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Abstract

Today’s smartphones operate independently of each other, using only lo-

cal computing, sensing, networking, and storage capabilities and functions

provided by remote Internet services. It is generally difficult or expensive for

one smartphone to share data and computing resources with another. Data is

shared through centralized services, requiring expensive uploads and down-

loads that strain wireless data networks. Collaborative computing is only

achieved using ad hoc approaches.

Coordinating smartphone data and computing would allow mobile appli-

cations to utilize the capabilities of an entire smartphone cloud while avoiding

global network bottlenecks. In many cases, processing mobile data in-place

and transferring it directly between smartphones would be more efficient and

less susceptible to network limitations than offloading data and processing to

remote servers.

We have developed Hyrax, a platform derived from Hadoop that supports

cloud computing on Android smartphones. Hyrax allows client applications

to conveniently utilize data and execute computing jobs on networks of smart-

phones and heterogeneous networks of phones and servers. By scaling with

the number of devices and tolerating node departure, Hyrax allows applica-

tions to use distributed resources abstractly, oblivious to the physical nature

of the cloud.

The design and implementation of Hyrax is described, including experi-

ences in porting Hadoop to the Android platform and the design of mobile-

specific customizations. The scalability of Hyrax is evaluated experimentally

and compared to that of Hadoop. Although the performance of Hyrax is poor

for CPU-bound tasks, it is shown to tolerate node-departure and offer reason-

able performance in data sharing. A distributed multimedia search and sharing

application is implemented to qualitatively evaluate Hyrax from an application

development perspective.
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Chapter 1

Introduction

Most of today’s smartphone applications are geared towards an individual user and only

use the resources of a single phone. There is an opportunity to harness the collective sens-

ing, storage, and computational capabilities of multiple networked phones to create a dis-

tributed infrastructure that can support a wealth of new applications. These computational

resources and data are largely underutilized in today’s mobile applications. Using these

resources, applications could conveniently use the combined data and computational abil-

ities of an entire network of smartphones to generate useful results for clients both outside

and within the mobile network. This interface and the underlying hardware would create a

mobile-cloud upon which compute jobs could be performed. We define mobile-cloud com-

puting to be an extension of cloud computing in which the foundational hardware consists

at least partially of mobile devices.

Some mobile applications already extract and aggregate information from multiple

phones. Tweetie Atebits for the iPhone uses locations from other phones running the

application to allow users to see recent Twitter posts by nearby users. Video and photo

publishing applications such as YouTube and Flickr allow users to upload multimedia data

to share online. The Ocarina application Smule for the iPhone allows users to listen to

songs played by other users of the application, displaying the location of each user on a

globe. Such smartphone applications are “push”-based and centralized, meaning that users

push their information to a remote server where it is processed and shared.

It is possible to use a networked collection of smartphones in a more opportunistic

way. Each smartphone has some amount of storage, some amount of compute power,

some sensing abilities, some multimedia data, and some amount of energy. Each of these

capabilities is currently only available to and utilized by the smartphone’s owner. What

if these capabilities were somehow offered to other users and applications? What if we
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could harness a collection of smartphones to support large-scale distributed applications,

using smartphones as the basis for a cloud computing infrastructure? Each smartphone

would be equipped to perform individual, local computations on its local data in support

of a larger, system-wide objective, and the outcomes of each smartphone’s local actions

would be aggregated to meet the needs of the overall application. Applications could use

these resources abstractly, oblivious to the underlying implementation on a smartphone

network.

Similar concepts have been studied in sensor networks and mobile grid computing,

Sorniotti et al. [2007], Akyildiz et al. [2006], Litke et al. [2004]. However, in contrast

to data-center “pay-as-you-use” cloud computing and sensor networks, in the proposed

mobile-cloud concept (1) each node is owned by a different user, (2) each node is likely

to be mobile, (3) the network topology is more dynamic, and (4) each mobile node is

battery-powered. In contrast to mobile grid computing, mobile-cloud computing focuses

on abstracting away from the implementation of resource sharing to provide a useful tool

for applications.

Using mobile hardware for cloud computing offers advantages over using traditional

hardware, such as computational access to multimedia and sensor data without large net-

work transfers, more efficient access to data stored on other mobile devices, and distributed

ownership and maintenance of hardware. Such a concept inevitably gives rise to many

concerns, including access-control, incentivisation of users, privacy, and mobile resource

conservation. At the same time, this concept may create many opportunities for interesting

new applications and for more resource-efficient versions of existing applications.

One application that illustrates the usefulness of a mobile-cloud computing platform

is distributed mobile multimedia sharing. Today, it is easy to upload mobile photos and

videos directly to remote services such as Flickr and YouTube, at least when a stable,

high-bandwidth network connection is available. However, sharing a file in this way is

expensive and sometimes wasteful. The file needs to be compressed, annotated, and then

sent over the network, draining the battery in the process. This upload is also a burden for

wireless network service providers who must handle these large uploads and for other mo-

bile users who experience the network performance degradation that results. Furthermore,

many videos and pictures uploaded to these websites are only accessed a few times if at

all.

Handling file uploads is a particularly big problem when a large number of people are

using mobile phones in one location. For example, many wireless data services failed

in Washington D.C. during the 2009 U.S. Presidential Inaugration Park [2009], an event

which millions of people attended. In fact, CTIA-The Wireless Association issued a press

release Joe Farren before the event imploring mobile users to “wait until leaving the In-
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augural events to send [photos and videos] to friends and family”. In such cases, mobile

users are unable to publish and consume multimedia at the time when it is most interesting

and relevant. Furthermore, wireless service providers cannot prepare for all events that in-

duce high network traffic in advance. For instance, the terrorist attacks of September 11th,

2001, induced similar network congestion in New York Beard [2005], making it difficult

to place wireless phone calls. If a similar incident happened today, it would be difficult to

share extremely important multimedia data collected on smartphones.

A more scalable way to support multimedia sharing from mobile devices is to host files

on phones and distribute queries and summarization tasks across many nodes, eliminating

the need for each user to upload large files to and retrieve files from remote services. In-

stead, large transfers could be performed directly within local networks. Search queries

could include times and locations of interest and incorporate local sensor readings such as

heading and movement to estimate video quality and relevance. Irrelevant and low-quality

videos would never need to leave the phone on which they were collected, saving battery

energy for both these users and users who would have downloaded these videos, and re-

ducing the load on the network as a whole. Data “hot-spots”, i.e. smartphones uniquely

hosting very popular data, could be avoided by replicating popular data to other smart-

phones, and in some cases servers on the local network. Using this system, smartphone

users could publish and retrieve photos and video from many vantage points without wait-

ing until after the event, and other entities such as broadcasters could find relevant videos

to share with the general public. This application would be useful at any event where a

large crowd is gathered, such as sporting events, concerts, plays, and movies.

1.1 Our contributions

The goal of our research is to develop a mobile-cloud infrastructure that will enable smart-

phone applications that are distributed both in terms of data and computation. In this

paper, we present our implementation and evaluation of a mobile-cloud computing infras-

tructure based on MapReduce.

We needed a starting point for our investigation of mobile-cloud computing. One pos-

sibility was to build a new infrastructure from scratch designed to run on mobile devices.

Instead, we decided to start with an existing cloud computing infrastructure and examine

its suitability by modifying it to run on mobile devices. We sought to understand and ar-

ticulate the obstacles, challenges, and solutions in supporting a mobile-cloud computing

platform.

We started with Hadoop Apache, an open-source implementation of MapReduce Dean
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and Ghemawat [2008]. MapReduce is a programming framework and implementation in-

troduced by Google for data-intensive cloud computing on commodity clusters. Hadoop is

used by companies such as Yahoo!, Facebook, and IBM Apache to process large amounts

of data distributed across a network of servers. It is commonly used on Amazon’s Elastic

Compute Cloud (EC2), a utility computing service.

Hadoop includes a large amount of the functionality required for a mobile-cloud com-

puting system. We target the Android platform since it incorporates the Dalvik Java VM,

which is capable of executing much of Hadoop’s Java codebase without modification. We

provide an overview of cloud computing, Hadoop, and Android in §2.

In this paper, we establish the motivation for this mobile-cloud computing platform,

which we call Hyrax 1, discuss how the challenges of mobile computing apply to this

platform, enumerate the requirements of the platform, and describe the choices we made

and the challenges we faced in porting Hadoop to run on Android. We develop and present

the results of several experiments that evaluate the scalability, flexibility, performance, and

battery usage of Hyrax. We also implement a distributed multimedia search and sharing

application to gain insight into the advantages of using Hyrax as an infrastructure for

applications that use mobile data.

Our experiments show that Hyrax easily scales to the 12 Android smartphones in our

testbed in terms of execution times and resource usage. Unfortunately, it also exerts a

huge base cost on Android, requiring a lot of time to process relatively small amounts of

data. Hyrax handles node-departure during MapReduce jobs when the number of nodes

in the cluster and the replication factor are sufficiently high. Hyrax also allows for data

sharing among smartphones in a WiFi network with similar but potentially more consistent

latencies compared to uploading files to and hosting files from a remote server. Hyrax has

not been optimized to be battery-efficient, but it uses significantly less power than video

recording and downloading even in the worst case.

This document is organized as follows: §2 provides the necessary background on cur-

rent smartphone technology, cloud computing, Hadoop, and Android. §3 gives the prob-

lem statement and establishes the motivation for a mobile-cloud computing platform. In

§4, we list our assumptions, develop requirements, and justify using Hadoop for mobile-

cloud computing. §5 describes the implementation of Hyrax, including our assumptions,

requirements, and choices in configuring and customizing Hadoop for mobile devices. §6

describes our experimental evaluation of Hyrax. §7 describes our distributed multimedia

search and sharing case study. §8 discusses the related work.

1The hyrax is a small herbivorous animal that lives in Africa and the Middle East. It is described as being

the closest living relative to the elephant.
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Chapter 2

Background

2.1 Smartphone technology

Advances in mobile hardware and software have allowed users to perform tasks that were

once only possible on personal computers and specialized devices like digital cameras and

GPS personal navigation systems. Using smartphones like the Apple iPhone, Android

phones, and the BlackBerry, mobile users can now make full use of the Internet, capture

and manage photos and videos, play music and movies, and play complex games. They

have nearly ubiquitous access to the Internet via 3G services, WiFi, and peer-to-peer net-

working and can switch between networks automatically.

Sensors enable many interesting applications on smartphones. They provide informa-

tion about the location, movement, and orientation of the phone and the environment’s

temperature and lighting. For example, the Google Android G1 contains an accelerome-

ter, a GPS device, and a digital compass. Applications use local sensor data to customize

and enhance the user’s experience in a context-aware manner. For example, map applica-

tions display the user’s current location on a map, rotate the map according to the user’s

heading, and provide customized directions. Games use motion data as input to create

an immersive experience. Music applications such as Ocarina use microphone signals to

simulate the effect of blowing into a musical instrument.

In addition to sensor data, smartphones are used to store, generate, and share multi-

media data. Using built-in cameras and microphones, these devices can record photos,

videos, and sound clips. Smartphones are also used to play movies and music downloaded

to the device by the user. Several gigabytes of multimedia data can be stored locally on

smartphones thanks to cost and size improvements in flash memory Matt.
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Smartphones are becoming extremely widespread. According to International Telecom-

munication Union [2009], there are currently over 4 billion mobile subscriptions in the

world. Among the devices used by these subscribers, smartphones are becoming increas-

ingly common, accounting for a larger percentage of the mobile phone market and replac-

ing less capable mobile phones. According to Hamblen, smartphones accounted for more

than 14% of all mobile device shipped in 2008 and will account for 17% of all mobile de-

vices in 2009. 116 million smartphones were shipped in 2007, 171 million were shipped

in 2008, and a projected 203 million will be shipped in 2009. As powerful smartphones

become more popular, it is increasingly feasible to run more complex software and more

computationally-expensive tasks on them.

2.2 Cloud computing

Cloud computing is a style of computing in which dynamically scalable resources are

provided as a virtualized service Knorr and Gruman. It allows service providers and other

users to adjust their computing capacity depending on how much is needed at a given time

or for a given task.

According to Myerson, cloud computing requires three components: thin clients, grid

computing, and utility computing. Thin clients are applications that make use of the vir-

tualized computing interface. Users are commonly exposed to cloud computing systems

through web interfaces to use services such as web-based email, search engines, and on-

line stores. Grid computing harnesses the resources of a network of machines so that they

can be used as one infrastructure. Utility computing provides computing resources on de-

mand, where users “pay as they use”. This is exemplified by Amazon EC2, which allows

users to allocate virtual servers on demand, paying an hourly fee for each allocated server.

In mobile-cloud computing, the same type of virtualized interface is provided to users,

but the system is ultimately supported by mobile devices or a combination of mobile and

static devices. The possibility of heterogeneous clusters of servers and mobile devices in

which the capabilities of each are used in conjunction is not excluded. The motivation for

mobile-cloud computing is developed in §3.3.

2.3 MapReduce and Hadoop

MapReduce Dean and Ghemawat [2008] is a programming model and implementation de-

veloped by Google that is used to process very large datasets distributed across a cluster of
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servers. It is highly scalable, fault-tolerant, and useful for many large-scale data processing

tasks. It is typically used in conjunction with the Google File System Howard et al. [2004],

a distributed filesystem designed for “large distributed data-intensive applications.”

To use MapReduce, users specify a “map” function that takes an input key/value pair

and outputs intermediate key/value pairs. For every key in the set of intermediate pairs,

a set of values is collected. The user specifies a “reduce” function that processes each

intermediate key/value set pair and generates an output. Input data is loaded from the

distributed filesystem and output data is written back to the filesystem.

The MapReduce runtime system handles splitting the input data, scheduling map and

reduce tasks, and transferring input and output data to the machines running the tasks. Jobs

are managed by a master that assigns tasks to slave machines and provides the locations

of intermediate values to reduce tasks. Computation on the machine where the input data

is already stored is preferred in order to minimize network transfers. Large data transfers

are performed directly between the machine where the data is stored and the machine that

needs the data. Data transfers between machines on the same rack are preferred to transfers

between machines that are more “distant” from each other in the network.

Hadoop Apache is an open source implementation of MapReduce used by many or-

ganizations for large-scale data processing. Hadoop is written in Java and operates on

data stored in a distributed filesystem, usually the Hadoop Distributed Filesystem (HDFS),

which is based on the Google File System. Hadoop instances consist of four types of pro-

cesses Borthakur [2007]: NameNode, JobTracker, DataNode, and TaskTracker. There is

one NameNode and one JobTracker in a Hadoop cluster. The NameNode maintains a

directory of data blocks that make up the files in HDFS. The JobTracker manages jobs

and coordinates sub-tasks among the TaskTrackers. Both a DataNode instance and a Task-

Tracker instance run on each worker machine. The DataNode stores and provides access to

data blocks, and the TaskTracker executes tasks assigned to it by the JobTracker. Clients

access files by first requesting block locations from the NameNode and then requesting

blocks directly from these locations. The layout of these processes in a typical Hadoop

cluster is summarized in Figure 2.1.

Hadoop is capable of tolerating faults by re-executing failed tasks (and tasks whose

results are no longer available because of later failures) and by maintaining block replicas

among several DataNodes. When speculative execution is enabled, the same task may

be executed on multiple nodes to increase the probability of successful and fast results.

Hadoop’s fault tolerance, along with its peer-to-peer bulk data transfers and largely inde-

pendent tasks, allow it to scale to thousands of machines.

Hadoop is a cloud computing infrastructure in that it provides a virtualized interface to
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Figure 2.1: Typical Hadoop cluster configuration.

an arbitrarily scaled computing cluster. Hadoop programmers only need to be concerned

with defining a high-level workflow for the system. The Hadoop runtime determines how

to divide jobs submitted by the user into sub-tasks, where to physically store data, how to

move computations and data, how to handle machine failures, and all of the other details

that are required for a distributed computing system to work.

2.4 Android

Android Open Handset Alliance is an open source mobile operating system developed by

Google and the Open Handset Alliance. It is built on top of the Linux kernel and provides

an SDK for application development in Java.

Android uses the Dalvik Virtual Machine to execute applications. Dalvik is optimized

to run on devices with constrained CPU, memory, and power resources. It implements a

subset of Java 2 Platform Standard Edition (J2SE) using libraries from the Apache Har-

mony Apache Java implementation, giving it an advantage over other mobile platforms

that only support Java 2 Platform Micro Edition (J2ME), which is limited by comparison.

Java class files must be compiled to Dalvik bytecode (.dex format) and packaged in a

.apk file in order to be used on Android.

Android provides an interface to system devices and services through a set of Java

packages, including android.os, android.hardware, android.location, and
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android.media. This makes it easy to access and operate on multimedia data, sensor

values, system resource usage data, and location information. Unlike some mobile oper-

ating systems, Android applications can use the filesystem directly, making it possible to

manage files as on a traditional Unix system. Android also provides a shell interface, but

it lacks many of the abilities of a typical Linux shell. Some of the missing utilities can be

added by installing BusyBox Denys Vlasenko.
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Chapter 3

Problem Statement and Motivation

3.1 Problem statement

We study the problem of how to create a mobile-cloud computing infrastructure that al-

lows applications to utilize the collective data and computational resources of networked

smartphones, particularly by modifying an existing non-mobile platform. The following

questions are addressed:

1. In what ways does an existing cloud computing platform succeed and fail to meet

the needs of a mobile deployment? Can it be modified to be adapted to be suitable,

and how? The effectiveness of Hadoop on the Android platform is evaluated, and

customizations of Hadoop for mobile hardware are implemented.

2. To what extent do mobile hardware and software reduce the effectiveness of an

existing cloud computing platform? The performance of Hadoop on the Android

platform is evaluated.

3. Does sharing processing and data among mobile phones in local networks reduce

strain on globally-limited networks and decrease distribution latency by avoiding

this bottleneck? The latency of resource usage is compared between sharing data

through a central service and sharing it through a distributed filesystem.

4. What are the challenges in porting an existing cloud computing platform to run on

smartphones? The obstacles that were faced in porting Hadoop to run on Android

are reported.
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5. How can a cloud interface to mobile resources be used effectively in practice? A

distributed multimedia search and sharing application is implemented, and the ad-

vantages of using Hyrax instead of an ad hoc approach are reported.

With respect to this problem, we make the following claim:

Thesis statement. It is feasible with today’s mobile hardware and network infrastruc-

ture to provide mobile cloud computing using local data and computational resources to

support larger system-wide goals.

The thesis statement is validated through the design and implementation of a mobile-

cloud computing system based on MapReduce, various performance experiments, and the

development of a case-study application.

3.2 Goals and non-goals

In order to address the problem statement, our goals are the following:

• Motivate mobile-cloud computing by discussing the advantages of using mobile de-

vices for cloud computing, proposing example applications, and showing that it is

feasible using today’s mobile technology.

• Implement Hyrax, a mobile-cloud computing platform, by porting Hadoop to run on

Android smartphones.

• Evaluate what effect the mobile hardware platform has on the performance of Hadoop

by developing a testbed and running a set of experiments on it.

• Determine whether Hyrax offers advantages in sharing data and processing com-

pared to current approaches.

• Implement an application on top of Hyrax and evaluate it.

We do not aim to do the following:

• Implement a mobile-cloud computing platform that is fully optimized and ready for

real-world deployment.

• Create a platform that is useful for generic distributed computation. We do not ex-

pect to compete with traditional server clusters for generic large-scale distributed

data processing, only to support applications that make use of mobile-specific capa-

bilities and data that is already on mobile phones.
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3.3 Motivation

Mobile-cloud computing is motivated by the unique advantages of mobile devices, the

wide range of applications that a mobile-cloud computing platform would facilitate, and

the feasibility of such a platform using today’s mobile technology.

3.3.1 Advantages of cloud computing on mobile devices

As defined in §1, mobile-cloud computing is cloud computing in which the foundational

hardware consists at least partially of mobile devices. Traditional cloud computing sys-

tems are built on clusters of servers. Massive amounts of data are placed on these clusters

through layers of virtualization, and then high-level jobs are executed to process this data

and return useful results. In mobile-cloud computing, data originates and is processed on

mobile devices.

Despite the obstacles that mobile computing systems inevitably face relative to station-

ary computing systems, including resource limitations, risk of loss and damage, variability

in connectivity, and finite energy Satyanarayanan [1996b], there are numerous advantages

of cloud computing on mobile hardware. These provide the core motivation for Hyrax:

• Mobile data such as sensor logs and multimedia data are immediately available and

can be processed in-place or another node that is nearby in the network. Processing

data in this way eliminates the need to expensively transfer data to remote, central-

ized services.

• Data can often be shared more quickly and/or less expensively among mobile de-

vices through local-area or peer-to-peer networks. Data sharing is inherently useful

in some applications, and it is needed for collaborative computing jobs. Distribut-

ing data using the local network avoids file uploads to and downloads from remote

Internet services, which induce and are susceptible to global network contention.

• Services such as websites that use mobile data can be created with little extra com-

puting infrastructure. Instead of hosting data and services on an expensive server

farm or utility computing service, work can be distributed among mobile devices.

With Hyrax, services would only need to act as a frontend to the mobile cloud.

• As stated in §2.1, billions of mobile devices are in use, and the proportion of these

devices with smartphone capabilities is increasing. A mobile-cloud computing in-

frastructure could potentially be scaled to many more machines than a traditional
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cloud computing infrastructure simply because of the number of these devices that

are in use.

• Ownership of the cluster hardware is distributed. By using mobile hardware owned

by many different people, risks that arise when proprietary cloud services are used,

such as data lock-out and dependence on external entities for data privacy, are

avoided. Furthermore, maintenance of mobile devices in the cluster is also dis-

tributed since owners of smartphones almost always need them to be turned on and

working properly. Note that distributed ownership also creates security and privacy

challenges.

3.3.2 Applications

We are interested in applications that use data distributed among multiple phones such as

multimedia files and sensor logs. Hyrax would support requests from these applications,

either for direct access to the data or the results of running some job using the data. A

highly appropriate application for Hyrax which incorporates both multimedia and sensor

data is described in §1. In this section, more applications that Hyrax would facilitate are

described.

Sensor data applications

Sensor data is composed of series of readings generated by a smartphone’s sensors, such

as the GPS device, accelerometer, light sensor, microphone, thermometer, clock, and com-

pass. Each reading is timestamped, allowing it to be linked with readings from other sen-

sors and multimedia files. Applications would use this sensor data by executing queries on

the data as in a sensor database system Bonnet et al. [2001]. The data would be accessible

via an interface similar to that of a relational database and large data transfers would be

avoided by doing computations in-place (where the data is located) whenever possible.

For example, a query might ask “what was the average temperature of nodes within five

miles of my home at noon?” or “what is the distribution of velocities of all nodes within

half a mile the next highway on my current route?”.

The following applications would use sensor data in this way:

• Traffic reporting. This application would use location and movement data collected

on mobile phones to infer traffic flow. The movement signal for a given time range

would be processed (smoothed, interpolated) on the phone on which it resides, and
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a smaller result would be returned to the client. As with any traffic monitoring sys-

tem, this application would be useful to drivers who need to navigate through traffic

and officials in charge of controlling traffic. However, using mobile devices would

allow for more precise monitoring than current systems provide. Traffic monitor-

ing systems using sensor networks were implemented in Hull et al. [2006] using

application-specific sensors and in Lo et al. [2008] using mobile device sensors.

• Sensor maps. This application would plot sensor levels such as temperature or

sound levels on a map. The number of phones sampled would depend on the zoom

level of the map. This could be used, for instance, to estimate levels of danger in a

crisis situation in terms of temperatures, light, and noise levels and how they have

been changing over time, or to visualize mobile usage distributions in a city as in

Reades et al. [2007].

• Network availability monitoring. This application would collect network connec-

tivity information on each phone by time and location. This could be used to de-

termine where local-area and wide-area wireless network connectivity is available

and how strong the signal of each is in a given location. This information would

be useful for both wireless users and wireless providers. For example, Hull et al.

[2006] analyzes WiFi availability using sensors attached to cars.

Multimedia applications

Multimedia data consists of files recorded on mobile devices, including videos, photos,

and sound clips. It also encompasses files stored on mobile devices for entertainment,

such as music and movies. Examples of applications that would use multimedia data are:

• Similar multimedia search. This application would find photos, videos, or music

files whose contents are similar to that of an input sample. Each phone would reduce

the dimensionality of its resident multimedia files locally using some given feature

extraction algorithm, for instance using methods surveyed in Faloutsos [1996], and

forward the result. Shazam Shazam Entertainment Ltd is a popular mobile applica-

tion that does something similar, searching for songs similar to an uploaded music

clip in a central database.

• Event summarization. This application would splice video clips from multiple

devices into a single video which captures the entire event. The final video can be

uploaded to the Internet or shared among mobile peers. For instance, this system

would have been useful the protests that resulted from Iran’s June 2009 presidential
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election, where video clips were scattered in time and difficult to share as a result of

the government’s efforts to crack down on protests and the spread of information.

• Social networking. Sharing pictures has become a cornerstone of social network-

ing websites such as Facebook Facebook. A mobile cloud could be integrated into

the infrastructure of a social network to provide automatic sharing and peer-to-peer

multimedia access while reducing the need for huge numbers of servers to store,

back-up, and serve all of this data.

3.3.3 Feasibility

Mobile-cloud computing is enabled by recent advances in mobile hardware and software.

CPU speed and RAM capacity have been approaching those of the desktop machines of

less than a decade ago. For instance, the HTC Magic, a recently released Android phone,

features a 528 MHz processor and 288 MB of RAM HTC [b]. Networking capabilities

are also advancing. Many mobile devices can now connect to WiFi networks, which are

widely available in homes and public areas. 3G networks provide widespread access to the

Internet with speeds approaching that of WiFi. WiFi and 3G technologies are compared

in depth in Lehr and McKnight [2003]. In addition to WiFi and 3G, Bluetooth allows

low-power data transfer between devices with bandwidth that will soon approach those

of WiFi networks, allowing fast, power-efficient bulk transfers between devices Bluetooth

SIG [2009]. Smartphones will soon be able to create peer-to-peer networks using ad hoc

WiFi and Bluetooth connections.

Thanks to increasingly powerful mobile hardware, mobile devices are now capable of

running full-fledged operating systems such as Linux and Mac OS X. Mobile versions of

these operating systems provide SDKs for writing complex applications using extensive

libraries. The iPhone SDK supports development in Objective-C and C, allowing appli-

cations to make use of almost any existing code in these languages. Similarly, Android’s

Dalvik VM implements many J2SE classes, allowing existing Java libraries to be used in

mobile applications with slight modifications. As a result, it is increasingly feasible to port

desktop and server applications directly to mobile devices.

Unfortunately, energy density in batteries has not improved at nearly the same rate as

computational capabilities in mobile devices Lehr and McKnight [2003]. This presents

a serious obstacle for running services like a distributed computing platform on smart-

phones. As a result, power constraints are an extremely important consideration in design-

ing a realistic mobile distributed computing platform.
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Chapter 4

Approach

In this section, we explicitly state our assumptions, enumerate the requirements for a

mobile-cloud computing platform, and explain why we chose to use Hadoop as a basis

for Hyrax.

4.1 Assumptions

Our work depends on the following assumptions about the targeted hardware and how the

system will be used. We briefly explain why we made each assumption. Future work may

allow these assumptions to be relaxed.

• The system will be used primarily for computations that involve data on mobile

devices, not for generic distributed computation. We do not expect to replace or

effectively collaborate with traditional servers for generic large-scale computation.

This is a reasonable assumption given that the fixed cost of computing resources is

now very low using systems like Amazon EC2, which provide access to machines

that are far more capable than smartphones.

• The smartphones under consideration have sufficient space to store multimedia data

and sensor logs, on the order of several gigabytes. This is not an unreasonable

assumption given the availability of cheap flash memory Matt. In our testbed, for

instance, an 8 GB microSD card costing about $15 is installed in each phone.

• A central machine that can connect to each phone exists. This is required to use

Hadoop without extensive modification since Hadoop’s NameNode and JobTracker
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processes must each run on some machine. This assumption is not unrealistic given

how widespread Internet connections on smartphones are. Note that these do not

have to be high-bandwidth connections since the NameNode and JobTracker are

only used for coordinating data and jobs.

• Files shared on the mobile network will not be modified often if at all. Our system is

targeted at multimedia and sensor data, which can be considered historical records

that do not need to be changed.

• Each smartphone is reachable from each other device in the network via IP. This is

an unrealistic assumption given the complexities imposed by firewalls and network

address translation (NAT). For instance, when a mobile device is behind a wireless

router, it is only possible for other devices to connect to it (using plain TCP or UDP

sockets) if the correct ports on the router are forwarded to the device. However, sev-

eral peer-to-peer NAT- and firewall-traversing protocols exist, including the Session

Initiation Protocol (SIP) Rosenberg et al. [2001], JXTA Sun Microsystems [a], and

SmartSockets Palmer et al. [2009]. These protocols use mutually-accessible proxies

to coordinate transfers on nodes behind firewall and NAT layers. This problem is not

addressed in our implementation, but it would not be difficult to incorporate an ex-

isting peer-to-peer protocol into Hadoop, especially one such as JXTA that provides

a Java SocketFactory implementation.

Note that the following are not assumed:

• Static network topology. It is not assumed that devices in the network, other than

the central server, will be present throughout a job.

• Homogeneous hardware. Heterogeneous clusters of devices, including both mobile

devices and traditional servers, are allowed.

4.2 Requirements

A mobile-cloud computing platform must satisfy the needs of the applications written for it

while using resources efficiently. The essential functionality of a mobile-cloud computing

system is:

• Global data access. Applications should be able to access any data that the user

of the application has permission to access regardless of the physical nature of the

data, for instance where it is stored and how it is replicated.

18



• Distributed data processing. Given a program that takes data on the filesystem as

an input, the platform should be able to compute the result of executing this function

on the appropriate data and make the results available to the requester.

In order for the system to usefully provide global data access and distributed data pro-

cessing in a real-world mobile distributed system, it must also have the following features:

• Fault-tolerance. It is important for the system to tolerate mobile devices leaving

and entering the network. Individual devices are susceptible to network signal loss,

running out of battery power, being too far away from other phones for peer-to-peer

networking, and hardware failure.

• Scalability. The system must scale with an increasing number of devices and an

increasing amount of data. The latency of an operation invoked on the system should

increase at most linearly with respect to the amount of the data being processed or

accessed. Increasing the number of phones should have a positive to neutral effect

on job latencies.

• Privacy. File owners should be able to control other users’ access to their data. For

instance, users should be able to specify which other users have access to individual

pictures taken on their phones.

• Hardware interoperability. Machines that the software components of the system

runs on should be able to interoperate with other machines regardless of hardware

specifics. Different types of mobile devices and servers should be able to work

together as long as they run compatible versions of the software.

The implementation of this system should use mobile resources wisely, including:

• Battery life. Energy is a finite resource on any mobile device. A service that runs

for a long period of time on a mobile device must be especially conscious of energy

usage. Energy density in batteries has been increasing much more slowly than the

capacities of other mobile computing resources, so preserving energy will likely be

the chief priority for mobile software systems for a long time Estrin et al. [2002].

• Network bandwidth. Wireless network connections on mobile phones are rela-

tively slow and intermittent, and they account for a significant percentage of power

consumption. In fact, network transmission is orders of magnitude more energy-

costly than CPU cycles Palmer et al. [2009]. Therefore it is often more efficient to

process data on the phone where it resides and return a smaller result.
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Furthermore, on mobile data networks, bandwidth is a globally limited resource.

The more data that devices send, the slower and less available the service becomes

for everyone. As stated in §1, this can make it difficult to transmit data when an

extremely large number of mobile devices are being used in the same location.

• CPU cycles and memory. Using the processor on a mobile device requires en-

ergy from the battery and may interfere with the performance of other applications.

Along the same lines as processor usage, excessive memory usage may interfere

with the performance of other applications. Memory allocation tends to be more

tightly constrained on mobile operating systems than it is on traditional operating

system configurations. For instance, Android limits the heap size of each applica-

tion to 16 MB.

In the case of Java-based mobile application frameworks such as the Android SDK,

it is especially important to avoid CPU-intensive operations. The virtual machine

(the Dalvik VM in the case of Android) adds an extra layer of abstraction which

greatly impedes the performance of a program that is CPU- and/or memory-bound

compared to the equivalent program running directly on the hardware.

• Time. Time-efficiency is always important to users. The platform should be able

to compute results in a reasonable amount of time. This is particularly important in

mobile applications because many mobile operating systems only allow the user to

focus on one application at a time.

• Storage. The size and cost of flash storage is improving, but the amount of per-

manent storage available on mobile devices is still limited compared to the amount

of storage on traditional machines. Furthermore, “erase” and “write” operations on

flash memory cause memory wear Corsair, reducing data integrity over time. There-

fore permanent storage should be used conservatively.

Above basic resource considerations, there are several constraints inherent in mobile

computing that need to be considered, especially when transforming a distributed system

to one that is both distributed and mobile, as we do with Hadoop. These challenges,

originally outlined in Satyanarayanan [1996b], are:

1. Mobile elements are resource-poor relative to static elements. The additional weight,

power, and size restrictions compared to static counterparts will always have a neg-

ative effect on performance and capacity.

2. Mobility is inherently hazardous. Mobile devices are more susceptible to loss and

damage.
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3. Mobile connectivity is highly variable in performance and reliability. Wireless net-

works vary in speed and reliability, and mobile users constantly move between net-

works. There is often no network available.

4. Mobile elements rely on a finite energy source. Battery power consumption must be

considered at all levels for conservation to be effective.

We must demonstrate how Hyrax satisfies or fails to satisfy (in its current state) each

of these requirements.

4.3 Using Hadoop for mobile-cloud computing

In order to satisfy the requirements that have been outlined, a new infrastructure had to

be built from scratch, or an existing one had to be modified. Recognizing that Hadoop

implements the core required functionality, we decided to use it as a starting point. Hadoop

has several advantages and disadvantages with respect to the requirements of mobile-cloud

computing.

4.3.1 Advantages

Hadoop implements much of the core required functionality outlined in §4.2, including

global data access, distributed data processing, scalability, fault-tolerance, and data-local

computation (and thus efficient use of network resources).

HDFS, as a distributed filesystem, provides global data access to all devices in the

network. Furthermore, data blocks are transferred point-to-point, not through an interme-

diary. As a result, the speed of data transfer is limited primarily by the network bandwidth

between the two devices involved.

Distributed data processing is provided via Hadoop’s MapReduce implementation,

which divides jobs submitted by the user into independent “tasks” and distributes these

tasks to slave nodes, taking the physical location of input data into consideration. These

slave nodes execute map tasks on data stored on HDFS. As the outputs of map tasks be-

come available, reduce tasks process this intermediate data and write results back to HDFS.

When possible, data that is physically located on a given node is processed on that node,

avoiding data transfers.

Hadoop was designed to scale to thousands of machines, and has been shown to do

so by Yahoo! Yahoo!. It is also designed to tolerate faults; any sufficiently large system
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faces hardware failures with some expected frequency. HDFS implements file permis-

sions, which can be used to protect user data from unauthorized access. Therefore Hadoop

covers our requirements for scalability, fault-tolerance, and, to some extent, privacy. Fur-

thermore, the hardware fault-tolerance of Hadoop covers the mobile challenge, “mobility

is inherently hazardous”.

Since Hadoop uses abstract IPC interfaces for communication between processes and

between physical nodes, it is trivial for different types of machines running Hadoop pro-

cesses to work together. Therefore Hadoop also satisfies the “hardware interoperability”

requirement.

Although Hadoop does not currently take energy efficiency into account, there are

signs that this will change. Many companies are interested in data center efficiency

Google, Intel for reducing costs and the environmental impact of their operations. There-

fore energy usage improvements in Hadoop may be implemented in the future. In fact,

researchers have begun to investigate and suggest improvements for energy efficiency in

Hadoop. Chen et al. [2009] offers some suggestions for increasing the energy efficiency

of Hadoop, such as increasing the replication factor, avoiding excessive fan out and fan in,

and making sure that the intermediate pairs processed by reduce workers fit in memory.

Given Hadoop’s popularity among major companies which are constantly optimizing their

processes and the research that is being done to improve Hadoop’s power efficiency, it is

likely that Hadoop will become more power-aware and power-efficient in the future. Fur-

thermore, investigating the battery consumption of Hadoop on mobile devices may yield

insights useful to improving the energy efficiency of Hadoop in a traditional setting.

4.3.2 Disadvantages

Despite numerous advantages, Hadoop is less than ideal for some of the mobile aspects

of mobile-cloud computing. It implements much of the functionality that our platform

requires, but it does not cover all of the requirements. This is mostly because Hadoop was

designed and implemented with commodity server hardware in mind rather than resource-

constrained hardware.

One problem is that Hadoop is not conservative in CPU and memory usage. Hadoop

was designed for I/O bound jobs, i.e. those in which reading, writing, and transferring data

are the most time-consuming operations. Hadoop’s liberal use of CPU and memory is ex-

emplified by several aspects of its codebase. For example, Hadoop makes heavy use of

interfaces and inheritance, which impose computational overhead because of the lookups

that are required to determine which function to execute. Android provides several guide-
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lines for writing efficient code, such as avoiding object instantiation, avoiding internal get-

ters and setters, and preferring “virtual” over “interface” Android [a]. Of course, Hadoop

was not written with these guidelines in mind since it was developed for normal JVMs

running on traditional hardware. By default, Hadoop assumes that memory buffers on the

order of 100MB can be allocated, such as in map output buffering. This is clearly not the

case on mobile devices.

In the interest of avoiding “reinventing the wheel”, Hadoop also uses technologies that

are not well-suited for mobile devices. For instance, it uses XML extensively, which is

notoriously expensive to parse. It also uses servlets to serve intermediate results, even

though a light-weight custom HTTP server would require less overhead. JSPs, which

require dynamic compilation, are used to provide a monitoring interface to DataNodes

and TaskTrackers. This inefficiency is magnified on a mobile device.

Hadoop is also lacking in its ability to cope with varying and slow network conditions.

Hadoop is typically run on servers Apache connected via 1 Gbit/s to 10 Gbit/s Ethernet

networks, which are about 8 and 80 times faster than 802.11g WiFi respectively IEEE

[2003] and much more stable. A network-bound MapReduce job may take approximately

this many times longer to complete using WiFi connections and perform even worse when

signal is poor for some of the nodes. This network bottleneck would occur during the

shuffle phase of MapReduce, where intermediate key-value pairs are distributed among

the nodes. As a result, for a typical MapReduce job, with all other things equal, a wire-

less mobile cluster would be expected to perform much worse than a traditional cluster.

MapReduce jobs that run on mobile device networks would have to be tailored to low-

bandwidth conditions, e.g. by making sure that intermediate keys and values are small.

The design of HDFS precludes disconnected operation, a major feature in other mo-

bile distributed filesystems Kistler and Satyanarayanan [1992]. DataNodes store blocks

without any knowledge of the file paths that they correspond to. Therefore it is impossible

for mobile devices to access data on HDFS, even if it is stored locally, if no connection to

the NameNode exists. Mobile applications would have to use a separate filesystem, most

likely the local native filesystem, as a backup when the NameNode is not reachable. Sim-

ilarly, mobile applications cannot execute compute jobs through the MapReduce interface

when disconnected from the JobTracker. A side-effect of this limitation is that Hyrax does

not face consistency problems such as how to resolve changes made to the same file during

disconnected operation.
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4.4 Hadoop’s assumptions in relation to mobile comput-

ing

It is important to consider the assumptions of the Hadoop and HDFS architecture Borthakur

[2007] in relation to mobile devices and the requirements of our platform. These assump-

tions should be reasonably compatible with the particulars of smartphones. They are:

• Hardware failure is common. In a mobile device network, failure is equivalent to

a device being disconnected from the network for an extended period of time, which

is a common occurrence. For instance, mobile devices sometimes disconnect from

WiFi when they are in an idle state in order to save power Android [b]. Mobile

devices also become disconnected when they enter places with poor wireless signal

coverage, such as basements, rural areas, and airplanes.

• Applications use large datasets. By default, HDFS uses 64 MB blocks to store

files. This is much larger than most multimedia files collected on phones with the

exception of large video files. For example, a photo taken using the Android G1

phone uses about 1 MB, and a typical MP3 music file uses about 3 MB. Since at

least one block must be allocated per file, storing individual photos and songs as

files on HDFS may waste a lot of space and lead to excessive block lookup requests

to the NameNode. This overhead can be reduced by combining multiple multimedia

files into larger files to be stored on HDFS.

• Applications do not require low-latency access to results. HDFS is designed to

support batch-processing rather than interactive use. This assumption might seem

difficult to reconcile with the demands of mobile applications, where applications

might execute custom queries and expect a result within a short time. However,

there are many cases where mobile applications could, instead of executing Hadoop

jobs directly, send queries to an intermediary which periodically runs a small set of

common queries and caches the results.

• Files are not modified after they are created. This fits well with multimedia files

and sensor logs, which are generally not modified once they have been captured.

They are essentially historical records.

• Moving computation is easier than moving data. This assumption fits extremely

well in a mobile environment. As noted in §4.2, bandwidth is a precious resource on

mobile devices, and code generally takes up less space than the data that it is used

to process. Therefore it often makes sense to distribute instructions for each phone
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to execute on the data that it already contains instead of having each phone offload

all of its data to remote machines.

In summary, the assumptions of hardware failure, file non-modification, and relative ef-

ficiency of moving code instead of data fit very well with a mobile environment. Hadoop’s

job latency assumptions require applications to be developed such that MapReduce jobs

are executed periodically instead of on-demand, which should be acceptible in most cases.

Hadoop’s dataset size assumptions do not fit very well and thus need to be accounted for.

4.5 Using Android for Hadoop

Google’s Android operating system was the most natural choice of a mobile platform

to run Hadoop on. Android’s Dalvik VM implements a subset of the Apache Harmony

Java implementation, which includes most of the Java classes used by Hadoop. Hadoop,

an Apache project itself, depends on several Apache libraries, such as Apache log4j,

Apache XML, and Apache Commons. Because of this compatibility, it was possible to

port Hadoop without rewriting a huge amount of code.

Note that most mobile devices that run Java only implement J2ME, which is not suffi-

cient for running an application like Hadoop without extensive modification. J2ME does

not include many of the high-level networking, process management, and file I/O fea-

tures that Hadoop depends on. Using Android made it possible to port Hadoop without

completely overhauling its source code.

Another appealing aspect of Android is its open nature relative to other mobile plat-

forms such as the iPhone, which is the most popular mobile application platform. Android

allows arbitrary applications to be installed on any number devices without any external

permission. In contrast, the iPhone SDK requires an expensive developer account in or-

der to install an application on an actual iPhone. Android’s debugging tool, ADB, can be

used to execute shell commands, install applications, display phone logs, and push and

pull files. Because it is a shell utility, it can be used in scripts. The iPhone provides ap-

plication installation and log viewing within the XCode IDE, and it does not support the

execution of arbitary shell commands or the creation of files. Overall, Android’s relative

open-ness makes it an acceptible platform for distributed mobile applications, whereas

closed platforms such as the iPhone make the development of such systems more difficult.
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4.6 Evolution of our approach

In the early stages of this project, we attempted to port Hadoop to SunSPOTs Sun Mi-

crosystems [b], which implements a J2ME API. We found this platform to be too limiting

for a direct port of Hadoop; it is missing many of the basic J2SE-style Java classes that

Hadoop depends on. For instance, the SunSPOT API does not even include the List in-

terface. It would probably be easier to write a simple MapReduce platform specifically for

J2ME devices from scratch than to port Hadoop. We chose not to implement a MapReduce

system from scratch because we wanted to study a full-featured, real-world MapReduce

implementation.

We found it much easier to make progress in porting Hadoop when we tried to do so

using the Android SDK and Android devices. We were not certain that it would be possible

to port every detail of Hadoop. In fact, we failed to port dynamic class loading and JSP

serving. However, we were able to get the core functionality of Hadoop to work through a

lot of painstaking debugging.
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Chapter 5

Implementation

In this section, we discuss how Hadoop was ported and configured for Android smart-

phones and describe the obstacles that were faced. In general, we found that the challenges

induced by Android resulted from a lack of openness and deviation from a the typical Unix

interface whereas those induced by Hadoop resulted from assumptions about system per-

formance. We found that there were many mobile-specific customizations that were made

trivial by features of Hadoop.

5.1 Porting Hadoop

The first step towards porting Hadoop to run on Android was to compile Hadoop’s source

code into an Android application. We wanted to create an Android application that would

act as a slave in a Hadoop network, running DataNode and TaskTracker instances. Instan-

tiating the DataNode and TaskTracker was just a matter of including Hadoop’s source in

the Java build path in an Android project. We started with Hadoop 0.19.0. Of course, the

system did not simply work immediately. Fixing the incompatibilities between Hadoop

and Android was a very difficult debugging task because of several obstacles imposed by

both Android and by Hadoop. These obstacles are described in §5.1.2 and §5.1.1. Having

fixed most of these incompatibilities, the source was later patched from Hadoop version

0.19.0 to version 0.19.1. This did not break any of our modifications.

Note that the NameNode and JobTracker processes were not ported to run on Android.

In Hyrax, these must be run on a traditional machine. However, it would not be any more

difficult to port these than it was to port the DataNode and TaskTracker.
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5.1.1 Android obstacles

Porting Hadoop to run on Android was a very difficult debugging challenge. Android

imposes several additional constraints on its applications that are not present in a typi-

cal Linux system. Furthermore, since it uses a custom Java implementation that is not

fully compatible with Sun’s JVM implementation, legitimate error-free Java class files are

sometimes rejected at runtime. As a result, Hadoop’s source and that of many of its li-

braries needed to be changed, either by removing or rewriting offending code, for it to run

as an Android application.

At runtime, Dalvik performs an additional consistency check that causes it to reject

some opcode sequences even though they were accepted by the Dalvik bytecode compiler.

This caused many classes packaged in libraries that Hadoop depends on to be rejected. To

get around this, the source code for the incompatible libraries had to be downloaded, parts

of the code that caused classes to be rejected had to be tracked down and removed without

modifying important behavior, and the libraries needed to be recompiled.

The usual java executable is not available on Android. In Android, Java classes can-

not be installed and executed directly from the command line. An application must always

exist as an .apk file. Hadoop’s launch script runs, on each worker node, DataNode and

TaskTracker instances as separate processes. This was replaced with code that instanti-

ates DataNode and TaskTracker objects within different service processes under a single

Android application.

A related issue is that it is not possible to execute new JVM instances within an An-

droid application using the shell. Hadoop does this to launch child worker processes. In

Hadoop, the call to java on the shell was replaced with a call to the child process class’s

main method, passing in the appropriate arguments. Some of the code that manages the

JVM instances spawned by Hadoop was also removed.

Android uses incompatible versions of the UNIX shell utilities needed by Hadoop.

Hadoop makes calls to df, du, and chmod in managing files and reporting the amount of

space available in a DataNode. In some cases, Android’s versions of these utilities accept

different input flags and produce outputs in a format that is different from the one expected

by Hadoop. To work around this, calls to shell utilities were removed and replaced with

calls to equivalent Java methods exposed by the Android SDK.

In order to execute arbitrary jobs on TaskTrackers, Hadoop must package and send Java

classes to the TaskTrackers at runtime. When a TaskTracker executes a map or reduce job,

it makes a call to java, adding to the classpath the path of the job’s unpackaged classes.

Since classes need to be converted to .dex format before they can be used in an Android
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application, classes cannot be easily loaded at runtime in this way. At this point, all of the

the job class files are simply packaged into the Hyrax worker application. Dynamic class

loading in Android may be implemented in the future, but it is not essential to addressing

our research questions.

Finally, Android’s debugging system caused Hadoop to run extremely slowly. In most

cases, it was not fast enough to be useful since it would take too long to get to the point

in the program execution where the bug occurred. This made debugging very slow and

difficult in many cases.

It is important to note that not all of these issues arose on the Android emulators;

some only occurred on actual phones. There are several important differences between

actual Android devices and Android emulators. One is that the Android emulator gives

root privileges to the user, whereas a typical (non-development) Android phone does not.

Another is that the timing of various system operations is very different. Developing and

running Hyrax on actual hardware exposed more problems than if Hyrax had only been

tested on Android emulators.

5.1.2 Hadoop obstacles

There were also several assumptions made by Hadoop that caused faults and performance

problems when it was run on Android.

Hadoop allocates memory buffers that are on the order of 10 to 100 MB. This is too

much for an Android application, whose heap can grow to a maximum of 16MB. To fix

this, these buffer sizes were reduced to about 1 MB. This caused excessive swapping

to occur. This swapping was reduced by adjusting the io.sort.record.percent

parameter (described in §5.4).

The default values for some timeouts in Hadoop are not long enough for a mobile de-

vice network. For instance, the value of the dfs.socket.timeout had to be increased

to compensate for connection issues.

Hadoop uses XML for its configuration files even though the same key-value con-

figuration could be stored in a simpler format, such as a properties file. XML parsing

is generally expensive; this is even more apparant on a CPU- and memory-constrained

smartphone. In fact, parsing the XML configuration files was the bottleneck in initializ-

ing the DataNode and TaskTracker instances. XML configuration files were replaced with

properties files to speed up Hyrax.
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5.2 Hadoop on a mobile cluster

Having ported the DataNode and TaskTracker processes to work on Android, a Hadoop

cluster was configured to run on Android phones. Running Hadoop on a cluster of phones

is analogous to running Hadoop on a cluster of servers. In both cases, there is one in-

stance of the NameNode and one instance of the JobTracker. These often run on the same

machine. The slave machines in the cluster each run DataNode and TaskTracker instances.

In Hyrax, the DataNode and the TaskTracker are run on each phone in separate An-

droid “service” processes within the same application. Android applications may consist

of multiple processes, some of which run as background services. Since the DataNode

and TaskTracker are run as Android services, they can run in the background of other

applications. The configuration of Hyrax is illustrated in Figure 5.1.

Figure 5.1: Hyrax hardware and software layers.

5.3 Mobile-specific components

In addition to the DataNode and TaskTracker services, threads that put each phone’s mul-

timedia data on HDFS and store sensor logs as files are spawned. In future work, Hive

Apache [b] will be used to store sensor data in a more structured way, but coding obstacles

have prevented Hive from being used at this point. As discussed in §3.3, it would be useful

to be able to process sensor data as if it exists in a relational database. Hive provides a

data warehouse infrastructure on top of Hadoop, providing a SQL-like query interface to
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the data and using MapReduce jobs to execute queries. This will be useful for storing and

accessing sensor data.

For the purposes of our experiments, a thread which records (to the local filesystem)

system load data, including power level and CPU, memory, network, and disk I/O statis-

tics, is also spawned. Within the application, a server is run allowing external scripts to

control data uploading, kill the program, and check the program status. Figure 5.2 illus-

trates the data interaction among all of the software components that run on each phone.

Figure 5.2: Hyrax worker application component interaction diagram.

5.4 Adjusting Hadoop’s configuration parameters

Many of Hadoop’s parameters were adjusted to suit a smartphone cluster. Through expe-

rience, these settings have been found to be appropriate for our mobile devices. In future

work, experiments may be performed in which important parameters are varied indepen-

dently to find the optimal setting for each one.

The amount of memory available for sorting map output key/value pairs (io.sort.mb)
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is greatly reduced because Android limits the memory available to a given application to

just 16 MB. With everything else running in this application, it was not possible to allocate

more than 1 MB for the map output buffer, which is much smaller than Hadoop’s default

of 100 MB. In the MapOutputBuffer class, which is used to collect map outputs, when

this memory buffer is exceeded by the map outputs (which happens almost immediately

when the buffer is small, at least for jobs that have many intermediate pairs), key/value

pairs are swapped out to files on disk. On a server, this swapping is still relatively in-

expensive because of the hard disk cache, which is 16 MB in each disk on our servers.

However, on a mobile device using flash memory, there is no such cache. Reads and

writes are placed in a small buffer and then flushed to the flash memory. Therefore swap-

ping map outputs to disk is extremely expensive in Hyrax. In our experience, it causes

jobs to execute about 100 times slower. Through benchmarks and profiling, it was deter-

mined that setting another parameter, io.sort.record.percent, which determines

the percentage of storage used for records instead of key/value pairs, to 0.5 instead of the

default of 0.05 reduced spilling significantly.

DFS block size (dfs.block.size) is decreased from 64 MB to 8 MB. The default

of 64 MB is derived from the design of GFS Howard et al. [2004]. GFS uses such a large

“chunk size” in order to minimize interaction between the client and the metadata server

and allow for more total data to be addressed – the larger the chunksize, the fewer requests

the client needs to make to the directory to find all the chunks for a given file, and the less

metadata is needed per byte. Using a large chunk size also decreases network and metadata

overhead. A drawback of a using large chunk size is that “hot-spots” may develop for the

chunks of files requested by many clients.

Because of the networking and processing limitations of mobile devices, the DFS block

size is reduced. It takes significantly longer to transfer a 64 MB block on a wireless

network than on the wired networks typically used by Hadoop. Furthermore, the data files

that are used on smartphones are generally much smaller than 64 MB, in which case the

extra block space is unnecessary.

DFS DataNode socket write timeout (dfs.datanode.socket.write.timeout),

DFS socket timeout (dfs.socket.timeout), and MapReduce task timeout

(mapred.task.timeout) are increased to very large values in order to compensate

for the additional time required for slower network transfers and CPU speeds.
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5.5 Replication strategy

The replication factor r controls a tradeoff between battery consumption and data avail-

ability. The higher the value of r, the more network transfers need to occur to create r − 1
replicas on other devices in addition to a local replica. However, replication improves

block access times during concurrent requests while spreading the load among many de-

vices. Whether r saves or wastes battery and time is determined by how often individual

files are accessed.

For every file f , a file-specific replication factor rf is assigned. For each multimedia

file f , rf = 1 is used, meaning that the blocks of the file will only be stored on the original

device, unless there is no space left on the device. A higher r would entail uploading

the entire file to another device by default, which is expensive. For each sensor log f ,

rf = 1 for the same reason. Sensor logs can grow to be larger than multimedia files over

time, so sending them over the network should be avoided. Of course, the default r can be

increased if saving power is less important than data reliability for some application.

On the other hand, using a low r puts a high load on devices that store popular blocks

and puts these blocks at the risk of being lost if the device hosting them leaves the network.

To avoid this, applications that use HDFS should adjust rf depending on the popularity pf

of f . When pf is low, rf should remain low to avoid unnecessarily transferring the blocks

of f . If pf is high, then it makes sense to increase rf to spread the load of serving f among

more devices, increasing throughput and decreasing the average energy consumed on each

device that hosts the blocks of f . Increasing rf also decreases the probability that f will

be lost, which should be avoided if pf is high.

Individual users might want to specify rf in order to, on one hand, preserve battery

energy or, on the other, to make sure that some essential piece of data becomes widely

available. For instance, in a crisis, combat, or protest situation, a single video or photo

might be extremely important and at immediate risk of loss. The HDFS interface makes it

easy to set rf , and this setting could be exposed to mobile application users.

5.6 File organization

Files originating on mobile devices are organized in a straightforward way. Videos are

placed under a “videos” directory, photos are placed under a “photos” directory, and each

sensor log type is placed under its own directory.

Additional files containing information about each multimedia file, including the de-

33



vice that it originated from, its start and end time, and its type, are placed on HDFS.

Start time, end time, and device information can be used to associate the file with sensor

readings. In the future, this information will be stored using a Hadoop database system

such as Hive Apache [b] or HBase Apache [a]. Using a database will facilitate efficient

sensor value aggregation queries over time ranges. This would be useful, for instance, in

determining properties like noise and velocity over the course of a video.

5.7 Heterogeneous networks

Because of the limited resource capacities and speeds of phones, it can be beneficial to

add servers to augment the performance and reliability of the mobile cloud. Servers can

be used to store replicas of mobile data, expedite MapReduce jobs, and serve data more

quickly and without wasting battery energy. Because Hyrax exposes the same interfaces

as a Hadoop DataNode and TaskTracker pair, it can inter-operate with servers in addition

to other mobile devices. Therefore it is trivial to run hybrid clusters consisting of both

mobile devices and servers.

We envision location- and event- specific applications in which wireless networks with

locally connected servers are set-up to support mobile-cloud compute jobs and file shar-

ing. For instance, at a sporting event, the stadium could provide a wireless network with

attached servers, allowing broadcasters and to efficiently access and search through fans’

videos and photos taken during the game. This would create a more interactive experience

for fans. A network with the hardware that would be required for this has been deployed

for Media [2009] in Pittsburgh’s Mellon Arena to serve video playbacks to mobile devices

during hockey games.

5.7.1 Server-augmented Block Replication and Serving

Since mobile devices and their network connections are slower and less stable than tradi-

tional servers and their network connections, it makes sense to replicate data to and serve

data from servers when they are available to save time and resources. If a phone in the

mobile cloud dies, its important files should remain available in the cloud. Furthermore,

access to this data should be optimized for speed and mobile resource efficiency.

Using Hadoop’s rack-awareness feature, it is easy to make sure that data is replicated

to and served from servers whenever possible. In order to make sure that all data is repli-

cated to servers, phone hostnames are mapped to “/phone-rack” and server hostnames
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(all non-phone hostnames) are mapped to to “/server-rack”. By default, Hadoop’s

replication strategy when r = 3 is to store one replica on a node in the local cluster, one

on a different node on the local cluster, and one on a node in a random remote cluster

Borthakur [2007]. In the case of a hybrid phone-server cluster with 2 racks, this implies

that the blocks making up any f for which rf ≥ 3 will be replicated to a server. By con-

sidering all clients to be on the server rack, blocks available on servers will be served to

clients from servers instead of other phones (except when a block is already located on

the client phone). Figure 5.3 illustrates a possible distribution of block replicas using this

configuration.

Figure 5.3: Example of block replica distribution in Hyrax with replication factor 3 for

each file using /phone-rack and /server-rack.

Note that when servers are available in the cluster, there is no reason to replicate blocks

to other phones in the cluster. This would happen under the default replication strategy us-

ing the /phone-rack / /server-rack configuration, which simply takes advantage

of the default strategy. Instead, it would be better to put each phone on a separate rack

(since transfers between phones are actually more expensive than transfers from phones

to servers, shown in §6.3) and use a replication strategy that always places replicas on

/server-rack, only placing replicas on other phones in this case.

In clusters consisting of phones distributed among multiple local networks, phones
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should be mapped to different racks depending on their network distance from other

phones and servers. In this case, the directory structure of racks can be applied. For

each local network of phones L, a rack /rack L can be created. Each phone p connected

to L would be assigned to rack /rack L/phone p, and each server s connected to L
would be assigned to rack /rack L/servers. This would encourage transfers between

phones on the local network when transfers to servers on the local network are not possi-

ble. This scheme may be implemented in future work (see §9.1.5).
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Chapter 6

Evaluation

In this chapter, Hyrax is evaluated in terms of how effectively it meets the requirements

that were established in §4.2. The experiments are used to evaluate specific, quantifiable

aspects of Hyrax, such as how it uses resources, tolerates faults, and scales. Hyrax is

evaluated more qualitatively in §7.

Five experiments were performed. The first experiment compares the baseline per-

formance of the smartphones and servers in our testbed. The second experiment com-

pares the performance of Hyrax on smartphones and Hadoop on servers for MapReduce

benchmarks. The third experiment determines the extend to which Hyrax tolerates devices

leaving the network. The fourth experiment compares the performance of file sharing us-

ing Hadoop to file sharing through a remote service. The final experiment compares the

battery usage of Hyrax to that of other applications.

6.1 Experimental infrastructure

6.1.1 Testbed

The testbed for conducting our experiments is a cluster that consists of 10 Android G1

(HTC Dream) phones and 5 HTC Magic phones, each running the Android 1.5 “Cupcake”

platform. Three of the HTC Magic phones were faulty and were thus excluded from exper-

iments. The Android G1 is equipped with a 528 MHz Qualcomm MSM7201A processor,

192 MB of RAM, a 1150 mAh lithium-ion battery, IEEE 802.11b/g connectivity, GPS,

an accelerometer, and a digital compass HTC [a]. The hardware capabilities of the HTC

Magic are similar to those of the G1. It includes a 528 MHz Qualcomm MSM7200A

37



processor, 288 MB of RAM, a 1340mAh battery, and the same sensors and wireless ca-

pabilities as the G1 HTC [b]. An 8 GB microSD card is installed in each phone to store

HDFS data, multimedia data, sensor data, system resource usage logs, and Hadoop logs.

Since Android does not support peer-to-peer networking yet, the phones communicate

with each other on an isolated 802.11g network via a Linksys WRT54G wireless router

with no firmware modifications. The NameNode and JobTracker processes run on a desk-

top machine that is connected behind this router via Ethernet. The phones are connected

via USB to a controller machine which executes experiment scripts. These scripts are used

to install Hyrax, initialize the cluster, run benchmarks, and collect and post-process data.

Figure 6.1: Hyrax workers running on our Android smartphone cluster.

The performance of these phones is compared to the performance of a cluster of 10

AMD Opteron 1220 machines, each with 4 GB RAM, two Seagate Barracuda 7200.10

320 GB disks, and a Broadcom NetXtreme BCM5721 Gigabit Ethernet controller. Each

node runs Debian GNU/Linux 4.0 (etch) with Linux kernel 2.6.18. In comparing the
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Benchmark Input type(s) Phone base input Server base input

Pi Estimator Maps per host 3 27

Random Writer Bytes per map, Maps per node 1 MB, 2 2500 MB, 2

Sort Bytes per map, Maps per node 256 KB, 1 625 MB, 1

Grep File size, Files per node 64 KB, 1 625 MB, 1

Word Count Files per node, Files per node 32 KB, 1 141 MB, 1

Table 6.1: Benchmark input types and sizes per node.

performance of the phones and the servers, the relative performance capacity of each is

taken into consideration.

6.1.2 Benchmarks

In our experiments, benchmarks that execute MapReduce jobs are run on Hyrax (in the

case of phones) and Hadoop (in the case of servers). These benchmarks are Sort, Random

Writer, Pi Estimator, Grep, and Word Count, all of which are derived from the Hadoop

examples. The input size is scaled to be proportional to the size of the cluster and a

number of maps is specified such that each node will be assigned some work.

Larger input sizes are used when running benchmarks on servers in order to compen-

sate for the differences in CPU speed and bandwidth between servers and phones (deter-

mined in §6.2). For each benchmark on each hardware platform, a base input size that

makes the benchmark last for around one minute is chosen. These input sizes and their

types are summarized in Table 6.1. Note that these sizes per-node; the base input size is

multiplied by the number of nodes to determine the total input size.

In the Random Writer benchmark, data is generated on each phone. In the Sort bench-

mark, sortable data is generated on each phone using Random Writer, and then this data is

sorted using Hadoop’s Sort example. Sort has a trivial map phase which just relays inputs

to the reduce phase, taking advantage of the fact that Hadoop sorts the intermediate keys

generated by map tasks. In the Pi Estimator benchmark, Hadoop’s Pi Estimator example,

which uses a Monte Carlo method to estimate the value of π, is executed, with a number of

maps proportional to the number of nodes. The Grep benchmark places a set of large text

files on HDFS and then searches for a word within them using Hadoop’s Grep example.

The Word Count benchmark places the same text data on HDFS and computes the number

of occurrences of each word.

A control benchmark that runs Hyrax for 60 seconds without executing any jobs is
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Benchmark Initialization phase Execution phase

Random Writer None Random Writer job

Sort Generate files using Random Writer Sort job on generated files

Grep Generate text files, push to HDFS Grep job on these files

Word Count Generate text files, push to HDFS Word count job on these files

Pi Estimator None Pi estimator job

Control None Sleep for 60 seconds

Table 6.2: Benchmark initialization and execution phases.

also run. The data collected in this benchmark can be used to account for the effects

of Android’s background processes and the overhead of the DataNode, TaskTracker, and

sensor data manager that run within Hyrax.

Each benchmark consists of an initialization phase and an execution phase. Only the

beginning and end of the execution phase are recorded, and the resource usage outside of

this range is ignored. The initialization and execution phases of each benchmark are given

in Table 6.2.

6.1.3 Analysis tools

In addition to simply recording benchmark completion times, two tools are used to analyze

the performance of Hyrax in depth: system resource usage logs and Hadoop log analysis.

System resource usage logs

In order to study the system resource usage of Hyrax, relevant information from /proc,

including CPU usage, memory usage, disk I/O, and network I/O, is logged. These val-

ues are logged about twice per second. Figure 6.2 shows an example of system metrics

collected on phones during a run of the Sort benchmark.

Log analysis for Hadoop performance visualization

Hadoop log parsing techniques from Tan et al. [2009], Tan et al. [2008] are used to extract

detailed information about task execution in our benchmarks, including the timing and

duration of each task or task component. These techniques use logs generated by Hadoop

to infer the state of each node in the cluster.
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Figure 6.2: Example of system resource usage data. Network, CPU, disk, and memory

usage metrics for Sort benchmark on 3 of 10 phones.
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This information can be used to generate useful visualizations. For instance, “Swim-

lanes” plots show task progress as it unfolds in time. They also show how tasks running on

different nodes progress in time. Hence, the swimlanes plots show MapReduce behavior

in time and space. The x-axis denotes wall-clock time elapsed since the beginning of the

job, and each horizontal line corresponds to the execution of a state (e.g., Map, Reduce)

running in the marked time interval.

Figure 6.3 shows swimlanes plots for the Sort benchmark on 5 phones and on 5 servers.

From this, we can immediately see the difference in individual task completion times

between phones and servers. We also see which tasks were executed in parallel. To gain

more insight, swimlanes and system metrics can be plotted on the same time axis to show

how tasks affect system resource usage.

The log parsing system determines the amount of time spent in each Hadoop phase

(map, reduce, shuffle, and sort). This information can be used to compare the relative

amount of time spent in each phase between servers and phones. For example, Figure 6.4

shows the amount of time spent in each task or phase type for each node and for the cluster

as a whole. This plot shows that the absolute time taken for the job on servers is much less.

It also shows that the proportion of time spent on maps on the phone is larger than on the

servers. Since Pi Estimator is a CPU-bound job, the graph implies that CPU performance

on phones is worse in relation to its other resources than it is on servers.

6.2 Baseline performance of mobile devices vs. traditional

servers

The inherent performance differences between the phones and servers in our testbed were

investigated by comparing the speeds of four micro-benchmarks, each of which is bound

by CPU, memory, disk, or network resources. The results are summarized in Table 6.3.

In the CPU benchmark, an empty loop is executed for some number of iterations. In

the memory benchmark, a buffer is sequentially written to for some number of iterations

and then sequentially read from. The times for these benchmarks were not significantly

affected by the memory reads and writes, indicating that the memory benchmark was still

CPU-bound on both the server and the phone. We concluded that the server is about 370

to 430 times faster than the phone for CPU-bound operations.

In the disk benchmark, data is sequentially written to the server’s hard disk and to the

phone’s flash card. Of all the system capabilities that were tested, the server and the phone

are closest in disk access speeds. The server is 7.6 times faster for writes and 30 times
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Figure 6.3: Swimlanes visualization for Sort benchmark on 5 phones and on 5 servers

sorted by task start time.
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Figure 6.4: Total phase time bar graphs for 5 smartphones and for 5 servers running Pi

Estimator.
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Benchmark G1 throughput (MB/s) Server throughput (MB/s) Server advantage

Memory write 12 4600 390x

Memory read 11 4500 430x

Disk write 8.7 66 7.6x

Disk read 15 460 30x

Network write 0.92 87 95x

Network read 0.64 86 140x

CPU N/A N/A 370x

Table 6.3: Android G1 and server performance results.

faster for reads.

In the network benchmark, socket servers running on the same hardware as on the

device being tested are written to and read from. In the phone case, the benchmark program

is run on one phone and socket servers are run on another phone connected to the same

WiFi router. In the server case, the benchmark program is run on one machine and the

socket servers are run on another machine on the same rack. The server outperformed

the phone by a factor of 95 in write speeds and 140 in read speeds. We suspect that the

asymmetry in read and write speeds between phones (0.92 MB/s for writes, 0.64 MB/s for

reads) is an artifact of the Android libraries.

These performance differences inform how the results of Hadoop benchmarks, which

make use different system resources to different extents, should be evaluated. In particular,

we would expect the huge difference in CPU speeds (and therefore memory access speeds)

between servers and phones to cause significant performance problems for Hyrax. Hadoop

was written with the assumption of being disk or network-bound in most cases, and thus

is not conservative in CPU usage.

Note that this poor CPU performance is a property of Android, not of mobile platforms

in general. For instance, the iPhone has been shown to be about 100 times faster than the

Android G1 in effective CPU cycles per second Occipital.

6.3 Network link properties

Another question relevant to the higher-level experiments, particularly the file sharing ex-

periment, is how each link in the network contributes to data transfer times. In this exper-

iment, the amount of time required to transfer varying amounts of data between elements

of our testbed is studied.
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6.3.1 Question

What are the relative speeds of data transfer between components of our testbed network?

6.3.2 Approach

The amount of time required to transfer data from a phone and another phone PP , from

the server to a phone SP , and from a phone to a server PS are measured, varying the

amount of data transferred. 7 iterations are performed for each link with each amount of

data.

Using these results, the contribution (in seconds-per-byte) of the phone-router link PR,

the router-phone link RP , the server-router link SR, and the router-server link RS to data

transfer times can be estimated using the simplifying assumption that PP = PR + RP ,

SP = SR + RP , and PS = PR + RS. Note that it is not assumed that SP = PS.

However, since only one server is present in testbed and there are not enough equations to

solve for RS, SR, PR, and RP , it is also assumed that SR = RS.

This model does not account for the contributions of data transfer times within the

devices, but it is precise enough for the purposes of our experiments.

6.3.3 Hypothesis

We expect that SR will be much smaller than RP and PR. In wireless networks, the

“air time”, i.e. the time taken to send data wirelessly, tends to be the bottleneck in data

transfers.

We expect smaller transfers to be more costly in terms of bytes / second, particularly

for the wireless link, because of the additional effects of overhead of establishing the

connection.

6.3.4 Results

Figure 6.5 shows transfer time with respect to amount of data transferred for server to

phone, phone to phone, and phone to server transfers. Figure 6.6 shows transfer time with

respect to amount of data transferred for small transfers (up to 128 KB).

The inverse bandwidth of each link in Figure 6.5 for sufficiently large amounts of data
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Figure 6.5: Network transfer time vs. size for each network path in testbed for large

transfers.

Figure 6.6: Network transfer time vs. size for each network path in testbed for small

transfers.
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is estimated by the slope of a linear fit to its curve. This yields:

PP = 1.47 s/MB

PS = 1.06 s/MB

SP = 0.97 s/MB

Solving the system of equations in the model yields:

PR = 0.78 s/MB

RP = 0.69 s/MB

SR = RS = 0.28 s/MB

6.3.5 Conclusions

According to Figure 6.5 and the estimated values of PS and SP , the server-phone link

has a slight advantage over the phone-server link. This is most likely related to the per-

formance difference between the server and the phones. The server-phone link and the

phone-server link are significantly faster than the phone-phone link. According to the es-

timated values of PS, PP , and SP , the phone-phone link is about 50% slower than either

of the phone-server or server-phone links.

The estimated values of PR, RP , and SR = RS support our hypothesis that the

wireless links contribute the most time to transfers. For phone-server and server-phone

transfers, wireless links contribute about 70 to 75% of the total transfer times.

Figure 6.6 supports our hypothesis that for small transfers (up to about 128 KB), over-

head contributes more to transfer time than the marginal cost of additional bytes.

6.4 Performance of Hadoop on mobile devices and tradi-

tional servers

According to Satyanarayanan [1996b], mobile elements are inherently poor relative to

static elements because the additional weight, power, and size restrictions compared to

static counterparts will always have a negative effect on performance and capacity. In this

experiment, the effect of mobile resource constraints on Hadoop is quantified.
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6.4.1 Question

The following questions are addressed in this experiment:

1. What effects do mobile resource constraints have on the performance of Hadoop?

2. In terms of input size and numbers of nodes, how does Hadoop scale on mobile

devices compared to how it scales on servers?

3. What resources are bottlenecks for Hadoop on mobile hardware?

Approach

In order to answer these questions, MapReduce benchmarks were run on both Hyrax and

Hadoop, varying the number of nodes and the size of the input data.

Each benchmark listed in §6.1.2 (Sort, Random Writer, Pi Estimator, Grep, Word

Count, and control) was run on phones and servers varying the number of nodes in the

cluster from 1 to 9 and using multiples of the base input data size of 0, 0.5, 1, 1.5, and 2.

At least five iterations of each hardware, benchmark, nodes, and input data size configura-

tion were performed. The replication factor was set to 2 in all cases. The Hadoop/Hyrax

cluster was shut-down and reinitialized before each experiment.

For each hardware, number of nodes, and data size, the mean execution time, mean

total component task times, and average total resource usage are computed. For each mean,

a confidence interval is computed by multiplying the standard error by the t-distribution

value (for α = 0.025) corresponding to the number of samples. This is displayed as an

error bar around each point. For a given set of N samples x0 . . . xN−1, the standard error

of the mean is computed as

SEx̄ =
s√
N

where s is the sample standard deviation:

s =

√

√

√

√

1

N − 1

N−1
∑

i=0

(xi − x̄)2

and x̄ is the arithmetic mean of x0 . . . xN−1. Note that some confidence intervals are very

small because of low variance and thus their corresponding error bars are not clearly visible

in the plots.
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Because such vastly different input sizes are used between servers and phones (see

Table 6.1), the execution times cannot be directly compared between the two hardware

platforms. Since the input sizes for the phone benchmarks are so much smaller, the over-

head of setting up tasks and transferring data have a much more significant effect than they

do on servers. At best, the way in which these times vary with parameters such as number

of nodes and input size can be compared.

6.4.2 Hypothesis

Considering the observations made in §6.2, we expect MapReduce jobs to be much slower

on mobile phones compared to on servers. We expect phones to be bottlenecked on CPU

(and thus memory operations) most of the time because of the inherent deficiency of these

resources on the phones in our testbed. This would cause jobs to spend more time in CPU-

intensive tasks (maps, reduces) relative to other the task types. It would also be manifested

in the CPU usage system metric.

Since there are no fundamental differences in the architecture of Hadoop and Hyrax,

Hyrax should be able to scale linearly, at worst, with input data size and number of nodes.

We do not expect any superlinear increases in resource usage or job/task completion times

with increasing numbers of nodes and input sizes.

According to Amdahl’s law Amdahl [1967], the change in execution and task times of

a benchmark with the number of nodes should depend on what portion of the benchmark

can be executed in parallel. Amdahl’s law states that the maximum speed-up Sn by using

n nodes is

Sn =
1

(1 − P ) + P
n

where P is the portion of the task that can be executed in parallel.

We can apply this to model the effect of the number of nodes on execution time and

task times. Assuming a fixed input size,

En ≥ ((1 − P ) +
P

n
)E1

where En is the execution time when the number of nodes is n. Recall that in our experi-

ments the input size In is always proportional to n:

In = nI1
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Therefore it makes sense to work with En/In, the execution time per unit of input:

En

In

≥ ((1 − P ) +
P

n
)
E1

I1

Hence:

En ≥ (1 − P )E1n + PE1

Therefore we expect the execution time to increase approximately linearly with a slope

of (1 − P )E1 where P depends on how much of the task is executed (independently)

in parallel. Figure 6.7 shows the expected En vs. n curve with varying values of P .

Differences in the slope of the execution time and task times vs. number of nodes plots

would indicate different levels of parallelism between phones and servers.

Figure 6.7: Simulated relative benchmark execution time vs. number of nodes for varying

levels of parallelization.
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6.4.3 Results

Execution time

The execution time En of a benchmark is the total time spent in the benchmark’s execu-

tion phase on a cluster of n nodes. This gives a very course-grained view of benchmark

performance.

In general, En increases with n as predicted by our model. There is usually a relatively

large jump between n = 1 and n = 2. The rate of increase of En is very similar between

phones and servers in all cases, indicating that the hardware does not have much effect on

the parallelism of a given benchmark.

The effect of the input size is reflected to a much larger extent in servers than in phones.

For instance, in the Sort benchmark (Figure 6.8), execution time more than doubles from

1.0x to 2.0x on servers, whereas it remains nearly the same for phones. This is probably

because the input sizes in the phone benchmarks are so small by comparison, so overhead

has a much larger effect. A similar effect is observed in Random Writer (Figure 6.9) and

Word Count (Figure 6.10).

Task times

Task information was extracted from Hadoop logs using the log analysis system described

in 6.1.3. For each benchmark run, the total time for each task type (Tmap,n, Tshuffle,n, Tsort,n,

Treduce,n, where n is the number of nodes) is computed. Note that the total of the task times

T∗,n does not correspond to execution time since time is over-counted for parallel tasks,

and parts of the execution may not involve any of these tasks.

Figure 6.11 shows normalized task time breakdowns for phones and servers vs. number

of nodes n and input size s. For phones, Tmap,n accounts for less of T∗,n as n increases,

while Tshuffle,n accounts for less of T∗,n. However, the rate at which this portion increases

decreases with n. Figure 6.12 shows that both Tmap,n and Tshuffle,n increase with n for

phones.

Tmap,n and Tshuffle,n account for larger portions of T∗,n in phones than in servers, while

Treduce,n accounts for a larger portion of T∗,n in servers than in phones. This indicates that

phones are taking much longer to complete map tasks, which is probably related to the

limited amount of memory available for buffering the output of map tasks or simply the

relatively poor CPU performance of the G1. Recall that the Sort benchmark uses a trivial

map function that simply forwards the input.
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Figure 6.8: Execution time vs. number of nodes (top) and input size (bottom) for phones

(left) and servers (right), Sort benchmark
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Figure 6.9: Execution time vs. number of nodes (top) and input size (bottom) for phones

(left) and servers (right), Random Writer benchmark
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Figure 6.10: Execution time vs. number of nodes (top) and input size (bottom) for phones

(left) and servers (right), Word Count benchmark
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Figure 6.13 shows absolute task times vs. input size. For phones, T∗,n does not vary

much with the input size, whereas input size does have a large effect on T∗,n for servers.

This is probably related to the absolute differences in input sizes used between servers and

phones.

Figure 6.14 shows normalized task time breakdowns for the Word Count benchmark.

In Word Count, in contrast to Sort, for both servers and phones, Tmap,n’s portion of T∗,n

increases with n. The only difference between servers and phones in this case is that

in phones Treduce,n and Tsort,n account for a significant portion of T∗,n, whereas they are

practically insignificant for servers.

Resource usage

Using resource usage logs, we computed, for each experiment, total bytes sent, total bytes

received, total disk io, total disk writes, total disk reads, and average CPU utilization.

Total bytes sent and received is very consistent on both phones and servers. Figure 6.15

shows the total bytes sent and received for the Sort benchmark. These metrics increase

linearly for both phones and servers.

Figure 6.16 shows average CPU utilization across all nodes vs. number of nodes for

Sort and Pi Estimator. For a given input size, average CPU is always lower on servers than

on phones. For both servers and phones, average CPU usage decreases with the number

of nodes.

Figure 6.17 shows disk reads, disk writes, and disk I/O time for the Word Count bench-

mark. Total disk reads and total disk I/O are highly variable and don’t exhibit clear trends.

Total disk writes is less variable and tends to increase with input size and number of nodes

for both phones and servers.

6.4.4 Conclusions

These results show several differences and similarities between phones and servers.

There is a huge difference in the amount of data that phones and servers can process

in a given amount of time. Servers were able to process 1000x to 5000x more data than

phones in the same amount of time. Hadoop appears to have a huge base cost when run on

Android, making it very slow and costly to process even small amounts of data. Reducing

this base cost is perhaps the most important challenge in that must be addressed Hyrax

before it can be used for real-world applications. Based on this performance difference,
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Figure 6.11: Normalized task time breakdown for servers and phones vs. number of nodes

(top, 1.0x input size) and input size (bottom, 5 nodes) for Sort benchmark.
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Figure 6.12: Absolute task time breakdown for servers (top) and phones (bottom) vs.

number of nodes for Sort benchmark, 1.5x base input size.
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Figure 6.13: Absolute task time breakdown for servers (top) and phones (bottom) vs. input

size for Sort, 5 nodes.
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Figure 6.14: Normalized task time breakdown for servers and phones vs. number of nodes

(1.0x input size) for Word Count.
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Figure 6.15: Total bytes received (top) and sent (bottom) vs. number of nodes for servers

and phones, Sort benchmark. The server plot for input size 0 is nearly zero for all numbers

of nodes.
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Figure 6.16: Average CPU usage vs. number of nodes for servers and phones, Sort (top)

and Pi Estimtor (bottom) benchmarks.
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Figure 6.17: Word Count benchmark disk reads (top), disk writes (middle), and disk I/O

time (bottom) vs. number of nodes for phones (left) and servers (right).
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in the current state of Hyrax, it would take upwards of 1000 Android G1s to achieve the

performance of a single server, assuming a network powerful enough to handle all of these

wireless connections and a perfectly parallel workload.

Note that this performance problem is imposed at least partially by the artificial mem-

ory limitation that Android imposes on its applications. If even a few more MB of memory

were available to the Hyrax worker, much more data could be processed without swapping

to files, which is a huge performance burden on mobile devices.

The execution time required to complete a job increased at similar rates with n on both

phones and servers. This shows that Hadoop and Hyrax scale similarly for 1 ≤ n ≤ 10 in

terms of job completion. There was no clear difference in the variance of execution times

between phones and servers, suggesting that the amount of time required to complete a job

is similarly predictable on both.

Overhead costs had a much larger effect on En on phones than on servers. This is either

because the input sizes tested on phones were not signficantly different from each other,

because the overhead of setting up and shuffling data among tasks is higher on phones,

or a combination of these factors. It is difficult to tell whether Hyrax and Hadoop scale

similarly in terms of data because the effects of overhead were so high on phones.

Mapping and shuffling account for a larger portion of task times on phones than on

servers. In the case of maps, this is most likely related to the CPU and memory limitations

of the phones. In the case of shuffles, this is probably caused by the difference in network

speed between wireless and wired connections (shown to be about 100-150x in 6.2).

Changes in resource usage with n are similar on phones and servers. Network sends,

network receives, and disk writes increase linearly with n. There are no significant patterns

in disk reads and disk I/O times. Average CPU utilization is higher on phones, and CPU

utilization decreases with n. Overall, Hyrax scales similarly to Hadoop with the number

of nodes.

Considering the differences in CPU utilization and the amount of time spent on map

tasks, it appears that CPU and memory are the biggest resource bottlenecks for Hyrax

on the Android platform. The memory limitation is artificial and could be alleviated by

modifying a constant in the Android source code. The CPU limitation is a more funda-

mental problem, probably related to using a non-optimizing VM instead of directly using

hardware to execute code.
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6.5 Handling network changes

Satyanarayanan [1996b] also notes that mobile devices are more susceptible to loss and

damage, and mobile connectivity is highly variable in performance and reliability, and

there is often no network available. As a result of variations in network connectivity and in

some cases loss or damage, phones are expected to intermittently drop out of the network.

A mobile-cloud computing system should handle devices departing from the network.

In Hyrax, when a node departs the network, its data blocks and intermediate MapRe-

duce results go with it. Given how frequently node departure occurs in a mobile device

network, it is important to determine the extent to which Hyrax can recover from it.

6.5.1 Question

In this experiment addresses the question: to what extent does Hyrax tolerate node depar-

ture? In other words, under what conditions does Hyrax succeed or fail to complete tasks

when nodes leave the network?

6.5.2 Approach

These questions are addressed by running the benchmarks in §6.1.2 and killing the DataN-

ode and TaskTracker instances on k random nodes 30 seconds after the beginning of job

execution. For each benchmark, the number of nodes n is varied from 1 to 7, k is varied

from 0 to 3, and the replication factor r is varied from 1 to 3. k = n is not tested because

killing all n nodes would definitely cause the job to fail. A success is defined to be a case

where the benchmark completes, and a failure is defined to be a case where the benchmark

fails. Each configuration is tested 5 times. The success rate of a given (n, k, r) is the

number of successes over the total number of attempts.

6.5.3 Hypothesis

Hadoop is designed to tolerate node failures. Block replication decreases the likelihood

of total block loss when a node leaves the network. In an HDFS cluster with replication

factor r, in order for a block of data to be lost completely, all r nodes hosting its replicas

must leave the network within a small amount of time. This amount of time is related to

how often the NameNode expects pulse messages from the DataNodes and how long it

takes to transfer a block of data between two nodes.
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Nodes / Kills 0 1 2 3

1 1.0,1.0,1.0 N/A N/A N/A

2 1.0,1.0,1.0 1.0, 0.0, 0.0 N/A N/A

3 1.0,1.0,1.0 0.8, 0.8, 0.0 0.8, 0.0, 0.0 N/A

4 1.0,1.0,1.0 1.0, 0.8, 1.0 0.8, 0.8, 0.0 0.8, 0.0, 0.0
5 1.0,1.0,1.0 1.0, 1.0, 1.0 0.2, 0.6, 0.6 0.6, 0.8, 0.0
6 1.0,1.0,1.0 1.0, 0.8, 1.0 1.0, 1.0, 0.8 0.8, 0.8, 0.0
7 1.0,1.0,1.0 0.8, 1.0, 0.8 1.0, 1.0, 0.8 0.6, 0.8, 0.4

Table 6.4: Node departure success rates for Random Writer benchmark. Each cell contains

the success rates for r = 1, r = 2, and r = 3 in that order. Success rates where k ≥ r
show shown in red.

When k < r, assuming no other problems in the system, it is impossible for data blocks

to be lost completely. The NameNode is expected to recognize when a block is missing

and replicate it accordingly. The JobTracker should identify and re-execute tasks that have

taken too long or for which fetching the intermediate results has failed. Therefore we

expect jobs to succeed when k < r. However, they may take significantly longer than jobs

for which tasks don’t fail because of the time required to identify and re-execute failed

tasks and re-replicate blocks.

When k ≥ r, it is more likely for a job to fail since the data that it is supposed to

process may be completely lost. There is no way to re-generate the intermediate outputs

of map tasks for which the input blocks are lost. Furthermore, since each block tends to

be processed on the node where it is stored, it is likely that intermediate results will be

lost if a node where the block is stored is lost. Therefore we expect jobs to fail often when

k ≥ r, especially when n is not much larger than k.

6.5.4 Results

The results are summarized in Tables 6.4, 6.7, 6.6, and 6.5. In these tables, each cell

contains the success rates (successful attempts / total attempts) for r = 1, r = 2, r = 3 (in

that order). Entries that were expected to have a low success rate (when k ≥ r) are marked

in red. Low “red” values are expected, but higher “red” values are good. “Black” values

that are less than 1.0 probably indicate flaws in Hadoop.
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Nodes / Kills 0 1 2 3

1 1.0,1.0,1.0 N/A N/A N/A

2 1.0,1.0,1.0 0.4, 0.0, 0.0 N/A N/A

3 1.0,1.0,1.0 0.0, 0.6, 0.0 0.0, 0.0, 0.0 N/A

4 1.0,1.0,1.0 0.2, 0.2, 0.2 0.0, 0.0, 0.0 0.2, 0.0, 0.0
5 1.0,1.0,1.0 0.2, 1.0, 0.4 0.0, 0.0, 0.0 0.0, 0.0, 0.0
6 1.0,1.0,1.0 0.2, 1.0, 0.6 0.0, 0.6, 0.6 0.0, 0.0, 0.0
7 1.0,1.0,1.0 0.2, 1.0, 1.0 0.0, 0.8, 0.8 0.0, 0.2, 0.0

Table 6.5: Node departure success rates for Grep benchmark. Each cell contains the suc-

cess rates for r = 1, r = 2, and r = 3 in that order. Success rates where k ≥ r show

shown in red.

Nodes / Kills 0 1 2 3

1 1.0,1.0,1.0 N/A N/A N/A

2 1.0,1.0,1.0 0.0, 0.2, 0.0 N/A N/A

3 1.0,1.0,1.0 0.4, 1.0, 0.0 0.0, 0.0, 0.0 N/A

4 1.0,1.0,1.0 0.2, 1.0, 1.0 0.0, 0.4, 0.0 0.0, 0.0, 0.0
5 1.0,1.0,1.0 0.4, 1.0, 1.0 0.0, 0.8, 1.0 0.0, 0.2, 0.0
6 1.0,1.0,1.0 0.2, 1.0, 1.0 0.2, 0.6, 1.0 0.0, 0.2, 0.6
7 1.0,1.0,1.0 0.2, 1.0, 0.8 0.0, 0.6, 1.0 0.0, 0.2, 0.8

Table 6.6: Node departure success rates for Word Count benchmark. Each cell contains

the success rates for r = 1, r = 2, and r = 3 in that order. Success rates where k ≥ r
show shown in red.

Nodes / Kills 0 1 2 3

1 1.0,1.0,1.0 N/A N/A N/A

2 1.0,1.0,1.0 0.0, 0.2, 0.6 N/A N/A

3 1.0,1.0,1.0 0.0, 1.0, 0.6 0.0, 0.0, 0.0 N/A

4 1.0,1.0,1.0 0.0, 1.0, 1.0 0.0, 0.4, 0.8 0.0, 0.0, 0.0
5 1.0,1.0,1.0 0.0, 1.0, 1.0 0.0, 0.8, 1.0 0.0, 0.0, 0.0
6 1.0,1.0,1.0 0.0, 1.0, 1.0 0.0, 0.6, 0.8 0.0, 0.4, 0.4
7 1.0,1.0,1.0 0.0, 1.0, 1.0 0.0, 0.8, 1.0 0.0, 0.2, 0.0

Table 6.7: Node departure success rates for Sort benchmark. Each cell contains the success

rates for r = 1, r = 2, and r = 3 in that order. Success rates where k ≥ r show shown in

red.
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6.5.5 Conclusions

As expected, there was a tendency for success rates to increase with n and decrease with

k. However, there were many cases where benchmarks failed even when k < r. This may

have to do with Hadoop failing to detect missing nodes, reassigning tasks to the same node

even after the first failure. On the other hand, in the Word Count benchmark, there were

many cases where the job succeeded even when k ≥ r.

There are several cases in which success rates for a given k and r did not increase

monotonically with n or r. These artifacts may indicate problems in Hadoop’s replication

or task-reassignment algorithms.

Overall, Hyrax recovers rather effectively from faults in Sort and Word Count, but

not quite as well from faults in Grep and Random Writer. However, even in Grep and

Random Writer, success rates increase with n, suggesting that better fault-tolerance would

be possible with more nodes.

6.6 File sharing

One of the motivations for Hyrax is to avoid using remote services to share data when the

data is available on devices in the local network to begin with. This experiment evaluates

the performance of file sharing using HDFS vs. offloading data to a remote server.

6.6.1 Question

In this experiment, we ask: how does the performance of file sharing among mobile de-

vices using Hyrax compare to file sharing using a remote server?

6.6.2 Approach

We publish a file from one node in the network, and then concurrently retrieve this file

on all other nodes. In one case, which we label U , publishing is performed by uploading

to a server outside of the local network, and retrieval is performed by downloading from

this server. In the other case, publishing is performed by putting the file on HDFS, and

retrieval is performed by pulling the file from HDFS (see Figure 6.18). We vary the number

of nodes n, the size f of the file, and the replication factor r of HDFS. This case is labeled
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H(r). In both U and H(r), the latency of the publishing phase, the latency of the retrieval

phase, total bytes sent, and total bytes received are considered.

Figure 6.18: File sharing experiment diagram for the HDFS case.

6.6.3 Hypothesis

In U , we expect the latency of the publishing phase to depend only on f . We expect

the latency of the downloading phase for U to increase with n because of contention for

bandwidth from the server.

We expect the latency of the publishing phase to increase with r because of the ad-

ditional copying that must be performed to replicate the new data blocks. For example,

for r = 1, the publishing phase should be very fast and not use the network since the

block will be stored on the local device. We expect the latency of the retrieval phase to

decrease as r increases because of additional parallelism in block serving and availability

of replicas locally on r − 1 of the downloaders.

The latency of a file transfer is closely related to the number of bytes sent through the

network, especially across wireless links (as demonstrated in §6.3). Furthermore, sending

and receiving bytes consumes battery. Therefore it is important to consider the total bytes

sent and received in the publishing and retrieval phases of this experiment. Note that since

a router is used in our testbed, a “receive” is equivalent to a send from the router to the

receiver, and a “send” is a send from the sending device to the router.

In the case of H(r), the total bytes sent by phones during the publishing phase PSH(r)

should be

PSH(r) = (min(r, n) − 1)f

The total number of bytes received during the publishing phase PRH(r) should be equal to

PSH(r) since all sent data is received by devices in the network. When we upload the file
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to a remote server, we should have PSU = f and PRU = 0. The remote server’s send and

receive amounts are are not included in these totals.

Using H(r), the total bytes retrieved during the retrieval phase DRH(r) should be

DRH(r) = max(n − r, 0)f

Again, the total bytes sent DSH(r) should be equal to DRH(r) since no data leaves the

network.

Using U , the total bytes retrieved during the retrieval phase DRU should be DRU =
(n − 1)f , and DSU = 0.

When HDFS is used with a replication factor of r, the total bytes sent and received

should not depend on r. It should only depend on f and n. If this is not the case, then the

implementation is not distributing the data optimally. Note that

PSH(r) + DSH(r) = (min(r, n) − 1)f + (max(n − r, 0))f

= (min(r, n) − 1 + max(n − r, 0))f

When n > r,

(min(r, n) − 1 + max(n − r, 0))f = n − r + r − 1 = (n − 1)f

When n ≤ r,

f(min(r, n) − 1 + max(n − r, 0)) = (n − 1)f

Therefore PSH(r) + DSH(r) = (n − 1)f , which does not depend on r.

For U , PSU + DRU = f + f(n − 1) = fn.

Adding up all bytes sent and received (all wirelessly) by devices in the network during

a given experiment, we get

PSU + PRU + DSU + DRU = nf

and

PSH(r) + DSH(r) + PRH(r) + DRH(r) = 2PSH(r) + 2DRH(r) = 2(n − 1)f

This suggests that the total latency of U will be slightly more than half that of H(r)
for n > 1, assuming that a very fast connection exists between the router and the server

and that the latency is determined primarily by the number of wireless transfers.
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6.6.4 Results

Figure 6.19 shows the publishing time vs. f . Publishing time increases with f and with r
since more time is required to send larger blocks and create additional replicas.

Figure 6.19: Publishing time vs. input size for 5 nodes.

Figure 6.20 shows the distribution of retrieval times vs. n, and Figure 6.21 shows the

mean retrieval time for the same distribution. When U is used, retrieval time increases

approximately linearly with n because of contention on the connection to the server. Re-

trieval time also increases approximately linearly when H(1) is used since the retrieved

blocks must be copied from one node to all n− 1. Retrieval time for H(1) increases about

twice as fast as retrieval time for U with n, supporting our hypothesis. The range of re-

trieval times for H(2) and H(3) is significantly larger than that of H(1) because of the

r − 1 nodes that can access local replicas quickly (r − 1 = 0 when r = 1). For a given n,

the mean and median retrieval time decrease with r. This agrees with our hypothesis.

Retrieval times are low and have little variance when r = n. In this case, all blocks are

retrieved from the local disk. Retrieval time for H(r) remains lower than retrieval time for

U for higher values of r as n increases.

We are ultimately interested in the total time required to transfer data from one node

71



Figure 6.20: Retrieval time distribution vs. number of nodes for a 10 MB file. Points

in box-and-whisker plot correspond to (from bottom to top) minimum, lower quartile,

median, upper quartile, and maximum. Box-and-whisker plots are shifted slightly on the

x-axis for visual clarity, but correspond to the nearest n to the left.
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Figure 6.21: Mean retrieval time vs. number of nodes for a 10 MB file.

to n− 1 other nodes, i.e. the total of the publishing and retrieval times. Figure 6.22 shows

this total vs. n for cases U , H(1), H(2), and H(3). U outperforms H(r) significantly in

all cases except when n = 1. This is expected because every byte is sent wirelessly twice

in the case of H(r), and only once in the case of U .

Figure 6.23 shows the total bytes sent or received by nodes in the cluster vs. n. Note

that we count both the send and and the receive for a given transferred byte. This plot is

exactly what our model predicts, i.e. PSU + DSU + PRU + DRU = nf and PSH(r) +
DSH(r) + PRH(r) + DRH(r) = 2(n − 1)f , where f = 20MB in this case.

Note that data collection on 8 and 9 node clusters failed because of hardware problems

in the testbed. Some data was collected for these cases, but various failures contributed

significantly to publishing and retrieval durations and thus we do not consider the results

to be statistically valid.
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Figure 6.22: Total upload and mean download time vs. number of nodes for 10 MB file.

6.6.5 Conclusions

Although H(r) allows for more parallelism in block serving for r = 2 and r = 3, the extra

wireless transfers required to send data between two devices in the network compared

to sending data to or receiving data from a server through the router (requiring only one

wireless transfer in each case) prevent data from being published and served faster than

in U . However, given that block serving times decreased with r, using H(r) might yield

better performance than U for sufficiently high n and r. Tests with higher n and r are

warranted.

Note that a fast connection to this server was used in this experiment. In reality, the

quality of connections to remote servers can vary, whereas local networks ensure high

connection quality among nodes connected on the local network. Therefore Hyrax may

still be preferable for data sharing in cases where a stable, high-bandwidth connection to

a remote server is not guaranteed.
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Figure 6.23: Total bytes sent or received vs. number of nodes for 20 MB file.

6.7 Battery consumption

Battery consumption is an important consideration in any mobile system. In this experi-

ment, the rate at which battery is consumed by Hyrax is compared to that of other common

tasks performed on mobile devices.

6.7.1 Question

In this experiment, we ask: how does the power consumption of Hyrax compare to that of

other tasks?

6.7.2 Approach

We run several tasks on the phones and record battery levels over time. These tasks are:

1. Video streaming from phone. Qik Qik, Inc. is an Android application that streams
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live video from the camera to the Internet. In this task, video is streamed to the

Internet using Qik.

2. Downloading. Data is continuously downloaded from a server in the local network

to the phone.

3. Video recording. Video is recorded using the Android video recording application.

4. Hyrax Sort. The Hyrax Sort benchmark is run repeatedly on a cluster of 3, 5 and 7

phones.

5. Idle. Other than the Android system services, no tasks are run on the phone.

Battery consumption rate R of a given run is estimated by using linear regression to fit

a line to the the points of the battery level vs. time plots. The slope R̄ and the correlation

coeffecient of fitted line are reported for each task. Each workload is run on three different

phones.

System resource usage logs are collected for each workload. The average network,

disk, and CPU load (normalized by time, when applicable) is given for each workload in

order to give more context to the battery life results. For the Hyrax workloads, Hadoop

logs are also collected. Task times are extracted from these logs in order to correlate tasks

with battery consumption. As in the performance experiment, the input size of the Sort

workload is scaled with the number of nodes.

6.7.3 Hypothesis

Network transfers accounts for a large part of energy usage on smartphones. By design,

Hadoop uses network bandwidth sparingly. Therefore we expect Hyrax to use less power

than a network-bound application, but more power than a multimedia recording applica-

tion which does not use the network.

We expect the video streaming workload to use networking, CPU, and disk heavily.

We expect the video recording workload to use CPU and disk heavily. We expect the

downloading workload to use networking heavily. We don’t expect Hyrax to use any

resource particularly heavily.

We expect reduce jobs to consume more battery both in total and per second than

map jobs because they tend to take longer, and they use the network more. The “sort”

and “shuffle” operations are considered parts of the reduce tasks. Furthermore, we expect

battery consumption to increase with the number of nodes because, as we observed in the
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Task R̄ (% / s) r2 LR̄

Video streaming 0.0151 0.981 1.8 hours

Video recording 0.0122 0.822 2.3 hours

Downloading 0.0102 0.939 2.7 hours

Hyrax Sort (3 nodes) 0.00479 0.992 5.8 hours

Hyrax Sort (5 nodes) 0.00537 0.935 5.2 hours

Hyrax Sort (7 nodes) 0.00580 0.969 4.8 hours

Idle 0.00008770 0.6453801 13.2 days

Table 6.8: Battery experiment results.

performance experiments, network sends and receives increase with the number of nodes

(when the input is scaled with the number of nodes), and CPU utilization does not decrease

significantly with the number of nodes for the Sort benchmark.

6.7.4 Results

Table 6.8 shows, for each task, the estimated battery consumption rate R̄, the correlation

coefficient for R̄, and the total battery life of the G1 battery at the consumption rate of R̄.

We compute R in terms of battery % per second, but it can also be expressed in units of

A or C/s. Recall from §6.1.1 that the capacity B of the G1 battery is 1150 mAh. For a

battery with a capacity of B mAh, the conversion is:

R%/s = R
BmAh/100

s

3600s

h
= 36RBmA

Given that the consumption rate is R̄%/s, the expected battery life LR̄ is

LR̄ =
100

R̄
s

Battery life results are summarized in Figure 6.24. Figures 6.25 and 6.26 show battery

level vs. time for video streaming and Hyrax Sort respectively.

Table 6.9 shows the resource usage of each workload. CPU utilization is reported as

the mean over all readings. All other resources are reported in terms of mean count per

second. The battery consumption of other hardware such as the camera and the screen is

not accounted for by these statistics.

Table 6.10 and Figure 6.28 show the battery consumption of different task types in

terms of battery % per second of task type and battery % per task. Figure 6.27 shows the
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Figure 6.24: Battery life by task.

Resource Video Streaming Video Recording Downloading Hyrax Sort (5 nodes)

CPU 93.6 % 51.8 % 74.6 % 43.6 %

Disk reads 0.0119 reads/s 0.0288 reads/s 0.000 reads/s 0.0363 reads/s

Disk writes 0.589 write/s 0.473 writes/s 0.101 writes/s 0.802 write/s

Network send 34.7 KB/s 0.00196 KB/s 7.31 KB/s 2.00 KB/s

Network receive 0.811 KB/s 0.00163 KB/s 315 KB/s 1.84 KB/s

Table 6.9: Mean resource usage for each battery workload. Computed over entire duration

of each workload and averaged over all phones.
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Figure 6.25: Battery consumption fit for video streaming battery level data.

Figure 6.26: Battery consumption fit for Hyrax-active battery level data.
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Task type Battery % / second Battery % / task

Map (successful) 0.00620 0.228

Map (failed) 0.00466 0.208

Reduce (successful) 0.00668 1.07

Reduce (failed) 0.00585 3.21

Table 6.10: Battery consumption by task type in Hyrax Sort (7 nodes).

breakdown of battery consumption of each task compared to the breakdown of total time

spent in each task.

Figure 6.27: Battery consumption rates by task type for Hyrax Sort with 7 nodes.

6.7.5 Conclusions

Figure 6.24 shows that Hyrax, when running an intensive workload, consumes battery life

at about half the rate of continuous downloading or video recording and slightly more

than a third of the rate of video streaming. Unexpectedly, the video recording workload

used much more battery than Hyrax, probably because of the power used by the camera

and the screen. Given that this worst case power consumption rate for Hyrax is so much

less than that of downloading, video recording, and video streaming, it seems reasonable.

Furthermore, the implementation Hyrax has not been optimized for power at all, so there

is probably a significant opportunity to improve its battery consumption.
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Figure 6.28: Normalized battery consumption and total time by task type for Hyrax Sort

with 7 nodes.
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Figure 6.24 also shows that battery consumption increases from 3 to 7 nodes. This is

probably because of the additional network transfers that the reduce task must perform to

collect the intermediate values for larger numbers of nodes.

Figure 6.27 suggests that battery consumption depends primarily on the amount of time

spent in the task, not the task type. Differences in the power consumption of each task per

second, shown in Figure 6.28, are not significant enough to identify parts of Hadoop that

should be targeted to improve energy efficiency. More specific characterization of the

MapReduce job would be required to make a specific battery consumption diagnosis.
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Chapter 7

Case Study: Distributed Video Search

and Sharing

To determine the advantages and drawbacks of Hyrax, an application was developed on it.

A simplified version of the distributed mobile multimedia search and sharing application

outlined in §1 was implemented and evaluated. This application would be useful at events

where many mobile users want to record and share multimedia files.

The Hyrax multimedia search and sharing application, HyraxTube, allows users to

browse through videos and images stored on a network of phones and search by time,

location, and quality. Quality ratings based on sensor data are generated by periodically

executing a MapReduce job. Requests are serviced by reading results generated by this

MapReduce job from HDFS. The client interface is implemented as a web application so

that it can be used on both mobile devices and desktop machines.

7.1 Requirements

The following requirements were established for HyraxTube:

1. Provide an interface for browsing files and searching by time, quality, and location.

2. Provide low-latency access to information about the files through a web interface.

3. Allow users to download any video or photo from the smartphones.
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In addition to these application-level requirements, HyraxTube should scale with the

number of devices and the number of users. It must also store data reliably. These proper-

ties are provided by Hyrax.

7.2 Design

In order to allow users to browse files, a list command on HDFS can be exected. This is a

fast, cheap operation since it only involves communicating with the NameNode.

Search by time, quality, and location involves retrieving all files that match the input

time range, quality range, or radius of the given location. At first, we considered executing

a MapReduce search job for every request, comparing the metadata for every multimedia

file against a filter corresponding to the user input. We quickly realized that this would

cause unacceptable request latencies and not scale with the number of users. Instead, we

decided to run a daemon which periodically executes a MapReduce job which summarizes

the metadata into a form that can be efficiently accessed and searched in the front-end

web server. The summarization task generates a quality rating based on accelerometer

readings corresponding to the device on which and the time range during which the video

was recording. The summarized results are stored on HDFS.

File transfers are handled differently depending on whether the client is inside the

mobile network (and thus can establish direct communication with each node) or outside

of it. If the client is outside of the network, then the server opens an input stream from the

file through the HDFS interface and streams the data to the requesting client, acting as a

passthrough. If the client is within the network, then the data is transferred directly from

the DataNodes hosting the blocks of the file to the client.

To improve the performance of block serving and MapReduce jobs and to decrease the

likelihood of data loss on HDFS, a DataNode and a TaskTracker are run along with the web

server. The technique outlined in §5.7.1 is applied, assigning phones to /phone-rack

and the server to /server-rack. Since there are only two racks, any file published from

a phone whose replication factor is set to 3 will be replicated to the server. This makes

it much less likely for the data to be lost when the original phone leaves the network and

makes serving files to clients outside of the network much faster and taxing of mobile

resources.
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7.3 Implementation

HyraxType was fairly easy to implement and would have been much more difficult without

using the cloud interface provided by Hadoop. The application has no knowledge of the

physical details of the service that it requests files and executes compute jobs on.

The server application was implemented using the Ruby WEBrick library, JRuby, and

the Hadoop libraries. WEBrick was used to serve web pages and handle user input. Using

JRuby made it possible to use Hadoop’s Java libraries.

The server runs independently of the Hyrax cluster and only interacts with it through

Hadoop’s HDFS and MapReduce interfaces. In other words, the application’s frontend

is totally decoupled from the distributed nature of its backend. This makes it easier to

develop and maintain the application.

We faced two limitations of Hyrax. One is that accessing sensor readings in the time

range of a video is very slow. In a map task, it is necessary to scan through the file until

the target start time. Another obstacle was the memory limitations of Android. We were

unable to implement a thumbnailing MapReduce job because it required too much memory

to load an image.

7.4 Field testing at Mellon Arena

7.4.1 Background and Motivation

Sports teams have been making efforts to promote game attendance among young fans

Viera [2008]. One approach has been to provide an interactive experience via mobile

technology such as YinzCam Media [2009]. YinzCam allows game attendants to view

replays from various angles and explore other relevant information using their mobile

phones.

Another way to engage fans is to allow them to participate in game coverage using the

cameras on their phones. These videos could be displayed occasionally on large displays

in the area, incorporated into the television broadcast, and shared with other mobile users

during the game. In order to sort through this data effectively, broadcasters and other

mobile users would need to be able to search by recording time and location in the arena.

An automatically generated quality rating would also be useful.

The trivial approach to implementing this is to distribute a mobile application similar

to Qik that streams video to servers in the arena and provide another interface for down-
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loading videos from other users, along with any other relevant information such as location

and time of recording. There are several drawbacks to this approach. One is that this type

of video streaming quickly drains battery, which was showed in §6.7. Another drawback is

that this would require a substantial in-house hardware infrastructure. In order to guaran-

tee reasonable performance at all times, enough servers and wireless networking resources

would need to be provisioned to handle the maximum possible load from users uploading

and downloading files. This would in many cases be prohibitively expensive.

Instead, Hyrax and (a more developed variant of) HyraxTube could be deployed and

supported by a drastically smaller in-house hardware infrastructure. Using Hyrax, only

videos of interest would ever be transferred over the network. Popular videos could be

replicated to and served from an arbitrary fraction of phones in the arena. Node departure

would be infrequent because spectators do not move around very much and don’t leave

the arena until towards the end of the game, allowing for a low default replication factor

to be used. With today’s mobile technology, a capable wireless network infrastructure

would be required; however, within a few years, wireless ad hoc and mesh networking

among phones will obviate such an infrastructure. A server would be needed to run a

NameNode and a JobTracker for the Hyrax cluster, and any additional servers could be

put to use for hosting block replicas and executing MapReduce tasks faster and without

draining batteries of phones in the network, as described in §5.7.1.

7.4.2 Experiences at Mellon Arena

Hyrax was tested at Mellon Arena, the home arena of the Pittsburgh Penguins, using

the wireless network infrastructure originally installed for YinzCam Media [2009]. This

wireless network is implemented using Xirrus WiFi arrays Xirrus connected to several

switches. Servers are connected behind these switches to allow fans to access game

footage.

The first obstacle that we encountered was that the network had been configured to dis-

able peer-to-peer networking. This setting was enabled for YinzCam to improve network

performance. With this setting disabled, devices on the network were able to determine

each other’s MAC address, but not connect via TCP.

This experience showed that it may be non-trivial to integrate a peer-to-peer system

into an existing wireless network that has been configured for access to remote services

only. In the near future, we plan to investigate the issues that prevented peer-to-peer con-

nections in Mellon Arena.
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Chapter 8

Related Work

Our work on mobile-cloud computing is primarily related to previous work in mobile

grid computing and mobile distributed filesystems. Hyrax is distinguished from all of

the projects in these two fields because it combines distributed storage and distributed

computation and provides a cloud interface to these capabilities that abstracts away from

dealing with individual devices.

8.1 Mobile Grid Computing

Work has been done on systems that share resources and collaborate on computational

tasks in mobile device networks. This has mostly been in the form of grid computing,

which is an important part of cloud computing Myerson.

Litke et al. [2004] defines the “Grid” as “a distributed, high performance computing

and data handling infrastructure that incorporates geographically and organizationally dis-

persed, heterogeneous resources (computing systems, storage systems, instruments and

other real-time data sources, human collaborators, communication systems) and provides

common interfaces for all these resources, using standard, open, general-purpose proto-

cols and interfaces”. Furthermore, the “Mobile Grid” is “full inheritor of the Grid with

the additional feature of supporting mobile users and resources in a seamless, transparent,

secure and efficient way.” This fits well with our purpose in creating Hyrax: to provide

a convenient abstraction and runtime system for utilizing the resources of a network of

smartphones.
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McKnight et al. [2004] gives an overview of the field of wireless grid computing.

It discusses the additional capabilities offered by wireless grids and the new challenges

faced by wireless grids compared to traditional grids. It also gives five requirements for

wireless grid middleware: resource description, resource discovery, coordination, trust es-

tablishment, and clearing. In Hyrax, resources are described and provided via the HDFS

interface. Coordination of data is performed by the NameNode, and coordination of com-

putation is done by the JobTracker. Hyrax currently assumes trust, but this assumption

may be removed by adding security and storage fault-tolerance in the future.

Ahuja and Myers [2006] provides a survey of wireless grid computing, following a

structure similar to McKnight et al. [2004]. It points out the problem of frequent node

connects and disconnects in mobile grids. Hyrax addresses this problem to some extent by

relying on Hadoop’s mechanisms for handling faulty nodes.

Mobile OSGI.NET Chu and Humphrey [2004] extends OSGI.NET, a grid computing

implementation, to mobile devices. The goals of Mobile OSGI.NET are to provide bet-

ter potential for collaboration among mobile devices, support collaboration among mobile

devices with traditional, non-mobile computers, operate on many device platforms, and

address the particular characteristics of mobile devices, including intermittent network

connectivity and resource constraints. Mobile OSGI.NET and OSGI.NET on desktop ma-

chines are compared in terms of latency for basic operations and jobs, varying the number

of devices and the workload size. Battery usage with varying workload sizes and number

of devices is also presented. Hyrax is analogous to Mobile OSGI.NET in that it extends

Hadoop to mobile devices while preserving interoperability with Hadoop on static ma-

chines, and we perform a quantitative comparison of Hyrax and Hadoop. However, our

experiments go into significantly more depth than those of Mobile OSGI.NET, featuring

more benchmarks, more devices, more resource usage statistics, more samples, and more

investigation of the distributions of latencies. Unlike Mobile OSGI.NET, a demonstration

application is developed on Hyrax.

Ibis for mobility Palmer et al. [2009] applies grid computing techniques to distributed

computing on mobile devices, which includes integrating mobile phones into the grid.

This included porting the Ibis grid computing platform to run on Android. Ibis also dis-

cusses the challenges of mobile distributed computing and presents a strong argument for

distributed computing on mobile devices based on the growth in the Smartphone market

and the pitfalls of cloud computing using proprietary services. Our work is structured in

a similar way to Ibis for Mobility in that it involves porting an existing distributed sys-

tem to run on a mobile platform, relying on the existing system’s solutions to analogous

problems between static and mobile grids. One drawback of Ibis is that Android emula-

tors were used instead of physical Android devices, and no experimental evaluation was
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conducted. In contrast, Hyrax has been implemented, demonstrated, and experimentally

evaluated on real Android phones.

WIPdroid Chou and Li [2008] is another distributed computing platform for Android.

It is based on the Web Services Session Initiation Protocol (WIP), which allows “real-time

service-oriented communication over IP”. Using WIP, WIPdroid can provide a two-way

web service interface similar to that of an online service supported by a “cloud” backend

of mobile devices. Like Ibis, WIPdroid is developed and tested on Android emulators.

GridGain Systems has succeeded in running the GridGain cloud computing platform

on Android phones Kharif [2008], but this is still in early stages of development. The

GridGain architecture is probably the closest to Hadoop’s of all of the grid systems that

are being targeted at mobiles. GridGain directly supports deployment on a cloud, and

MapReduce is an important feature of the system. Future work on Mobile GridGain could

be directly compared to our work on Hyrax.

xSchapome of our motivational applications are inspired by mobile grid applications,

which use the sensors and multimedia capture devices of a collection of mobile devices.

Reades et al. [2007] monitors the locations of mobile users in an urban environment and

studies the dynamics of mobile usage and crowd movement over time. Hull et al. [2006]

uses mobile sensors for traffic analysis, and Lo et al. [2008] uses mobile device sensors for

a similar task. McKnight et al. [2004] describes a distributed audio recording application

using microphones from a mobile phone grid.

8.2 Sensor In-network Processing

Another approach to implementing cloud computing on mobile devices is to start with a

wireless sensor network API and implementation. These systems are generally targeted at

resource-limited embedded devices, and are therefore very good at preserving resources

and handling faults that arise in wireless networks. These systems use in-network process-

ing, i.e. summarization/computing on local nodes, to minimize data transfers Intanagonwi-

wat et al. [2003]. They provide high-level database interfaces for executing queries on

distributed data Yao and Gehrke [2002], Bonnet et al. [2001], Madden et al. [2005], Desh-

pande et al. [2003]. Security support for wireless sensor network in-network processing

has been studied Deng et al. [2003]. Efficient information sharing in wireless sensor net-

works has been studied in great depth Intanagonwiwat et al. [2003], W. R. Heinzelman

and Balakrishnan [1999]. Sensor network architectures have also been developed for more

powerful, resource-unconstrained multimedia sensors Campbell et al. [2005] and for net-

works with nodes of heterogeneous performance capabilities Tsiatsis et al. [2005]. Some
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of the applications of mobile-cloud computing, such as distributed image search, have

been studied in a sensor network context Yan et al. [2008]. Considering all of these com-

patibilities, it would be worthwhile to investigate the usage of sensor network software for

mobile-cloud computing in future work.

Nevertheless, sensor network software platforms have several limitations relative to a

server-targeted distributed system such as Hadoop with respect to mobile-cloud comput-

ing. They are designed for collecting data and servicing queries from entities outside the

network, typically through a special “gateway” node Suba et al. [2008]. In a mobile-cloud

computing setting, clients would often run on nodes within the device cluster. Using a

sensor network framework would require (without non-trivial modification) heavy data

transfers through the gateway from “sensor” devices to “client” devices, whereas a dis-

tributed filesystem such as HDFS allows for peer-to-peer bulk transfers and direct access

to local replicas when they are available.

The computations performed within sensor networks are targeted at efficient data col-

lection and querying, not generic compute jobs. Although Hyrax is not intended to be used

for generic distributed computing, it does provide much more flexibility in specifying com-

putations. By distributing executable code, MapReduce jobs on Hyrax can process sensor,

multimedia, text, and other data in arbitrary ways. The sensor network database concept

is well-suited for applications such as sensor maps and traffic monitoring (described in

§3.3.2), but it would not work well for non-sensor applications such as multimedia search,

multimedia sharing, and social networking, where MapReduce jobs would be used to pro-

cess text and multimedia data.

In sensor networks, raw data is processed purely locally, not on other nodes. This is

ideal for preserving power by avoiding network transfers, but it limits the dynamic adapt-

ablity of job execution. Although MapReduce prefers to process data locally, it is capable

of offloading computation to other nodes when necessary. The filesystem interface enables

transparent access to data on other nodes, allowing for both in-network data offloading and

applications built around data-sharing.

Using a server-targeted platform such as MapReduce offers trivial compatibility and

cooperation between devices running the ported application and servers running the ap-

plication. Hyrax could easily plug into an existing Hadoop cluster without modifying the

Hadoop cluster code or configuration. Starting with a sensor network platform would re-

quire porting to both mobile devices and servers, which would be much less convenient

and probably lead to more divergence in compatibility.

In some sense, Hyrax links sensor network systems with large-scale data-intensive

computing platforms for servers by showing how and to what extent solutions for fault-
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tolerance on server networks (replication, re-execution, speculative execution, etc.) can be

applied to fault-tolerance mobile device networks. Running Hadoop on a mobile platform

and (hypothetically) running a sensor network platform on servers illustrate what design

aspects can be shared between the two environments and which aspects require different

solutions.

8.3 Mobile Data Sharing Systems

One major aspect of Hyrax that distinguishes it from mobile grid computing platforms is

its use of a distributed filesystem, HDFS, for sharing data. Separate work has been done on

distributed filesystems, peer-to-peer file-sharing, and other forms of data sharing on mobile

devices. In contrast to most of the mobile-targeted distributed filesystems discussed in this

section, HDFS is designed to handle large, unchanging files. This limitation is acceptable

for the type of data that it is useful to store and share among mobile devices.

Coda Kistler and Satyanarayanan [1992], Satyanarayanan et al. [1993], Satyanarayanan

[1996a], Mummert et al. [1995] was the first distributed filesystem to be investigated on

a mobile platform. Coda inherits much of the design and functionality of AFS Howard

et al. [1988]. It is used by clients as a location-transparent global UNIX filesystem. The

file namespace is mapped to individual file servers. Coda supports disconnected operation,

allowing clients to access and modify files even when disconnected from the network. Dis-

connected operation can also be used to save power by avoiding network transfers. Coda

is used in conjunction with Venus, a client-side cache that is responsible for hoarding data,

emulating operations on this data, and resolving changes in the data upon reconnecting to

the network. Optimizations for operation in the presence of weak connectivity have also

been integrated into Coda.

In Hyrax, files are accessed through a similar global interface which maps file paths

to data stored on nodes in the cluster. Hyrax does not allow for disconnected operation

because of its dependence on the NameNode for mapping file paths to data blocks. Fur-

thermore, Hyrax discourages file modification once a file has been created. Without dis-

connected operation and file modification, the challenge of resolving file change conflicts

is moot. Unlike Coda, Hyrax does not depend on a central set of servers to host data.

Instead, it uses mobile devices themselves as block servers with the option of adding static

servers to improve reliability and performance.

Several other filesystems optimized for mobile constraints have been studied. LBFS

Muthitacharoen et al. [2001] is a network filesystem for low-bandwidth networks such as

wireless networks. It exploits commonalities of a file before and after changes to avoid
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sending the entire file when a small change is made. Boukerche and Al-Shaikh [2007]

implements another DFS client that prevents conflicts. Virtual Memory based Mobile

Distributed File System Bagchi [2007] implements another thin-client mobile DFS that

ensures consistency. Like Coda, all of these mobile filesystems use the mobile device only

as a client, not as a host. Thus, while they face similar constraints as Hyrax, they do not

solve the same problems.

M-DFS Michalakis [2004] implements “ephemeral filesharing” among mobile devices

using the NFS protocol. M-DFS establishes a temporary distributed filesystem that al-

lows mobile devices to access files stored on other devices in the network. M-DFS is more

closely related to Hyrax than the thin-client mobile network filesystems because it involves

sharing directly between devices, using mobile devices as both clients and servers. How-

ever, Hyrax is not really intended to be used in such a transient way. Through replication,

a Hyrax network can promote long term data availability.

Kelényi et al. [2007] explores peer-to-peer file sharing on mobile devices, including

a discussion on implementations of Gnutella Clip2 and BitTorrent Cohen, Bram for the

Symbian mobile platform. Various aspects of peer-to-peer file sharing on mobile networks

are studied in Ding and Bhargava [2004], Marossy et al. [2004], Zhiyuan et al. [2007],

Lindemann and Waldhorst [2002], Data et al. [2001], Hofeld et al. [2005], Kurt [extern]

The architectures of peer-to-peer file sharing systems are similar to that of HDFS in that file

transfers are executed directly between peers, data is only stored on client nodes, replicas

of data exist on multiple nodes, and there are high-level interfaces for retrieving files.

However, Hyrax provides a filesystem abstraction on top of its peer-to-peer nature, making

it more suitable for developing large-scale applications that are oblivious to the underlying

implementation of the storage system.

Mobile data sharing systems have also been used to reduce traffic on cellular data

networks. The Cellular-based Ad hoc Peer Data Sharing system (CAPS) Lee et al. [2005]

uses devices on the mobile network as caches for data from remote sources. A subset

of the devices are used as directory services for cache lookups. Hyrax also supports the

goal of reducing load in data networks by processing data in-place and allowing files to be

served directly from devices in the local network.
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Chapter 9

Conclusions

Cloud computing using mobile devices has many advantages over traditional cloud com-

puting for applications that use mobile data. Hyrax provides an infrastructure for mobile-

cloud computing, providing an abstract interface for using data and executing computing

jobs on a mobile device cloud.

Hadoop provides most of the essential features for a mobile-cloud computing infras-

tructure, making it suitable to use as a basis for Hyrax. Futhermore, there are several

solutions provided by Hadoop that can be directly applied to challenges in a mobile com-

puting environment, such as using fault-tolerance for tolerating node departure.

Unfortunately, Hadoop is fairly heavy-weight for current smartphone platforms. This

is demonstrated by the high overhead costs of running MapReduce jobs on phones in our

performance experiments. This overhead cost is exacerbated by by artificial limitations

created by Android, such as the 16 MB application memory limit. Nevertheless, Hyrax

easily scales to all of the nodes in our testbed, and would likely scale to many more nodes.

It also works reasonably well for local peer-to-peer data sharing and is generally successful

in tolerating node-departure.

Our experiences in implementing the distributed multimedia search and sharing appli-

cation suggest that Hyrax provides a convenient, sufficiently abstract interface for devel-

oping applications that use mobile data.
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9.1 Future work

Initial work on Hyrax creates many opportunities for enhancing the system and bringing

it closer to real-world deployment.

9.1.1 NAT and firewall traversal

As noted in §4.1, Hyrax currently only works for sets of smartphones that can connect

to each other via plain TCP/IP sockets. Because of this limitation, Hyrax cannot be used

in a realistic setting where smartphones don’t all have global, unrestricted IP addresses

or aren’t connected to the same local network. Real-world peer-to-peer applications use

overlay protocols such as SIP Rosenberg et al. [2001] and JXTA Sun Microsystems [a]

to get around NAT and firewall issues. SmartSockets were used in the Ibis mobile grid-

computing project Palmer et al. [2009] to address this problem.

In a large, evolving codebase such as Hadoop’s, it is wise to avoid changing code when-

ever possible. Instead, it is better to replace the underlying implementations of high-level

interfaces. In the case of sockets, Hadoop creates sockets using the abstract SocketFactory

class, whose implementation can be specified in Hadoop’s configuration.

JXTA includes a peer-to-peer SocketFactory implementation. Incompatibilities be-

tween the Dalvik VM and the JXTA library have prevented us from using JXTA sockets

within Hadoop, but getting this to work is just a matter of investing the time to find and

work around this incompatibility.

9.1.2 Battery consumption analysis and improvement

The battery results presented in this paper only scratch the surface of understanding the

power consumption of Hyrax and thus Hadoop. As noted in §4.3.1, there is interest among

power-users of Hadoop in improving its energy efficiency in order to reduce environmental

impact and energy costs. Insights into how Hadoop consumes battery on a mobile platform

may be applicable to improving Hadoop’s power consumption in a server cluster.

In particular, more experiments should be performed to determine the contributions of

different tasks of different jobs to battery consumption for varying numbers of nodes and

input sizes. Such experiments were performed for MapReduce in a server setting in Chen

et al. [2009]. Battery data could not be collected during our performance experiments

because of limitations in our testbed (namely, phones needed to be plugged in in order to

be controlled via ADB, and there is no option to disable charging). Correlating battery
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consumption with task execution details may yield insights into what parts of Hadoop

should be targeted for increasing energy efficiency.

9.1.3 Handling network changes

One important challenge that remains to be addressed is coping with network connection

changes. In a situation where the central Hadoop services are running on a globally-

accessible machine (as opposed to a machine inside a local network), a smartphone should

be able to connect to the central machine as it changes networks. The central services

would need to be able to identify the node regardless of its IP. Hadoop currently identifies

nodes by their hostname. This issue could be addressed in Hyrax by using unique IDs

separate from hostnames to identify DataNode and TaskTracker instances. Hyrax would

also have to re-assign the “rack” of the device depending on which network it is on and

attempt to rebalance block replicas according to the new topology.

9.1.4 Cluster selection

Another useful Hyrax feature would be plugging into different Hadoop clusters. At the

application or configuration level, the user would be presented with a choice among several

reachable clusters. Clusters might be set up for specific events or locations to support

multimedia and sensor data gathering and processing. To implement this, a function for

switching NameNodes would would need to be added to the DataNode. The DataNode

would need to use a different metadata directory for each cluster that it connects to.

9.1.5 Mobile rack-awareness

“Rack by network distance”, i.e. assigning a “rack” to each node based on its distance from

other nodes in the network, has not been implemented yet. Hadoop uses rack information

to select pairs of nodes for block transfers and determine where to place block replicas. It

assumes that nodes on the same rack can communicate more quickly and cheaply.

In the case of smartphones, racks are analogous to sets of devices on local networks.

These local networks may be implemented, for instance, by a WiFi router, an ad hoc WiFi

configuration, or a peer-to-peer mesh network. Local networks such as these tend to have

lower latencies and higher bandwidth and require less power to transmit data compared

to connections to mobile data networks. Therefore it makes sense for Hadoop to treat

locally-networked mobile devices into “racks”. Implementing rack assignment for mobile
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devices could be implemented by matching up nodes based on their global IP addresses or

by empirically determining the latencies between them by executing small transfers.

9.1.6 Sensor databases

Sensor logs in Hyrax are currently stored per-phone in flat text files. This makes it difficult

to use the sensor data usefully. With a querying interface like SQL and a database infras-

tructure to support it, it would be easier and more efficient to perform operations such as

range queries and joins to associate different sensor readings among different devices with

each other. Existing database systems based on Hadoop such as HBase or Hive could be

used to implement this.

9.1.7 Adaptive replication

It is very important to control the replication factors r in Hyrax. As pointed out in §5.5, the

replication factor must be set to balance battery usage and data availability. A simplistic

way of doing this is to adjust rf depending on how many times f is requested. However,

there may be more effective ways to adapt rf to suit the access patterns of a particular

cluster. rf should be increased when f is popular to increase parallelism in block serving,

but it should decrease when the f is not as popular to save disk space. A technique for

adapting rf to balance availability, battery usage, and disk usage should be developed

9.1.8 Security

Hyrax stores data on many devices, each with a different owner. There is nothing pre-

venting owners of devices on which blocks are stored from reading the contents of data

blocks. In order to prevent device owners from reading the contents of files that they don’t

have permission to read, data blocks can be encrypted such that only those users who have

permission to the corresponding files can read their contents.

This can be implemented using a public key encryption scheme. Creators of the file

would encrypt each file using a randomly generated key. This key would then be en-

crypted using the public key of each user who has access to the file. A central table of

(user, filename, encrypted key) triples would be stored and accessed using some secure

authentication system. After retrieving their encrypted key for a given file, a user would

decrypt the key using their (locally stored) private key, and then use the resulting key to

decode the blocks of the file. Using this encryption scheme, MapReduce would have to be
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modified to run tasks for data from a given input file only on nodes that can decrypt the

file.

A scheme for encryption in network-attached storage systems (which are similar to

HDFS) is developed in Miller et al. [2002].

9.1.9 Storage fault-tolerance

Device owners must be assumed have unlimited control over their systems, including the

data that is stored on them. Thus it cannot be assumed that the output of any node, includ-

ing block data and intermediate values in MapReduce computations, is valid.

The problem of fault-tolerance in HDFS is reducible to the Byzantine Generals Prob-

lem Lamport et al. [1982]. Techniques for low-overhead Byzantine fault-tolerance in dis-

tributed storage systems were developed in Hendricks et al. [2007]. These techniques

could be applied directly to implement fault-tolerant storage in HDFS. Fault tolerance for

MapReduce tasks could potentially be implemented by enabling speculative execution and

voting on intermediate values.

9.1.10 Optimization or re-implementation of MapReduce

In Hyrax, MapReduce jobs are much slower for a given input size than they are on

server clusters. This is partially caused by resource limitations, such as the extremely

small amount of memory available for buffering intermediate values, and partially by the

MapReduce implementation. It may be possible to optimize MapReduce to use resources

more efficiently or to reimplement MapReduce in a simpler, more mobile-friendly way.

9.1.11 Large-scale testing

So far, Hyrax has only been proven to scale to the 12 phones in our testbed. It should not

be assumed that this trend will apply to 100, 1000, 10000, or more phones. Testing on

larger numbers of phones should be performed.

9.1.12 Offloaded vs. local computation

In this paper, the tradeoffs between local and offloaded computation have not been quanti-

fied. It would be useful to develop a model for determining when it is preferable to offload
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some job to remote servers and when to perform the job locally considering input size,

network speeds, expected battery consumption, and system resource availability.
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