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Abstract: We study flow problems in unsaturated porous media. Our main
interest is the gravity driven penetration of a dry material, a situation in
which fingering effects can be observed experimentally and numerically. The
flow is described by either a Richards or a two-phase model. The important
modelling aspect regards the capillary pressure relation which can include
static hysteresis and dynamic corrections. We report on analytical existence
and instability results for the corresponding models and present numerical
calculations. We show that fingering effects can be observed in various mod-
els and discuss the importance of the static hysteresis term.
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1 Introduction

Gravity driven flow of water into an initially dry porous material can lead to fingering
effects. This fact coincides with our elementary intuition, and the fingering effect
can be observed experimentally, see e.g. [2, 9, 16]. On the other hand, standard
mathematical models for flow in porous media such as Richards equation or the
two-phase flow system cannot explain the fingering effect. This is due to stability
properties of these equations, unless hysteresis or dynamic terms are included, see
e.g. [4, 11, 18].

Fingering can be observed in mathematical models only when such additional
terms are incorporated. One term is related to the rate independent hysteresis that
is observed when imbibition and drainage processes are performed after each other.
The other term is related to non-equilibrium effects and is rate dependent. We in-
vestigate here both contributions in the capillary pressure relation. To emphasize
the distinction between both effects, we sometimes call the rate independent term
“static hysteresis”; it can be physically explained with the bottle-neck effect in the
single pores. The other contribution is a dynamic term, often called the τ -term, in
reference to the standard name associated to the corresponding time-scale variable.
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This term is sometimes denoted as “dynamic hysteresis”, which is a useful terminol-
ogy, even though it is mathematically not precise, since hysteresis is by definition
rate-independent. We investigate here the extended porous media model with static
and dynamic hysteresis as it has been introduced in [3] and mention that another
hysteresis model has been studied in [1].

Our study extends previous results of [7, 8, 15]. In [8], we have shown analyti-
cally that the full hysteresis model is well-posed for the Richards equation, and we
have shown the well-posedness for the two-phase flow model in [7]. In [15], we have
shown rigorously that the Richards equation with static hysteresis does not define
an L1-contraction. In particular, we have shown that an instability occurs for these
equations, making fingering possible. Numerical experiments show that fingers can
indeed be observed. An important point that had been left out in these previous
studies regards the relevance of static hysteresis. With the contribution at hand,
we show the importance of static hysteresis: dynamic terms alone cannot describe
fingering very well, but, instead, the combined effect of static and dynamic hysteresis
leads to satisfactory results.

1.1 Flow in porous media

We start with a description of the flow models. We use Ω ⊂ R
n as domain of porous

material, the flow is time dependent and we use t ∈ [0, T ) as a time parameter. The
pressures of the two fluids are p1, p2 : Ω× [0, T ) → R, the saturation of the first fluid
is s = s1 : Ω× [0, T ) → R, the saturation of the second fluid is s2 = 1− s1 = 1− s. If
we combine Darcy’s law for both velocities with conservation of mass, we obtain the
two-phase flow equations

∂ts = ∇ · (k1(s)[∇p1 + g1]) , (1.1)

−∂ts = ∇ · (k2(s)[∇p2 + g2]) , (1.2)

where g1 and g2 are related to gravity forces. We emphasize that quantities such
as porosity or density are normalized in these equations, and that the permeabilities
k1(s) = k1(s(x, t), x) and k2(s) = k2(s(x, t), x) are described by given functions k1, k2 :
[0, 1]× Ω → [0,∞).

Starting from the two-phase flow equations, we obtain the Richards equation
as the simplification where the second fluid is not modelled. This means that we
assume p2 to be constant, with a normalization we may assume p2 ≡ 0. Abbreviating
k(s) := k1(s), p := p1, and g := g1, equation (1.1) reduces to the Richards equation

∂ts = ∇ · (k(s)[∇p+ g]) . (1.3)

An interesting feature of both systems, the two-phase flow system and the Richards
equation, is the degeneracy of the coefficient functions. In applications one is inter-
ested in models with k1(0) = 0. A vanishing permeability makes the system degener-
ate, and a priori estimates are not available in standard function spaces. This makes
existence proofs intricate even in models without hysteresis. We mention that small
values of the permeability turned out to be important in numerical experiments, we
could observe the generation of fingers only in settings with small permeabilities.
Nevertheless, in the following, we neglect this degeneracy and concentrate on the
hysteresis effects that enter the capillary pressure relation.
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1.2 Capillary pressure relation

Much of current research is related to the modelling problem regarding the relation
between the capillary pressure p1 − p2 and the saturation s. The simplest possibility
is to assume a (pointwise) algebraic relation p1 − p2 = pc(s), where pc : R → R (or
pc : [sA, sB] → R or pc : (sA, sB) → R) is a given function. In this case, the coefficient
function pc is called, with full rights, the capillary pressure function. The problem
in the assumption of an algebraic relation is that it can neither distinguish between
imbibition and drainage, nor does it take non-equilibrium effects into account.

Measurements in porous media show hysteresis curves in experiments with imbi-
bition and drainage. Since the typical hysteresis curves are measured also in exper-
iments with extremely low rates, we include a rate-independent hysteresis term in
the model. The simplest hysteresis law is that of play-type hysteresis, which can be
written as

p1 − p2 ∈ pc(s) + γ sign(∂ts), (1.4)

where sign : R → R is the multi-valued sign-function with sign(0) = [−1, 1]. The
law (1.4) appears e.g. in [3] and can also be justified with a pore-scale analysis in a
simplified pore geometry, see [13, 14].

Even though, in first approximation, a rate independent law seems to be an ap-
propriate model for the capillary pressure relation, the discussion of non-equilibrium
Richards equations shows that rate-dependent terms can also be relevant, compare
e.g. [6, 10]. The most prominent model uses a factor τ > 0, which can be understood
as a relaxation time in the saturation law. This τ -model is described in [3], where it
is also combined with play-type hysteresis to the relation

p1 − p2 ∈ pc(s) + γ sign(∂ts) + τ∂ts. (1.5)

Even without static hysteresis, a positive parameter τ > 0 leads to interesting effects.
For γ = 0, it introduces a term with first time derivative and second spatial deriva-
tives, thus turning the Richards equation into a pseudo-parabolic equation. Even in
the limit of a vanishing influence of the capillary pressure, it may change the profile
of travelling wave solutions, see [17]. It is well-known that a positive τ can lead to
non-monotonic profiles in wetting fingers, [5].

We note that the monotone graph Ξ : ξ 7→ γ sign(ξ) + τξ with a vertical part can
be inverted as a graph. We obtain a monotone graph which is actually a function,
Ψγ,τ := Ψ := (Ξ)−1 : R → R, containing a flat part. The inverse allows to write
relation (1.5) pointwise as an ordinary differential equation,

∂ts = Ψγ,τ (p1 − p2 − pc(s); x). (1.6)

Hysteresis enters by the fact that Ψ has a flat part. The extra parameter x ∈ Ω
indicates that in relation (1.5) the non-negative material parameter γ = γ(x) may
depend on the spatial position. An explicit spatial dependence may also be introduced
in the capillary pressure function pc(s) = pc(s, x).

1.3 Capillary hysteresis leading to instability and fingering

An important observation regarding static hysteresis in fingering experiments is the
following. During a pure wetting process, only increasing saturation values appear; in



4 Hysteresis models and gravity fingering in porous media

consequence, the contribution of the hysteresis term is γ sign(∂ts) = γ, it contributes
only the additive constant γ to the pressure in either (1.4) or (1.5). Therefore, in
processes where imbibition occurs everywhere and at all times, static hysteresis does
not alter the time evolution of the saturation.

The observation seems to make static hysteresis meaningless in fingering processes,
but we must make two additional observations. One is related to the experimental
set-up of fingering experiments. Usually, in a first part of the experiment, a region
of high saturation is generated in a thin top layer of the material, this is done, say,
from time t = t0 < 0 until time t = ts = 0. At the “switching time” ts, the boundary
conditions are changed and the experiment is run with a smaller inflow rate or with
a lower pressure at the top boundary. This means that a drainage process happens
in the pre-wetted top layer for positive times, t > ts = 0.

A second observation regards the combined effect of the dynamic term and static
hysteresis. A positive factor τ can create non-monotone profiles in the fingers. This
indicates that a drainage process may occur also inside the fingers and thus static
hysteresis can make a crucial difference. We will see this fact in our one-dimensional
examples.

2 One-dimensional examples

In Figures 1 and 2 we show four sets of graphs. They illustrate saturation distributions
x 7→ s(x, t) and pressure distributions x 7→ p(x, t) for fixed time instances t in the
one-dimensional case. All graphs illustrate the Richards equation. The four graphs
illustrate the four different hysteresis models that have implicitly been introduced
above: (1) no hysteresis, γ = 0, and no dynamic term, τ = 0, in Figure 1, left. (2)
γ > 0 and τ = 0, in Figure 1, right. (3) γ = 0 and τ > 0, in Figure 2, left. (4) γ > 0
and τ > 0, in Figure 2, right.

All models are calculated with a sudden change in the upper boundary condition.
At time ts = 0, the influx condition on the upper boundary x = 12 is switched
from a higher value to a lower value. In all models, the switching process induces a
decrease of pressure in a region near the upper boundary. In the models with static
hysteresis, pressure and saturation are no longer in the algebraic imbibition relation
in this upper region (the right region in the figures).

We used a fixed Dirichlet boundary condition p = 1 at the lower boundary x =
−12 and an initial condition s(t0) ≡ 0 for the initial time t0 = −4. The permeability
k = k(s) is given by (4.2) with parameters κ = κ1 = 0.1, a = a1 = 0.35, and
k0,1 = 1. We have chosen the regularizing parameter δ = 10−5 in (4.1), which is used
to approximate the hysteresis relation (1.6).

2.1 Without dynamic term, τ = 0

For the configuration of Figure 1, right, the Richards equation with static hysteresis
and switching in the boundary condition, we have shown an instability result in
[15]. With the gravity term, the system possesses unstable front solutions. Such an
instability is the basis for fingering effects.
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The arguments for the instability are as follows. In the first process, the wetting of
the top layer in the time interval [t0, ts], the system is dissipative and small deviations
of the saturation distribution have the tendency to be smeared out. Nevertheless,
due to hysteresis and the lower pressure values after time t = ts, all deviations from a
uniform saturation distribution at time t = ts remain present for all later times. This
means that imperfections in the wet top layer, e.g. non-homogeneity in horizontal
spatial directions, are not wiped out, and they influence the process for all later times.
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Figure 1: The effect of static hysteresis I. Pressure and saturation distribution in
the one-dimensional case without dynamic term, τ = 10−3. Both graphs show the
pressure at times t = 0, t = 2 · 10−6, t = 170, and the saturation at time t = 170.
Left: no static hysteresis, γ = 0, pc(s) = s + 1. Right: with static hysteresis, γ = 1,
pc(s) = s.

2.2 With dynamic term, τ > 0

We have seen already in the two-dimensional numerical experiments of [7, 8] that true
fingering appears only for positive τ . We illustrate in Figure 2 in one-dimensional
calculations the effect of τ > 0. Except for this change, the parameters are as in
Figure 1.

In the left graph we observe a well-known effect: the saturation profile in the
finger is no longer monotone in x, but we observe a local maximum of the saturation
at the finger-tip at about x = −5. Otherwise, the saturation profile and, accordingly,
the pressure profile, is very similar to that of Figure 1, left.

A drastic change in the pressure profile becomes visible if we combine the effect of
static hysteresis with the dynamic term, see Figure 2, right. Due to a positive τ , the
saturation inside the finger is not necessarily increasing for the whole time (it is even
decreasing if local maxima are generated). This means that the static hysteresis term
γ sign(∂ts) becomes relevant. Indeed, for ∂ts = 0 we find γ sign(∂ts) = [−γ, γ] and
the hysteresis law generates a certain freedom for the pressure. Relation (1.5) allows
the pressure to deviate largely from the imbibition value pc(s)+γ. We observe in the
right of Figure 2 that, indeed, the pressure assumes a completely different profile in
the finger at time t = 170: it increases from the value −0.4 at the finger-root to the
value 1.7 at the finger-tip. According to the hysteresis law, the saturation remains
unchanged in the finger. We note that a non-monotone profile is not observed here;
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Figure 2: The effect of static hysteresis II. Pressure and saturation distribution in
the one-dimensional case with dynamic term, τ = 5, other parameters as in 1. Left:
without static hysteresis. Right: with static hysteresis.

the value γ = 1 is chosen large compared to the saturation decay behind the finger-tip
and ∂ts = 0 holds in the entire bulk of the finger.

The pressure profile of Figure 2 is crucial for the explanation of fingering in the
hysteresis model. The combined effect of hysteresis and τ -term is that ∂ts = 0 and
low pressures are possible inside the finger. A low pressure in the top part of the finger
has the result that diffusion is of no importance and fingers are prevented from being
smeared out. We present in Section 4 numerical experiments in a two-dimensional
setting. They show the fingering effect. Our research interest here was to check the
importance of static hysteresis for fingering. The result is that true fingering occurs
only in the model where static hysteresis is combined with a positive τ , in accordance
with the above considerations.

3 Solution concepts and existence results

3.1 Assumptions on data and the solution concept

We describe first our assumptions on the coefficient functions. We emphasize that we
always assume a strict positivity of the permeabilities and hence restrict ourselves to
the non-degenerate case. Furthermore, we consider a saturation variable s ∈ R and
do not impose a priori that the saturation values are between 0 and 1. This fact is
related to our assumption of a non-degenerate curve s 7→ pc(s).

We assume with six positive numbers Kj, κj, κ
0
j > 0, j = 1, 2

pc ∈ C0,1(R× Ω,R), γ ∈ C0,1(Ω, [0,∞)), (3.1)

kj ∈ C(R× Ω, [κj, κ
0
j ]), ‖kj(x, .)‖Lip(R,R) ≤ Kj, for j ∈ {1, 2}, x ∈ Ω. (3.2)

We furthermore make the mild additional assumption that pc(., x) has a non-negative
primitive Pc ∈ C(R× Ω,R).

In our description of analytical result, we do not attempt to be precise in all
assumptions on the data. Regarding initial and boundary conditions we only mention
that an initial saturation is given by s0 ∈ L2(Ω), that the boundary of the Lipschitz
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domain is decomposed in two different ways as ∂Ω = Γ̄1 ∪ Σ̄1 = Γ̄2 ∪ Σ̄2, that
homogeneous Neumann conditions for fluid j are imposed on Γj, and that Dirichlet
data on Σj are given by p0,1, p0,2 ∈ L2(0, T ;H1(Ω)).

Solution concept. It turns out to be convenient to formulate the solution concept
in a weak form. It can easily be verified that every function which is a weak solution
of the conservation law and a pointwise solution of the play-type hysteresis law (1.5)
also satisfies the energy inequality in 3. of Definition 3.1. Vice versa, for every weak
solution of the conservation law satisfying also the pointwise inequality of 2., the
energy inequality of 3. implies that also the play-type hysteresis law (1.5) is satisfied.

Definition 3.1 (Variational weak solution). Let (s, p1, p2) be a triple of functions
with

s ∈ L∞(0, T ;L2(Ω)), ∂ts ∈ L2(0, T ;L2(Ω)), p1, p2 ∈ L2(0, T ;H1(Ω)), (3.3)

satisfying, in the sense of traces, initial and boundary conditions. The triple is called
a variational weak solution of the two-phase equation with hysteresis if the following
three conditions are satisfied.

1. The evolution equations (1.1)–(1.2) and the no-flux conditions are satisfied in
the weak sense.

2. The relation p1(x, t)− p2(x, t)− pc(s(x, t), x)− τ∂ts(x, t) ∈ [−γ(x), γ(x)] holds
for almost every (x, t) ∈ ΩT .

3. There holds the energy inequality

0 ≥

∫

ΩT

(pc(s)− p0,1 + p0,2) ∂ts+

∫

ΩT

{

τ |∂ts|
2 + γ |∂ts|

}

+

∫

ΩT

k1(s)[∇p1 + g1]∇[p1 − p0,1] +

∫

ΩT

k2(s)[∇p2 + g2]∇[p2 − p0,2].

(3.4)

An analogous solution concept is used for the Richards equation. It can be shown
that variational weak solutions are also weak solutions in a classical sense; we refer
to [8] for this equivalence in the case of the Richards equation and to [7] for the
equivalence in the two-phase flow system.

3.2 Existence result

The main existence result for the two-phase flow system with hysteresis is the follow-
ing result of [7].

Theorem 3.2 (Existence result for two-phase flow). Let Ω ⊂ R
n be polygonal, let

T > 0 and τ > 0 be positive, and let coefficient functions pc, k, γ be as in (3.1)–(3.2).
Then there exists a weak variational solution (s, p) of the hysteresis system.



8 Hysteresis models and gravity fingering in porous media

The existence proof is constructive in the following sense. We provide in [7] a
Galerkin approximation of the hysteresis system, show the existence of solutions to
the discrete system and the convergence of the approximate solutions to a solution
of the hysteresis limit system.

Similar results have been obtained in [8] for the Richards equation. The assump-
tions on the coefficient functions and on the other data are identical. The main
analytical tool for the existence proof is a compactness lemma that has first been
shown in [8]. It provides the compactness of a family of functions s, when this family
is obtained with the hysteresis law (1.5) from a family of pressure functions p that
possess additional spatial regularity.

4 Calculations of gravity driven wetting fronts

In this section, we present numerical results for finite element discretizations of the
Richards equation and the two-phase flow system. The numerical schemes are de-
scribed in more detail in [8] and [7], respectively. For other numerical approaches
and detailed numerical analysis we refer to [12] and the references therein. For the
inverted hysteresis relation (1.6), we use a regularized function Ψδ

γ,τ : R → R,

Ψδ
γ,τ = Ψδ

δ,τ (z) =











z−γ

τ
for z > γ + τδ,

(γ
δ
+ τ)−1z for z ∈ [−(γ + τδ), γ + τδ],

z+γ

τ
for z < −(γ + τδ),

(4.1)

where δ > 0 is a regularizing parameter. In all numerical examples, we use the
permeabilities

k1(s) =

{

κ1 for s < a1,

κ1 + k0,1(s− a1)
2 for s ≥ a1

(4.2)

and

k2(s) =

{

κ2 for s > 1− a2,

κ2 + k0,2((1− a2)− s)2 for s ≤ 1− a2
(4.3)

with a1, a2 ∈ [0, 1] and κ1, κ2, k0,1, k0,2 > 0. Furthermore, we assume a van Genuchten
type relation

pc(s) =

{

α+

(

1
1−a2−s+εp

− 1
1−a2−a1+εp

)

for s > a1,

α−(s− a1) for s ≤ a1 ,

with α± ∈ R and a small regularizing parameter εp > 0. The vectors g1, g2 ∈ R
n

related to gravity forces are given by gi = ̺ien, i = 1, 2, with densities ̺1, ̺2 ∈ R and
the n-th standard basis vector en ∈ R

n.

In the following, we consider domains Ω := (−L,L)n ⊂ R
n with L > 0. With

the definition Γ± := {x ∈ Ω : xn = ±L} ⊂ ∂Ω and given functions p1,−, j2,− :
Γ− × (t0, T ] → R and j1,+, p2,+ : Γ+ × (t0, T ] → R, we assume Dirichlet boundary
conditions p1 = p1,− for x ∈ Γ− and p2 = p2,+ for x ∈ Γ+ and Neumann boundary
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conditions

j1 := −k1(s)(∇p1 + ̺1en) · ν+ = j1,+ for x ∈ Γ+, (4.4)

j2 := −k2(s)(∇p2 + ̺2en) · ν− = j2,− for x ∈ Γ−, (4.5)

ν± = ±en denoting the outer normals to Γ±. In the lateral directions, i.e. for
xi ∈ {−L,L}, i ∈ {1, . . . , n− 1}, we assume periodic pressures p1 and p2.

At the upper boundary, we have used a time dependent flux condition

j1,+ =

{

j01,+ for t < ts,

js1,+ for t ≥ ts,

with ts > t0 and j01,+, j
s
1,+ ∈ R. On the lower boundary, we assume the constant flux

j2,− ≡ j02,−

for a given value j02,− ∈ R. The Dirichlet boundary conditions are

p1,− ≡ γ − α−a1, p2,+ ≡ p02,+

with a constant pressure p02,+. In all numerical experiments, the space dimension is
n = 2. We study moderate deterministic perturbations of the initial condition s = 0
of the form

s0(x) =
10
∑

i=1

Ai(1− tanh(3(|x− x0,i| − 1/2))), (4.6)

where x0,i = (−L + (2i−1)
10

L, 23.5), i = 1, . . . , 10 and amplitudes A1 = 0.6, A2 = 0.4,
A3 = 0.2, A4 = 0.5, A5 = 0.2, A6 = 0.3, A7 = 0.1, A8 = 0.7, A9 = 0.5, A10 = 0.1. In
other experiments we use random initial data of the form

s0(x) = 0.001 +R(x), (4.7)

where R(x) ∈ [−0.001, 0.001] is a space dependent random number.

We provide a list of all other parameters in Table 1. Note that we switch off
hysteresis by setting γ = 0, this also affects the boundary condition at the bottom of
the computational domain.

parameter γ κ1 κ2 k0,1 k0,2 δ τ a1 a2 ts t0
value 4; 0 10−4 10−2 1 0.1 10−7 0.5 0.32 0 0 −2

parameter ̺1 ̺2 εp α+ α− j01,+ js1,+ p02,+ j02,− L

value 1 0 10−10 0.1 50 0.524 0.01 0 0 24

Table 1: Parameters used for numerical results.
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4.1 Richards equation

We investigate the Richards equation in two settings in order to show the effect
of perturbations of the initial data. In the numerical experiments of Figure 3, we
show the solutions at different time instances for initial values which are perturbed
from a uniform setting in a deterministic way with moderate perturbations. The
perturbations generate fingers at prescribed positions, but we note that fingers may
cease to grow even at very small times.

The upper row shows the evolution with static hysteresis, the lower row the evo-
lution without static hysteresis. We see that, without static hysteresis, the fingers
have the tendency to merge in the process and, as a result, no true fingers are visible.

From the numerical results, we calculate additionally a measure for the typical
pressure gradient between upper and lower boundary, setting

dp =
1

2L

∫ L

−L

(ph(x1, L, t)− ph(x1,−L, t)) dx1.

Since the flux is prescribed, a larger pressure gradient indicates a smaller effective
permeability of the medium and vice versa. The calculated values for dp show that
the generation of fingers increases the effective permeability of the medium.

Figure 4 shows solutions to the same model, just that we now use small, random
perturbations of the initial data. We observe that more fingers are generated. The
qualitative result of the deterministic perturbation experiment remains valid: only
the combination of hysteresis and τ > 0 generates fingers.

Figure 3: With and without static hysteresis, Richards equation, I. The figure il-
lustrates the time evolution for τ = 0.5, the initial values include a deterministic
perturbation Both rows indicate saturation values at times t ≈ 56, t ≈ 114, t ≈ 201,
and t ≈ 406. Upper row: evolution with static hysteresis, γ = 4. Lower row: evolution
without static hysteresis, γ = 0.



A. Rätz and B. Schweizer 11

Figure 4: With and without static hysteresis, Richards equation, II. The figure illus-
trates the time evolution of saturation values with τ = 0.5, the initial values include
a small random perturbation. Upper row: evolution with static hysteresis at times
t ≈ 171, t ≈ 389, t ≈ 536, t ≈ 798. Lower row: evolution without static hysteresis at
times t ≈ 172, t ≈ 394, t ≈ 530, t ≈ 792.

4.2 Two-phase flow equation

The experiments have also been performed for the two-phase flow equation. The
qualitative finding are exactly as for the Richards equation. The indicated pressure
difference dp1 now refers to pressure differences in the first fluid. Figure 5 shows the
results for a small, random perturbation of the initial data.

In comparison to the Richards equation we observe slightly thicker fingers. Even
in the model without static hysteresis we find, locally along the front, a structure
that resembles a fingering effect. In this sense, we see that introducing the second
phase in the model makes the fingering more pronounced.
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