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Abstract

Purpose: The aim of this work was to develop a CAIX-specific nanobody conjugated to

IRDye800CW for molecular imaging of pre-invasive breast cancer.

Procedures: CAIX-specific nanobodies were selected using a modified phage display

technology, conjugated site-specifically to IRDye800CW and evaluated in a xenograft breast

cancer mouse model using ductal carcinoma in situ cells (DCIS).

Results: Specific anti-CAIX nanobodies were obtained. Administration of a CAIX-specific

nanobody into mice with DCIS xenografts overexpressing CAIX showed after 2 h a mean

tumor-to-normal tissue ratio (TNR) of 4.3±0.6, compared to a TNR of 1.4±0.2 in mice injected

with the negative control nanobody R2-IR. In DCIS mice, a TNR of 1.8±0.1 was obtained.

Biodistribution studies demonstrated an uptake of 14.0±1.1 %I.D./g in DCIS+CAIX tumors, 4.6±

0.8 %I.D./g in DCIS tumors, while 2.0±0.2 %I.D./g was obtained with R2-IR.

Conclusions: These results demonstrate the successful generation of a CAIX-specific nanobody-

IRDye800CW conjugate that can be used for rapid imaging of (pre-)invasive breast cancer.

Key words: Carbonic anhydrase IX, Nanobody, VHH, Optical imaging, Molecular fluorescence

pathology, Breast cancer

Introduction

Molecular imaging modalities such as positron emission

tomography (PET), single photon emission computed to-

mography (SPECT), and optical imaging use antibodies or

antibody-fragments to specifically track molecules or cells

[1]. The use of a targeting moiety, specific to antigens

present on tumor cells, results in higher contrast images

compared to imaging strategies with non-targeted contrast

agents [2–6]. Molecular imaging with fluorescent tracers

(optical molecular imaging) has recently gained more

interest [7–9], since it does not require expensive imaging

equipment or protective measures due to the absence of

ionizing radiation. As a result of the limited penetration of
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light into tissue, optical imaging is especially suitable for

imaging of superficial tumors, such as head and neck cancer

[10]. Moreover, optical imaging can be of help during tumor

resection and could reduce unneeded surgical procedures. In

addition, optical imaging is suitable for characterization of

histological biopsies and/or surgical specimens, an approach

we previously indicated as molecular fluorescence pathology

[11].

Hypoxia is a condition that is present in the majority of

solid tumors and normally absent in healthy tissue [12–14].

Several studies have demonstrated molecular imaging with

radiolabeled hypoxia-specific probes, such as 2-

nitroimidazoles, [18F]fluoromisonidazole, and Copper(II)-

d i A c e t y l - b i s (N 4 -m e t h y l T h i o S e -M i c a r b a z o n e )

([62Cu]ATSM) [15, 16]. These studies showed only moder-

ate tumor contrast mainly because of non-specific probe

uptake. Higher tumor-specificity might be obtained by

directly targeting proteins that are upregulated under

hypoxic conditions, such as carbonic anhydrase IX

(CAIX). CAIX expression is under control of hypoxia-

inducible factor 1α (HIF-1α), a transcription factor that is

stabilized under hypoxic conditions [17, 18]. We selected

CAIX as target for molecular imaging, as it is one of the

most tumor-specific membrane-bound proteins expressed in

hypoxic tumors. Although CAIX expression might not

reflect acute hypoxia because of a half-life of a few days,

it is a marker of chronic hypoxia in tumors. CAIX can

therefore be considered as a suitable marker that can be used

to discriminate cancer from non-cancerous tissues [19–21].

In a previous study, we presented the successful optical

imaging of pre-invasive cancer of the breast (ductal

carcinoma in situ, DCIS) with a CAIX-specific conventional

antibody (MabCAIX) [11]. Slow clearance of the antibody

resulted in suboptimal contrast during the first 24 h post

injection, and optimal tumor-to-normal tissue ratios (TNR)

were obtained 72 h after probe administration. More rapid

imaging would result in lower costs as less logistical

procedures are needed, and it would be more convenient

for the patient and healthcare workers. Faster clearance and

subsequent faster image acquisition with higher contrast can

be obtained using probes with molecular sizes that are below

the renal glomerular filtration threshold of about 50 kDa, as

recently demonstrated for the CAIX-specific tracer HS680,

which consists of a CAIX inhibitor conjugated to the

fluorescent dye Vivotag680 [22].

Promising probes for rapid molecular imaging are nano-

bodies or VHHs (variable domain of heavy chain anti-

bodies), which are antibody-fragments derived from heavy

chain antibodies that naturally occur in camelids [23].

Compared to conventional antibodies, nanobodies possess

several advantageous properties. Firstly, the molecular

weight of nanobodies is ten times lower (15 kDa vs.

150 kDa), which results in rapid tumor accumulation while

having short elimination half-life in the bloodstream, which

together lead to good contrast at early time points after

administration [24]. Secondly, nanobodies can be selected to

bind with high affinity to their target, and this high affinity is

essential for accumulation in the tumor [24]. Thirdly,

nanobodies can easily be produced in different organisms

such as bacteria, yeast and mammalian cells, and they are

more stable than other antibody-fragments [25]. Finally,

nanobodies are, thus far, known to be non-immunogenic

[25]. We and others have previously shown that nano-

bodies can successfully be used for rapid molecular

imaging of both epidermal growth factor receptor (EGFR)

and human epidermal growth factor receptor 2 (HER2) [9,

24, 26, 27].

In the current study, we present phage display selections

for nanobodies that specifically bind to the ectodomain of

CAIX. CAIX-specific nanobodies were selected from a

library derived from llamas immunized with hypoxic HeLa

cells. A second-generation library was produced on basis of

polymerase chain reaction (PCR) using complementarity

determining region 3 (CDR3) sequences from two initial

anti-CAIX nanobodies, and from this library, high-affinity

binders with specificity for CAIX were obtained. To avoid

affinity loss because of random conjugation, the nanobodies

were site-directedly conjugated to IRDye800CW and eval-

uated by optical molecular imaging of CAIX overexpressing

or endogenously expressing tumors in an orthotopic mouse

model of DCIS. Our data supports application of anti-CAIX

nanobodies for pre-, intra-, and postoperative optical

imaging of (pre-invasive) breast cancer and holds promise

for broader applications such as clinical PET or SPECT

imaging.

Materials and Methods

Phage Display Selections

Maxisorp plates were coated with 1.00, 0.50, 0.10, 0.05, and

0.00 μg recombinant CAIX (R&D systems, Minneapolis, USA).

Phages were produced from E.coli TG1 harboring the library after

infection with helper phage VSCM13 (Strategene, Agilent

Technologies Netherlands B.V., Amstelveen, The Netherlands)

and incubating overnight while shaking at 37 °C in medium

containing ampicillin (100 μg/ml) and kanamycin (25 μg/ml). The

next day, maxisorp wells were washed three times with PBS and

blocked with 4 % marvel in PBS. Phages were precipitated by

adding 2 % polyethylene glycol (PEG) and 250 mM NaCl for

30 min on ice. After spinning down and resuspending the pellet in

ice cold PBS, PEG precipitation was repeated twice. After

resuspension, phages were incubated in the blocked maxisorp wells

for 2 h at room temperature, while shaking. Non-specific phages

were removed by washing twenty times with PBS containing

0.05 % Tween, every fifth time shaking for 10 min. Bound phages

were eluted by trypsin digestion (1.0 mg/ml) for 20 min and

infection of an E.coli culture in the exponential phase of the growth

for 30 min after adding trypsin inhibitor. After infection, phages

were titrated, spotted on agar plates (containing 100 μg/ml

ampicillin and 2 % glucose) to calculate the number of bound

phages. Subsequently, the infections were grown overnight in 2TY

medium containing 100 μg/ml ampicillin and 2 % glucose, shaking
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at 37 °C. The next day, the overnight culture was used for phage

production. On the third day, a second round of selections was

performed by incubating output phages from the first round of

selections in wells coated with a concentration range of 0.01 to

1.00 μg recombinant CAIX.

Nanobody Production and Purification

Nanobodies were re-cloned from the pUR8100 phagemid vector

into the pQVQ72 expression vector (kindly provided by QVQ BV,

Utrecht, The Netherlands), which introduces a C-terminal cysteine,

flanked by a Flag-tag to enable site-directed conjugation of

IRDye800CW-Maleimide (LI-COR Biosciences, Lincoln, NE)

(see electronic supplementary material (ESM) for more details).

Generation of Family-Specific Phage sub-Library
(BFamily Approach^)

Based on the sequence of two anti-CAIX nanobodies, two family-

specific sub-libraries were made following the procedure previous-

ly described [28], with a few modifications. A unique degenerate

reverse primer extending into the entire CDR3 loop region was

designed and used in conjunction with the plasmid-based primer

(M13 rev) to PCR VHH gene fragments with the same CDR3

present in the library. Amplification was carried out with Phusion

High-Fidelity DNA Polymerase (Thermo Fisher Scientific,

Landsmeer, The Netherlands), and a 350-bp band was excised

after separation on an agarose gel. Following restriction enzyme

digestion with BstEII and SfiI and gel purification, the digested

DNA fragments were ligated into the phagemid vector pUR8100

for display on filamentous bacteriophage and transferred to E. coli

TG1 competent cells by electroporation. The resulting two family

libraries were used for phage display selections as described above.

Conjugation of IRDye800CW to CAIX
Nanobodies

Before IRDye800CW labeling, nanobodies were reduced by adding

70-fold molar excess of Tris (2-CarboxyEthyl) Phosphine hydro-

chloride (TCEP). IRDye800CW-Maleimide (further referred to as

IR; LI-COR) was conjugated to nanobodies following manufacturer

recommendations (see ESM for more details).

Results

Immunization, Library Construction, Phage
Display Selections, and Screening

To enable llama immunization with cells showing sufficient

levels of CAIX expression, we first evaluated CAIX

expression levels of several cell lines cultured in vitro under

normoxic and hypoxic conditions [29]. Cells were grown for

24 h at 1 % O2, and the CAIX expression was analyzed by

cell-based enzyme-linked immunosorbent assay (ELISA).

HeLa cells showed the highest CAIX upregulation and no

CAIX expression was observed in the control cell line

(Fig. 1a). As described in the ESM, two llamas were

immunized with hypoxic HeLa cells, which express native

CAIX, and pre- and post-immunization sera were used to

follow the development of an immune response against

CAIX. A VHH phagemid library was prepared as described

previously [30], and using this library, various phage display

selections were performed using either directly coated

recombinant CAIX, captured recombinant CAIX or hypoxic

HeLa cells with or without specific elution using anti-CAIX

mAb (Fig. 1b). After two rounds of biopanning, the binding

of nanobodies provided with a his- and myc-tag, was

analyzed in vitro using CAIX-overexpressing or CAIX

Fig. 1 Hypoxic HeLa cells can be used for generation of a

hypoxia-specific phage library. a Indicated cells were grown

under normoxic (21 % O2) (red) and hypoxic (1 % O2) (blue)

conditions for 24 h, and CAIX levels were determined by a

cell-based ELISA as described in Materials and Methods in

the ESM. b Workflow of phage display selections: 1. Llamas

are immunized with hypoxic HeLa cells; 2. During the

immune response peripheral B-lymphocytes generate CAIX-

specific heavy chain-only antibodies; 3. peripheral B-

lymphocytes are isolated and RNA is extracted. After reverse

transcriptase PCR, antibody specific DNA is ligated into a

phagemid vector; 4. Phages expressing nanobodies at their

surface are produced in E. coli bacteria; 5. Two rounds of

phage display selections are performed in a 96-wells format

coated with recombinant CAIX.
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negative MCF10DCIS cells grown under normoxic con-

ditions [11]. From these screenings, two CAIX-specific

nanobodies were isolated, indicated as CAIX1 and CAIX4.

Nanobody Characterization and Generation of a
CAIX Family-Specific Phage Library

To verify the specificity of the CAIX1 and CAIX4 nano-

bodies, immunofluorescence studies were performed using

co-cultures of CAIX-overexpressing (DCIS + CAIX) and

CAIX negative (DCIS) MCF10DCIS cells. Cells were

incubated with CAIX1 or CAIX4 nanobodies, which were

detected with antibodies directed against VHHs (Fig. 2a,

green). Expression of FLAG-CAIX was verified using anti-

FLAG antibodies (Fig. 2a, red). The overlay shows that both

nanobodies are binding specifically to the DCIS + CAIX

cells. CAIX negative cells did not show any nanobody

binding (Fig. 2a, arrows). Subsequently, binding experi-

ments were performed (as described in the ESM) to

determine apparent affinities (KD) of the unconjugated

nanobodies for CAIX, which were 11 nM for CAIX1 and

45 nM for CAIX4 (Fig. 2b).

To obtain anti-CAIX nanobodies with higher affinities, a

new second-generation family-specific library was made as

previously described by Koh et al. [28]. Primers were

designed based on the N-terminal framework sequence and

on the CDR3 sequence of CAIX1 or 4, and a PCR was

performed using the original library as template (Fig. 2c). A

novel CAIX library was constructed by ligating the PCR

products into a phagemid vector. With this novel CAIX

library, phage display selections were performed using

recombinant CAIX, resulting in the isolation of three

additional anti-CAIX nanobodies indicated as C5, B9 (both

based on CAIX1), and E4 (based on CAIX4). Affinity

determination of the C5 and B9 nanobodies showed an

improvement in affinity from the original 11 nM (CAIX1) to

6 nM (C5) and 7 nM (B9). Affinity also improved with the

CAIX4-based family approach: from 45 nM for the CAIX4

nanobody to 2 nM, which was the affinity of the novel anti-

CAIX nanobody E4.

Characterization of IR-Conjugated CAIX Nano-
bodies

The four CAIX-specific nanobodies were conjugated site-

directedly via a C-terminal cysteine residue (as described

previously [9]), as random conjugation could considerably

reduce the affinity of the nanobodies. After conjugation with

maleimide-IRDye800CW, the degree of labeling was ap-

proximately 0.6 for all nanobodies. The binding affinity of

the nanobodies (KD) was determined using DCIS + CAIX

cells. In pilot studies with CAIX negative MCF10DCIS,

signals did not exceed background (data not shown). The

binding affinities were 19 nM (CAIX1-IR), 17 nM (C5-IR),

13 nM (B9-IR), and 8 nM (E4-IR) (Fig. 2d). Despite the

site-directed dye conjugation, this labeling procedure re-

duced the binding affinity and had even a detrimental effect

on the affinity of CAIX4-IR. The Bmax of all nanobodies was

comparable to CAIX1-IR (~80 a.u.), except for E4-IR,

which had a lower Bmax (~40 a.u.; Fig. 2d). We selected B9-

IR as lead nanobody for further in vivo studies because of

the best binding affinity (13 nM) in combination with a high

Bmax.

The specificity of the B9 nanobody for CAIX was

confirmed in two ways. First, we compared immunofluores-

cence of DCIS cells with the same cells ectopically

expressing CAIX (DCIS + CAIX). A clear difference was

observed, i.e., more binding was observed for the cell line

with the highest expression of CAIX (Fig. 1S).

Subsequently, we incubated DCIS + CAIX cells with a

mixture of 2.5 nM B9 with 500 molar excess of the human

recombinant CAIX ectodomain. No immunofluorescence

was observed, demonstrating that the binding of the B9

nanobody was competed off by the presence of the CAIX

ectodomain (Fig. 1S).

In Vivo and Ex Vivo Optical Imaging

The feasibility of optical imaging with the B9-IR CAIX-

specific nanobody was tested in a preclinical setting, with

SCID/Beige mice that were orthotopically transplanted with

MCF10DCIS cells expressing CAIX peri-necrotically

(‘DCIS’ tumors) and MCF10DCIS cells stably expressing

exogenous CAIX (BDCIS+CAIX^ tumors). A non-relevant

R2 nanobody was used as a negative control [9, 24]. Upon

development of palpable tumors, mice were injected in the

tail vein with 50 μg of the indicated nanobodies. Fluorescent

probe distribution was visualized at several time points up to

48 h post injection using an imaging camera developed and

approved for clinical use [31]. Already 2–3 h p.i., we could

delineate both the DCIS+CAIX and DCIS tumors from the

background non-invasively (Fig. 3a) and invasively

(Fig. 3b, c).

TNRs were calculated by dividing the fluorescent signal

from the tumor by the signal from the hind leg for each time

point up to 48 h. The mean in vivo DCIS+CAIX TNR

increased in the first hour, until a plateau level was reached,

which persisted for 8 h (Fig. 4a). Two hours after probe

administration, a mean in vivo DCIS+CAIX TNR of 4.3±0.6

(standard error of the mean (SEM), n=8) was observed. At

2 h post injection, the mean DCIS TNR in mice injected

with B9-IR was 1.8±0.1 (n=8), and mice injected with the

R2-IR non-relevant control nanobody showed a TNR of 1.4

±0.2 (n=4; p=0.07; Fig. 4b). The TNR of 1.8 was sufficient

to detect DCIS tumors with a diameter starting from 2 mm

(data not shown).

After these studies, mice were sacrificed, and the skin

was removed to enable ex vivo tumor imaging, simulating

the surgical setting. The mean ex vivo or Bintra-operative^

TNR of CAIX-overexpressing tumors 3 h post injection was
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5.2±0.9, slightly higher than in the in vivo setting (Fig. 4c).

The mean TNR of the DCIS tumors from mice injected with

B9-IR or R2-IR was 2.1±0.2 and 1.3±0.1, respectively

(p=0.04). The maximum intra-operative TNR of the DCIS

tumors obtained from mice injected with B9-IR or R2-IR

was 2.7 and 1.5, respectively. These results show that

DCIS+CAIX tumors can be detected both in vivo as well as

under ex vivo conditions.

Biodistribution

To quantify fluorescent probe signals from tumors and organs,

we performed a biodistribution study, circumventing effects of

scattering and quenching of the fluorescent signal [9, 32]. To

determine the biodistribution of B9-IR and R2-IR, organs and

tumors of nine mice were excised, weighted, and after

processing, their fluorescent signals were determined. In the

Fig. 2 CAIX1 is a high-affinity CAIX-specific nanobody, and CAIX1 DNA can serve as template for the family approach. a Co-

cultures of CAIX-FLAG expressing and CAIX negative cells were incubated with either CAIX1 or CAIX4 nanobody. Nuclei were

stained with DAPI (blue). Bound nanobodies were detected with Alexa-488 (green) and CAIX-FLAGwith Alexa-555 (red). The overlay

is shown in the right panels. Arrows indicate cells without CAIX expression. Scale bar: 10 μm.bDCIS+CAIX cells were incubatedwith

a dilution series of CAIX1 and CAIX4 nanobodies, which were detected using anti-VHH antibodies and peroxidase conjugated

secondary antibodies. The y-axis shows intensity of peroxidase substrate. c Library DNA is used as template in a PCR reaction with

family-specific reverse primers covering CDR3. The PCR product is ligated in a phagemid vector resulting in a family-specific phage

library. d DCIS+CAIX cells were incubated with a dilution series of nanobody conjugated to IRDye800CW: CAIX1 (left, gray), CAIX4

(right, gray) and the nanobodies derived from the family-specific library (black) based on CDR3 of either CAIX1 (C5 and B9) or CAIX4

(E4). The y-axis shows fluorescence intensity measured by the Odyssey system.
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DCIS+CAIX tumors 14.0±1.1 % of the injected dose of B9-IR

per gram tissue (ID/g) was present, and 4.6±0.8 %ID/g was

found in DCIS tumors, which was significantly higher than for

muscle or blood (0.2±0.1 and 0.6±0.2 %ID/g, respectively). In

the DCIS+CAIX tumor 1.9±0.5 %ID/g of the injected dose of

the R2-IR negative control nanobody was found, which differs

significantly from the B9 accumulation (p=0.01). The difference

between B9-IR and R2-IR for the DCIS tumor was not

significant (4.6±0.8 vs 2.0±0.2 %ID/g; p=0.2). Compared to

other organs, kidney uptake of the nanobodies was high, which

is due to kidney retention of the nanobodies, confirming the

biodistribution assays performed previously [9, 24] (Fig. 4d).

Imaging of Tumor Sections and
Immunohistochemistry

To investigate the binding of the anti-CAIX nanobodies to

hypoxic areas in the tumors, tumors were collected 3 h post

injection from mice injected with either B9-IR or R2-IR.

Tumors were formalin fixed, paraffin embedded, and

sections of the tumors were scanned with the Odyssey

imaging system to detect IR fluorescence. In the DCIS

tumors the anti-CAIX nanobody was clearly visible in the

perinecrotic areas surrounding the necrotic area of the

xenografts (Fig. 5a–d). DCIS+CAIX tumors showed a

homogeneous fluorescent staining of the xenografts

(Fig. 5e–g). B9-IR staining of the xenografts co-localized

with the intra-tumoral membraneous distribution of CAIX,

which was detected by immunohistochemistry using an anti-

CAIX antibody. The non-relevant control nanobody R2-IR

showed no uptake in tumor tissue (Fig. 5h–j). However,

fluorescent sections together with H&E stained sections

demonstrated the limited uptake of R2-IR in surrounding

mouse mammary gland tissue.

Discussion

For rapid molecular imaging of (pre-invasive) tumors in

general and breast cancer in particular, targeting of tumor

biomarkers using optical tracers or radiotracers is essential

for contrast enhancement. Valid tumor markers are plasma

membrane proteins that are specifically expressed in the

tumor and not in surrounding tissue, such as HER2 [9].

However, HER2 is only expressed in 15–20 % of breast

cancers; thus, the drawback of some of these markers is their

expression in only a small percentage of breast cancers. As a

more general marker for cancer, we selected CAIX, which is

substantially upregulated under hypoxic conditions at the

cell surface of many tumor types. Others have evaluated

both CAIX inhibitors and CAIX antibodies for in vivo tumor

imaging [11, 21, 22].

A novel and versatile targeting platform are nanobodies.

In the current study, we have generated hypoxia-specific

nanobodies that specifically bind to the hypoxia marker

CAIX. These anti-CAIX nanobodies were selected by a

phage display family approach using an immune sub-library

in order to select for nanobodies against CAIX with the

highest affinity possible. The success of this approach was

demonstrated by the fact that affinities of these nanobodies

were better than the affinities from nanobodies selected from

the original immune library. Recently, a different study

reported the selection of nanobodies binding to CAIX,

which was shown to have a binding affinity (KD) of 23 μM

[33]. As previously shown, nanobodies with an affinity of

1 μM did not sufficiently accumulate in the tumor,

emphasizing the need for high-affinity binders [9, 34]. In

this context, we have shown that the binding affinity can

seriously drop after the conjugation of the nanobody to the

tracer, in this case the fluorophore IRDye800CW. As this

Fig. 3 Detection of hypoxic pre-invasive breast tumors

in vivo and intra-operatively using the B9-IR nanobody. a

DCIS+CAIX and DCIS xenografts were imaged at several

time points post injection of 50 μg B9-IR nanobody or 50 μg

R2-IR. Tumors were held between tweezers. b Intra-

operative imaging of DCIS and DCIS+CAIX tumors, 3 h post

injection of B9-IR. c Schematic overview of mammary glands

(2–5) and tumors as seen intra-operatively. DCIS+CAIX tumor

indicated as BCAIX^ in dark gray.
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was also the case for the selected anti-CAIX nanobodies, the

dye was conjugated via a C-terminal cysteine. The B9-IR

nanobody was finally selected as lead product because of the

excellent binding properties (KD=13 nM) in combination

with high Bmax.

An orthotopic xenograft mouse model was used to

validate tumor imaging using anti-CAIX nanobodies. This

mouse model resembles the tumor and tumor micro-

environment of human breast cancer more closely than

subcutaneous tumor models. The MCF10DCIS cells express

little CAIX when grown at normoxic conditions. However,

in vivo, these tumor cores can become necrotic and CAIX

expression is induced peri-necrotically [11]. Essential for

successful translation of optical molecular tracers to a

clinically useful tool is a high-imaging contrast. Optimal

contrast is established by two factors: high probe accumu-

lation in the tumor in combination with a rapid clearance of

the non-bound probe from the body resulting in low

background signals. As a direct measure of contrast, we

determined the TNR, both in vivo and in an intra-operative

setting. Already 1 h after tracer administration, the mean

TNR for DCIS+CAIX was ~4.6, which remained stable for

the next 8 h. The differences in TNR between DCIS+CAIX

and DCIS tumors confirm that, as could be expected, besides

the affinity and specificity of the probe, also the expression

levels of the molecular target are important to achieve a

sufficient TNR. Although CAIX expression is the result of a

cellular response to a physiological condition which does not

occur in all tumor cells within a tumor, our in vivo studies

show that it is sufficient to render tumors fluorescent and

detectable with the clinical camera.

The difference between the in vivo and ex vivo TNR can

be explained by the limited penetration of light through the

skin and subcutaneous tissue, which underscores the notion

that optical imaging might especially be suitable for image-

guided surgery. As negative control nanobody, we used the

non-relevant nanobody R2-IR, which was raised against the

molecule RR6 [35]. Our biodistribution studies showed that

~1.9 % of the injected dose of the R2-IR nanobody was

found in the tumors, which was clearly higher than found in

previous studies where we showed a TNR of approximately

1 [9]. The immunohistochemistry data suggest that this

might be caused by a specific binding of this nanobody to

vascular tissue surrounding the tumor (Fig. 5j).

An important advantage of the application of nanobodies

as targeted probes in optical molecular imaging is the short

time interval between probe injection and imaging proce-

dures. The rapid clearance can be related to the detection of

B9-IR in the kidneys, as previously described for nano-

bodies targeting EGFR or HER2 [9, 24]. The previously

Fig. 4 Optimal imaging with B9-IR nanobody 2 h post injection. a Mean TNR of CAIX-overexpressing tumors (DCIS+CAIX,

n=10), and DCIS tumors (n=10) determined during the first 8-h post injection of B9-IR nanobody. Error bars represent SEM. b

Mice xenografted with DCIS tumors were injected with 50 μl B9-IR (10 mice) or R2-IR (4 mice) non-relevant control nanobody,

mean TNR values were determined at indicated time points. c DCIS+CAIX (7 mice) and DCIS (7 mice) tumors after injection with

50 μg B9-IR, and DCIS+CAIX tumors (n=6) after injection with R2-IR non-relevant control nanobody. Single values of intra-

operative TNRs were determined 3 h post injection. Bar represents the mean (*p=0.04). d For a biodistribution assay, mice (n=9)

were injected with B9-IR or R2-IR non-relevant control nanobody. Tumors and organs were collected 3 h post injection. Error

bars represent SEMs.
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described hypoxia marker HS680 (KD=8.3 nM; MW 1372)

was only rendering tumors visible 96 h post injection [22].

As a direct result of the rapid pharmacokinetics of nano-

bodies, these probes offer a reduction in logistical burden

when applied in a clinical setting, as probe administration

and diagnostic or surgical procedures can be performed

within a few hours. Further improvement of this system can

be expected by the conjugation of several IRDye800CW

molecules to the same nanobody, which will require new

conjugation strategies.

A promising novel application of molecular imaging in

the field of pathology was previously indicated as

Bmolecular fluorescence pathology^ [11]. Analysis of tumor

sections is normally done with conventional IHC. However,

our strategy allows direct analysis of tumors’ molecular

status on tissue sections using fluorescence microscopy

(Fig. 5). The CAIX-specific nanobody accumulated very

well in the perinecrotic areas of the DCIS tumor, where high

CAIX expression was confirmed by IHC while low

expression was found in surrounding normoxic tumor tissue.

As with fluorescence microscopy, various NIR-dyes can be

detected at the same time; the problem of heterogenous

tumor binding of CAIX-specific nanobodies can be solved

by co-injection of two or multiple probes, with specificities

for other tumor markers. Also, dual labeling would allow

molecular characterization of tumors and could be advan-

tageous for a better delineation of the tumor, which is

essential for imaging of tumor margins. Moreover, we

anticipate the application of nanobodies in other imaging

modalities such as immuno-PET. The rapid clearance of

radiolabeled nanobodies allows for application of isotopes

with short half-life (Ga-68, half-life 68 min), which will

contribute to lower exposure of the patient to radioactive

tracers [26, 36]. With this modality, whole body imaging

becomes possible, which is very interesting for detection of

distant metastases during the course of the breast cancer

disease.

Conclusions

We have produced a novel fluorescent CAIX-specific nanobody

and demonstrated the application of this probe preclinically in

Fig. 5 B9-IR binds to perinecrotic area in DCIS tumors. a–d DCIS tumor from a mouse injected with B9-IR nanobody, 3 h post

injection. e–g DCIS+CAIX tumor from a mouse injected with B9-IR. h-j. DCIS tumor from a mouse injected with R2-IR (non-

relevant control nanobody). a Fluorescence scan of DCIS tumor. b CAIX-IHC. c Magnification of perinecrotic area. d H&E

staining of tumor section. e Fluorescence scan of DCIS+CAIX tumor. f Magnification of CAIX-IHC. g H&E staining of tumor

section. h Fluorescence scan of DCIS tumor with central necrosis. i CAIX-IHC. j magnification of CAIX-IHC (*indicates necrotic

area).
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optical molecular imaging of hypoxic pre-invasive breast cancer

before and during surgery. A major advantage of using

nanobodies is the high contrast already obtained 2 h after probe

administration. Because of these pharmacokinetics, probe

injection and surgical procedures can be performed on the same

day. Furthermore, the stability of the conjugate allows for

Bmolecular fluorescence pathology^, which might result in

better contrast than conventional CAIX-IHC at the pathology

department. Molecular fluorescence pathology might be useful

for patient-tailored therapeutic decision making in the future.

Because of the potentially broad applicability of this probe for

many different (hypoxic) tumors, we aim for rapid translation of

B9-IR toward clinical studies.
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