
hypre:ÿAÿLibraryÿofÿHighÿPerformance
Preconditioners

RobertÿD.ÿFalgoutÿandÿUlrikeÿMeierÿYang

CenterÿforÿAppliedÿScientificÿComputing,ÿLawrenceÿLivermoreÿNationalÿLaboratory,
P.O.Boxÿ808,ÿL-560ÿLivermore,ÿCAÿ94551

Abstract. hypre is a software library for the solution of large, sparse lin-
ear systems on massively parallel computers. Its emphasis is on modern
powerful and scalable preconditioners. hypre provides various concep-
tual interfaces to enable application users to access the library in the
way they naturally think about their problems. This paper presents the
conceptual interfaces in hypre. An overview of the preconditioners that
are available in hypre is given, including some numerical results that
show the efficiency of the library.

1 Introduction

The increasing demands of computationally challenging applications and the ad-
vance of larger more powerful computers with more complicated architectures
have necessitated the development of new solvers and preconditioners. Since the
implementation of these methods is quite complex, the use of high performance
libraries with the newest efficient solvers and preconditioners becomes more im-
portant for promulgating their use into applications with relative ease.

hypre has been designed with the primary goal of providing users with ad-
vanced scalable parallel preconditioners. Issues of robustness, ease of use, flexi-
bility and interoperability have also been very important. It can be used both
as a solver package and as a framework for algorithm development. Its object
model is more general and flexible than the current generation of solver libraries
[7].

hypre also provides several of the most commonly used solvers, such as con-
jugate gradient for symmetric systems or GMRES for nonsymmetric systems to
be used in conjunction with the preconditioners.

Design innovations have been made to enable application users access to the
library in the way that they naturally think about their problems. For example,
applications developers that use structured grids, typically think of their prob-
lems in terms of stencils or grids. hypre’s users do not have to learn complicated
sparse matrix structures; instead hypre does the work of building these data
structures through various conceptual interfaces. The conceptual interfaces cur-
rently implemented include stencil-based structured/semi-structured interfaces,
a finite-element based unstructured interface, and a traditional linear-algebra
based interface.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 632−641, 2002.
 Springer-Verlag Berlin Heidelberg 2002

The first part of this paper describes these interfaces and the motivations
behind their design. The second part gives an overview of the preconditioners
that are currently in the library with brief descriptions of the algorithms and
some highlights of their performance characteristics. Since space is limited, it
is not possible to describe the algorithms in detail, but various references are
included for those who are interested in further information. The paper concludes
with some remarks on additional software and improvements of already existing
codes that are planned to be included in hypre in the future.

2 Conceptual Interfaces

Each application to be implemented lends itself to natural ways of thinking of the
problem. If the application uses structured grids, a natural way of formulating
it would be in terms of grids and stencils, whereas for an application that uses
unstructured grids and finite elements it is more natural to access the precon-
ditioners and solvers via elements and element stiffness matrices. Consequently
the provision of various interfaces facilitates the use of the library.

Conceptual interfaces also decrease the coding burden for users. The most
common interface used in libraries today is a linear-algebraic one. This interface
requires that the user compute the mapping of their discretization to row-column
entries in a matrix. This code can be quite complex, e.g. consider the problem
of ordering the equations and unknowns on the composite grids used in struc-
tured adaptive mesh refinement (SAMR) codes. The use of a conceptual interface
merely requires the user to input the information that defines the problem to be
solved, leaving the forming of the actual linear system as a library implementa-
tion detail hidden from the user.

Another reason for conceptual interfaces, maybe the most compelling one,
is that they provide access to a large array of powerful scalable linear solvers
that need the extra information beyond just the matrix. For example, geometric
multigrid (GMG) can not be used through a linear-algebraic interface, since it
is formulated in terms of grids.

Similarly, in many cases, these interfaces allow the use of other data storage
schemes with less memory overhead and provide for more efficient computational
kernels.

Fig. 1 illustrates the idea of conceptual interfaces. On the left are specific
interfaces with algorithms and data structures that take advantage of more spe-
cific information. On the right are more general interfaces, algorithms and data
structures. Note that the more specific interfaces also give users access to gen-
eral solvers like algebraic multigrid (AMG) or incomplete LU factorization (ILU).
The top row shows various concepts: structured grids, composite grids, unstruc-
tured grids or just plain matrices. In the second row, various solvers/ precon-
ditioners are listed. Each of those requires different information from the user,
which is provided through the conceptual interfaces. Geometric multigrid, e.g.,
needs a structured grid and can only be used with the left most interface, AMGe
[2], an algebraic multigrid method, needs finite element information, whereas

633hypre: A Library of High Performance Preconditioners

Data Layout

structured composite block-struc unstruc CSR

Linear Solvers

GMG, ... FAC, ... Hybrid, ... AMGe, ... ILU, ...

Linear System Interfaces

Fig. 1. Graphic illustrating the notion of conceptual interfaces.

general solvers can be used with any interface. The bottom row contains a list
of data layouts or matrix/vector storage schemes that can be used for the im-
plementation of the various algorithms. The relationship between linear solver
and storage scheme is similar to that of interface and linear solver.

hypre currently supports four conceptual interfaces: a structured-grid system
interface, a semi-structured-grid system interface, a finite-element interface and
a linear-algebraic interface.

Note that hypre does not partition the problem, but builds the internal par-
allel data structures (often quite complicated) according to the partitioning of
the application that the user provides.

2.1 Structured-Grid System Interface (Struct)

This interface is appropriate for scalar applications whose grids consists of unions
of logically rectangular grids with a fixed stencil pattern of nonzeros at each grid
point. It also enables users access to hypre’s most efficient scalable solvers for
scalar structured-grid applications, such as the geometric multigrid methods
SMG and PFMG. See also Sections 3.1 and 3.2. The user defines the stencil and
the grid; the right hand side and the matrix are then defined in terms of the
stencil and the grid.

2.2 Semi-Structured-Grid System Interface (SStruct)

This interface is appropriate for applications whose grids are mostly structured,
but with some unstructured features, e.g. block structured grids (such as shown
in Fig. 2), composite grids in structured adapative mesh refinement (AMR)
applications, and overset grids. It additionally allows for more general PDEs
than the Struct interface, such as multiple variables (system PDEs) or multiple

634 R.D. Falgout and U. Meier Yang

variable types (e.g. cell centered, face centered, etc.). The user needs to define
stencils, grids, a graph that connects the various components of the final grid,
the right hand side and the matrix.

Fig. 2. An example block-structured grid, distributed across many processors.

2.3 Finite Element Interface (FEI)

This is appropriate for users who form their systems from a finite element dis-
cretization. The interface mirrors typical finite element data structures, including
element stiffness matrices. Though this interface is provided in hypre , its defi-
nition was determined elsewhere [8]. This interface requires the definition of the
element stiffness matrices and element connectivities. The mapping to the data
structure of the underlying solver is then performed by the interface.

2.4 Linear-Algebraic System Interface (IJ)

This is the traditional linear-algebraic interface. The user needs to define the
right hand side and the matrix in the general linear-algebraic sense, i.e. in terms
of row and column indices. This interface provides access only to the most general
data structures and solvers and as such should only be used when none of the
grid-based interfaces is applicable.

3 Preconditioners

This section gives an overview of the preconditioners currently available in hypre
via the conceptual interfaces. hypre also provides solvers to be used in conjunc-
tion with the preconditioners such as Jacobi, conjugate gradient and GMRES.

635hypre: A Library of High Performance Preconditioners

Great efforts have been made to generate highly efficient codes. Of particular
concern has been the scalability of the solvers. Roughly speaking, a method is
scalable if the time required to produce the solution remains essentially constant
as both the problem size and the computing resources increase. All methods
implemented here are generally scalable per iteration step, the multigrid methods
are also scalable with regard to iteration count.

All the solvers use MPI for parallel processing. Most of them have also been
threaded using OpenMP, making it possible to run hypre in a mixed message-
passing/threaded mode, of potential benefit on clusters of SMPs.

3.1 SMG

SMG is a parallel semicoarsening multigrid solver targeted at the linear systems
arising from finite difference, finite volume, or finite element discretizations of
the diffusion equation

∇ · (D∇u) + σu = f (1)

on logically rectangular grids. The code solves both 2D and 3D problems with
discretization stencils of up to 9-point in 2D and up to 27-point in 3D. For
details on the algorithm and its parallel implementation/performance see [21, 3,
10]. SMG is a particularly robust method. The algorithm semicoarsens in the
z-direction and uses plane smoothing. The xy plane solves are effected by one
V-cycle of the 2D SMG algorithm, which semicoarsens in the y-direction and
uses line smoothing

3.2 PFMG

PFMG is a parallel semicoarsening multigrid solver similar to SMG. It is de-
scribed in detail in [1, 10]. PFMG uses simple pointwise smoothing instead of
plane smoothing. As a result, it is less robust than SMG, but more efficient per
V-cycle. The largest run with PFMG as a preconditioner for conjugate gradient
was applied to a problem with 1 billion unknowns on 3150 processors of the ASCI
Red computer and took only 54 seconds. Recently we added a PFMG solver for
systems of PDEs available through the semi-structured interface.

3.3 BoomerAMG

BoomerAMG is a parallel implemenation of algebraic multigrid. It requires only
the linear system. BoomerAMG uses two types of parallel coarsening strategies.
The first one, refered to as RS-based coarsening, is based on the highly sequen-
tial coarsening strategy used in classical AMG [20]. To obtain parallelism, each
processor coarsens independently, followed by various strategies for dealing with
the processor boundaries. Obviously, this approach depends on the number of
processors and on the distribution of the domain across processors. The second
type of coarsening, called CLJP-coarsening [9], is based on parallel maximum

636 R.D. Falgout and U. Meier Yang

independent set algorithms [19, 16] and generates a processor independent coars-
ening. CLJP-coarsening has proven to be more efficient for truly unstructured
grids, whereas RS-based coarsenings lead to better results on structured prob-
lems. For more detailed information on the implementation of the CLJP coars-
ening scheme see [11]. For a general description of the coarsening schemes and
the interpolation used within BoomerAMG as well as various numerical results,
see [12].

BoomerAMG provides classical pointwise smoothers, such as weighted Jacobi
relaxation, a hybrid Gauß-Seidel/ Jacobi relaxation scheme and its symmetric
variant. It also provides more expensive smoothers, such as overlapping Schwarz
smoothers, as well as access to other methods in hypre such as ParaSails, PILUT
and Euclid. These smoothers have shown to be effective for certain problems for
which pointwise smoothers have failed, such as elasticity problems [22].

BoomerAMG can also be used for solving systems of PDEs if given the
additional information on the multiple variables per points. The function or
’unknown’ approach coarsens each physical variable separately and interpolates
only within variables of the same type. By exploiting the system nature of the
problem, this approach often leads to significantly improved performance, lower
memory usage and better scalability. See Table 1 which contains results for a
structured 2-dimensional elasticity problem on the unit square, run on the ASCI
Blue Pacific computer.

scalar BoomerAMG systems BoomerAMG
grid size # of procs. time (# of its.) time (# of its)

80× 80 1 42.4(58) 4.1 (8)
160× 160 4 130.4(112) 6.3 (9)
320× 320 16 317.5(232) 8.6(10)
640× 640 64 1238.2(684) 14.4(13)

Table 1. Test results for a 2-dimensional model elasticity problem

Table 2 contains results for a 3-dimensional elasticity problem on a thin plate
with a circular hole in its center. The problem has 215,055 variables and was run
on 16 processors of the ASCI White computer. The results show that for this
problem BoomerAMG as a solver is not sufficient, but it does make an effective
preconditioner.

3.4 ParaSails

ParaSails is a parallel implementation of a sparse approximate inverse precondi-
tioner. It approximates the inverse of A by a sparse matrix M by minimizing the
Frobenius norm of I−AM . It uses graph theory to predict good sparsity patterns
for M . ParaSails has been shown to be an efficient preconditioner for many prob-
lems, particularly since the minimization of the Frobenius norm of I −AM can
be decomposed into minimization problems for the individual rows of I − AM ,

637hypre: A Library of High Performance Preconditioners

Solvers # of its. total time in secs.

scaled CG 1665 34.8
ParaSails-CG 483 26.6
scalar BoomerAMG n.c. -
scalar BoomerAMG-CG 53 28.9
systems BoomerAMG 78 40.6
systems BoomerAMG-CG 19 12.3

Table 2. Test results for an elasticity problem

leading to a highly parallel algorithm. A detailed description of the algorithm
can be found in [4] and implementation details in [5]. Particular emphasis has
been placed on a highly efficient implementation that incorporates special, more
efficient treatment of symmetric positive definite matrices and load balancing.
The end result is a code that has a very scalable setup phase and iteration steps.
See Table 3, which shows test results for ParaSails applied to the 3-dimensional
constant coefficient anisotropic diffusion problem 0.1uxx + uyy + 10uzz = 1 with
Dirichlet boundary conditions. The local problem size is 60 × 60 × 60. Unlike
multigrid, convergence is not linearly scalable, and the number of iterations will
increase as the problem size increases. However, ParaSails is a general purpose
solver and can work well on problems where multigrid does not.

of procs # of its. setup time solve time time per it.

1 107 12.1 75.3 0.70
8 204 13.8 247.9 1.22

64 399 15.4 536.6 1.34
216 595 15.8 856.4 1.44
512 790 17.4 1278.8 1.62

1000 979 17.1 1710.7 1.75

Table 3. Scalability of ParaSails with increasing problem size (216,000 per proc.)

3.5 PILUT

PILUT is a parallel preconditioner based on Saad’s dual-threshold incomplete
factorization algorithm. It uses a thresholding drop strategy as well as a mecha-
nism to control the maximum size of the ILU factors. It uses the Schur-complement
approach to generate parallelism. The original code was written by Karypis and
Kumar for the T3D [18]. This version differs from the original version in that it
uses MPI and more coarse-grain parallelism.

3.6 Euclid

Euclid is a scalable implementation of the Parallel ILU algorithm. It is best
thought of as an ”extensible ILU preconditioning framework”, i.e. Euclid can

638 R.D. Falgout and U. Meier Yang

support many variants of ILU(k) and ILUT preconditionings. Currently it sup-
ports Block Jacobi ILU(k) and Parallel ILU(k) methods. Parallelism is obtained
via local and global reorderings of the matrix coefficients. A detailed description
of the algorithms can be found in [14, 15].

Euclid has been shown to be very scalable with regard to setup time and
triangular solves. Fig. 3 shows results for a 5 point 2D convection diffusion
problem with 256× 256 unknowns per processor.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250 300 350 400

tim
e

pe
r

tr
ia

ng
ul

ar
 s

ol
ve

 (
se

co
nd

s)

processor count

PILU triangular solve scalability, ASCI Blue Pacific

PILU(1)
PILU(3)
PILU(6)

Fig. 3. Some scalability results for Euclid

4 Additional Information

The hypre library can be downloaded by visiting the hypre home page at the
URL http://www.llnl.gov/CASC/hypre. It can be built by typing configure

followed by make. There are several options that can be used with configure.
For information on how to use those, one needs to type configure --help.
Although hypre is written in C, it can also be called from Fortran. More specific
information on hypre and how to use it can be found in the users manual and
the reference manual, which are also available at the same URL.

5 Conclusions and Future Work

Overall, hypre contains a variety of highly efficient preconditioners and solvers,
available via user-friendly conceptual interfaces. Nevertheless, it is a project in
progress. As new research leads to better and more efficient algorithms, new
preconditioners will be added and old preconditioners will be improved.

639hypre: A Library of High Performance Preconditioners

On the list of new codes to be made available shortly is AMGe, an algebraic
multigrid method based on the use of local finite element stiffness matrices [2,
17]. This method has proven to be more robust and to converge faster than
classical AMG for some problems, e.g. elasticity problems. This code will be
available directly through the FEI interface.

Various improvements are planned for BoomerAMG. Classical Gauß-Seidel
relaxation as well as multiplicative Schwarz smoothers are some of the numer-
ically most efficient methods, i.e. they lead to good convergence for AMG for
some problems, but are also highly sequential. Plans are to add multi-coloring
techniques to obtain a parallel Gauß-Seidel smoother and parallel multiplicative
Schwarz smoothers, as well as introduce smoothing and overrelaxation parame-
ters to increase convergence of the currently available parallel smoothers. New
research [6] has shown that through the use of certain geometric components,
better coarsenings can be developed that may lead to better convergence and
lower memory requirements for certain problems. Investigations are underway
to make these new techniques available to the users.

Acknowledgments

This paper would not have been possible without the many contributions of
the hypre library developers: Edmond Chow, Andy Cleary, Van Henson, David
Hysom, Jim Jones, Mike Lambert, Jeff Painter, Charles Tong and Tom Treadway.
This work was performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.

References

1. Ashby, S., Falgout, R.: A parallel multigrid preconditioned conjugate gradient al-
gorithm for groundwater flow simulations. Nuclear Science and Engineering 124
(1996) 145–159

2. Brezina, M., Cleary, A., Falgout, R., Henson, V., Jones, J., Manteuffel, T., Mc-
Cormick, S, Ruge, J.: Algebraic multigrid based on element interpolation (AMGe).
SIAM J. Sci. Comput. 22 (2000) 1570–1592

3. Brown, P., Falgout, R., Jones, J.: Semicoarsening multigrid on distributed memory
machines. SIAM J. Sci. Comput. 21 (2000) 1823-1834

4. Chow, E.: A priori sparsity patterns for parallel sparse approximate inverse precon-
ditioners. SIAM J. Sci. Comput. 21 (2000) 1804-1822

5. Chow, E.: Parallel implementation and practical use of sparse approximate inverses
with a priori sparsity patterns. Int’l J. High Perf. Comput. Appl. 15 (2001) 56–74

6. Chow, E.: An unstructured multigrid method based on geometric smoothness. sub-
mitted to Num. Lin. Alg. Appl. Also available as Lawrence Livermore National
Laboratory technical report UCRL-JC-145075 (2001)

7. Chow, E., Cleary, A., Falgout, R.: Design of the hypre preconditioner library. In
Henderson, M., Anderson, C., Lyons, S., eds: Proc. of the SIAM Workshop on Object
Oriented Methods for Inter-operable Scientific and Engineering Computing (1998)
SIAM Press

640 R.D. Falgout and U. Meier Yang

8.ÿ Clay,ÿR.ÿetÿal.:ÿAnÿannotatedÿreferenceÿguideÿtoÿtheÿFiniteÿElementÿInterfaceÿ(FEI)
specification,ÿversionÿ1.0.ÿTechnicalÿReportÿSAND99-8229,ÿSandiaÿNationalÿLabo-

ÿÿratories,ÿLivermore,ÿCAÿ(1999)
9.ÿ Cleary,ÿA.,ÿFalgout,ÿR.,ÿHenson,ÿV.,ÿJones,ÿJ.:ÿCoarse-gridÿselectionÿforÿparallelÿalge-

braicÿmultigrid.ÿinÿProc.ÿofÿtheÿ5thÿIntern.ÿSympos.ÿonÿSolvingÿIrregularlyÿStructured
ÿÿProblemsÿinÿParallel,ÿLectureÿNotesÿinÿComputerÿScienceÿ1457ÿ(1998)ÿ104–115

10.ÿ Falgout,ÿR.,ÿJones,ÿJ.:ÿMultigridÿonÿmassivelyÿparallelÿarchitectures.ÿInÿDick,ÿE.,
Riemslagh,ÿK.,ÿandÿVierendeels,ÿJ.,ÿeds:ÿMultigridÿMethodsÿVI,ÿLectureÿNotesÿin

ÿÿComputationalÿScienceÿandÿEngineering,ÿvol.ÿ14ÿ(2000)ÿ101–107,ÿBerlin.ÿSpringer
11.ÿ Gallivan,ÿK.,ÿYang,ÿU.ÿM.:ÿEfficiencyÿissuesÿinÿparallelÿcoarseningÿschemes.ÿLLNL

ÿÿtechnicalÿreportÿ(2001)
12.ÿ Henson,ÿV.ÿE.,ÿYang,ÿU.ÿM.:ÿBoomerAMG:ÿaÿparallelÿalgebraicÿmultigridÿsolver

andÿpreconditioner.ÿToÿappearÿinÿAppliedÿNumericalÿMathemaitics.ÿAlsoÿavailable
ÿasÿLLNLÿtechnicalÿreportÿUCRL-JC-133948ÿ(2000)

13.ÿ Henson,ÿV.E.,ÿVassilevski,ÿP.:ÿElement-freeÿAMGe:ÿGeneralÿalgorithmsÿforÿcomput-
ingÿinterpolationÿweightsÿinÿAMG.ÿtoÿappearÿinÿSIAMÿJ.ÿSci.ÿComput.ÿAlsoÿavailable

ÿÿasÿLLNLÿtechnicalÿreportÿUCRL-JC-139098
14.ÿ Hysom,ÿD.,ÿPothen,ÿA.:ÿEfficientÿparallelÿcomputationÿofÿILU(k)ÿpreconditioners.

SC99,ÿACMÿ(1999),ÿCDROM,ÿISBNÿ#1-58113-091-0,ÿACMÿOrderÿ#415990,ÿIEEE
ÿComputerÿSocietyÿPressÿOrderÿ#ÿRS00197

15.ÿ Hysom,ÿD.,ÿPothen,ÿA.:ÿAÿscalableÿparallelÿalgorithmÿforÿincompleteÿfactorÿprecon-
ÿÿditioning.ÿSIAMÿJ.ÿSci.ÿComput.ÿ22ÿ(2001)ÿ2194–2215

16.ÿ Jones,ÿM.,ÿPlassman,ÿP.;ÿAÿparallelÿgraphÿcoloringÿheuristic.ÿSIAMÿJ.ÿSci.ÿComput.
ÿÿ14ÿ(1993)ÿ654–669

17.ÿ Jones,ÿJ.,ÿVassilevski,ÿP.:ÿAMGeÿbasedÿonÿelementÿagglomeration.ÿ toÿappearÿ in
ÿÿSIAMÿJ.ÿSci.ÿComput.ÿAlsoÿavailableÿasÿLLNLÿtechnicalÿreportÿUCRL-JC-135441

18.ÿ Karypis,ÿG.,ÿKumar,ÿV.:ÿParallelÿthreshold-basedÿILUÿfactorization.ÿTechnicalÿRe-
portÿ061ÿ(1998)ÿUniversityÿofÿMinnesota,ÿDepartmentÿofÿComputerÿScience/ÿArmy

ÿÿHPCÿResearchÿCenter,ÿMinneapolis,ÿMN
19.ÿ Luby,ÿM.:ÿAÿsimpleÿparallelÿalgorithmÿforÿtheÿmaximalÿindependentÿsetÿproblem.

ÿÿSIAMÿJ.ÿonÿComputingÿ15ÿ(1986)ÿ1036–1053
20.ÿ Ruge,ÿJ.,ÿStüben,ÿK.:ÿAlgebraicÿMultigridÿ(AMG).ÿinÿMcCormick,ÿS.,ÿed.ÿMultigrid

Methods,ÿFrontiersÿinÿAppliedÿMathematicsÿvol.ÿ3ÿ(1987)ÿ73–130,ÿSIAM,ÿPhiladel-
ÿÿphia

21.ÿ Schaffer,ÿS.:ÿA ÿsemi-coarseningÿmultigridÿmethodÿforÿ ellipticÿ partialÿ differential
equationsÿwithÿhighlyÿdiscontinuousÿandÿanisotropicÿcoefficients.ÿSIAMÿJ.ÿSci.ÿCom-

ÿÿput.ÿ20ÿ(1998)ÿ228–242
22.ÿ Yang,ÿU.ÿM.:ÿOnÿtheÿuseÿofÿSchwarzÿsmoothingÿinÿAMG.ÿ10thÿCopperÿMt.ÿConf.

MultigridÿMeth..ÿAlsoÿavailableÿasÿLLNLÿtechnicalÿreportÿUCRL-VG-142120ÿ(2001)

641hypre: A Library of High Performance Preconditioners

	Introduction
	Conceptual Interfaces
	Structured-Grid System Interface (Struct)
	Semi-Structured-Grid System Interface (SStruct)
	Finite Element Interface (FEI)
	Linear-Algebraic System Interface (IJ)

	Preconditioners
	SMG
	PFMG
	BoomerAMG
	ParaSails
	PILUT
	Euclid

	Additional Information
	Conclusions and Future Work
	Acknowledgments
	References

