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Hysteresis and relaxation in bistable diffusive sandpile
I. Gruzinov, P. H. Diamond, and M. N. Rosenbluth
Department of Physics, University of California, San Diego, San Diego, California 92093

!Received 6 November 2002; accepted 22 November 2002"

Several problems in the physics of L→H transition and pedestal formation are examined using a
simple and universal sandpile model, which incorporates key features of a confined plasma, namely,
diffusion, shear induced bistability of turbulent transport, and a local magnetohydrodynamic !MHD"
limit on the gradient. The main focus of this study is the effect of ambient diffusion, representative
of neoclassical transport, on hysteresis and edge relaxation phenomena. The transport function of
the sandpile bifurcates to a multivalued function with increasing deposition, and, as a consequence,
a hysteresis in the L→H→L transition is observed. With pedestal formation, diffusive losses
increase at the expense of the turbulent flux. This effect prolongs the time needed to reach the MHD
stability boundary, and thus provides a positive feedback on the pedestal. The gradient in the
pedestal is more rigid and, due to diffusive smoothing, can reach the critical value at all radii
simultaneously. Hence an avalanche, starting at the edge, can span the entire pedestal, thus
destroying it. The transport in the core is essentially unaffected by the diffusion. © 2003 American
Institute of Physics. #DOI: 10.1063/1.1539032$

Recently1 we presented a simple sandpile model as a
vehicle for insight into the complex phenomenon of L→H
transition and pedestal formation. This model suggests, that a
second, ‘‘hard’’ local magnetohydrodynamic !MHD" insta-
bility is intrinsic to pedestal formation, while the suppression
of the ‘‘background’’ turbulence is not. We further noted that
the main effect of the pedestal on the transport processes is
to truncate long-range avalanches and thus isolate the core
region from the boundary. In the current paper we are mostly
concerned with an effect of the diffusion on the dynamics of
pedestal formation and relaxation. Diffusion appears to lead
to a substantial hysteresis in the ‘‘transport function’’ of the
sandpile model and to quasiperiodic large scale relaxation
events, somewhat reminiscent of giant edge localized mode
!ELM" discharges.2,3 Both are similar to what is observed in
experiments.4,5

Let us recall here how we designed the bistable sandpile:
hl is the height of the lth cell, Zl!hl"hl#1 is a local slope.
The slope is stable if Zl$Zc1 or Zc2$Zl$Zc3 . If Zc1%Zl
%Zc2 , the slope is in the first unstable range, and Dz number
of grains is transported downhill. If the slope exceeds the
second, hard margin, i.e., Zc3%Zl , we topple 1#(Zl
"Zc1)/2 grains to relax Zl to a subcritical value Zc1"1, see
Fig. 1.

Now introduce a diffusive flux into the lth cell:6 & l
D

!D0(Zl"1"Zl)!D0(hl"1"2hl#hl#1). With the natural
boundary conditions ZL!hL and &L!D0(ZL"1"ZL) at the
open boundary and &1!"D0Z1 in the closed one, the net
diffusive flux is "D0ZL , corresponding to a net loss of sand
because ZL is positive. This intuitive means of introducing
diffusion was benchmarked against a standard diffusion
problem, and the sandpile model reproduces the analytical
solution with a great accuracy. The sand pile is L!100 cells
wide and the constants Zc1 , Zc2 , Zc3 , and Dz are chosen to
be 8, 20, 30, and 3. Variable parameters of the problem are a
grain deposition rate Nf , varied from 1 to 10, and a diffusion

coefficient D0 varied from 0 to 0.16. The deposition profile
in the sandpile model is uniform.

As for a nondiffusive sandpile, the diffusive sandpile
undergoes transition from a state with a shallow profile
(L-mode" to a state with a steep gradient !i.e., ‘‘pedestal’’" at
the edge (H-mode" for sufficiently large deposition. Figure 2
shows steady-state profiles for a deposition rate Nf!5 and
for different values of diffusion coefficient D0 . The pedestal
is clearly visible as a steepening of the sandpile near the edge
for the diffusion coefficient less than '0.1.

The effect of the diffusion on the pedestal can be two-
fold. First, it smooths jumps in the gradient at the core–
pedestal interface and at the open boundary. Second, it also
prolongs the time needed to reach the hard instability bound-
ary. For the case shown in Fig. 2, the second effect domi-
nates for intermediate values of the diffusion coefficient, and
as a result, for these values of D0 the diffusive sandpile is
taller than a nondiffusive pile, contrary to naive intuition. We
observe that, as in the nondiffusive case, the slope in the
pedestal is insensitive to the deposition. The slope slightly
grows linearly with diffusion from Z'23 for D0!0 to Z
'27 for D0!0.1.

Figure 3 shows the steady-state width of the pedestal as
a function of the deposition rate for a diffusion coefficient
fixed to D0!0.08. One can see that, for Nf!5, which is the
case in Fig. 2, the width is approximately 40 cells when
D0!0, and approximately 60 cells when D0!0.08. Thus,
ambient diffusion is clearly seen to impact both the width
and height of the pedestal; the pile becomes taller precisely
because the pedestal becomes wider and steeper.

In contrast to the nondiffusive case, which has only one
transport channel, corresponding to turbulent transport, in the
diffusive model the sand is transported by turbulence and by
diffusion. As a consequence of this two-channel transport,
for some D0 there exists a range of deposition rates Nf
!called the ‘‘transition range’’" over which the sand pile re-
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laxes to a state with or without pedestal, depending on initial
conditions. For example, if we fix the diffusion to D0
!0.08, and vary Nf from 1 to 8 and back to 1, we observe
that the pedestal appears at Nf'4 and disappears at Nf'2,
as seen in Fig. 3.

Let us consider a ‘‘transport function’’ of our model, that
is, the local flux &(R) as a function of the local slope Z(R),
where R is the radius. The transport function can be pre-
sented graphically as a parametric plot of the net local flux
& l!Nfl/L versus the net local slope Zl , as done in Figs. 4
and 5. Transport functions of the nondiffusive and weakly
diffusive sandpile models are qualitatively the same, as seen
from Fig. 4. With increasing diffusion, a bifurcation of the
transport function is observed. A hysteresis loop appears in
&(Z) as shown in Fig. 5 for the case of D0!0.08. Obvi-
ously, the ‘‘transitional range’’ for the deposition rate is a
direct reflection of this hysteresis.

Hysteresis is a characteristic feature of the diffusive sand
pile for intermediate values of the diffusion coefficient, when
the diffusive flux dominates in the H-mode, while the turbu-
lent flux dominates in the L-mode. This allows some range
of flux which can be transported by different combinations of
&D and &T, depending on the confinement mode. E.g., for
the case of D0!0.08 !Fig. 5", the deposited flux Nf!3 can
be transported either by &D!2.1 (H-mode, the pedestal,
ZL!26) plus what is leftover by &T!0.9, or by &D!0.7
(L-mode, no pedestal, ZL!9) plus &T!2.3. Hysteresis is

not possible when one of the two transport channels domi-
nates in both modes, i.e., when the diffusion is too weak and
&T dominates !as in Ref. 1", or too strong and &D dominates.

Figure 6 illustrates the whole L→H→L cycle: start with
a small deposition Nf!2 below the transition threshold, then
gradually increase deposition until Nf!5 well above the
transition range, then gradually turn off the deposition, al-
ways allowing the pile to relax into the stationary state. The
diffusion is fixed at the value of D0!0.08. Steady-state pat-
terns of avalanches are shown for four cases: L-modes be-
low, and in, the L→H hysteresis loop, and H-mode above,
and in, the H→L loop. In the L-mode !absence of the ped-
estal", the transport through the edge is driven by the ‘‘first
instability,’’ complemented by weak diffusive losses. In the
H-mode !with the pedestal", the diffusive losses are substan-
tial !equal to D0ZL), and exceed the transport by rare edge
bursts of ‘‘hard’’ instability in the pedestal, as seen in Fig.
6!c". Note, both panels on the right depict the Nf!3 case to
illustrate the hysteresis in the L→H→L cycle: case !b" is
L-mode on the L→H branch, and case !d" is H-mode on the
H→L branch. From Figs. 5 and 6, the effect of the diffusion
on transport processes can be summarized as follows: Start-
ing from a shallow profile and increasing the grain deposi-
tion rate, we expect the sandpile to start steepening near the
open edge when the deposition exceeds the maximal flux that

FIG. 1. Local flux & l
T transported downhill when the local slope Zl is un-

stable.

FIG. 2. Steady-state profiles of the sand pile for diffusion coefficient D0
!0,0.02, . . . ,0.16 and deposition rate Nf!5. Three regimes are obvious: !i"
small diffusion, D0%0.04, causes profile smoothing; !ii" intermediate diffu-
sion, 0.06%D0%0.12, the diffusive pile is higher than the nondiffusive one;
!iii" large diffusion D0(0.14 prevents the edge steepening, or, more pre-
cisely, the deposition Nf!5 is not sufficient for pedestal formation when
D0(0.14. The top of the pile is flattened by diffusion.

FIG. 3. Width of the pedestal in the simulations for different deposition
rates and with the diffusion coefficient fixed to D0!0.08. Shaded is a ‘‘tran-
sition region’’ over which the pedestal does not appear if the simulations
were initialized with a shallow profile, but does appear if the simulations
were initialized with a steep one. The threshold for L→H transition is Nf
!4, and for reverse transition H→L the threshold is Nf!2. The solid line
!for reference" represents w(Nf) for a nondiffusive case.

FIG. 4. Transport functions of the nondiffusive and weakly diffusive sand-
pile models are very similar. The threshold deposition for L→H transition
and reverse !no hysteresis" is the value of flux &, at which the transport
function inflects: )&/)Z!0. This value slightly grows with diffusion.
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can be transported by the background turbulence plus diffu-
sion. Thus, the threshold for the L→H transition is always
higher than that in the nondiffusive case. Once the pedestal is
formed, the diffusive flux becomes substantial and, if the
deposition rate is not far above the threshold value, little flux
is left to be transported by the ‘‘hard’’ instability. Moreover,
the diffusive smoothing of the slope inhomogeneity prevents
edge steepening, and instead causes homogeneous growth of
the pedestal. As a result, long periods of edge quiescence
!except for a constant diffusive flux", interspersed by infre-
quent avalanches of the distinctive ‘‘triangular’’ space–time
pattern are observed. Once the H-mode is established, the
deposition rate can be reduced without destroying the pedes-
tal as long as the deposition exceeds the diffusive flux. If the
deposition becomes smaller than that, the pedestal disap-
pears.

The crucial role of the second stable range of slopes
!corresponding to suppression of the turbulent transport" is
apparent: it allows the diffusion to take over the transport
while keeping the pedestal in the stable range of slopes for a
long time. Indeed, we do not observe the hysteresis in the
runs with Zc2!29, i.e., without second stability. In this case,
the threshold deposition rate for L→H and reverse transi-
tions simply grows with the diffusion !actually, the threshold
for L→H transition is a function of diffusion coefficient D0
and size of a flip Dz , and is independent of other parameters
of the model". Again, as in the nondiffusive case, second
stability !and transport bifurcation" is not essential for the
pedestal formation, though the pedestal is smoothed by the
diffusion and the diffusive pile is lower than the nondiffusive
one.

There are many ways to define some function that would
characterize the transport activity in the pile. The main pur-
pose of such a function is to illustrate spectrum, which is a
characteristic of the critical state. Indeed, the definition of the
critical state itself is that there exists a function of this state
which shows a power-law spectrum. We adopt the total num-
ber of unstable cells at each time, g(t), as a function whose
statistical properties, namely, probability density function
!PDF" and a spectrum, we wish to study. This function char-
acterizes the turbulence activity, leaving aside the diffusive
dissipation.

Let us take another look at Figs. 6!a" and 6!b", which

show two cases of L-mode as explained above. The power
spectra of g(t) exhibit a flat low-frequency region followed
by an *"1 region and high-frequency tail *"3. The auxiliary
lines, which show the power-law fits, are drawn identically
in both power spectrum plots of Fig. 6. This allows us to
observe that the power content of turbulence shifts toward
higher frequencies with increasing deposition. The existence
of *"1 suggests a range of correlated scales. Varying the size
of the sandpile L , we found that the low and high frequency
limits of the *"1 region are locked to the system size as 1/L
and 3/L , as shown in Figs. 6!a" and 6!b". Since an elemen-
tary transport event proceeds at the cell scale in one iteration,
the *"1 spectrum truly represents a long-range phenomena.
This is not the case for the *"3 spectrum, since its high-
frequency limit coincides with the Nyquist frequency
(2 iteration)"1, a microscale of the problem. It is also
worth noting the absence of any intermediate, transitional
scaling between the "1 and "3 power laws.

Similar to the nondiffusive H-mode, the power spectra
in two H-modes shown in Figs. 6!c" and 6!d" do not have an
*"1 scaling. Rather, a flat low-frequency region is followed
by the *"2.5 tail. In contrast to the nondiffusive case, in
which the power index in the H-mode is almost twice as
small as that in the L-mode !being system-size independent
in both modes", for the case of finite diffusion the index
depends on the system size !ranging from "2.5 for L!100
cells to "3 for L!300 cells for D0!0.08). This is attrib-
uted mainly to the fact that the diffusion, being a second
order spatial derivative, induces a correlation at scales larger
than the turbulence scales, but smaller than the system size.
This is consistent with the observation that the power index
increases with system size in the H-mode, where diffusive
losses are substantial, but is independent of the system size
in the L-mode, where diffusive losses are not important.
Thus one can appreciate the existence of the system-size in-
dependent power-law spectrum as a nontrivial case.

It is instructive to compare cases of Nf!3 without and
with the pedestal, as in Figs. 6!b" and 6!c". First, the pedestal
#case !c"$ contributes little to the function g(t), since most of
the time it is stable, but the *"1 power law is gone. This is
so because the *"1 law of g(t) in the L-mode is due to the
overlapping of the individual avalanches. This takes place at
large radii, near the edge, where the flux is large. The pres-
ence of the pedestal eliminates that region, but does not af-
fect the core. Thus, the pattern of avalanches in the core
regions is the same in both modes. Second, that the cutoff
frequency for the power law is exactly 1/L means that ava-
lanches of all sizes !up to the size of the sandpile", are
present, and that the power content in scales larger than the
size of the pile is scale-independent. On the other hand, in
the case of a large, statistically significant pedestal, as in Fig.
6!d", the power law persists at frequencies below 1/L !al-
though L is the only macroscopic scale length present in the
system". This is because a long time is required for the ped-
estal to reach the critical gradient, as explained above. In this
case, the characteristic time for g(t) is determined by the
diffusion and deposition rate, but not by the time needed for
an avalanche to span the entire sandpile! Also, because
space–time patterns of avalanches in the pedestal has a tri-

FIG. 5. Transport function for the case of D0!0.08 shows a hysteresis in
L→H→L transitions. Observe, that the ‘‘inflection region’’ )&/)Z!0 is
larger in )Z , and the slope in the pedestal is more ‘‘rigid’’ !i.e., )&/)Z
→+) than these in the nondiffusive case.
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angular shape, all scales !from 1 cell to the pedestal width"
are present with the same probability. That uniform probabil-
ity shows up in PDF as a long and flat appendix to the
Gaussian.

Finally, Figs. 6!a", 6!c", 6!d" show the edge quiescent
time distribution. In L-mode it is exponential, in H-mode it
is approximately power law between two Gaussians. Second
maxima are at 500 and at 200 time steps for cases Nf!3 and
Nf!5, respectively.

In conclusion, a simple bistable sandpile model with dif-
fusion was utilized to elucidate certain key features of L
→H→L transitions. The main conclusion we draw from this
study is that both diffusion and second stability are necessary
for the appearance of hysteresis in the transport function of
the model and in the L→H→L thresholds. Furthermore,
hysteresis is observed only when turbulent and diffusive
fluxes are comparable. This differs from the common intu-
ition based on simple models.7,8 The effect of the diffusion
on the pedestal structure and dynamic is substantial. First,

the pedestal can be wider and taller with diffusion than with-
out. Second, large edge discharges are rare and span the
whole pedestal, thus resembling giant ELMs. Such large dis-
charge events were not observed in sandpile models without
diffusion.
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FIG. 6. The space–time pattern of the
pile: white cells are stable, gray and
black cells are in first and in second
unstable ranges of slopes, respectively.
On the right at each of the panels, the
power spectrum and PDF of total
number of flips are shown. Also plot-
ted is the distribution of quiescent time
between edge events.
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