 

occur in nondiabetic retinas with intravitreous VEGF injec-

tions (Tolentino et al 1996; Lu et al 1999) supporting the 

role of VEGF in infl ammation. Suppression of infl ammation 

in retina after VEGF inhibition has been reported (Joussen 

et al 2002).

Intracellular edema has been reported to occur in isch-

emia through damage to the cell membrane ionic channels 

(Marmor 1999). Neuronal and/or glial swelling has been 

considered as a component of retinal edema. The neuronal 

cells have been reported to become edematous during isch-

emia and degenerate eventually in the post-ischemic period 

(Johnson 1974).

Hypoxia-ischemia and nitric oxide
NO is known to play an important role in the pathogenesis of 

neuronal injury during hypoxia-ischemia. NO is synthesized 

by the enzyme NOS from L-arginine. NOS exists in three 

isoforms: neuronal (nNOS) and endothelial (eNOS) which 

are constitutively expressed and inducible (iNOS). The 

activities of nNOS and eNOS are stimulated by increases in 

intracellular calcium whereas iNOS is calcium-independent, 

and NO generated from this isoform is known to mediate 

immune functions. Enhanced nNOS, eNOS, and iNOS 

expression has been reported in the retina in response to 

hypoxia (Kaur et al 2006).
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NO has been described to have neuroprotective and 

neurotoxic roles (Iadeacola 1997). NO produced by the 

eNOS isoform is a protective response as it maintains retinal 

perfusion in hypoxic-ischemic conditions (Toda et al 2007). 

Vasodilation occurring after hypoxic-ischemic episodes is 

mediated by eNOS (Bolanos and Almeida 1999) leading 

to increased blood fl ow. Blood vessels in retina showed 

enhanced expression of eNOS following a hypoxic insult 

(Kaur et al 2006). However, it has been proposed that besides 

its benefi cial effects of producing vasodilatation and increas-

ing the blood fl ow, eNOS is also involved in VEGF-induced 

vascular hyperpermeability (Fukumura et al 2001).

All three types of NOS are produced in the retina in 

hypoxic-ischemic conditions (Kaur et al 2006) and glial 

cells have been suggested as the major cell types produc-

ing them (Kobayashi et al 2000; Kashiwagi et al 2003). In 

addition to glial cells, infi ltrating leukocytes may also be an 

important source of iNOS production. The RGCs were also 

reported to express iNOS and nNOS in the hypoxic retina 

(Kaur et al 2006). NO production from nNOS and iNOS 

contributes to cytotoxicity resulting in cell death and axonal 

damage. Other than generation of free radicals, a number of 

pathways such as N-methyl-D-aspartate (NMDA)-mediated 

intracellular Ca2+ infl ux and CREB-mediated transcription of 

apoptotic proteins such as Bax, Bad, and Bcl-xl are triggered 

by NO resulting in neuronal death (Mishra et al 2002, 2006; 

Zubrow et al 2002a, 2002b). Increased expression of Bax 

but not Bcl-2 in hypoxic cerebral tissue thus increasing the 

Bax/Bcl-2 ratio in favor of hypoxia-induced apoptosis has 

been reported (Mishra et al 2004). In retinal ischemia, RGCs 

death has been reported to be due to involvement of iNOS as 

it has been observed that iNOS-positive leukocytes enter the 

ganglion cell layer and surround the RGCs and cause their 

degeneration which could be prevented with an inhibitor of 

iNOS (Neufeld et al 2002).

NO induces the proapoptotic cascade in hypoxic neural 

tissues by increasing phosphorylation of Bcl-2 (Mishra et al 

2004). NO-mediated inactivation of MAPK phosphatases 

has been described as a potential mechanism of activation 

of ERK and JNK which leads to phosphorylation of the 

antiapoptotic protein Bcl-2 (Mishra et al 2004). The anti-

apoptotic potential of phosphorylated Bcl-2 is lost due to its 

inability to heterodimerize with the proapoptotic protein Bax, 

resulting in Bax-mediated activation of caspases and initia-

tion of apoptosis (St. Clair et al 1997, Haldar et al 1996; Hu 

et al 1998). Other mechanisms by which NO contributes to 

cytotoxicity may be peroxynitrite-mediated oxidative dam-

age, DNA damage, and energy failure (Beckman et al 1990; 

Nguyen et al 1992; Zhang et al 1994; Gross et al 1996). 

This observation is supported by recent studies which have 

suggested that peroxynitrite produced by iNOS is a highly 

reactive oxidant capable of inducing injury to a number of 

cell types (Li et al 2005).

Hypoxia-ischemia and excitotoxicity
Excitatory amino acids have been reported to play an impor-

tant role in the development of hypoxic-ischemic retinal 

injury. Glutamate, the excitatory neurotransmitter in the 

retina, is released by photoreceptors, bipolar cells and gan-

glion cells and mediates the transfer of visual signals from 

the retina to the brain (Massey 1990). However, augmented 

release of glutamate and its accumulation in extracellular 

spaces in hypoxic-ischemic conditions leading to activation 

of glutamate receptors has been implicated in hypoxic/isch-

emic neuronal death (Benveniste et al 1984; Lu et al 1993). 

Glutamate neurotoxicity is considered as the underlying 

problem in retinal neuropathies and neurodegenerative condi-

tions such as glaucoma (Dreyer 1998). Elevation of extracel-

lular glutamate concentration in the retina has been shown 

to mimic hypoxia induced changes in the electroretinogram 

(Ikeda et al 1995). Over-activation of glutamate receptors due 

to excess glutamate accumulation in the retina can contribute 

to retinal dysfunction (Dreyer 1998; Pang et al 1999).

Glutamate exerts its action through ionotropic (amino-

methyl-propionic-acid [AMPA], NMDA, and kainate glu-

tamate receptors) and metabotropic receptors (Brandstätter 

et al 1998; Gründer et al 2001). The metabotropic glutamate 

receptors (mGluRs) have been grouped into three main 

classes, group I (mGluR1 and 5), Group II (mGluR2, 3), 

and Group III (mGluR 4, 6, 7, 8) according to their amino 

acid sequence, pharmacological properties and transduction 

mechanisms (Conn and Pin 1997). RGCs express ionotropic 

receptors (Hartveit et al 1994; Brandstätter et al 1998) as well 

as mGluRs (Hartveit et al 1995). Glutamate receptor-mediated 

damage has been reported to occur in glaucoma, central, and 

branch retinal arterial and retinal vein occlusions resulting in 

loss of retinal ganglion cells (Sucher et al 1997).

Neurotoxic effects of glutamate are reported to occur 

predominantly through activation of ionotropic glutamate 

receptors (GluR) (Levy et al 1991). NMDA receptors are 

highly permeable to Ca2+ (MacDermott et al 1986; Hollmann 

et al 1991; Rörig and Grantyn 1993), their activation resulting 

in an increase in the intracellular calcium levels (Siliprandi 

et al 1992; Sucher et al 1990, 1991, 1997). Ca2+ overload 

has been reported to be a central event in neuronal death 

during ischemia (Nicotera and Orrenius 1998; Sattler and 



Clinical Ophthalmology 2008:2(4) 883

Hypoxia and RGC damage

Tymianski 2001). Many cellular functions such as regulation 

of enzymes require calcium. Abnormal higher concentrations 

of calcium lead to inappropriate activation of enzymes such 

as proteases, nucleases, and lipases which are harmful to the 

cellular constituents, generate free radicals as well as cause 

mitochondrial failure which results in energy depletion and 

further free radical production (Dugan et al 1995).

Depolarization of neuronal membranes due to energy 

failure results in Ca2+ infl ux through the voltage-dependent 

Ca2+ channels followed by Ca2+-dependent glutamate release 

(Katsura et al 1994) which further increases the extracel-

lular accumulation of glutamate. Activation of ionotropic 

glutamate receptors also results in infl ux of Na+ and Cl− ions, 

inducing osmotic swelling. Glutamate acting via NMDA 

receptors activates nNOS (Garthewaite and Garthewaite 

1991) and the production of NO (Kiss and Vizi 2001). 

Expression of ionotropic glutamate receptors (GluR2/3 and 

NMDA) has been reported to be upregulated in the RGCs in 

hypoxic-ischemic conditions (Kaur et al 2006).

Glutamate has also been reported to induce and exac-

erbate cell death by activating group I mGluRs (Allen et al 

2001; Hilton et al 2006). Neuronal excitation and excito-

toxicity is thought to be potentiated by Group I mGluRs 

(Buisson and Choi 1995; Pin and Duvoisin 1995; Buisson 

et al 1996), possibly through their interaction with NMDA 

receptors (Fitzjohn et al 1996; Bordi and Ugolini 1999). It 

has been reported that mGluR5 are coexpressed with, and 

functionally coupled to, NMDA receptors and that activation 

of mGluR5 enhances NMDA responses in neurons (Jia et al 

1998; Awad et al 2000; Salt and Binns 2000) contributing to 

neuronal death (Bruno et al 2000).

Glutamate is also known to be involved in the production 

of infl ammatory cytokines such as tumor necrosis factor-α 

(TNF-α) (De et al 2005). Glutamate-induced activation of 

AMPA and NMDA receptors has been shown to enhance the 

production of TNF-α (Noda et al 2000; Matute et al 2001) 

and interleukin-1 β (IL-1β) (Hagan et al 1996) signifi cantly. 

Co-operation between glutamate receptors and infl amma-

tory cytokines may be one of the mechanisms involved in 

cell damage.

Glutamate toxicity also results in glutathione depletion 

and oxidative stress (Ratan et al 1994). Glutathione is a major 

cellular antioxidant which protects the cells against oxidative 

stress (Meister and Anderson 1983; Mizui et al 1992; Bobyn 

et al 2002). Increase in intracellular reactive oxygen species 

(ROS) generation in response to glutathione depletion has 

been reported in several studies (Coyle and Puttfarcken 1993; 

Tan et al 1998).

Removal of excess glutamate from the extracellular space 

by glutamate transporters is crucial to terminate glutamate 

excitotoxicty. Glutamate transporters are responsible for the 

removal of glutamate from the extracellular fl uid in the retina 

(Danbolt 2001). It has been suggested that excess glutamate 

accumulation in the extracellular spaces may result from a 

failure of the glutamate transporters, such as GLAST, in the 

vicinity of  RGCs (Harada et al 2007). Glutamate transporters 

have been described as necessary to prevent excitotoxic 

retinal damage and to synthesize glutathione and their 

defi ciency has been reported to result in RGC degeneration 

(Harada et al 2007).

Hypoxia-ischemia 
and reactive oxygen species
Hypoxia-ischemia results in perturbation of the cellular pro-

oxidant-antioxidant balance by accumulation of ROS, known 

as oxidative stress, which has been implicated as an important 

mechanism of cytotoxicity. In vitro studies have shown that 

ROS generation in hypoxic-ischemic conditions in neurons 

occurs from three sources: mitochondria generating an initial 

burst of ROS followed by a second phase of ROS generation 

due to xanthine oxidase activation and a third phase of Ca2+-

dependent ROS generation (Abramov et al 2007).

ROS are known to cause lipid peroxidation, protein 

oxidation, and DNA oxidation, which contributes to neuro-

degeneration (Hall and Braugher 1989; Chan 1994, 1996). 

ROS can also stimulate ischemic cells to secrete infl amma-

tory cytokines and chemokines which induce cell damage 

and disruption of BBB (Wang et al 2007). ROS have been 

reported to be cytotoxic to RGCs (Tezel and Yang 2004) 

causing necrotic cell death by direct oxidative damage to 

cellular constituents and apoptotic death by participating 

in the signal transduction pathway for apoptosis (Kortuem 

et al 2000; Levkovitch-Verbin et al 2000; Lieven et al 2003, 

2006; Nguyen et al 2003).

NO, a free radical is produced by the endothelial cells and 

serves as a vasodilator (Garthwaite et al 1988; Lamas et al 

1992; Southam and Garthwaite 1993; Iadecola et al 1994). 

However, NO, as mentioned above, can also be neurotoxic 

causing neuronal death in hypoxic and excitotoxic insults 

(Dawson et al 1991; Moncada et al 1991; Boje and Arora 

1992; Lees 1993). It has been shown that NO can react with 

the superoxide anion (O
2
-) to form peroxynitrite (OONO-) 

(Beckman et al 1990) which is neurotoxic (Lipton et al 1993). 

NO alone, even at high levels, has been reported as nontoxic 

to cortical neurons, but becomes neurotoxic after its reac-

tion with O
2
- to form ONOO- (Lipton et al 1993). In vitro 
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studies have shown that formation of OONO- increases the 

VEGF-induced permeability of retinal microvascular endo-

thelial cells (Marumo et al 1999) and tissue damage through 

DNA damage, lipid peroxidation, and reduced cellular anti-

oxidant defenses (Salgo et al 1995; Salvemini et al 1998).

Hypoxia-ischemia and infl ammation
Hypoxia is known to regulate expression of many genes mod-

ulating infl ammation (Hedtjärn et al 2004). An acute infl am-

matory reaction, characterized by increased expression of 

proinfl ammatory mediators (Szafl arski et al 1995; Bona et al 

1999), a rapid microglial/monocytic response (Ivako et al 

1996) and gliosis (Burtrum et al 1994), have been reported 

to be elicited in the brain by hypoxia-ischemia (Cowell et al 

2002). Many cell types including injured neurons have been 

reported as a major source of chemokines such as monocyte 

chemoattractant protein (MCP-1) (Ivako et al 1997) whereas 

expression of macrophage infl ammatory protein-α has been 

reported in monocytes and activated microglial cells (Cowell 

et al 2002) in hypoxic-ischemic brain injury. Chemokine 

receptors CCR2 and CCR5 have also been reported to be 

upregulated (Hedtjärn et al 2004). Chemokine expression 

may play a role in leukocyte recruitment and infi ltration 

in the inner retina, leading to RGC damage (Jo et al 2003). 

Leukocytes are known to play a central role in post-ischemic 

tissue damage (del-Zoppo et al 1991; Heinel et al 1994; 

Zhang et al 1994) by producing free radicals (Werns et al 

1985) and infl ammatory cytokines (Ghezzi et al 1991).

Hypoxia-ischemia is known to attract macro-

phages to hypoxic areas through expression of MCP-1. 

The hypoxia-activated macrophages and microglia, the 

immune effector cells in the retina, release TNF-α which has 

been reported as a triggering factor to activate production of 

interleukin-8 (IL-8), VEGF, or MCP-1 in retinal vascular 

cells and/or glial cells adjacent to microvessels (Yoshida et al 

2004). Expression of TNF-α and cyclooxygenase-2 (COX-2) 

was reported recently in the ischemic retina (Zheng et al 

2007). Several infl ammatory molecules including ICAM-1, 

TNF-α, IL-1β, iNOS, and COX-2 released by activated 

infl ammatory cells and glial elements play a major role in 

degeneration of retinal capillaries (Joussen et al 2004; Zheng 

et al 2007) and subsequently the RGCs.

Expression of adhesion molecules, ICAM-1 and 

VCAM-1, on the endothelial cells facilitating leukocyte 

adhesion and infi ltration into the areas of damage has been 

reported to be induced by TNF-α (Wong and Dorovini, 

1992; Hess et al 1994; McHale et al 1999). In vitro studies 

have shown that IL-1β and TNF-α induce ICAM-1 expres-

sion in endothelial cells (Feuerstein et al 1998). ICAM-1 is 

important for establishing adhesion of leukocytes before their 

movement across the endothelium into the tissue (Wang et al 

1994).

IL-1β and TNF-α may also be involved in transcriptional 

activation of the iNOS gene (Lopez-Figueroa et al 2000; 

Kadhim et al 2006). Endothelial cells of brain microvessels 

are known to express iNOS and produce large amounts of 

NO under infl ammatory conditions as IL-1β has an important 

role in iNOS expression and NO generation (Betz et al 1996; 

Bonmann et al 1997). Induction of IL-1 β gene expression in 

the vascular wall, accompanied by perivascular induction of 

Retinal hypoxia

Enhanced VEGF
production

Enhanced NO
production

Enhanced production of
inflammatory cytokines

Enhanced extracellular
accumulation of
glutamate

Enhanced free
radical
production

Activation of AMPA and
NMDA receptors
resulting in increased 
Ca2+ influx

RGC death

Disruption of
blood retinal
barrier

Retinal edema

Figure 1 Potential mediators of RGC death in retinal hypoxia-ischemia.
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iNOS mRNA was observed in the rat brain during systemic 

infl ammation (Wong et al 1996). Increased release of IL-1β 

and TNF-α in the retina in hypoxic-ischemic conditions may 

have a similar action.

Conclusion
Retinal hypoxia results in increased release VEGF, NO, 

glutamate, infl ammatory cytokines and ROS (Figure 1). 

These processes result in RGC loss through various 

mechanisms such as disruption of BRB, excitotoxicity and 

increased accumulation of intracellular Ca2+. Understanding 

of the processes outlined in this review may provide new 

strategies to minimize RGC loss and possibly counteract 

or prevent it.
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