
 Open access Proceedings Article DOI:10.1109/IROS.2007.4399095

Hysteretic q-learning :an algorithm for decentralized reinforcement learning in
cooperative multi-agent teams — Source link

Laëtitia Matignon, Guillaume J. Laurent, N. Le Fort-Piat

Published on: 29 Oct 2007 - Intelligent Robots and Systems

Topics: Robot learning, Reinforcement learning, Q-learning and Multi-agent system

Related papers:

 Human-level control through deep reinforcement learning

 An Algorithm for Distributed Reinforcement Learning in Cooperative Multi-Agent Systems

 Reinforcement Learning: An Introduction

 A Comprehensive Survey of Multiagent Reinforcement Learning

Review: independent reinforcement learners in cooperative markov games: A survey regarding coordination
problems

Share this paper:

View more about this paper here: https://typeset.io/papers/hysteretic-q-learning-an-algorithm-for-decentralized-
47elz6frfn

https://typeset.io/
https://www.doi.org/10.1109/IROS.2007.4399095
https://typeset.io/papers/hysteretic-q-learning-an-algorithm-for-decentralized-47elz6frfn
https://typeset.io/authors/laetitia-matignon-5edvviglmu
https://typeset.io/authors/guillaume-j-laurent-2sxzbvyzey
https://typeset.io/authors/n-le-fort-piat-1rs9x2y5jt
https://typeset.io/conferences/intelligent-robots-and-systems-y4ymjudi
https://typeset.io/topics/robot-learning-3f65c53j
https://typeset.io/topics/reinforcement-learning-19scn3xh
https://typeset.io/topics/q-learning-r9ah1l5t
https://typeset.io/topics/multi-agent-system-37vxqxp8
https://typeset.io/papers/human-level-control-through-deep-reinforcement-learning-40h0gx9pjx
https://typeset.io/papers/an-algorithm-for-distributed-reinforcement-learning-in-22x4fmu6kf
https://typeset.io/papers/reinforcement-learning-an-introduction-rzxgej9p17
https://typeset.io/papers/a-comprehensive-survey-of-multiagent-reinforcement-learning-1mwdfqzdug
https://typeset.io/papers/review-independent-reinforcement-learners-in-cooperative-2ofgpfaccu
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/hysteretic-q-learning-an-algorithm-for-decentralized-47elz6frfn
https://twitter.com/intent/tweet?text=Hysteretic%20q-learning%20:an%20algorithm%20for%20decentralized%20reinforcement%20learning%20in%20cooperative%20multi-agent%20teams&url=https://typeset.io/papers/hysteretic-q-learning-an-algorithm-for-decentralized-47elz6frfn
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/hysteretic-q-learning-an-algorithm-for-decentralized-47elz6frfn
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/hysteretic-q-learning-an-algorithm-for-decentralized-47elz6frfn
https://typeset.io/papers/hysteretic-q-learning-an-algorithm-for-decentralized-47elz6frfn

HAL Id: hal-00187279
https://hal.archives-ouvertes.fr/hal-00187279

Submitted on 14 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hysteretic Q-Learning : an algorithm for decentralized
reinforcement learning in cooperative multi-agent teams.

Laëtitia Matignon, Guillaume Laurent, Nadine Le Fort-Piat

To cite this version:
Laëtitia Matignon, Guillaume Laurent, Nadine Le Fort-Piat. Hysteretic Q-Learning : an algorithm
for decentralized reinforcement learning in cooperative multi-agent teams.. IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS’07., Oct 2007, San Diego, CA., United States.
pp.64-69. hal-00187279

https://hal.archives-ouvertes.fr/hal-00187279
https://hal.archives-ouvertes.fr

Hysteretic Q-Learning : an algorithm for Decentralized Reinforcement

Learning in Cooperative Multi-Agent Teams.

Laëtitia Matignon, Guillaume J. Laurent and Nadine Le Fort-Piat

Laboratoire d’Automatique de Besançon UMR CNRS 6596

ENSMM , Université de Franche-Comté

24 rue Alain Savary, 25000 Besançon, France

E-mails : (laetitia.matignon,guillaume.laurent,nadine.piat)@ens2m.fr

Web site : www.lab.cnrs.fr

Abstract— Multi-agent systems (MAS) are a field of study
of growing interest in a variety of domains such as robotics
or distributed controls. The article focuses on decentralized
reinforcement learning (RL) in cooperative MAS, where a team
of independent learning robots (IL) try to coordinate their
individual behavior to reach a coherent joint behavior. We
assume that each robot has no information about its teammates’
actions. To date, RL approaches for such ILs did not guarantee
convergence to the optimal joint policy in scenarios where the
coordination is difficult. We report an investigation of existing
algorithms for the learning of coordination in cooperative MAS,
and suggest a Q-Learning extension for ILs, called Hysteretic
Q-Learning. This algorithm does not require any additional
communication between robots. Its advantages are showing off
and compared to other methods on various applications : bi-
matrix games, collaborative ball balancing task and pursuit
domain.

I. INTRODUCTION

Learning in multi-agent systems (MAS) are a field of

study of growing interest in a wide variety of domains, and

especially in multi-robot systems [1]. Indeed, a decentralized

MAS point of view offers several potential advantages as

speed-up, scalability or robustness [2].

In this paper, we are interested in learning in MAS thanks

to reinforcement learning (RL) methods, where an agent

learns by interacting with its environment, using a scalar

reward signal called reinforcement as performance feedback

[3]. Over the last decade, many approaches are concerned

with the extension of RL to MAS [4], e.g. team of soccer

robots [5] or distributed control of a robotic manipulator [6].

We investigate the case of cooperative MAS where all

agents share the same goal and the common return can

be jointly maximized. As pointed out by Boutilier [7], a

cooperative MAS could be solved by classical RL algorithms

in a centralized view in which one agent represents the

whole team. But the size of the state-action space should

quickly become too big for RL. So we investigate the case of

agents which learn their own behavior in a decentralized way.

In this framework, Claus & Boutilier [8] distinguish two

cases of reinforcement learners : the case of agents that get

information about their own choice of action as well as their

partners’ choices, called “joint action learners” (JALs), and

the case of agents which only know their own action, called

“independent learners” (ILs). The former case suffers from

combinatorial explosion of the size of the state-action space

with the number of agents given that each agent learns the

value of joint actions, while the latter one brings the benefit

of a state space size independent of the number of agents.

We focus on ILs which is a more realistic assumption and

don’t require any communication between agents.

The use of ILs in cooperative MAS induces three major

difficulties. The first one is the fact that other learning agents

are unpredictable elements of the environment because of

the local view of each agent. Secondly, from the viewpoint

of any agent in MAS, the environment is not any longer

markovian since a past action can have an effect on the other

agents current behaviors. This fact destroys the theoretical

convergence guarantees of single-agent RL algorithms.

Finally, the third difficulty is the multi-agent coordination

problem : how to make sure that all ILs coherently choose

their individual action such that the resulting joint action is

optimal?

In this paper, we present a decentralized RL algorithm for

ILs which computes a better policy in a cooperative MAS

without additional information or communication between

agents than existing algorithms, presented in Section II.

Our algorithm, called Hysteretic Q-Learning, is a variant

of Q-learning [9] and is compared with existing algorithms

designed for the cooperation/coordination of ILs. First, we

study the case of cooperative repeated matrix games where

the coordination is difficult (Sect. III). Then, we extend the

comparison to identical payoff stochastic games (Sect. IV)

through a collaborative ball balancing task and a multi-agent

pursuit benchmark (Sect. V). The study is lastly extended to

a partial observable benchmark with 4 players (Sect. VI).

II. RELATED WORKS

In this section, related works dealing with RL algorithms

in cooperative MAS are reviewed, with an emphasis on

research dealing with Q-learning [9] and Q-learning variants

for ILs. It was one of the first algorithms applied to

multi-agent environments [10]. Such works focus on game

theory - more particularly repeated games (Sect. III) - and

stochastic games (Sect. IV).

Claus & Boutilier [8] compare the performance of JALs

and ILs on repeated coordination game (Tab. I) and found

that even though JALs have much more information at their

disposal, they do not perform much differently from ILs

in the straightforward application of Q-learning to MAS.

Notably, they show that convergence to global optimum is

not always achieved in these games even if each agent can

immediately perceive the actions of all other agents in the

environment.

They investigate too the crucial effect the applied

exploration policy has on the performance of the learning

when the single-agent RL methods are utilized in MAS.

Notably, they try to compute an equilibrium point by

continuously reducing the exploration frequency, so as

to avoid concurrent exploration. This problem is also

investigated in [11].

Lauer & Riedmiller [12] introduced the Distributed Q-

Learning algorithm. Optimistic independent agents neglect

the penalties due to a non-coordination of agents in their

update. They show that their algorithm will find the unique

optimal equilibrium solution in deterministic cooperative

MAS. Nevertheless, this algorithm used without any addi-

tional coordination mechanism is not able to manage the

coordination in case of multiple optimal joint actions.

Kapetanakis & Kudenko [13] point out another flaws in

Lauer’s approach when dealing with stochastic environments,

and present a modified exploration strategy. In their

algorithm, the Q-value of an action in the Boltzmann

exploration strategy is changed by an heuristic value,

taking into account how frequently an action produces its

maximum corresponding reward. This heuristic, which is

called FMQ, works only in repeated games. It solves the

reward uncertainty issue due to the other agents’ actions, but

does not overcome the difficulty of games strongly noised.

Besides the theoretical examinations, several successful

applications of decentralized RL have been reported, like

in the control of a group of elevators [14] or in the task of

multi-robot box-pushing [15]. They use ordinary Q-Learning

without any consideration of the existence of other agents.

III. FULLY COOPERATIVE REPEATED GAMES

The studies of learning algorithms in MAS are based on

game theory and more particularly on repeated games. In this

section, we first setup this framework. Then, we present a

version of the Hysteretic Q-Learning for repeated games and

some results on two usual cooperative games with regard to

other algorithms.

A. Definition

A matrix game1 (MG) is a multiple-agent, sin-

gle state framework. It is defined as a tuple <

n, A1, ..., An, R1, ..., Rn > where n is the number of players,

Ai is the set of actions available to player i (and A is the

1also called strategic game

TABLE I

TWO COOPERATIVE BI-MATRIX GAMES

joint action space A1× ...×An) and Ri is player i’s payoff

function A→ ℜ.

If R1 = ... = Rn = R, the MG is fully cooperative.

We are interested in repeated games which consist of the

repetition of the same MG by the same agents. Among

matrix games, bi-matrix games are often used to formulate

the 2-agents case.

Table I shows 2 cooperative MG : the Climbing game

and the Penalty game, introduced in [8] for the study of

coordination in cooperative MG. Each agent have 3 actions

and the table specifies the joint rewards. Each of these

games is challenging due to mis-coordination penalties. In

the Climbing game, the optimal joint action is (a, a) but if

an agent chooses its individual optimal action a when the

other agent chooses action b, a severe penalty is received.

However, there are no mis-coordination penalties associated

with action c, potentially making it tempting for the agents.

In the Penalty game, K is usually chosen inferior to 0.

This game introduces another mis-coordination issue due to

the presence of two optimal joint actions (a, a) and (c, c) :

simply choosing its individual optimal action does not

guarantee that the other agent will choose the same optimal.

In the case of only one state, Q-Learning is reduced to the

update equation of the Q-value function [8] :

Qi(ai)← Qi(ai) + α(r −Qi(ai)) (1)

where ai is the agent’s chosen action, r the reward it receives,

Qi(ai) is the value of action ai for the agent i and α ∈]0; 1]
is the learning rate.

B. Hysteretic Q-learning

In a MAS, the reinforcement received by an agent relies

on actions chosen by the team. So an agent can be punished

because of a bad choice of the team even if it has chosen

an optimal action. Then the agent had better to attach less

importance to a punishment received after the choice of an

action which has been satisfying in the past. This is the idea

of the optimistic agents used in the Distributed Q-Learning

algorithm. Distributed Q-Learning update equation is [12] :

δ ← r −Qi(ai)

Qi(ai)←

{

Qi(ai) + αδ if δ ≥ 0
Qi(ai) else

(2)

However, the key issue with Distributed Q-Learning al-

gorithm is that optimistic agents do not manage to achieve

TABLE II

PERCENTAGE OF TRIALS CONVERGING TO THE OPTIMAL JOINT ACTION

(AVERAGE ON 3000 TRIALS).

Climbing game Penalty game
(K = −100)

Decentralized Q-Learning 12.1% 64%

Distributed Q-Learning 95.8% 50.6%

FMQ 99.8% 99.9%

Hysteretic Q-Learning 99.5% 99.8%

the coordination between multiple optimal joint actions [12].

Agents must not be altogether blind to penalties at the risk

of staying in sub-optimal equilibrium or mis-coordinating on

the same optimal joint action. That’s why we suggest to use

two learning rates according to the result of a joint action.

Thus, the update equation (1) is modified :

δ ← r −Qi(ai)

Qi(ai)←

{

Qi(ai) + αδ if δ ≥ 0
Qi(ai) + βδ else

(3)

where α and β are the increase and decrease rates of Q-

values. The Hysteretic Q-learning is decentralized : each

ILs builds its own Q-table whose size is independent of the

agents number and linear in function of its own actions.

C. Experimentations

We tested different algorithms on both cooperative re-

peated games (Tab. I) : decentralized Q-Learning, FMQ,

Distributed Q-Learning and Hysteretic Q-Learning. Decen-

tralized Q-Learning is the straightforward application of

update equation 1 to ILs.

A trial consists of 7500 repetitions of the game. At the

beginning of a trial, Q-tables are initialized at 0. At the end

of each trial, we determine if the last chosen joint action

is optimal. We take α = 0.1 for all methods, β = 0.01
for Hysteretic Q-Learning and c = 10 for the weight in

the FMQ. Concerning the action selection method, we

have chosen an action selection according to Boltzmann

distribution where T is a temperature parameter. T is setting

up at T = T × 0.99 with Tinit = 5000. Results are shown

in Table II.

First, decentralized Q-Learning is inefficient to reach the

optimal joint action in both games. Indeed, all rewards are

equally considered. So, high penalties for mis-coordination

caused the agents to be attracted by safer sub-optimal equilib-

rium in both games. Distributed Q-Learning performs rather

well in the Climbing game because of agents omission of

penalties. But in the Penalty game, they don’t overcome the

issue of coordination : each agent has two optimal individual

actions so four greedy policies can be generated (a, a), (c, c),
(c, a) and (a, c), and only the first two are optimal. That’s

why the agents choose the two optimal with a probability

of 50%. Both algorithms FMQ and Hysteretic Q-Learning

discovered the optimal joint action more than 99% of the

time. Anyway, it is important to notice that FMQ requires

larger memory size than Hysteretic Q-Learning, storing only

the Qi-values.

So in cooperative MG, Hysteretic Q-Learning manages

to solve the coordination issue and requires agent’s internal

status smaller than FMQ. Indeed, FMQ augments the agent’s

internal status by maintaining 3 values for each of its actions

so as to carry the information of how frequently an action

produces its maximum corresponding reward.

IV. STOCHASTIC GAMES

A. Definition

Stochastic games (SG) can be seen as the extension of

matrix game to the multi-states framework. Specifically,

each state of a SG can be viewed as a matrix game. They

were first examined in the field of game theory and more

recently in the field of multi-agent RL.

A stochastic game2 is defined as a tuple

< n, S, A1, ..., An, T, R1, ..., Rn > where :

• n is the number of agents;

• S is a finite set of states;

• Ai is the set of actions available to the agent i (and

A =
∏

Ai the joint action space);

• T : S×A×S → [0, 1] a transition function that defines

transition probabilities between states;

• Ri : S ×A→ ℜ the reward function for agent i.

In a SG framework, all agents have access to the complete

observable state s. The joint actions of the agents determine

the next state and the rewards received by each agent. If all

agents receive the same rewards, the SG is fully cooperative.

It is then defined as an identical payoff stochastic game

(IPSG)3. The objective of each agent is then to find the

optimal policy maximizing the expected sum of the discount

rewards in the future.

The straightforward extension of centralized Q-Learning to

SG considers joint actions in the computation of Q-values.

Thus, the update equation in a centralized view is :

Q(s, a1, ..., an)← (1− α)Q(s, a1, ..., an)+

α

[

r + γ max
a′

1
,...,a′

n

Q(s′, a′

1
, ..., a′

n)

]

(4)

where s′ is the new state, α the learning rate and γ ∈ [0; 1[
the discount factor.

In a decentralized framework, the Q-learning update equa-

tion for ILs is :

Qi(s, ai)← (1− α)Qi(s, ai) + α
[

r + γ max
a′

Qi(s
′, a′)

]

(5)

It is obvious that such Qi tables for ILs are smaller. But each

agent has only a local view because it has no access to the

actions of the others.

2also called Markov game.
3also called Multi-agent Markov Decision Process (MMDP).

B. Hysteretic Q-learning

We extend the equation (3) to SG. Then, the Hysteretic Q-

Learning update equation for an agent i executing the action

ai from state s ending up in state s′ is :

δ ← r + γ max
a′

Qi(s
′, a′)−Qi(s, ai)

Qi(s, ai)←

{

Qi(s, ai) + αδ if δ ≥ 0
Qi(s, ai) + βδ else

(6)

V. EXPERIMENTS ON STOCHASTIC GAMES

We propose to compare the performance of Hysteretic Q-

Learning in SG tasks with a centralized Q-Learning view

(update equation 4), a decentralized Q-Learning framework

(update equation 5) and the Distributed Q-Learning algo-

rithm (update equation 2).

A. Experiments on a collaborative ball balancing task

Fig. 1. Overview of a collaborative ball balancing task

1) Benchmark: We take up an example task whose pur-

pose is to keep balance of a rolling ball in the center of a

flat table holding by two robots at the extremities [16]. Each

robot control hi values. The dynamics are given by :

mẍ = −cẋ + mg

(

h1 − h2

l

)

(7)

with m = 0.5, g = 9.8, l = 2 and c = 0.01.

2) State space: The complete plant state is given by

x = (x, ẋ). If centralized learning is used, the command

is a = (h1, h2); for decentralized learning with two robots

controlling each extremity of the table, the robot commands

are a1 = h1 and a2 = h2. To apply RL in the form presented

previously, the time axis and the continuous state and action

must be first discretized. The sample time is 0.03 seconds.

For state space, a 100×50 discretization is chosen. For each

control, 15 values are used equally distributed between −1
and 1. So, this yields a Q-table of size 100 × 50 × 152 in

a centralized view, to compare with two Qi-tables of size

100× 50× 15 in a decentralized view.

Each trial starts from an initial state x = (0.5, 0.1) and

goes on at the most 20 seconds. A trial ends if the ball is

fallen from the table.

3) Reinforcement: According to [17], the chosen reward

function is :

r = 0.8e−
x
2

0.252 + 0.2e−
ẋ
2

0.252 . (8)

Fig. 2. Sum of rewards (averaged over 20 runs) with α = 0.9 β = 0.1
γ = 0.9 ǫ = 0.1.

4) Results: All trials use a discount factor γ = 0.9 and

follow the ǫ-greedy action selection method4 (ǫ = 0.1). We

have plotted the sum of rewards obtained at each trial over

5000 successive trials. Results are shown Fig. 2.

First, Distributed Q-Learning shows a very slow con-

vergence. Otherwise, with decentralized Q-Learning, re-

sults are only slightly less successful than with centralized

Q-Learning, although Q-tables sizes are smaller and no-

coordination mechanisms are setting up. So this confirms the

fact that ordinary decentralized Q-Learning could be applied

to some cooperative MAS systems. Anyway, only Hysteretic

Q-Learning reaches the same convergence as centralized

algorithm. The best coordination in this decentralized frame-

work is obtained with the Hysteretic Q-Learning algorithm.

B. Experiments on a pursuit domain

The pursuit problem is a popular multi-agent domain in

which some agents, called predators, have to capture one

other agent, called the prey [18].

1) Benchmark: We use a discrete 10 × 10 toroidal grid

environment in which two predators have to explicitly

coordinate their actions in order to capture a single prey

(Fig. 3a). At each time step, all predators simultaneously

execute one of the 5 possible actions : move north, south,

east, west or stand still. The prey moves according to a

randomized policy : it remains on its current position with

a probability of 0.2, and otherwise moves to ones of its free

adjacent cells with uniform probability. A prey is captured

when both predators are located in cells adjacent to the

prey, and one of the two predators moves to the location of

the prey while the other predator remains, for support, on

its current position (Fig. 3b).

4the probability of taking a random action is ǫ and, otherwise, the selected
action is the one with the largest Q-value in the current state.

(a) (b)

Fig. 3. Example pursuit problem. (a) Complete 10× 10 toroidal grid. (b)
Possible capture position.

Fig. 4. Number of capture for 1000 steps (averaged over 20 runs) with
α = 0.1 β = 0.01 γ = 0.9 ǫ = 0.1.

2) State space: The state space is represented by

the relative position of the two predators to the prey. The

complete state-action space then consists of all combinations

of the two predators relative position. In total this yields

99 × 98 × 52, that is 242, 550 state-action pairs in a

centralized view stored in the unique Q function. This is

to compare with Qi tables for each ILs in a decentralized

framework, corresponding to 99 × 98 × 5, i.e. 48, 510
different state-action pairs for each of both agents.

3) Reinforcement: When two predators end up in the

same cell, they are penalized (Ri = −10) and are moved

to a random empty position on the grid. A capture results

in a reward Ri = 37.5 for each agent, and predators and

prey are replaced to random positions. Furthermore, each

predator receives a reward of −25 when one of them moves

to the prey without support and both are moved to random,

empty cell.

4) Results: All trials use a discount factor γ = 0.9,

a learning rate α = 0.1, a decrease rate (Hysteretic

Q-Learning) β = 0.01 and follow the ǫ-greedy method

(ǫ = 0.1). Results are shown Fig. 4.

The Decentralized Q-Learning performs worst. Indeed,

the learned policy oscillates because it stores Qi tables

based on the individual actions of the agents, so they update

the same Qi-value both after successful and unsuccessful

coordination with the other agent. For example, when both

predators are located next to the prey and one predator

moves to the prey position, this predator is not able to

distinguish between the situation in which the other remains

on its current position or moves. Thus the same Qi-value is

updated in both cases, although a positive reward is received

in the first case and a large negative one in the second case.

So Decentralized Q-Learning is not able to perform the

coordination between both predators. Distributed Q-Learning

performs better but does not manage to reach the same

performance as centralized Q-Learning. Finally, Hysteretic

Q-Learning presents the same convergence as centralized

method, although five times less Q-values are used !

C. Conclusion

To conclude, these two experiments confirms that Hys-

teretic Q-Learning is able to manage the coordination be-

tween agents in cooperative MAS better than other tested

algorithms. Without any additional communication, this

method performs as well as a centralized algorithm and

moreover, uses smaller Q table. On the other hand, it

seems that the straightforward application of decentralized

Q-Learning to cooperative MAS is able to perform approx-

imately successful coordination, but this is not guaranteed.

VI. PARTIALLY OBSERVABLE STOCHASTIC GAMES.

Finally, we extend our study to partially observable frame-

work. Especially, we test our algorithm in a pursuit domain

where 4 agents have partially observable perceptions.

A. Definition

A partially observable stochastic game (POSG) is a tuple

< n, S, A1, ..., An,Γ1, ...,Γn, O, T, R1, ..., Rn > where <

n, S,A1, ..., An, T, R1, ..., Rn > is a SG and:

• Γi is a finite set of observations for agent i (and Γ =
∏

Γi is the set of joint observations);

• O : S × A × Γ → [0, 1] defines the observations

probabilities.

B. Experiments on a pursuit domain

In this section, we use a pursuit domain [18] different

from the one previously presented. The task consists in 4

predators situated in a 7 × 7 toroidal grid. The objective is

always to achieve coordination in order to capture a prey

by surrounding it (Fig. 5a). Predators and prey are the same

as in the other pursuit domain, but predators perceptions

differs. Indeed, a predator perceives something according

to the 8 cardinal directions and a close or distant criterion

(Fig. 5b), so 16 perceptions. Given that each predators

perceives its 3 teammates plus the prey, there are 164

possible observations per agent. Each agent has 5 possible

actions, i.e. a Qi-table of size 164 × 5 for each predator.

An agent receives independently Ri = 25 in the situation in

Fig. 5c.

We do not test centralized Q-Learning because the size

of the state-action space is too big, i.e. 164 × 54 Q-values.

(a) Capture (b) Perceptions (c) Reinforcement

Fig. 5. a) The prey is captured. b) (2× 8)4 perceptions per agent. c) The
reinforcement is attributed in an individual way and is only function of local
perceptions (and similar situations obtained by rotation of 90◦).

Fig. 6. Number of captures for 1000 steps (averaged over 20 runs) with
α = 0.3 β = 0.03 γ = 0.9 ǫ = 0.05.

Anyway, we experimented with Decentralized Q-Learning

and observed that the agents are not able to learn even a sub-

optimal strategy after 10.106 steps. But with the Hysteretic

Q-Learning, the predators manage to achieve coordination

to surround the prey much more often than with Distributed

Q-Learning (Fig. 6). The coordination learning stabilizes

around 5.106 steps with 115 captures for 1000 steps.

So Hysteretic Q-Learning manages the coordination in this

partially observable environment.

VII. CONCLUSIONS

In this paper, we investigated the issue of developing an

algorithm for decentralized RL on the basis of Q-Learning.

The major difficulty remains the coordination problem. First,

we investigate the case of ILs so as to obtain sizes of Qi-

tables independent of the number of agents and linear in

function of their own actions. Furthermore, we are looking

for a method which does not require any additional commu-

nication.

To overcome the issue of coordination, two learning rates

are introduced for the increase and decrease of Qi-values.

Thanks to these learning rates, hysteretic agents are chiefly

optimistic to reduce oscillations in the learned policy.

Indeed, we have studied here the case of an increase rate

largely superior to the decrease rate (α > β). Anyway, they

are not absolutely blind to the received penalties to avoid

mis-coordination in case of multiple optimal joint actions.

It has been shown on various multi-agent benchmarks

that Hysteretic Q-Learning algorithm achieves successfully

coordination’s purpose. Actually, Hysteretic Q-Learning’s

convergence is closed to centralized Q-Learning’s. Moreover,

computed policies are better than results with existing

algorithms. Therefore, Hysteretic Q-Learning is an attractive

decentralized RL algorithm for the learning of the

coordination in cooperative MAS.

In perspectives, we intend to widen the idea of hysteretic

agents to other RL algorithms, especially TD(λ). Indeed, we

assume that the idea of hysteretic agents could be imple-

mented in various RL algorithms to achieve coordination in

cooperative MAS. Besides, it could be interesting to study

the influence of the two learning rate parameters.

REFERENCES

[1] E. Yang and D. Gu, “Multiagent reinforcement learning for multi-robot
systems: A survey,” Department of Computer Science, University of
Essex, Tech. Rep., 2004.

[2] P. Stone and M. M. Veloso, “Multiagent systems: A survey from a
machine learning perspective,” Autonomous Robots, vol. 8, no. 3, pp.
345–383, 2000.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion. The MIT Press, Cambridge, 1998.
[4] L. Busoniu, R. Babuska, and B. D. Schutter, “Multi-agent reinforce-

ment learning: A survey,” in Proc. of the 9th ICARCV, December 2006,
pp. 527–532.

[5] A. M. Tehrani, M. S. Kamel, and A. M. Khamis, “Fuzzy reinforcement
learning for embedded soccer agents in a multi-agent context,” Int. J.

Robot. Autom., vol. 21, no. 2, pp. 110–119, 2006.
[6] L. Busoniu, R. Babuska, and B. D. Schutter, “Decentralized reinforce-

ment learning control of a robotic manipulator,” in Proc. of the 9th

ICARCV, Singapore, Dec. 2006, pp. 1347–1352.
[7] C. Boutilier, “Planning, learning and coordination in multiagent deci-

sion processes,” in Theoretical Aspects of Rationality and Knowledge,
1996, pp. 195–201.

[8] C. Claus and C. Boutilier, “The dynamics of reinforcement learning
in cooperative multiagent systems.” in Proceedings of the Fifteenth

National Conference on Artificial Intelligence, 1998, pp. 746–752.
[9] C. Watkins and P. Dayan, “Technical note: Q-learning,” Machine

Learning, vol. 8, pp. 279–292, 1992.
[10] M. Tan, “Multiagent reinforcement learning: Independent vs. cooper-

ative agents,” in 10th International Conference on Machine Learning,
1993, p. 330 337.

[11] S. Kapetanakis and D. Kudenko, “Improving on the reinforce-
ment learning of coordination in cooperative multi-agent sys-
tems,” Second Symposium on Adaptive Agents and Multi-Agent
Systems(AISB/AAMAS-II), Imperial College, London, April 2002.

[12] M. Lauer and M. Riedmiller, “An algorithm for distributed rein-
forcement learning in cooperative multi-agent systems,” in Proc. 17th

ICML. Morgan Kaufmann, San Francisco, CA, 2000, pp. 535–542.
[13] S. Kapetanakis and D. Kudenko, “Reinforcement learning of coordi-

nation in heterogeneous cooperative multi-agent systems,” in Proc. of

AAMAS ’04, 2004, pp. 1258–1259.
[14] R. H. Crites and A. G. Barto, “Elevator group control using multiple

reinforcement learning agents,” Machine Learning, vol. 33, no. 2-3,
pp. 235–262, 1998.

[15] Y. Wang and C. W. de Silva, “Multi-robot box-pushing: Single-agent
q-learning vs. team q-learning,” in Proc. of IROS, 2006, pp. 3694–
3699.

[16] T. Taniguchi and T. Sawaragi, “Adaptive organization of generalized
behavioral concepts for autonomous robots: schema-based modular
reinforcement learning,” in Proc. of Computational Intelligence in

Robotics and Automation, June 2005, pp. 601–606.
[17] L.Matignon, G. J. Laurent, and N. LeFort-Piat, “Improving reinforce-

ment learning speed for robot control,” in Proc. of IROS, 2006, pp.
3172–3177.

[18] M. Benda, V. Jagannathan, and R. Dodhiawala, “On optimal co-
operation of knowledge sources - an experimental investigation.”
Boeing Advanced Technology Center, Boeing Computing Services,
Seattle,Washington, Tech. Rep. BCS-G2010-280, 1986.

