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SUMMARY

This paper extends the classical two-regime threshold autoregressive model by introducing

hysteresis to its regime-switching structure, which leads to a new model: the hysteretic autore-

gressive model. The proposed model enjoys the piecewise linear structure of a threshold model

but has a more flexible regime switching mechanism. A sufficient condition is given for geomet- 10

ric ergodicity. Conditional least squares estimation is discussed, and the asymptotic distributions

of its estimators and information criteria for model selection are derived. Simulation results and

an example support the model.
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1. INTRODUCTION 15

Threshold time series models have been very successful since their introduction by Tong

(1978) and Tong & Lim (1980); see also Chan (1993), Tsay (1998), Hansen (2000), and Ling &

Tong (2005). Due to its piecewise linear nature, the threshold model can mimic nonlinear fea-

tures such as resonance, limit cycles and time-irreversibility, and it is also easy to fit numerically.

Tong (1990) gives a comprehensive exposition of such models. 20

However, there is a sudden change in the probability structure when a threshold process

switches regimes, which may not be the case in the real world. It has been observed that thresh-

old models usually work well except around the boundaries between different regimes (Wu &

Chen, 2007). The smooth-transition threshold model (Chan & Tong, 1986; van Dijk et al., 2002)

can reduce this problem to some extent, but it may not function well in complicated cases, and 25

it is not piecewise linear. Hamilton (1989) and McCulloch & Tsay (1994) used the discrete-state

Markov switching model to analyse financial and economic time series. Regime switching in that

model is completely controlled by a latent random variable. The model enjoys some flexibility in

the switching mechanism, but the fitted model may be difficult to interpret. Wu & Chen (2007)

considered a threshold variable-driven switching model in which the switching mechanism is 30

jointly controlled by a latent variable and some observable variables, but this lacks a physical

interpretation.

Hysteresis has been widely observed in economics, engineering, mechanics, material science,

etc. Consider the simple microeconomic example in Gocke (2002). A previously inactive firm

may have to bear a market entry cost to produce a certain product, i.e., production will become 35

active only when the price of the product, pt, is high enough to cover both the entry cost, et, and

the cost of ingredients, ct. However, once production has started, the firm will become inactive if

and only if pt becomes too low to cover the cost ct. As a result, when ct < pt < ct + et, the active

or inactive status remains unchanged. The original magnetic hysteresis of a single iron-crystal at
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the micro level exhibits exactly this pattern (Kneller, 1962), but hysteresis at the macro level has40

different and complicated patterns. All extant discussions of hysteresis in economics focus on the

macro level, and there is no specific hysteretic model in econometrics and statistics. Camarero

et al. (2006) and Proietti (2006) used non-stationarity to interpret hysteresis in macroeconomic

time series, whilst Kannebley (2008) and Perez-Alonso & Sanzo (2011) considered threshold

models.45

From the viewpoint of threshold models, the hysteretic pattern at the micro level defines a

regime switching mechanism, in which the active and inactive status correspond to two different

regimes. This motivates us to propose a somewhat different type of piecewise linear model, which

we call the hysteretic time series model. Consider a simple hysteretic process with hysteresis

variable zt and hysteresis zone (rL, rU ]. The time series is at the lower regime when zt ≤ rL, and50

at the upper regime when zt > rU , and the regime remains unchanged as long as zt falls within

the hysteresis zone. The Supplementary Material gives more details on the regime switching

mechanisms of this model. This paper concentrates on the self-exciting hysteretic autoregressive

model.

2. HYSTERETIC AUTOREGRESSIVE PROCESSES55

Consider a self-exciting hysteretic autoregressive model with regime indicator Rt:

yt =

{
xT
t φ+ σ1εt, Rt = 1,
xT
t ψ + σ2εt, Rt = 0,

Rt =





1, yt−d ≤ rL,

0, yt−d > rU ,

Rt−1, otherwise,

(1)

where xt = (1, yt−1, . . . , yt−p)
T, φ = (γ1, φ1, . . . , φp)

T, ψ = (γ2, ψ1, . . . , ψp)
T, the εts are in-

dependent and identically distributed random variables with mean zero and variance one, σ1 > 0
and σ2 > 0 are scalars, integer d > 0 is the delay parameter, and rL ≤ rU are the boundary

parameters of the hysteresis zone. Model (1) includes the traditional two-regime threshold au-60

toregressive model as a special case when rL = rU . The hysteretic model is also referred to as

the buffered threshold model in Zhu et al. (2014).

From (1), the regime indicator takes the form

Rt = I(yt−d ≤ rL) + I(rL < yt−d ≤ rU )Rt−1

= I(yt−d ≤ rL) +
∞∑

j=0

j∏

i=0

I(rL < yt−d−i ≤ rU )I(yt−d−j−1 ≤ rL)65

almost surely. When rL < rU , the regime indicator Rt depends on past observations that are

infinitely far away, which renders the hysteretic model different from traditional threshold models

(Tong, 1990; Hansen, 2000).

Suppose that σ1 = σ2 = σ. Denote Yt = (yt, . . . , yt−p+1, Rt)
T, et = (σεt, 0, . . . , 0)

T, M0t =
(m0t, 0, . . . , 0, I(yt−d ≤ rL))

T,70

M1t =




m1t m2t · · · mpt 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 I(rL < yt−d ≤ rU )


 ,

m0t = γ1I(At) + γ2I(A
c
t), and mit = φiI(At) + ψiI(A

c
t) with i = 1, . . . , p, where At is the

event {yt−d ≤ rL} ∪ {rL < yt−d ≤ rU , Rt−1 = 1} and Ac
t is its complement. It can be verified
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that Yt = g(Yt−1) + et with g(Yt−1) =M0t +M1tYt−1. As a result, {Yt} is a Markov chain,

and, by a method similar to that in Chan & Tong (1985), we can obtain its geometric ergodicity.

THEOREM 1. Suppose that εt has a density function that is positive everywhere on R and 75

E(|εt|) <∞. If
∑p

i=1 |φi| < 1 and
∑p

j=1 |ψj | < 1, then the multivariate process {Yt} is geo-

metrically ergodic, and hence we can obtain the geometric ergodicity of the hysteretic process

{yt}.

The case with σ1 ̸= σ2 can be proved similarly. Chan & Tong (1985) derived the geomet-

ric ergodicity of two-regime threshold autoregressive models under the same conditions as in 80

Theorem 1.

3. CONDITIONAL LEAST SQUARES ESTIMATION

3·1. Estimating procedure

Let λ = (θT, rL, rU , d)
T denote the parameter vector of model (1), where θ = (φT, ψT)T. Let

Θ be a compact subset of R2p+2, [a, b] be a predetermined interval and dmax be a predetermined 85

positive integer. For the true values of parameter vector λ, we assume that θ0 = (φT
0 , ψ

T
0 )

T is an

interior point of Θ, a < r0L < r0U < b and d0 ∈ D = {1, . . . , dmax}.

Denote the function for the sum of squared errors by Ln(λ) =
∑n

t=1{εt(λ)}
2, where

εt(λ) = (yt − xT
t φ)Rt(rL, rU , d) + (yt − xT

t ψ){1−Rt(rL, rU , d)}.

Let n0 = max(p, dmax). For time series {yt,−n0 + 1 ≤ t ≤ n} generated by model (1), the

regime indicator function Rt(rL, rU , d) in εt(λ) depends on past observations that are infinitely 90

far away, and hence initial values are needed for fitting.

For fixed rL, rU and d, the first few observations of the hysteresis variable, say

y1−d, . . . , yt0−d, may fall into the hysteresis zone (rL, rU ], such that we fail to identify the

regimes of y1, . . . , yt0 . We can simply assign them to the lower regime, and then denote the

resulting regime indicator function by R̃t(rL, rU , d). The exact value of Rt0+1(rL, rU , d) is 95

known because yt0+1 lies outside the hysteresis zone, and it can be verified that R̃t(rL, rU , d) =
Rt(rL, rU , d) as t0 < t ≤ n.

By replacing Rt(rL, rU , d) in the definition of εt(λ) with R̃t(rL, rU , d), we can denote the

function ε̃t(λ), and hence L̃n(λ). Then the conditional least squares estimator can be defined as

λ̂n = (θ̂Tn, r̂L, r̂U , d̂)
T = argmin

λ
L̃n(λ).

Write R̃t = R̃t(r̂L, r̂U , d̂) for simplicity. We further estimate σ21 and σ22 by σ̂21n =

n−1
1

∑n
t=1(yt − xT

t φ̂n)
2R̃t and σ̂22n = n−1

2

∑n
t=1(yt − xT

t ψ̂n)
2(1− R̃t), respectively, where

θ̂n = (φ̂T
n, ψ̂

T
n)

T, n1 =
∑n

t=1 R̃t and n2 = n− n1. 100

Let Xt = [xT
t R̃t(rL, rU , d), x

T
t {1− R̃t(rL, rU , d)}]

T. For each fixed (rL, rU , d), the min-

imiser of L̃n(λ) has a closed form:

θ̃n(rL, rU , d) = argmin
θ

L̃n(λ) =

(
n∑

t=1

XtX
T
t

)−1 n∑

t=1

Xtyt. (2)

The step function L̃n{θ̃n(rL, rU , d), rL, rU , d} can be minimised by searching amongst all pos-

sible jumps, i.e. d ∈ D and (rL, rU ) ∈ {(yt−d, ys−d) : 1 ≤ t, s ≤ n, a ≤ yt−d ≤ ys−d ≤ b}; see

Li & Li (2008, 2011). 105
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For the initial values of the regime indicator function, we can instead assign these t0 observa-

tions to the upper regime, and then denote the resulting function by R̃∗
t (rL, rU , d). Let L̃∗

n(λ) be

the corresponding sum of squared errors, and λ̂∗n = argminλ L̃
∗
n(λ). To improve accuracy, we

can choose λ̂∗n as the conditional least squares estimator when L̃∗
n(λ̂

∗
n) < L̃n(λ̂n).

3·2. Asymptotic results110

Assumption 1. It holds that φ0 ̸= ψ0, pr(yt ∈ [a, b]) < 1 and that εt has a bounded, continuous

and positive density on R.

THEOREM 2. If the time series {yt} is strictly stationary and ergodic with E(|yt|
2+δ) <∞

for a small δ > 0, and Assumption 1 holds, then λ̂n → λ0, σ̂21n → σ201 and σ̂22n → σ202 almost

surely, where λ0 = (θT0 , r0L, r0U , d0)
T, σ201 and σ202 are the corresponding true parameters.115

We can prove Theorem 2 by standard arguments for strong consistency. The delay parameter

d takes only integer values, so d̂ will equal d0 when sample size n is sufficiently large. Without

loss of generality, we assume that the true delay parameter, d0, is known for the reminder of this

subsection, and it is then deleted from parameter vector λ and corresponding functions.

Assumption 2. The time series {yt} is strictly stationary withE(y4+δ
t ) <∞ for a small δ > 0,120

and E(ε4t ) <∞.

Assumption 3. The autoregressive function is discontinuous on the hysteresis zone [r0L, r0U ];
i.e., there exist p− 1 constants zp−1,. . . ,zp−d+1,zp−d−1,. . . ,z0, such that zT(ψ0 − φ0) ̸= 0 for

all zp−d ∈ [r0L, r0U ], where z = (1, zp−1, . . . , z0)
T, and it is assumed that d ≤ p without loss of

generality.125

Let Yt = (yt, . . . , yt−p+1, Rt)
T; then, from §2, {Yt} is a Markov chain. Denote its m-step

transition probability function by Pm(x,A), where x ∈ R
p × {0, 1}, A ∈ Bp × U , Bp is the

class of Borel sets of Rp, and U = {Ø, {0}, {1}, {0, 1}}.

Assumption 4. The time series {Yt} admits a unique invariant measure π(·), such that there

exist K > 0 and 0 ≤ ρ < 1, for any x ∈ R
p × {0, 1} and any m, ∥Pm(x, ·)− π(·)∥v ≤ K(1 +130

∥x∥)ρm, where ∥ · ∥v and ∥ · ∥ are, respectively, the total variation norm and Euclidean norm.

Under Assumption 4, {Yt} is said to be V -uniformly ergodic with V (x) = K(1 + ∥x∥), a

condition stronger than geometric ergodicity; see Chapter 16 in Meyn & Tweedie (1993). Fol-

lowing Chan & Tong (1985) and Chan (1989), Assumption 4 is also implied by the conditions in

Theorem 1.135

THEOREM 3. If Assumptions 1–4 hold, then

(i) n(r̂L − r0L) = Op(1), n(r̂U − r0U ) = Op(1) and

(ii) n1/2 supn(|rL−r0L|+|rL−r0L|)≤B ∥θ̃n(rL, rU )− θ̃n(r0L, r0U )∥ = op(1) for any fixed 0 < B <

∞, where θ̃n(rL, rU ) is defined as in (2).

Furthermore,140

n1/2(θ̂n − θ0) → N{0, diag(σ201Σ
−1
1 , σ202Σ

−1
2 )}

in distribution as n→ ∞, where Σ1 = E(xtx
T
t Rt) and Σ2 = E{xtx

T
t (1−Rt)}.

Denote ξ1t =
∑∞

j=0[{x
T
t+j(ψ0 − φ0)}

2 + 2σ2x
T
t+j(ψ0 − φ0)εt+j ]Ht+j,j and ξ2t =∑∞

j=0[{x
T
t+j(ψ0 − φ0)}

2 − 2σ1x
T
t+j(ψ0 − φ0)εt+j ]Ht+j,j , where Ht,j =

∏j
l=1 I(r0L <
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yt−d+1−l ≤ r0U ) with the convention
∏0

l=1 = 1. For i = 1 and 2, let Fi,L(· | r) and Fi,U (· | r)
be the conditional distribution functions of ξit{1−Rt−1(r0)} and ξitRt−1(r0) given yt−d = r, 145

respectively. Denote by π(·) the density function of yt. We then define two independent

one-dimensional two-sided compound Poisson processes:

℘L(s) = I(s < 0)

N
(L)
1 (−s)∑

k=1

ζ
(1,L)
k + I(s ≥ 0)

N
(L)
2 (−s)∑

k=1

ζ
(2,L)
k ,

and

℘U (s) = I(s < 0)

N
(U)
1 (−s)∑

k=1

ζ
(1,U)
k + I(s ≥ 0)

N
(U)
2 (−s)∑

k=1

ζ
(2,U)
k ,

where {N
(L)
1 (s), s ≥ 0} and {N

(L)
2 (s), s ≥ 0} are two Poisson processes with N

(L)
1 (0) =

N
(L)
2 (0) = 0 and the same jump rate π(r0L), {N

(U)
1 (s), s ≥ 0} and {N

(U)
2 (s), s ≥ 0} are an- 150

other two Poisson processes with N
(U)
1 (0) = N

(U)
2 (0) = 0 and the same jump rate π(r0U ),

N
(L)
1 (·) and N

(U)
1 (·) are left-continuous, N

(L)
2 (·) and N

(U)
2 (·) are right-continuous, and these

four Poisson processes are independent. Each of the four sequences, {ζ
(i,j)
k , k ≥ 1} with i = 1

or 2 and j = L or U , consists of independent and identically distributed random variables, where

ζ
(i,L)
k and ζ

(i,U)
k have distribution functions Fi,L(· | r0L) and Fi,U (· | r0U ), respectively. 155

For j = L and U , Assumption 3 implies that E(ζ
(1,j)
k ) = E(ζ

(2,j)
k ) > 0, and then ℘j(s) tends

to +∞ as |s| → ∞. As in Li & Ling (2012), there exists a unique random square [M
(L)
− ,M

(L)
+ )×

[M
(U)
− ,M

(U)
+ ) on which the process ℘(z) = ℘L(zL) + ℘U (zU ) attains its global minimum,

where z = (zL, zU )
T ∈ R

2 and [M
(j)
− ,M

(j)
+ ) = argmins∈R ℘j(s) with j = L or U .

THEOREM 4. If Assumptions 1–4 hold, then n(r̂L − r0L) →M
(L)
− and n(r̂U − r0U ) → 160

M
(U)
− in distribution as n→ ∞. Moreover, n(r̂L − r0L), n(r̂U − r0U ) and n1/2(θ̂n − θ0) are

asymptotically independent.

Theorem 4 can be obtained by combining the methods of proof for Theorem 3.3 in Li & Ling

(2012) and Theorem 2.3 in Li et al. (2013).

3·3. Model selection 165

To select the order p of model (1), we consider the Bayesian information criterion,

BIC(p) = n1 log σ̂
2
1n + (p+ 1) log n1 + n2 log σ̂

2
2n + (p+ 1) log n2. (3)

Similarly, we can define the Akaike information criterion, AIC, and the corrected AIC. Let p̂n =
argmin0≤p≤pmax

BIC(p), where pmax is a predetermined large order.

THEOREM 5. If pmax ≥ p0 and Assumptions 1–4 hold, then pr(p̂n = p0) → 1 as n→ ∞,

where p0 is the true order, i.e. |φ0p0 |+ |ψ0p0 | > 0. 170

We can show that minimisation of the AIC tends to select an order that is greater than or equal to

p0. Wong & Li (1998) suggested information criteria for selecting the order of threshold models,

and they are similar in form to (3). Moreover, we can consider different orders, say p1 and p2,

for the two regimes of model (1) in the information criteria proposed above.
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Table 1. Percentages of correctly selected, over-fitted, under-fitted and

wrongly selected models by the AIC and BIC, respectively

AIC BIC

n Correct Over Under Wrong Correct Over Under Wrong

Hysteretic autoregressive processes

200 43·0 9·2 0·3 47·5 69·2 1·3 0·7 28·8

400 70·0 12·7 0·0 17·3 95·0 0·0 1·0 4·0

800 87·0 12·3 0·0 0·7 100·0 0·0 0·0 0·0

Threshold autoregressive processes

200 83·3 15·2 1·3 0·2 86·2 12·7 0·5 0·6

400 87·5 12·5 0·0 0·0 99·0 0·3 0·7 0·0

800 91·2 8·8 0·0 0·0 100·0 0·0 0·0 0·0

4. NUMERICAL STUDIES175

4·1. Simulation experiment

In an experiment to evaluate the information criteria in §3.3, two data-generating processes

are employed. The first is a three-regime threshold autoregressive model,

yt =





−0·02yt−1 + 0·76yt−2 + εt, yt−2 ≤ −0·9,
−0·70yt−1 + 0·20yt−2 + εt, −0·9 < yt−2 ≤ 0·5,
0·65yt−1 + 0·32yt−2 + εt, 0·5 < yt−2,

and the second is a hysteretic autoregressive model with the same structure in the lower and

upper regimes and the same delay and boundary parameters, where {εt} are independent ran-180

dom variables with the standard normal distribution. These models both have two boundary or

threshold parameters.

We consider sample sizes, n = 200, 400 and 800, with 1000 replications for each sample size

and data-generating process. The hysteretic model and three-regime threshold model are both

fitted to each generated series with dmax = 4, and the values of a and b are taken to be the 10th185

and 90th percentiles of each sample, respectively. The AIC and BIC are used in turn to select

the model and order p with pmax = 4. For the information criteria for the threshold model, see

Wong & Li (1998). Table 1 lists the percentages of correctly selected, over-fitted, under-fitted

and wrongly selected models. Wrong selection refers to the case of a threshold model being

selected for a hysteretic process or a hysteretic model being chosen for a threshold process. The190

percentages of correct selection increase for both the AIC and BIC as sample size n increases,

whilst the AIC has a slight tendency to select a bigger model even when n = 800. A larger

proportion of hysteretic processes is wrongly selected as threshold processes, particully when

the sample size is as small as n = 200. This may be because the hysteretic model includes the

two-regime threshold model as a special case.195

4·2. Annual sunspot numbers

The sequence of Wolf sunspot numbers is very popular in time series analysis, and various

linear and nonlinear models have been applied to explore it. See, for example, the two-regime

threshold models in Tong (1990) and the three-regime threshold models in Tsay (1989). Hys-

teresis has been observed in some solar activity cycles (Dmitriev et al., 2002; Suyal et al., 2012),200

and the sunspot number is a measure of solar activity. As a result, the hysteretic model may be

more suitable for sunspot numbers than the threshold model.

We consider the annual mean Wolf sunspot numbers from 1700 to 2013, with 314 observa-

tions in total. The hysteretic autoregressive model is first applied to this sequence with dmax = 6,
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and the values of a and b are the 10th and 90th percentiles of the data, respectively. We allow 205

the orders in both regimes to differ for the sake of parsimony. The AIC and BIC are employed

to perform model selection with pmax = 13, and they choose the same model. Moreover, as a

comparison, we consider two other classes of competing models, namely, autoregressive mod-

els and three-regime threshold autoregressive models. Both information criteria select the same

autoregressive model but different threshold autoregressive models. As a result, a total of four 210

models is selected.

The fitted delay parameter is d̂ = 2 for both the hysteretic and threshold models, which is

consistent with the results in Tsay (1989). The Supplementary Material gives the sample auto-

correlation functions of the residuals from these four fitted models, and we can conclude that

they are all adequate. Their information criteria values, including those of the AIC, BIC and cor- 215

rected AIC, are listed in Table 2. It can be seen that the hysteretic model outperforms all three

other models, especially the autoregressive model.

Table 2. Information criteria of six fitted models

HAR AR TAR3-A TAR3-B TAR2-A TAR2-B

BIC 1,568·06 1,692·45 1,610·86 1,588·96 1,577·90 1,575·48

AIC 1,512·80 1,651·67 1,522·54 1,529·62 1,522·83 1,526·01

AICc 1,820·95 1,955·76 1,842·17 1,842·99 1,831·02 1,833·74

AICc, corrected AIC; AR, autoregressive model; HAR, hysteretic autoregressive

model; TAR3-A and TAR3-B, three-regime threshold autoregressive model selected

by the AIC and BIC, respectively; TAR2-A and TAR2-B, two-regime threshold au-

toregressive model selected by the AIC and BIC, respectively.

We also consider the class of two-regime threshold autoregressive models. Two models with

different autoregressive orders are selected by the AIC and BIC. Their information criteria values

are also given in Table 2. As expected, they are larger than the corresponding values of the fitted 220

hysteretic model as the two-regime threshold model is a special case of the hysteretic model.
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