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Localized structures forming in the bistable regimes in a chain of weakly coupled split ring resonators, which
are the building blocks of a nonlinear magnetic metamaterial, where electric current is generated by external
electromagnetic radiation, have been studied analytically and numerically. The hysteresis of the velocity of
switching waves (fronts) has been revealed and discrete dissipative solitons have been found.
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Atrtificial composite structures containing electric
conducting elements or metamaterials have recently
attracted much attention in view of their unique prop-
erties of negative magnetic susceptibility and back-
ward wave propagation. In contrast to crystals,
metamaterials allow control of the macroscopic char-
acteristics by choosing the types and geometry of their
structural elements [I—3]. Resonant magnetic
metamaterials are most simply obtained by creating a
periodic lattice of resonant electric circuits that are
much smaller than the wavelength of propagating
electromagnetic waves. The artificial character of
metamaterials makes it possible to control their prop-
erties through either the dynamic rearrangement of
their structure or the inclusion of additional nonlinear
elements and control their properties by an external
field [4].

It has recently been shown that magnetic metama-
terials consisting of chains of electric oscillatory cir-
cuits—split ring resonators—can exhibit discreteness
effects owing to their weak coupling [5—8]. In particu-
lar, it was demonstrated that local nonlinearity and
weak coupling between nonlinear split ring resonators
in the chain (one-dimensional discrete system, where
each split ring resonator interacts with nearest neigh-
bors, can lead to the formation of discrete localized
structures [7, 8]. In this work, we study two types of
discrete localized structures in such systems, namely,
switching waves and dissipative solitons. We show that
switching waves are immobile or move depending on
the parameters of the system and prehistory (initial
conditions), whereas solitons are highly localized due
to the discreteness of the system.

Following [6], we consider a periodic chain of
identical nonlinear split ring resonators (see Fig. 1),
which is a simple one-dimensional model of a mag-

netic metamaterial recently created and studied
experimentally [9]. All split ring resonators lie in one
plane and their centers are located on a straight line.
Each split ring resonator can be associated with a non-
linear electric oscillatory circuit consisting of a non-
linear ohmic resistance, inductance, and capacitance.
We assume that the nonlinearity of split ring resonators
is caused by the Kerr nonlinearity of a medium intro-
duced into the gaps of split ring resonators [4, 6].

The master equation for the amplitude of the elec-
tric current ¥, in the nth resonator of the chain has the
dimensionless form [6]

oY,

i _2Q—iy+ ¥ )Y, -3
= ( iy +o|?,)Y, "

= K(\Pn+l + an—l - 2an)

Here, ¢ is the time divided by the period of natural
oscillations of an isolated resonator; € and y is the
deviation of the eigenfrequency from the frequency of
pump radiation and the current decay rate in the reso-
nator, divided by the eigenfrequency of the resonator;
a = *1 and —1 for the self-focusing and self-defocus-
ing nonlinearity, respectively; X is the pump radiation
amplitude; and « is the coupling constant. The slowly
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Fig. 1. Chain of split ring resonators weakly coupled with
nearest neighbors.
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Fig. 2. Profiles of the moving switching wave at times =
(1) 600, (2) 1400, and (3) 2000; £ = 0.05, Q = —0.2,y =
0.02, and x = 0.07.

varying amplitude approximation and nearest neigh-
bor interaction approximation are used.

The continuous limit corresponds to large coupling
constants. In this case, Eq. (1) coincides with the
equation for an interferometer with a Kerr medium
excited by external radiation [10, 11]. An additional
factor is the possible existence of not only positive, but
also negative k values (the right-hand side of Eq. (1)
presents discrete diffraction). The limit of vanishing
coupling constants kK — 0 is degenerate (completely
independent resonators). Under the conditions Q? >
3y? and o€ < 0, bistability occurs: one of two current

values ‘I’fqo) =YD and ¥V is established depending

on the initial conditions. In the case of weak coupling,
perturbation theory in k is applicable. Setting ¥, =

‘PZO) (1 + kdY¥,), we obtain the following equation for
the corrections 8, in the stationary regime:

a,8%¥, +b,8¥* = ¢, )
where
b, = of ¥ P
a, = b,—s¥", (3)

(0) (0) (0)
C, = _K(\Pn+l + an—l - 21Pn )

The solution of Eq. (2) has the form
_ cna;l; - bncj

5W, = .
|an|2_ |bn|2
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If the control parameter, which is pump radiation
amplitude Z, is smoothly varied, the denominator in
Eq. (4) is zero at values corresponding to the edges of
the intermediate (unstable) branch of the dependence

of |‘P(0)| 2 on X. For this reason, the corrections can be
large only near the edges of the lower and upper
branches of this dependence.

The modulation instability of uniform distributions

‘{’ZO) = YO was studied in [6]. New results of numeri-

cal calculations of discrete switching waves and dis-
crete dissipative solitons in the case of self-focusing
nonlinearity o. = 1 are reported below.

Switching waves. Under bistability conditions,
when two stable uniform distributions exist in the
chain, switching waves can form; the front of these
waves constitutes a transition from one uniform distri-
bution to another with a change in resonator number
n and uniform external excitation (the asymptotic val-
ues of the current amplitude ¥ and ¥ in the limits
n — oo are different). Only immobile switching
waves are stationary. Their profiles are close to a step
with corrections given by Eq. (4). In view of the dis-
creteness of the system, the velocities and profiles of
moving switching waves vary quasiperiodically with
time (in contrast to a switching wave with a stationary
profile in continual schemes). For this reason, the
velocity of the switching wave v is treated as its average
value. The velocity is considered positive if the motion
of the switching wave leads to the expansion of the
region occupied by the upper branch of bistability
(current amplitude lI’(T)); otherwise, the velocity is
treated as negative. Figure 2 exemplifies the switching
wave with positive velocity.

Since the system is discrete, the velocity of the
switching wave is zero in a certain Z range. The v(Z)
dependence exhibits hysteresis (see Fig. 3). For the
accepted parameters, with an increase in X, immobile
switching waves near the right edge of their existence
range are smoothly transformed to moving switching
waves (supercritical bifurcation). Near the left edge of
the range, subcritical bifurcation occurs with a step-
wise change in velocity. The bistability range of switch-
ing waves, where both immobile and moving switching
waves exist, which is numerically determined with the
parameters used in Fig. 3,is 0.0271 <X <0.03135.

The existence of a pump radiation amplitude range
in which the switching wave is immobile is a feature of
not only discrete, but also inhomogeneous continual
systems [11] whose limiting case is the discrete system
under consideration. For homogeneous continual sys-
tems, this range collapses to a point, which is the Max-
well value of the control parameter. Even under condi-
tions when solitons do not form (see below), the prop-
erties of discrete switching waves lead to spatial
hysteresis features [11] (pump radiation in the form of
a beam whose amplitude varies slowly with time),
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Fig. 3. Velocity of the switching wave v versus the ampli-
tude of pump radiation X. The arrows indicate hysteresis
jumps under smooth variation of X. The parameters are
Q=-0.2,y=0.035, and k = 0.089.

which is similar to hysteresis in the case of ferromag-
netism.

Discrete dissipative solitons. For light solitons (with
a local increase in the current amplitude), the asymp-
totic values of the current amplitude in the limits n —
—o0 and n — +oo coincide with W™, The relation

PP =wd 4 (D — @H)§, s valid for the nar-

rowest soliton in the lowest approximation in k. Cor-
rections given by Eq. (4) are significant for a few
neighboring resonators and are in agreement with the
numerical calculations confirming the stability of soli-
ton regimes (see Fig. 4). As is seen in Fig. 5, solitons
are stable almost throughout the bistability range. For
a sufficiently long chain, there are numerous soliton-
type profiles with various numbers of current maxima
of various widths.

Thus, immobile and moving switching waves and
discrete dissipative solitons exist in a chain of weakly
coupled split ring resonators, which is essentially a
nonlinear magnetic metamaterial excited by mono-
chromatic electromagnetic radiation under bistability
conditions. The corresponding electric current distri-
butions are efficiently described by perturbation the-
ory in the coupling constant. Hysteresis of switching
waves has been revealed when either an immobile or
moving switching waves appear depending on the ini-
tial conditions at given parameters of the system. This
hysteresis can be attributed to the difference between
static and kinetic friction in a discrete system (in a
mechanics analogy, a force acting on a body is insuffi-
cient to overcome static friction, but can maintain the
existing motion of the body). The existence of switch-
ing waves and dissipative solitons indicates the possi-
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Fig. 4. Profile of the soliton at rest obtained in the (solid
line) numerical calculation and (dashed line) perturbative
calculation. The parameters are Q = —0.2, y = 0.04, k =
0.06, and X = 0.04.

bility of the formation of diverse structures and their
dynamic rearrangement in a metamaterial irradiated
by external radiation.

These results indicate that experimental investiga-
tions of discrete switching waves and dissipative soli-
tons in a nonlinear metamaterial that were studied in
[12, 13] in optical and microwave ranges are promis-
ing. We emphasize that the hysteresis of the velocity of
switching waves is fundamentally different from the
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Fig. 5. Branches of the bistable response. Switching
between them is shown by vertical arrows, circles near the

. 2 .
upper branch indicate |‘I’n| values in the center of the

narrowest soliton. The parameters are Q = —0.2, y=0.035,
and x = 0.0025.
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classical hysteresis of the amplitude of a nonlinear
oscillator. The effects predicted in this work can be
used to control the response of metamaterials in the
nonlinear regime.
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