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Abstract

Although the existence of multiple stable phenotypes of living organisms enables random switching between phenotypes
as well as non-random history dependent switching called hysteresis, only random switching has been considered in prior
experimental and theoretical models of adaptation to variable environments. This work considers the possibility that
hysteresis may also evolve together with random phenotype switching to maximize population growth. In addition to
allowing the possibility that switching rates between different phenotypes may depend not only on a continuous
environmental input variable, but also on the phenotype itself, the present work considers an opportunity cost of the
switching events. This opportunity cost arises as a result of a lag phase experimentally observed after phenotype switching
and stochastic behavior of the environmental input. It is shown that stochastic environmental variation results in maximal
asymptotic growth rate when organisms display hysteresis for sufficiently slowly varying environmental input. At the same
time, sinusoidal input does not cause evolution of memory suggesting that the connection between the lag phase,
stochastic environmental variation and evolution of hysteresis is a result of a stochastic resonance type phenomenon.
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Introduction

Adaptation of organisms to time-varying and often uncertain

environments is a classical problem in evolutionary biology.

Existence of multiple phenotypes and random switching between

them establishes phenotypic diversity within the population and

has been suggested as a form of bet-hedging strategy that increases

the chances of survival and growth rates of the total population

[1]. It is intuitively clear that selection should favor those

phenotype switching probabilities that match in some way

environmental variation rates. To see what might be a good

choice of the switching probabilities, Kussel & Leibler [2]

compared random switching between phenotypes to responsive

switching using a continuous time model for a discrete-valued

environment by imposing a cost on the non-random responsive

strategy and assuming that random switching rates are indepen-

dent of the environment. Others [3] considered a different

approach where switching probabilities were viewed as a single

valued function of a binary environmental variable that may be

favorable or unfavorable to a particular phenotype in terms of the

phenotype growth rates. This work concluded that, under some

circumstances, small switching probability from favorable to

unfavorable phenotype may be advantageous for the growth of

the entire population. In their experimental work [4–6] the same

group was able to tune the phenotype switching probabilities

utilizing bi-stability in the galactose utilization network of

Saccharomyces cerevisiae obtaining agreement with the model.

Phenotypic multi-stability in biological systems is related not

only with bet-hedging behavior, but also with persistent memory

of history called hysteresis. The term ‘‘hysteresis’’ seems to have

been coined by James Alfred Ewing [7] in connection with the

ability of some magnetic materials to retain their magnetization

state long after the magnetizing magnetic field has been removed.

Today it is used much more broadly to refer to any memory based

relationship between an input and state of a system that does not

depend on the rate at which the input varies in time [8]. The most

basic, yet non-trivial, hysteresis is exemplified by a bi-stable relay

illustrated in Figure 1, where the current state of the relay is

determined not only by the external input, but also by the previous

relay state. The key characteristic of the bi-stable relay hysteresis is

the threshold separation, which is the difference between the

values of the external input at which the state switches.

Classical example of a bi-stable relay hysteresis in biological

systems is the history dependent behavior of the lac-operon studied

in E. coli bacteria. Lac-operon can be viewed as a collection of

genes associated with transport and metabolism of lactose. Novick

& Weiner [9] as well as of Cohn & Horibata [10–12], relying on

prior work of others [13–17], demonstrated that two phenotypes

each associated with ‘‘on’’ and ‘‘off’’ state of the lac-operon
expression can be obtained from the same culture of genetically

identical bacteria. The fraction of each corresponding sub-

population depended on the history of the exposure to the

inducer. Similarly to the relay illustrated in Figure 1, the lac-
operon state was induced (switched on) when the extracellular

inducer concentration (input) exceeded an upper threshold. The
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operon was switched off when the inducer concentration fell below

the lower threshold. Both phenotypes remain stable through

multiple generations of the bacterial culture after the extracellular

concentration of the inducer is reduced to lower levels, but not

removed completely. Novick & Weiner did not use the term

‘‘hysteresis’’ to describe their observations, but effectively that is

what it was.

It has been pointed out a number of times that random

switching and hysteretic switching (memory) can both be observed

in biological systems having multiple stable phenotypes [18–32].

Consider, for example, bi-stable relay of the galactose utilization

network of Saccharomyces cerevisiae studied in [6,33] and used in

experiments related to advantages of population diversity [34]. For

a certain set of control parameters, the bi-stability displayed

pronounced random switching between phenotypes. An illustra-

tion that does not rely on concepts related to thermodynamic

equilibrium is shown in Figure 2. The figure shows an S-shaped

curve whose features may be randomly changing due to random

variations in gene expression, for example. Stable phenotype states

can be found on the horizontal segments of this curve, while the

segment with the negative slope is unstable. If one considers a

binary environmental variable, the random changes in the curve

features may cause random transitions from one stable state to

another with different probabilities at different values of the binary

environment. When the value of the environmental variable is

E~E1, the transition from the state on the lower part of the curve

to the upper part occurs with greater probability. On the other

hand, when E~E0, transitions from the upper to the lower

branch are more likely. Such transitions may relatively quickly

randomize the phenotype erasing any memory of the past

phenotype state [35–41].

In the above description, one may treat the transition

probability solely as a function of the environment because the

environment is binary valued. This becomes more obvious for a

different set of the regulatory network parameters when the

galactose utilization network of Saccharomyces cerevisiae exhibits

persistent memory over long period of time [6]. Random switching

with rates similar to the previous case would occur in this case too,

however, only when the input is sufficiently close to one of the two

thresholds associated with the hysteresis. Therefore, both memory

and random switching of phenotype can be observable if a

continuum of the environmental input states was considered, some

far from the thresholds and some close. Hence, if one wants to

investigate the possibility and effects of hysteretic memory, one

should assume the dependence of the transitions probabilities on

the phenotype as well as on the value of the continuous

environmental variable. This is exactly the approach taken in

the present work. Thus, while the previous work focused on the

random phenotype switching showing that appropriate choice of

switching probabilities is advantageous in differently varying

binary environments, in this work we focus on the possibility that

hysteresis and memory can provide certain advantages in

population growth by considering continuously varying environ-

mental input. Rephrasing, the previous analysis dealt with the

following optimization problem: given a certain switching rate to

the favored phenotype for every possible state of the environment,

find the value of the lower (typically small) transition rate to the

unfavored phenotype that would maximize the growth of the total

population. In this work, we are solving a different optimization

problem by allowing a range of environmental states (between the

thresholds) within which both switching rates to and from the

favored phenotype are small (possibly zero) and using this range as

an optimization parameter to maximize the growth rate.

That is, the question we ask is: how strong of a hysteresis effect

may one expect to evolve? More precisely, what would be the most

advantageous threshold separation and how is it affected by the

variability and uncertainty of the environmental input?

This problem is studied below using a hybrid system model very

similar to one used to describe population diversification in the

experiments with Saccharomyces cerevisiae [3,4]. However, the

proposed model differs in two significant ways from the previous

model.

One difference is that the proposed model explicitly introduces

a non-growing phenotypes in addition to the two phenotypes

capable of some growth in any environment being considered.

The non-growing phenotypes are introduced instead of explicitly

imposing a time delay as a model for lag phase in the growth of

phenotypes after each switching event. On the one hand, using a

non-growing phenotype is a self-consistent approach as the growth

of each phenotype is not explicitly dependent on time. On the

Figure 1. Illustration of bi-stable relay hysteresis. When the state is 1, the relay switches to state 0 at the lower input threshold, while starting
from state 0 the relay switches to state 1 at an upper threshold. Thus, as long as the current input is within the bi-stability range (i.e. between the
thresholds), the relay remembers whether the input has entered this range from below or from above. Panel A shows the input-state diagram. Panel
B presents an example of input graph. The vertical interval between the horizontal dashed lines on panel B corresponds to the horizontal bi-stability
interval on panel A. The intersection of the lower (upper) dashed line with the input graph on B defines a moment of switching from state 1 to 0
(from 0 to 1).
doi:10.1371/journal.pone.0103241.g001
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other hand, this approach simplifies the mathematical treatment

by adding two random differential equations rather than using a

smaller number of random differential equations with time delay.

The key difference between the previous and the proposed

model is the possibility that switching rates between phenotypes

depend not only on the environment, but also on the phenotype

itself. This effectively implies that environmental input values

(thresholds) at which different phenotypes change their switching

rates are permitted to be different in the proposed model and is

exactly what allows hysteretic memory to exist as a possible

solution to the growth optimization problem. This optimization

mechanism is only possible if the environment admits values

between the thresholds, which is part of the reason that we model

the variations of the environment by a continuous process.

With these modifications the growth model becomes:

x’~c1(E)x{k1(E)xzdw

y’~c2(E)y{k2(E)yzdz

z’~k1(E)x{dz

w0~k2(E)y{dw

ð1Þ

where ‘‘prime’’ denotes time derivative; k1(E) and k2(E) are

environment dependent rates at which organisms switch from

phenotypes x and y, respectively, while c1(E) and c2(E) are the

corresponding phenotype growth rates; z and w represent non-

growing phenotypes; and, 1=d is the lag phase characteristic time.

Different functional dependencies of the coefficients in model (3)

can be considered. Continuous functions (piecewise linear

sigmoidal) are used here to model dependence of growth

coefficients on the environment:

c1(E)~

czs, Eƒ0

{s(E{0:5)z0:5szc, 0vEv1;

c, E§1

8>><
>>:

c2(E)~2czs{c1(E) ð2Þ

where c is the minimum growth rate possible and czs is the

maximum possible growth rate. Effectively, s is the maximal

growth rate advantage of the alternate phenotype.

Although the above dependence is employed here primarily to

illustrate key features of the model, it can be viewed as reasonable

because 1) the growth rates of both phenotypes can be the same at

some value of the environmental variable (which is set to E~0:5
here) and 2) only a partial favoring of one phenotype over the

other is possible when the environmental variable deviates from

E~0:5 by a small amount. On the other hand, at large deviations

of the environmental variable from its average, the difference in

favoring one phenotype over another is bounded by some value s.

Similarly to the previously considered models, the dependence

of the switching rates k1(E), and k2(E) on the environmental

variable will be described by step functions. However, in contrast

to the previous model, the thresholds for these steps will not be

Figure 2. Illustration of random phenotype switching. The S-shaped curve consists of two horizontal segments and a slanted segment whose
slope may be randomly changing. Stable phenotype states can be found on the horizontal segments of this curve. For a given value of the
environmental input E, the transition from the state on the lower part of the curve to the upper part occurs when the meeting point of the slanted
segment with the lower state line shifts to the left of E; the transition from the upper to the lower branch occurs when the meeting point of the
slanted segment with the upper state line shifts to the right of E. When E~E1, transitions from state 0 to state 1 occur with higher probability than
transitions from state 1 to the state 0. When E~E0 , transitions from state 0 to state 1 are less likely than transitions from state 1 to state 0.
doi:10.1371/journal.pone.0103241.g002
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required to be the same for the two growing phenotypes. We use a

parameter a to specify the separation of thresholds:

k1(E)~
ku, Eƒ0:5za

kf , Ew0:5za

�
k2(E)~

kf , Eƒ0:5{a

ku, Ew0:5{a

�
ð3Þ

where ku§0 is the rate at which bacteria switch from favored to

unfavored phenotype and kf wku is the rate of switching from

unfavored to favored phenotype. When a~0, the change of the

transition rate from one phenotype to another coincides with the

change of the phenotype growth status from favored to unfavored

or vice versa. This change of transition rates can be characterized

as ‘‘realistic’’ strategy. Positive a implies that there is an interval of

the environmental input 0:5{avEv0:5za over which both

growing phenotypes have low transition rates ku. In this case one

phenotype retains its low transition rate even after its growth status

has changed to unfavored, while the other reduces its transition

rate even before its growth status changes to favored. For this

reason the strategy corresponding to positive a can be character-

ized as optimistic. Negative a means that both phenotypes have

high transition rate kf over the interval 0:5zavEv0:5{a
which corresponds to a pessimistic strategy, although somewhat

different from bet-hedging.

Variation of the environment will be modeled here in two

distinct ways: by a random process and by a periodic symmetric

(E(t)~1{E(t{T=2)) function. One of the random processes

employed here is the Ornstein-Uhlenbeck (OU) process that

describes diffusion-like motion in a one-dimensional parabolic

potential centered at the point E~0:5 where the growth rates of

the phenotypes are equal:

dE~{a(E{0:5)dtzdWt ð4Þ

where a is a stiffness parameter associated with the parabolic

potential well and dWt is the derivative of the Wiener process

(white noise) creating stochastic fluctuations around the point

E~0:5. Average time tE of passage of the interval

0:5{DaDƒEƒ0:5zDaD by the OU process can be viewed as a

certain characteristic time of this process. A modification of the

OU process that corresponds to a double-well, rather than a

parabolic potential will also be considered:

dE~(a(E{0:5){(E{0:5)3)dtzdWt ð5Þ

Deterministic periodic environmental variation will be taken as

sinusoidal having a half-period tE .

The effect of the threshold a on the population growth will be

investigated along with the effects of parameters ku,f and d using

the Lyapunov’s exponent to represent the asymptotic growth:

l~ lim
t??

1

t

ðt

0

c1(E(t))x(t)zc2(E(t))y(t)

x(t)zy(t)zw(t)zz(t)
dt

� �
ð6Þ

Simulations

In order to obtain the dependence of the average growth rate (6)

on the threshold separation distance a and other parameters, we

changed variables and considered the population of cells in each

phenotype in terms of its fraction of the total population

N~xzyzzzw. With the change of variables X~xN,

Y~yN, Z~zN, W~wN , system (1) becomes

X ’~c1(E)(1{X )X{k1(E)XzdW{c2(E)XY

Y ’~c2(E)(1{Y )Y{k2(E)YzdZ{c1(E)XY

Z’~k1(E)X{dZ{c1(E)XZ{c2(E)YZ

W ’~k2(E)Y{dW{c1(E)XW{c2(E)YW

ð7Þ

While populations in model (1) grow exponentially, solutions of

model (7) fluctuate near a positive equilibrium.

Simulations of system (7) were performed using the Runge-

Kutta method with the input E~E(t) obtained by the Euler

method. A typical time step was h~10{3; the stochastic term in

(4) was modeled by a sequence of independent random variables

gt*N(0,h). The time interval T~2000 of individual simulations

was chosen sufficiently large to ensure the convergence of the

growth rate

l(t)~
1

t

ðt

0

(c1(E(t))X (t)zc2(E(t))Y (t))dt ð8Þ

to its asymptotic value (6). Figure 3 presents a typical plot of l(t)
which has two parts corresponding to the first half and the second

half of the time interval 0ƒtƒT . The first part includes the

process of relaxation of l(t) to its stationary value. The second part

is almost stationary with deviations from the stationary value

within 1%. Since the variance of l(T) is this small, all the plots

presented in Figures 4–6 look almost smooth.

Each point of the plots in Figures 4-6 was obtained by averaging

the value of l(T) over 20 simulations of system (7) with stochastic

input (4). The stepping of a was Da~0:01. A similar procedure

was used to obtain the plots in Figure 7A with the exception that

input (4) was replaced by input (5). It has been checked that the

plots shown in Figure 4 remain essentially the same when a

smaller time step h~10{5 or a longer time interval T~20000 is

used.

Results

The results are presented for zero transition rate ku~0 from

favored to unfavored phenotype.

When the lag time is close to zero (large d), model (1) can be

approximated by the system

x’~c1(E)x{k1(E)xzk2(E)y

y’~c2(E)yzk1(E)x{k2(E)y ð9Þ

where the non-growing phenotypes have been removed. The

results obtained from model (1) with d&1 and model (9) are

similar. Figure 4A presents the dependence of the average growth

rate l on a for the system with zero lag phase, which is driven by

OU environmental process (4). The horizontal graph corresponds

to kf ~0, the case of no flow between phenotypes. Here the

Lyapunov’s exponent l is close to the arithmetic mean czs=2 of

the saturated highest and lowest growth rates. The other three

curves corresponding to positive transition rate kf from unfavored

to favored phenotype demonstrate a clear maximum, which

increases with kf . These curves converge to the horizontal graph

as a increases, the reason being that for large positive a the

switching threshold values are so high that the environmental

input reaches them rarely, hence little switching occurs and the

Hysteresis Grants Fitness in Varying Environment
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system behaves almost as in the no flow case kf ~0. A different

behaviour is observed for large in absolute value negative a. In this

limit, the environmental input is unable to pass the threshold

values so as to turn off the switching rate, hence each phenotype is

constantly transitioning into the other with the effect that the

populations are permanently mixing at constant rate kf . The

Lyapunov’s exponent l first increases and then decreases with

increasing kf for large in absolute value negative a.

Figure 3. Convergence of the growth rate to the Lyapunov exponent. A typical evolution l(t) of the time average of the growth rate (8) over
the increasing time interval from 0 to t. For t§1000 the process l(t) asymptotically approaches a stationary value (6). Deviations are within 1%. The
plot was obtained using system (7) with OU input (4).
doi:10.1371/journal.pone.0103241.g003

Figure 4. The Lyapunov’s exponent l for different a values. Plots on panels A and B were obtained for systems (9) and (1), respectively, with
OU environmental input (4). A: The curves correspond to kf ~0,0:3, 2:6, 100. For a~0 the growth rate l increases with kf . B: The curves are for
kf ~0, 0:5, 1, 1:5. For negative a the growth rate l decreases with kf . Other parameters are ku~0, s~1, a~1, c~0:1, d~1.
doi:10.1371/journal.pone.0103241.g004
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Figure 5. The effect of changes in the parameters a and d on the Lyapunov’s exponent l. Each plot demonstrates a positive optimal value
of the threshold parameter a, which maximizes l for model (1). A: The effect of altering the average lag time 1=d. The curves correspond to
d~2:8, 5:3, 10:3. The growth rate l increases with d. Solid lines are plotted for kf ~2:6, a relatively slow transition rate; dashed lines are plotted for
kf ~100, a high transition rate. Other parameters are ku~0, s~1, a~1 and c~0:1. B: The effect of varying the stiffness of the potential well a. The
lines correspond to a~2, 5, 21. The growth rate l decreases with a. Other parameters are ku~0, s~4, kf ~2:6, d~1 and c~0:1.
doi:10.1371/journal.pone.0103241.g005

Figure 6. Results of modifying the difference of the growth rates. The parameter s measures the difference of the growth rates of the fully
favored and fully unfavored phenotypes. The growth rate l increases with s. The curves correspond to s~2, 4, 8. Other parameters are ku~0,
kf ~2:6, d~1, a~1 and c~0:1.
doi:10.1371/journal.pone.0103241.g006
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Figure 4A shows that when the switching rate kf is relatively

low, the maximal growth rate l is achieved by the bet-hedging

(pessimistic) strategy corresponding to a negative value of a, while

for larger kf the optimal asymptotic growth occurs for the realistic

strategy corresponding to a~0. This behavior is consistent with

the results of [3] where a was always zero, but a positive transition

rate ku played the role of an (alternative) bet-hedging mechanism.

Increasing ku with simultaneously setting a negative a help

increase the growth rate in the present model in case of a relatively

low switching rate kf (not shown in the figure).

Figures 4B and 5A illustrate the main finding of this work.

Figure 4B shows that optimal asymptotic growth occurs at

positive values of a when the lag time 1=d becomes non-zero. A

positive a corresponds to the presence of a bi-stability interval

which ensures that the cells do not switch phenotype when the

environmental variable is placed within the range

0:5{avE(t)v0:5za. Interestingly, the optimal value of a is

nearly independent of the maximal switching rates as long as the

lag phase delay is the same.

The plot in Figure 4B is divided into three regions, aƒ{1
(region 1), a§2 (region 2), and {1vav2 (region 3). The

horizontal line corresponding to kf ~0, the case where there is no

transitions between phenotypes, is the same as in Figure 4A. In

region 1, the Lyapunov’s exponent l rapidly decreases with kf .

The reason is that the environment is between the thresholds most

of the time for this region, 0:5{avE(t)v0:5za, hence the

majority of bacteria are nearly always in a transition state due to

the pessimistic strategy (negative a). The higher the transition rate

kf , the higher the fraction of the total population that is stuck in

the groups z and w that do not contribute to the growth of the

system, hence lower l. In region 2, the value of a is also sufficiently

large so that the environmental input mostly remains within the bi-

stability interval. As ku~0, both rates k1,2(E) are nearly always

zero due to the optimistic strategy corresponding to positive a in

this region, hence the majority of bacteria are in the non-transition

states x,y and the plots of l for all kf tend to the horizontal plot

obtained for kf ~0 as a increases. Central Region 3 is the most

interesting as each plot l(a) corresponding to a non-zero value of

kf achieves a distinct global maximum at some positive value of a,

that is for the optimistic switching strategy.

Now, we consider how system (1) responds to variations of

parameters. Figure 5 illustrates dependence of positive value of a
needed to obtain maximum asymptotic growth on the on the lag

time and on the ‘‘stiffness’’ parameter of the OU process and.

Figure 5A shows that, as the lag time 1=d increases, the optimal

positive value of a which grants the maximal Lyapunov exponent

also increases. There is a direct relationship between a and the

average time tE required for the OU process to pass through the

bi-stability interval. Hence, the exit time tE required to optimize

the asymptotic growth tunes with the lag time: tE increases with

the increasing lag phase delay. This trend is also in agreement with

Figure 4A presenting the limit case of zero lag time where the

corresponding optimal a is zero or negative.

Examining the plots showing the dependence l(a) in Figure 5B

for several values of the stiffness of the potential well of the

environmental input, a, we see that as the well becomes steeper

and the environmental input is forced to spend more time around

the point E~0:5 of equal favoring of the phenotypes, the value of

the peak in the Lyapunov’s exponent l decreases. When the well

becomes sufficiently steep, the peak is lost and the Lyapunov’s

exponent converges to the value cz0:5s of the average growth

rate of the system with no transitions between phenotypes.

In Figure 6, we vary the parameter s, which controls the benefit

to the growth rate that bacteria in a favored phenotype gain over

bacteria in the unfavored phenotype. Increasing the value of s has

an effect similar to that of shortening the lag time by increasing d,

cf. Figure 5A. This result can be understood if we consider s as a

penalty for being in the wrong phenotype when the environment

changes. When the penalty becomes too high it is no longer worth

delaying changing phenotype and becomes better to change with

the environment using the realistic switching strategy, that is

setting a~0.

Finally, we test system (1) with environmental inputs different

from the OU process. Figure 7A presents data obtained for input

(5) generated by the diffusion process in a double well potential.

When the transitions rate kf is low, the Lyapunov’s exponent is

maximized by a~0. However, as the transition rate kf increases,

the peak in the Lyapunov’s exponent profile l(a) shifts to the

region of positive a. That is, as in case of environmental input (4)

Figure 7. Dependence of the Lyapunov’s exponent l on the parameter a for alternative environmental inputs. A: Results for model (1)
with the stochastic input (5). The curves correspond to kf ~0:2, 4:7, 9:2. For negative a the growth rate l decreases with kf . B: Results for model (1)
with the periodic environmental input E(t)~0:5(1z sin t). The curves correspond to kf ~0:45, 0:7, 1:7. Again, for negative a the growth rate l
decreases with kf . Other parameters are the same as in Figure 4.
doi:10.1371/journal.pone.0103241.g007
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(see Figure 4B), the optimistic strategy grants more fitness to the

population than the realistic strategy for non-zero lag times.

Plots in Figure 7B were obtained for a periodic input, which

represents a fully predictable deterministic pattern of environment

variations. Here the graph l(a) follows a complex profile as a is

varied from the region av{0:5, where the transition rates k1,2(E)
are always equal to kf , to the region aw0:5, where there are no

transitions between the phenotypes (k1,2(E)~0). The average

growth rate l has a local peak in the region av0 and the peak

value increases with kf . For small transition rates kf , the value of l
at this local peak is still less than the growth rate cz0:5s, which is

achieved for aw0:5 by the regime without transitions. For larger

kf , this peak becomes the global maximum, that is the maximum

average growth rate is achieved by the bet-hedging (pessimistic)

strategy corresponding to an av0. As kf increases further, the

peak shifts towards the point a~0. This behavior agrees with the

results of [3]. However, we see that for the present model kf

should be large enough to favor the bet-hedging strategy;

otherwise, the negative effect of the switching cost dominates

and the strategy forbidding transitions between the phenotypes

becomes optimal.

Importantly, in case of the periodic environmental input,

positive values of a do not help growth for any sufficiently high

switching rate kf . This contrasts with our results for the stochastic

environments. In the following discussion, we associate this

difference with the fact that the time required for the periodic

input to pass through the bi-stability interval does not depend on

a.

Discussion

For the case of zero lag phase, the results obtained in this work

are entirely consistent with the results obtained in [3,4] where only

binary environmental signal was considered. The fact that

environmental signal is not binary in this work does not appear

to have any significant impact on the resulting conclusions. For

high switching rate capacity kf &1=tE we still conclude that no

switching into unfavored phenotype is needed to hedge the bets

because the population is capable of adjusting quickly to the

environment. For sufficiently low switching rate capacity kf the

population is no longer capable of adjusting sufficiently quickly

and bet hedging develops through non-zero switching probability

into the unfavored state (the optimal switching rate ku becomes

positive). Interestingly, negative threshold separation a, which

effectively slows down switching into the favored phenotype in a

certain range of the environmental input, can further increase the

asymptotic growth rate. This could be viewed as an additional

mechanism to tune the characteristic time of phenotype variation

to the characteristic time of environmental variations. However,

the authors were not able to find any experimental work

suggesting such behavior actually occurs perhaps due to the fact

that non-zero lag phase is nearly universal among micro-

organisms.

The main finding of this paper is that, as Figure 4B illustrates,

when the lag phase delays the growth of any phenotype, the

optimal phenotype switching strategy involves evolution of a

positive threshold separation a. As discussed above, positive

threshold separation a leads to hysteresis for relatively large values

of phenotype switching rate kf or to nearly hysteretic behavior for

smaller values of kf .

Experimentally this hysteresis is observed when the environ-

mental variable changes in time slowly and hence phenotype

switching occurs at two distinctly different threshold values of the

environmental state. On the other hand, at the environmental

variation rate for which a particular choice of a maximizes the

asymptotic growth rate, one would not observe hysteresis because

short-term switching dynamics is not negligible. In fact, optimal

choice of a corresponds to a form of stochastic resonance where

the delay time associated with the lag phase is a fraction of the

average period of the random phenotype switching caused by the

random environmental input oscillation. Indeed, model (1)

demonstrates the growth of the optimal threshold difference with

increasing lag phase time 1=d, which implies tuning of the average

time interval between the switches tE with the lag phase delay 1=d.

This tuning suggests that measurements of hysteresis and lag phase

can help characterize fluctuations of the natural environment. The

growth maximizing relationship between the first passage time tE

and the lag phase delay time also depends on the effective

difference in the growth rates of the two phenotypes.

It is worth noting that deterministic environmental input does

not lead to the same type of phenomenon, as illustrated by

Figure 1B where the time interval between changes of phenotype

switching rates is independent of the threshold difference and is

always equal to half the period. This is interesting because it

suggests that threshold difference is only useful in the presence of

environmental uncertainty helping the system to minimize the risk

of changing its phenotype switching rate too often.

The presence of hysteresis in model (1) becomes apparent when

the typical rate 1=tE of the input variations is low compared to the

inverse lag phase time d and the rate kf of switching to the favored

phenotype but high (due to the low level of noise in the switching

thresholds, see Figure 2) compared to the rate ku of switches to the

unfavored phenotype. These conditions ensure that all bacteria

switch quickly and almost simultaneously to the favored phenotype

whenever the environmental input leaves the bi-stability interval

0:5{aƒEƒ0:5za from either end, while there are almost no

transitions to the other phenotypes when the environmental input

is inside this interval. This is exactly the behavior described by the

bi-stable relay illustrated in Figure 1, which represents the simplest

form of hysteresis and hysteretic memory. That is, for slow

variations of the environmental input, model (1) demonstrates the

same memory on the level of the whole population as we assumed

in individual bacteria, the reason being that no interaction

between organisms has been explicitly included in the model

and the lag phase delay as well as separation of the switching

thresholds are properties of an individual organism.

The mechanism that promotes the separation of thresholds and

its correlation with the rate of environmental variations and the lag

phase time can be explained by a trade off between too much

responsiveness to environmental variations (for small a), with the

associated cost of often transitions, and too much inertia (for large

large a), which leaves too many bacteria in unfavored states. The

positive threshold difference a decreases the rate of transitions

from less to more favored phenotype when favoring is not strong.

Such suppression of back and forth switching agrees with some

experimental findings [42,43]. A slight decrease in the growth rate

due to small fluctuations of the environment from the point where

both phenotypes are equally favored can be less dramatic than a

drop in the growth rate due to passing through the lag phase

induced by a switching event.
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