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Abstract The constitutive equation and the fatigue of
anelastic media are described by using fractional or-
der derivatives. The stress–strain relation, based on a
generalization of the Kelvin–Voigt model, describes
typical hysteresis cycles with the stress increasing as
the number of cycles increases, a phenomenon known
as cyclic hardening and observed in many materials
such as, for instance, steel. Criteria are established to
find the number of cycles which may cause fatigue for
a strain with a given amplitude and frequency. They
are based on the yield and fatigue stresses, on the
melting temperature through the dissipated energy, and
on the strain energy. In all the cases, it is seen that
the number of cycles to failure is inversely proportional
to the amplitude and to the frequency of the applied
strain. Comparison to experimental data indicates that
the model satisfies, at least qualitatively, the behavior
of real materials under cyclic loading.

Keywords Anelasticity · Fractional derivatives ·
Hysteresis · Fatigue

Introduction

In many applications, materials are subjected to vibra-
tions or oscillatory forces. The behavior of materials

M. Caputo
Department of Physics, University “La Sapienza”,
Rome, Italy

J. M. Carcione (B)
Istituto Nazionale di Oceanografia e di Geofisica
Sperimentale (OGS), Borgo Grotta Gigante 42c,
34010 Sgonico, Trieste, Italy
e-mail: jcarcione@inogs.it

under such conditions differs from that of static loads,
where the failure criteria to use are based on the static
yield stress. The fatigue stress due to cyclic loading is
generally smaller than the yield stress. There are many
factors that affect fatigue life, namely the nature of the
cyclic stress, the geometry of the medium, the type of
material, the presence of residual stresses and internal
defects, the grain size, the temperature, etc. (Ellyin
1996; Lee et al. 2004). The process can be summarized
in three stages: crack initiation, crack propagation, and
ultimate ductile failure. These are complex phenomena
which require the collection of much experimental data
and appropriate constitutive equations.

Since long time, mathematics and physics have given
attention to the modeling of the dissipation and dis-
persion of waves, of the propagation of energy in solid
anelastic media, in plasmas, in fluids, and in solid di-
electrics. The introduction of the first-order derivatives
in the constitutive equations of elasticity, leading to the
so-called Kelvin–Voigt, Maxwell and standard linear
solid (or Zener) models, or the introduction of deriva-
tives of higher order, was, in some cases, unsuccessful
in explaining the decay of energy and the dispersion
(Caputo 1967).

Heaviside (1894), with his symbolic calculus, stud-
ied the propagation of electromagnetic energy, Cisotti
(1911) introduced memory formalisms to represent dis-
persion and dissipation, and Graffi (1928) and Cole
and Cole (1941) studied induced polarization assuming
a frequency-dependent complex dielectric parameter.
The study of the dissipation of elastic energy is fun-
damental in the work of Bagley and Torvik (1986),
who assumed a frequency-dependent relation between
stress and strain based on fractional derivatives. The
use of derivatives of real-order q is now becoming more
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popular in applied physics, especially in the formulation
of the constitutive equations of dispersive media and
the description of diffusive phenomena. In fact, from
problems of dissipation of energy in anelastic media
(Caputo 1967; Caputo and Mainardi 1971), the use of
fractional derivatives has been extended to the study
of the rheology of the Earth (Körnig and Müller 1989),
to seismic prospecting (Carcione et al. 2002; Carcione
2009), to diffusion matters (Mainardi and Pagnini 2003;
Wyss 1986), to problems of electric energy storage
(Jacquelin 1991), to geoelectric prospecting (Caputo
and Plastino 1998; Weiss and Everett 2007), to medicine
(Craiem and Armentano 2007), and to the dispersion
and attenuation of electromagnetic waves in plasmas
and in fluid media (Caputo 1995a, b).

We propose a simple constitutive equation, based on
fractional derivatives, that generalizes Hooke’s law and
the Kelvin–Voigt model. The stress is analyzed for a
periodic saw-tooth strain function, showing that hys-
teresis is a consequence of the fractional derivative. The
hysteresis cycle implies a stress increase as the number
of cycles increases. This is one of the mechanisms to
bring the material to failure. Moreover, fatigue due to
energy considerations is also investigated.

The stress–strain relation

Caputo (1979) described the anelastic behavior of
many materials over wide frequency ranges by using
fractional derivatives. The corresponding constitutive
stress (τ )–strain (ε) relation for a given deformation is

τ = με + η
∂qε

∂tq
, 0 < q < 1, (1)

where μ and η are the stiffness and a pseudo-stiffness,
respectively. In the case of shear deformations, μ and
η are the rigidity modulus and the pseudo-viscosity; η

is a shear stiffness for q = 0 and a viscosity for q =
1. In general, the interpretation of these parameters
depends on the type of deformation. The limits q = 0
and q = 1 in the second term of the right-hand side of
Eq. 1 give Hooke’s law and the constitutive relation
of a dashpot. The last case is the Kelvin–Voigt model
(Carcione 2007).

In the frequency domain, we obtain

τ = μ̄ε, (2)

where

μ̄ = μ + (iω)qη (3)

is the complex stiffness, with i = √−1 and ω the angular
frequency. Since q is a rational number, there may be

more than one mathematical solution. We consider the
first Riemann sheet.

Equation 1 was generalized by Caputo and Mainardi
(1971) as

(
α + β

∂q

∂tq

)
τ =

(
μ + η

∂q

∂tq

)
ε, (4)

where α and β are parameters with the appropriate
dimensions. In this case,

μ̄ = μ + (iω)qη

α + (iω)qβ
. (5)

This is the generalized Zener model in elasticity or the
Cole–Cole model in electromagnetism (Cole and Cole
1941; Carcione 2007). Bagley and Torvik (1986) have
shown that relations 1 and 4 are causal and represent
the decay of the energy of the vibrations and, in general,
the anelastic properties of a wide class of anelastic
media. In particular, the relation 1 was proposed to rep-
resent the phenomenon of fatigue of anelastic materials
(Caputo 1979).

The phenomenological model of fatigue

To see how Eq. 1 leads to fatigue, let us consider an
input signal ε(t) with the form of the periodic saw
tooth, with period 4a and amplitude ε0 shown in Fig. 1.
This type of deformation is preferred to the sinusoidal
variation because it allows us to see the deviations from
the linear behavior.

The derivative of real order is defined as follows
(Podlubny 1999; Mainardi 2010; Diethelm 2010):

∂qε(t)
∂tq

= 1
	(1 − q)

∫ t

0
(t − ξ)−qε′(ξ)dξ, 0 < q < 1, (6)

where the prime denotes the first derivative and 	 is
the gamma function. We have ε′ = (−1)rε0/a, where

a 2a 3a 4a 5a t

ε/ε0
1

-1

Fig. 1 Strain applied for the estimation of the hysteresis cycle
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Table 1 Analytic expression
of the first two loops of the
hysteresis cycle, where
p = 1 − q

r ε/ε0 t/a ap!(dqε/dtq)/ε0

n = 0 0 0, 1 0, 1 t p

1 1, −1 1, 3 t p − 2(t − a)p

n = 1 2 −1, 1 3, 5 t p − 2(t − a)p + 2(t − 3a)p

3 1, −1 5, 7 t p − 2(t − a)p + 2(t − 3a)p − 2(t − 5a)p

4 −1, 1 7, 9 t p − 2(t − a)p + 2(t − 3a)p − 2(t − 5a)p + 2(t − 7a)p

2r − 1 < t/a < 2r + 1. Then, from Eqs. 1 and 6, the
stress response of the medium for this time interval is

τ =με(t)+ ηε0

a(1−q)!

⎡
⎣t1−q+2

r∑
j=1

(−1) j(t−2 ja+a)1−q

⎤
⎦ ,

(7)

where we have used the property (1 − q)	(1 − q) =
(1 − q)!.

Ignoring for the moment the first term of the right-
hand member of Eq. 7, which gives no contribution
to anelastic phenomena, the analytic expression of
Eq. 7 for the first two and half cycles is specified in
Table 1 and represented in Fig. 2. We may see that
the loop does not repeat itself exactly. This means that
an increasing stress is needed to produce successive
deformations +ε0 or −ε0, but the successive increases
converge to zero. For q = 0, obviously there is no hys-
teresis. For instance, let us consider the stress increment
shown in Fig. 2 for n = 0, i.e., τ(t = 5a) − τ(t = a). We
obtain [ηε0/(aq(1 − q)!][5p − 2(4p) + 2(2p) − 1], where
p = 1 − q. The increase in τ when the hysteresis loop
goes from the n-th cycle to the n + 1-th cycle is

δ(n) = τ0g(n, 1 − q), τ0 = ηε0

aq(1 − q)! (8)

where

g(x, p) = (4x + 5)p − 2(4x + 4)p + 2(4x + 2)p

−(4x + 1)p (9)

Note that δ(n) = 0 for q = 1. The total increase after
N cycles is

�τ(N) =
N∑

n=0

δ(n), (10)

which is positive and limited for 0 < q < 1. The curves
in Fig. 2 agree with the process of transient cyclic
hardening typically observed in most materials (e.g.,
Figure 5.8 in Lee et al. 2004).

We see from Eq. 8 that �τ(N) increases with ε0 and
with decreasing a (high frequencies). Figure 3 shows

the stress increase as a function of N for q = 0.1, 0.3,
and 0.5. We observe that �τ is maximum for n = 0
and then decreases very rapidly. This is in agreement
with experimental data (Rao 1995; Zhuang and Halford
2001). As a result, the first stress increases are the most
significant and N = 5 gives a good estimate of �τ(∞).
Moreover, the �τ increases with q, but there is a limit.
In fact, the maximum stress increases, �τ(∞), as a
function of q is shown in Fig. 4, where the maximum
value occurs for q = 0.45.

0

5

1

3

0

1

3

5

(a)

(b)

Fig. 2 Hysteresis loop for q = 0.1 (a) and q = 0.5 (b), where τ0 =
ηε0/[aq(1 − q)!]
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Fig. 3 Total stress increase as a function of the number of cycles,
normalized with respect to �τ(N = 5) corresponding to q = 0.5

The total stress at the cycle N can then be expressed as

τ(N) = τ(t) = με(t) + τ0 + �τ(N),

t = (2r + 1)a, N = 1
2

r − 1. (11)

In terms of N, t = 4Na + 5a and note that ε(t) = ε0.
Then

τ(t) = τ̄ + [μ + ηa−qG(N)]ε0, (12)

where

(1 − q)!G(N) = 1 +
N∑

n=0

g(n, 1 − q) (13)

and we have considered a constant stress τ̄ applied
to the material in addition to the cyclic one. There is
fatigue if the yield stress τ ∗ lies between τ = 0 and

Fig. 4 Normalized maximum stress increase as a function of q

τ(N = ∞) = τ̄ + [μ + ηa−qG(∞)]ε0. Fatigue based on
the yield stress is generally achieved before the first
cycle, i.e., in the strain interval from t = 0 to t = a if
τ ∗ < τ(a) = με0 + τ0, since the stress range (the total
stress increase) generated by the hysteresis τ(t = ∞) −
τ(t = a) is small compared to τ(t = ∞).

If τ ∗ > τ(a), then fatigue may occur by cyclic loading
at a failure time when dislocations and cracks appear in
the material. The fatigue stress τ f due to cyclic loading
is lower than the yield stress τ ∗. For instance, for alloy
steel (39 NiCrMo 3), the yield stress is 1,006 MPa and
the fatigue stress is 440 MPa (Biancolini et al. 2006).
There is a value N f of N for which fatigue occurs
indicating the limit of the resistance of the material
caused by the vibrations. We may obtain explicitly the
value of N f by approximating the function G(N) by the
following function:

G(N) ≈ G∞ − (
φNζ + ψ

)−1
, (14)

where

G∞ = G(∞),

φ = [G∞ − G(1)]−1 − [G∞ − G(0)]−1,

ζ = (2.438 − 1.78q)q1/3

ψ = [G∞ − G(0)]−1.

(15)

Note that at n = 0, 1 and ∞, we obtain G(0), G(1), and
G∞, respectively, that φ, ζ , and ψ are all positive and
G∞ − ψ−1 > 0. Figure 5 shows the approximation for
several values of q. This approximation improves that
of Caputo (1979) in his Eq. 4, which corresponds to
G(N) − 1.

Fig. 5 Approximation (circles) of the function G(n) (solid lines)
by Eq. 15. The curves are normalized by G(1) for a better
visualization



Rheol Acta (2011) 50:107–115 111

Table 2 Fatigue test data for 18 Cr-10Ni-Ti steel (Material BIV)
(Yoshida et al. 2001)

T (◦C) ε0 a(s) N f

20 0.03 2.24 628
0.02 1.5 1,561
0.01 0.75 6,229
0.007 0.52 13,410

450 0.03 2.24 248
0.02 1.5 1,277
0.01 0.75 5,347
0.006 0.45 14,665

600 0.03 2.24 195
0.02 1.5 542
0.01 0.75 2,914
0.006 0.45 8,447

750 0.02 1.5 345
0.014 1.07 779
0.01 0.75 1,298
0.006 0.45 4,410

Substituting Eq. 15 into Eq. 12 and assuming that
fatigue occurs at the stress τ f < τ ∗ gives

τ f = τ̄ +
{
μ + ηa−q

[
G∞ − (

N f
ζ φ + ψ

)−1
]}

ε0. (16)

Then

N f =
{[

G∞ − aq

η

(
τ f − τ̄

ε0
− μ

)]−1

− ψ

}1/ζ

φ−1/ζ .

(17)

Yoshida et al. (2001) provide experimental data for
metals (see Table 2). One may notice that the number
of cycles to failure is decreasing with the strain. The
data are represented in Fig. 6, as N f as a function of
the strain. The plots indicate that N f is a decreasing
function of ε0, in agreement with our model.

Fatigue criteria

Yield stress

We may assume, in agreement with experimental data,
that the yield stress τ ∗, corresponding to N∗, be a de-
creasing function of the temperature T. Fatigue occurs
when

τ ∗ = k(T ′ − T), T < T ′, (18)

where T ′ is the temperature at which the material, with
the applied stress, has nil elastic reaction to traction or

to bending at the frequency under examination and k
is a constant depending on the material (e.g., Charac-
terization and Failure Analysis of Plastics, published by
ASM International, p. 201).

Another criterion to estimate when fatigue will occur
may be based on the result that laboratory experiments
on many rocks have indicated that their failure occurs
when the applied stress is τ ∗ = γμ, where γ ranges
from 0.03 to 0.13 with an average of 0.076 and μ is
assumed to be the shear modulus (e.g., Characterization
and Failure Analysis of Plastics, published by ASM
International, p. 201).

Energy

The Umov–Poynting theorem or energy balance equa-
tion for harmonic fields in anelastic media is given by

div · p − iω(S − K) + D = 0 (19)

(e.g., Carcione 2007, Eq. 4.57), where p is the power-
flux vector, S is the strain (stored) energy, K is the
kinetic energy, and D is the dissipated energy. These
are energy densities, i.e., time-averaged energies in one
cycle per unit volume.

Dissipated energy criterion

The time-averaged dissipated energy density per cycle
is given by

D = 1
2

Im(μ̄)|ε|2 (20)

N
f

Fig. 6 Number of cycles to failure as a function of the strain
amplitude and temperature
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(see Eqs. 2.105, 4.85, and 4.114 in Carcione 2007), where
Im(·) denotes imaginary part. For ε = ε0 exp(iωt), we
have

D = 1
2
ε2

0ηωq sin
(πq

2

)
. (21)

The amount of dissipated heat in N cycles is equal to
the volumetric heat capacity c times the temperature
change. Assuming an initial temperature T0, we have

Nm D = Vc(Tm − T0), (22)

where Nm is the number of cycles to reach melting,
Tm is the melting temperature, and V = 1 is the (unit)
volume. Combining the last two equations yields

Nm = 2c(Tm − T0)

ε2
0ηωq sin (πq/2)

. (23)

As can be seen, Nm decreases with increasing frequency
and amplitude of the oscillations, while increases with
the melting temperature, as expected. Moreover, Nm

increases for decreasing q. Actually, the number of
cycles to reach the fatigue stress is generally much less
than Nm (N f � Nm). On the other hand, failure due
to the yield stress can be reached at the first cycle if
the strain is such that the stress exceeds the yield stress
given by Eq. 18.

Equation 23 can be expressed in terms of the qual-
ity factor, which is defined as twice the potential en-
ergy divided by the dissipated energy (Carcione 2007).
This gives Q = Re(v2)/Im(v2), where v2 = μ̄/ρ = [μ +
η(iω)q]/ρ, where v is the complex velocity, ρ is the
mass density, and Re and Im take real and imaginary
parts, respectively. An alternative definition considers
the total energy instead of twice the potential energy
(see Eq. 3.1.30 in Carcione 2007). In this case, Q =
Re(v)/[2 Im(v)]. The two quality factors have similar
values for Q 	 1. Using the first definition, we obtain

Q = μ + ωqη cos(πq/2)

ωqη sin(πq/2)
. (24)

Then

Nm = 2c(Tm − T0)

με2
0

[
Q − cot

(πq
2

)]
. (25)

Note that Nm increases with Q, as expected, since
low Q is generally an indication of a weak material.
If q is less but close to 1, Q 	 1 and Nm ≈ 2c(Tm −
T0)Q/(με2

0). In principle, if one knows Q at a given
frequency, it is possible to obtain η from Eq. 24. When
dealing with fractional derivatives, such as that of Eq. 1,
the material parameters have no standard units. To

clarify this issue, a dimensional analysis of the preced-
ing equations in the MKS system follows.

τ, μ → [Pa = kg/(m s2)]
ε → Dimensionless
q → Dimensionless
ω → 1/s
η → [Pa sq = kg m−1 sq−2]
D → [J/m3 = kg/(m s2)]
c → [J/(m3 K) = kg/(m s2K)]
T → [K]
Note that η has no dimension of dynamic viscosity,
unless q = 1. This parameter has to be obtained exper-
imentally, for instance, from the quality factor.

Strain energy criterion

The time-averaged strain energy density per cycle is
given by

S = 1
4

Re(μ̄)|ε|2 (26)

(see Eq. 2.104 in Carcione 2007), where Re(·) denotes
real part. For ε = ε0 exp(iωt), we have

S = 1
4
ε2

0

[
μ + ηωq cos

(πq
2

)]
. (27)

The type of failure associated here to the strain energy
is a process starting with dislocation movements and the
forming persistent slip bands that nucleate short cracks,
which is different from failure due to the yield stress
(Liu and Ross 1996). Failure occurs when the strain
energy in N f cycles equals a given value S f :

N f S = S f . (28)

We obtain

N f = 4S f

ε2
0 [μ + ηωq cos (πq/2)] . (29)

Apparently N f decreases for increasing stiffness of the
material. However, note that S f should also increase
with μ. For instance, Carpick et al. (1997) show that
the shear strength of a contact between a silicon nitride
tip and muscovite mica depends on the square of the
rigidity modulus.

Discussion

The present analysis based on a shear 1D stress–strain
relation can equally be applied to the case of compres-
sional and shear deformations using the same math-
ematical framework. The stress–strain relations for a
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Fig. 7 Hysteresis cycle for q = 0.4, τ̄ = 0, τ0 = 1,270 MPa, and
ε0 = 0.0103 (solid line, τ − με0) compared to experimental data
for aged Inconel 718 at room temperature (symbols)

Kelvin–Voigt solid are a simple generalization of those
for one-dimensional media (Carcione 2007; Carcione
et al. 2004). A further generalization to the fractional-
derivative case can be expressed as

σij =
(

λθ + λ′ ∂
pθ

∂tp

)
δij + 2μεij + 2μ′ ∂

qεij

∂tq
, (30)

where λ and μ are the Lamé constants, λ′ and μ′ are the
corresponding anelastic parameters, p and q are the di-
latational and shear fractional orders of differentiation,
εij are the strain components (Caputo 1967), θ = εii is
the dilatation field, and δij is Kronecker’s delta. Com-
paring Eqs. 1 and 30, we see that η corresponds to μ′.

If the cyclic tests are longitudinal, dilatational, or
purely shear, Eq. 1 and the present theory adequately
describe the failure criteria, since in the first two cases
the first term in Eq. 30 describes the stress–strain rela-
tion and it is mathematically equivalent to Eq. 1, taking
into account that in the longitudinal tests (e.g., pipes,
bars, beams) we have to consider the Young modulus
of the material. Pure shear tests are described by the
second term of Eq. 30.

Shear criteria alone to establish fatigue is, for in-
stance, used by Tao and Xia (2008), who perform
strain-range-controlled fully reversed cyclic shearing
fatigue tests on thin-walled tubular specimens made of
an epoxy polymer. They obtain an empirical relation
between the applied strain energy and N f . Similar
cyclic tests can be found in Sugimoto and Sasaki (2008),
where typical hysteresis loops of plywood specimens
measured at the first loading cycle are shown.

A generalization of the theory presented in this pa-
per to the full 3D case (dilatation and shear) is not the
purpose here. This mainly happens in the anisotropic

case, where Eq. 30 must be used because all the defor-
mation modes are coupled. The analysis proceeds in the
same manner with the difference that more parameters
are needed and p and q do not necessarily have the
same value. Regarding the criteria based on energy
considerations, the equations for the 3D anisotropic
(anelastic) case can be found, for instance, in Carcione
(2007), since the energy densities can be generalized to
the fractional case in the frequency domain by using the
correspondence principle. An analysis based on Eq. 30
is more involved from a mathematical point of view
(Makris 1997; Carcione 2009) and will be the subject
of further research.

Strain hardening is an effect that can be introduced
in stress–strain relations based on fractional deriva-
tives. Nicolle et al. (2010) observed that some human
tissues get stiffer as shear strain increases. In order to
model this behavior, they have introduced a power-law
dependence of the strain into the relaxation modulus.

Examples

The ability of the model to describe hysteresis cycles is
shown in Fig. 7, where the stress–strain relation (τ −
με0 versus ε) for q = 0.4 is compared to experimen-
tal data obtained for Inconel 718 superalloy (Zhuang
and Halford 2001). It can be seen that the qualitative
agreement is good. In this case, the Cole–Cole model
represented by Eq. 5 can give a better quantitative fit
in view of the additional parameters.

Let us consider, specifically, Inconel 1700–1850F
Anneal (www.specialmetals.com). It has a Young mod-
ulus μ = 200 GPa at 20◦C and 163 GPa at 650◦C,

Fig. 8 Hysteresis cycle (τ ) for Inconel allow 1700–1850F Anneal,
with q = 0.5, τ0 = 180.5 MPa, and ε0 = 0.004

http://www.specialmetals.com


114 Rheol Acta (2011) 50:107–115

and the yield stress is τ ∗ = 1,035 and 828 MPa. The
constant k in Eq. 18 is then k = 0.17 MPa/◦C and
T ′ = 6,108◦C, although this limit temperature is not
realistic since beyond 700◦C the dependence is not
linear and the yield stress decreases abruptly with tem-
perature. Assuming room temperature, q = 0.5, η =
40 GPa sq, a = 1 s, and ε0 = 0.004, we obtain με0 =
800 MPa and τ0 = 180.5 MPa. The stresses at the max-
ima of the strain (t = 4Na + 5a) are τ(a) = με0 + τ0 =
980.5 MPa, τ(5a) = με0 + ηa−qG(0)ε0 = 992.2 MPa,
τ(9a) = με0 + ηa−qG(1)ε0 = 993.3 MPa, and τ(∞) =
με0 + ηa−qG(∞)ε0 = 994.1 MPa. For instance, for a
fatigue stress of τ f = 994.09 MPa, the number of cycles
to failure is N f = 2,600. Figure 8 shows the first two
cycles of the hysteresis loop, corresponding to the stress
τ(ε) with τ̄ = 0.

We now use the dissipated energy criterion for
aluminum. Its properties are μ = 70 GPa, c = 2.4 ×
106 J/(m3 K), and Tm = 933 K. Moreover, we assume a
frequency of 3 Hz, i.e., ω = 6π /s, ε0 = 10−4, T0 = 293 K,
and q = 0.5. We obtain η from the quality factor using
Eq. 24. For Q = 1,000, it is η = 22.8 MPa sq. Equation 23
gives Nm = 4.4 × 109 cycles and tm = 1.54 years to
reach melting. However, note that this is the melting
time; the failure time t∗ can be much smaller.

Finally, consider the strain energy criterion for alu-
minum and S f = 10 MJ/m3 (Ellyin 1996). From Eq. 29,
the number of cycles to failure is approximately N f =
60,000.

Conclusions

We have shown how the introduction of a memory for-
malism, in particular the derivative of fractional order,
in the constitutive equations of anelastic media rep-
resents the phenomenon of hysteresis and fatigue. By
applying successive strains to the medium, it is seen that
the stress increases when the strain assumes repeatedly
the same value. The model then describes the process
of cyclic hardening, where the stress developed in each
successive strain reversal increases as the number of
cycles increases. The rate of change of the applied stress
will gradually reduce in the first few cycles to reach a
stable level (a steady-state condition) and remain stable
till fatigue occurs due to the appearance of the first
fatigue crack.

If the stress becomes larger than a threshold typical
of the medium, then failure occurs. If this stress is the
yield stress, then fatigue mainly occurs at the first cycle.
Fatigue may occur at stresses less than the yield stress,
and the number of cycles to failure has been related to
this fatigue stress. Additional criteria give the number

of cycles related to the dissipated energy needed to
bring the material to melting or to a threshold of the
strain energy. In all criteria considered, the number of
cycles to failure results inversely proportional to the
amplitude and to the frequency of the applied strain.
The behavior of the model agrees with the experimen-
tal data.

A further refinement of the theory will involve the
use of the generalized Zener model (the Cole–Cole
model), the possibility of describing cyclic softening,
and the use of other input strains, such as a sinusoidal
strain function.

References

Bagley RI, Torvik PJ (1986) On the fractional calculus model of
viscoelastic behaviour. J Rheol 30:133–155

Biancolini ME, Brutti C, Paparo G, Zanini A (2006) Fatigue
cracks nucleation on steel, acoustic emission and fractal
analysis. Int J Fatigue 28:1820–1825

Caputo M (1967) Linear model of dissipation whose Q is almost
frequency independent-II. Geophys J R Astron Soc 13:529–
539

Caputo M (1979) A model for the fatigue in elastic materials with
frequency independent Q. J Acoust Soc Am 66:176–179

Caputo M (1995a) Distance measurements, splitting of electro-
magnetic waves caused by the dispersion and GPS retrieval
of the model atmosphere. Rend Fis Acc Naz Lincei 9:19–36

Caputo M (1995b) Distance measurements and splitting of elec-
tromagnetic waves in water caused by dispersion. Rend Fis
Accad Naz Lincei 9:103–113

Caputo M, Mainardi F (1971) A new dissipation model based on
memory mechanism. Pure Appl Geophys 91:134–147

Caputo M, Plastino W (1998) Rigorous time domain responses of
polarizable media. Ann Geofis 41:399407

Carcione JM (2007) Wave fields in real media. Theory and
numerical simulation of wave propagation in anisotropic,
anelastic, porous and electromagnetic media, 2nd edition,
revised and extended. Elsevier, Amsterdam

Carcione JM (2009) Theory and modeling of constant-Q P- and
S-waves using fractional time derivatives. Geophysics 74:T1–
T11

Carcione JM, Cavallini F, Mainardi F, Hanyga A (2002) Time-
domain seismic modeling of constant Q-wave propagation
using fractional derivatives. Pure Appl Geophys 159:1719–
1736

Carcione JM, Poletto F, Gei D (2004) 3-D wave simulation in
anelastic media using the Kelvin–Voigt constitutive equa-
tion. J Comput Phys 196:282–297

Carpick RW, Ogletree DF, Salmeron B (1997) Lateral stiffness:
a new nanomechanical measurement for the determination
of shear strengths with friction force microscopy. Appl Phys
Lett 70(12):1548–1550

Cisotti U (1911) L’ereditarietà lineare e i fenomeni dispersivi. Il
Nuovo Cimento 2(1):234–244

Cole KS, Cole RH (1941) Dispersion and absorption in di-
electrics. J Chem Phys 9:341–349

Craiem D, Armentano RL (2007) A fractional derivative model
to describe arterial viscoelasticity. Biorheology 44:251–263

Diethelm K (2010) The analysis of fractional differential equa-
tions: an application-oriented, exposition using differential



Rheol Acta (2011) 50:107–115 115

operators of Caputo type. In: Lecture notes in mathematics.
Springer, Heidelberg

Ellyin F (1996) Fatigue damage, crack growth, and life prediction.
Chapman & Hall, London

Graffi D (1928) Sulla teoria delle oscillazioni elastiche con eredi-
tarietà. Il Nuovo Cimento 5:310–317

Jacquelin J (1991) A number of models for CPA impedances
of conductors and for relaxation in non-Debye dielectrics.
J Non-Cryst Solids 131:1080–1083

Körnig H, Müller G (1989) Rheological model and interpretation
of postglacial uplift. Geophys J R Astron Soc 98:245–253

Heaviside O (1894) Electromagnetic theory, vol 1. The Electri-
cian Printing and Publishing Co., London

Lee YL, Hathaway RB, Pan J, Barkey ME (2004) Fatigue testing
and analysis. Theory and practice. Elsevier, Amsterdam

Liu, JY, Ross, RJ (1996) Energy criterion for fatigue strength of
wood structural members. J Eng Mater Technol 118:375–378

Mainardi F (2010) Fractional calculus and waves in linear vis-
coelasticity: an introduction to mathematical models. World
Scientific, Singapore

Mainardi F, Pagnini G (2003) The Wright functions as solutions
of the time-fractional diffusion equations. Appl Math Com-
put 141:51–66

Makris N (1997) Three-dimensional constitutive viscoelastic laws
with fractional order time derivatives. J Rheol 41(5):1007–
1020

Nicolle S, Vezin P, Palierne JF (2010) A strain-hardening bi-
power law for the nonlinear behaviour of biological soft
tissues. J Biomech 43:927–932

Podlubny I (1999) Fractional differential equations. Academic,
New York

Rao KB, Kalluri S, Halford GR, McGaw MA (1995) Serrated
flow and deformation substructure at room temperature in
INCONEL 718 superalloy during strain controlled fatigue.
Scr Metall Mater 32(4):4938

Sugimoto T, Sasaki Y (2008) Fatigue of structural plywood under
cyclic shear through thickness III: energy dissipation perfor-
mance. J Wood Sci 54:169–173

Tao G, Xia Z (2008) Fatigue behavior of an epoxy polymer
subjected to cyclic shear loading. Mater Sci Eng: A 486:
38–44

Weiss CJ, Everett, ME (2007) Anomalous diffusion of electro-
magnetic eddy currents in geological formations. J Geophys
Res 112:B08102. doi:10.1029/2006JB004475

Wyss W (1986) The fractional diffusion equation. J Math Phys
27:2782–2785

Yoshida S, Kanazawa K, Yamaguchi K, Sato M, Kobayashi K,
Suzuki, N (2001) Elevated-temperature fatigue properties of
engineering materials. Part II. Trans Nat Res Inst Metals
20:60–83

Zhuang WZ, Halford GR (2001) Investigation of residual stress
relaxation under cyclic load. Int J Fatigue 23:S31S37

http://dx.doi.org/10.1029/2006JB004475

	Hysteresis cycles and fatigue criteria using anelastic models based on fractional derivatives
	Abstract
	Introduction
	The stress--strain relation
	The phenomenological model of fatigue
	Fatigue criteria
	Yield stress
	Energy
	Dissipated energy criterion
	Strain energy criterion


	Discussion
	Examples
	Conclusions
	References



