HyTEcH : The Cornell HYbrid TECHnology Tool*!

. + . .
Thomas A. Henzinger* Pei-Hsin Ho

Computer Science Department, Cornell University, Ithaca, NY 14853
(tah|ho)@cs.cornell.edu

Abstract. This paper is addressed to potential users of HYTECH, the Cornell Hybrid
Technology Tool, an automatic tool for analyzing hybrid systems. We review the formal
technologies that have been incorporated into HYTECH, and we illustrate the use of
HyTECH with three nontrivial case studies.

1 Introduction

Hybrid systems are digital real-time systems that interact with the physical world through sensors
and actuators. Due to the rapid development of digital processor technology, hybrid systems
directly control much of what we depend on in our daily lives. Many hybrid systems, ranging from
automobiles to aircraft, operate in safety-critical situations, and therefore call for rigorous analysis
techniques.

HyTEcH! is a symbolic model checker for linear hybrid systems. The underlying system model
is hybrid automata, an extension of finite automata with continuous variables that are governed by
differential equations [ACHHO93]. The requirement specification language is the integrator compu-
tation tree logic ICTL, a branching-time logic with clocks and stop-watches for specifying timing
constraints. Safety, liveness, real-time, and duration requirements of hybrid systems can be specified
in IcTL [AHH93]. Given a hybrid automaton describing a system and an IcTL formula describing
a requirement, HYTECH computes the state predicate that characterizes the set of system states
that satisfy the requirement.

In this report we review the formal technologies that have been incorporated into HYTECH. In
Section 2, we define the syntax and semantics of linear hybrid automata, which were introduced
in [ACHH93, NOSY93]. In Section 3, we give an introduction to ICTL model checking and the
reachability analysis of linear hybrid automata, which was presented in [AHH93, ACH"95]. We
concentrate on the analysis of systems with unknown delay parameters, and use HYTECH to derive
sufficient and necessary conditions on the parameters such that the system satisfies a given ICTL
requirement. We also demonstrate the use of abstract-interpretation operators, which are discussed

*This research was supported in part by the National Science Foundation under grant CCR-9200794, by the Air
Force Office of Scientific Research under contract F49620-93-1-0056, by the Office of Naval Research under YIP grant
N00014-95-1-0520, and by the Defense Advanced Research Projects Agency under grant NAG2-892.

' This paper will appear in the proceedings of the Workshop on Hybrid Systems and Autonomous Control held in
Ithaca, NY, in October, 1994.

tPhone: (607) 255-3009. FAX: (607) 255-4428.

"HYTECH is available by anonymous ftp from ftp.cs.cornell.edu, cd “pub/tah/HyTech. See also
http://www.cs.cornell.edu/Info/People/tah/hytech.html.

in greater detail in [HH95b]. In Section 4, we indicate how nonlinear hybrid systems can be trans-
lated into linear hybrid automata, so that linear analysis techniques apply [HH95a]. Throughout,
we use a temperature controller for a toy nuclear reactor as a running example to illustrate the
use of HYTECH. For the practitioners, we present the actual input language for describing linear
hybrid automata and verification commands.

In Section 5, we apply HYTECH to three nontrivial benchmark problems. All three examples
are taken from the literature, rather than devised by us. The first case study is a distributed control
system introduced by Corbett [Cor94]. The system consists of a controller and two sensors, and is
required to issue control commands to a robot within certain time limits. The two sensor processes
are executed on a single processor, as scheduled by a priority scheduler. This scenario is modeled
by linear hybrid automata with clocks and stop-watches. HYTECH automatically computes the
maximum time difference between two consecutive control commands generated by the controller.
It follows, for example, that a scheduler that gives higher priority to one sensor may meet the
specification requirement, while a scheduler that gives priority to the other sensor may fail the
requirement.

The second case study is a two-robot manufacturing system introduced by Puri and Varaiya [PV93].
The system consists of a conveyor belt with two boxes, a service station, and two robots. The boxes
will not fall to the floor iff initially the boxes are not positioned closely together on the conveyor
belt. HYTECH automatically computes the minimum allowable initial distance between the two
boxes.

The third case study is the Philips audio control protocol presented by Bosscher, Polak, and
Vaandrager [BPV94]. The protocol consists of a sender that converts a bit string into an analog
signal using the so-called Manchester encoding, and a receiver that converts the analog signal back
into a bit string. The sender and the receiver use clocks that may be drifting apart. In [BPV94], it
was shown, by a human proof, that the receiver decodes the signal correctly if and only if the clock
drift is bounded by a certain constant. HYTECH automatically computes that constant for input
strings up to 8 bits. With some extra care in modeling, HYTECH can also be used to analyze the
general case of input strings with arbitrary length [HW95].

2 Specification of Linear Hybrid Automata in HYTECH

The system modeling language of HYTECH is linear hybrid automata [AHH93]. Intuitively, a linear
hybrid automaton is a labeled multigraph (V, E') with a finite set X of real-valued variables. The
edges in E represent discrete system actions and are labeled with guarded assignments to X. The
vertices in V represent continuous environment activities and are labeled with constraints on the
variables in X and their first derivatives. The state of a hybrid automaton changes either through
instantaneous system actions or, while time elapses, through continuous environment activities.

Example: reactor temperature control

We use a variant of the reactor temperature control system from [NOSY93] as a running example.
The system consists of a reactor core and two control rods that control the temperature of the
reactor core. The reactor core is modeled by the linear hybrid automaton in Figure 1. The
temperature of the reactor core is represented by the variable z. Initially the core temperature is
510 degrees and both control rods are not in the reactor core. In this case, the core temperature
rises at a rate that varies between 1 and 5 degrees per second. We use & to denote the first derivative
of the variable z. If the core temperature reaches 550 degrees, one of two control rods can be put

x = 550 xr = 550
rodq add; no_rod adds rods
—59&3—1} Klgiggs) Z—.ogg'cg—s
x> 510 z = 510 z = 510 x> 510
- removeq TETNMOVEY -

Figure 1: The reactor core automaton

into the reactor core to dampen the reaction. If control rod 1 is put in, the core temperature falls
at a rate that may vary between —5 and —1 degrees per second. Control rod 2 has a stronger
effect; if it is put in, the core temperature falls at a rate that varies between —9 and —5 degrees
per second. Either control rod is removed once the core temperature falls back to 510 degrees.

2.1 Syntax

A linear term over a set X of real-valued variables is a linear combination of variables with integer
coefficients. A linear inequality over X is a nonstrict inequality between linear terms over X.2 A
linear hybrid automaton A consists of the following components.

Data variables A finite ordered set X = {z1,z2,...,x,} of real-valued data variables. For exam-
ple, the reactor core automaton from Figure 1 has the single data variable z.

A data state is a point (ay,as,...,a,) in the n-dimensional real space R™ or, equivalently,
a function that maps each variable x; to a real value a;. A convexr data region is a convex
polyhedron in R", and a data region is a finite union of convex data regions. A convex data
predicate is a conjunction of linear inequalities, and a data predicate is a disjunction of convex
data predicates. Every (convex) data predicate ¢ defines a (convex) data region [¢] of data
states that satisfy ¢.

Control locations A finite set V' of vertices called control locations. For example, the reactor
core automaton has the three control locations no_rod, rod,, and rods.

A state (v,s) of the hybrid automaton A consists of a control location v € V and a data
state s € R™. A region J,cy{(v,Sy)} is a collection of data regions S, C R", one for each
control location v € V. A state predicate is a collection |J,cy{(v, @)} of data predicates ¢,,
one for each control location v € V. When writing state predicates, we use the location
counter [, which ranges over the set V' of control locations. The location constraint [= v
denotes the state predicate {(v, true) U, /., {(v', false)}. Each state predicate J,¢cy{(v, #v)}

defines the region |J, oy {(v, [¢.])}-

Location invariants A labeling function inv that assigns to each control location v € V' a convex
data predicate inv(v), the invariant of v. The automaton control may reside in location v
only as long as the invariant inv(v) is true; so the invariants enforce progress in a hybrid
automaton. The state (v, s) is admissible if the data state s satisfies the invariant inv(v). We
write ¥4 for the region J,cv{(v, [inv(v)])} of all admissible states of A.

2The restriction to monstrict inequalities is not essential, but forced upon us by the polyhedron-manipulation
library we use in the current implementation of HyTECH.

In the graphical representation of a hybrid automaton, we suppress invariants of the form
true. In the reactor core automaton, we have inv(no_rod) = true, inv(rod;) = (z > 510),
and inv(rods) = (510 < z). In HYTECH, we specify these invariants as follows:

inv[l[core] == norod] = True
inv[l[core] == rodone] = 510<=x
inv[l[core] == rodtwo] = 510<=x

Continuous activities A labeling function dif assigns to each control location v € V' and each
data variable z; € X a rate interval dif (v,z;) = [a;, b;], where a; and b; are integer constants.
The rate interval dif (v, z;) = [a;, b;] specifies that the first derivative of the data variable z;
may vary within the interval [a;,b;] C R while the automaton control resides in location wv.
If a; = b;, then dif (v, x;) is called the slope of z; in location v. A data variable is a discrete
variable if it has the slope 0 in all locations; a clock, if it has the slope 1 in all locations; and
a stop-watch, if in each location it has either the slope 1 or the slope 0.

In the graphical representation of a hybrid automaton, we write = a short for # € [a, a], and
we suppress rate intervals of the form & = 0. In the reactor core automaton, dif (no_rod,z) =
[1,5], dif (rody,x) = [=5,—1], and dif (rody, z) = [-9, —5]. In HYTECH, we specify these rate
intervals as follows:

dif[core,norod,x] = {1,5}
dif[core,rodone,x] = {-5,-1}
dif[core,rodtwo,x] = {-9,-5}

Transitions A finite multiset E of edges called transitions. Each transition (v,v") identifies a
source location v € V and a target location v' € V. The reactor core automaton has four
transitions.

Synchronization letters A finite set L of letters called synchronization alphabet, and a labeling
function syn that assigns to each transition e € E a letter from L. The synchronization letters
are used to define the parallel composition of hybrid automata. In the graphical representation
of a hybrid automaton, we suppress synchronization letters that do not occur in the alphabet
of any other automata. The reactor core automaton has the four synchronization letters add,
addsy, removeq, and removes.

Discrete actions A labeling function act that assigns to each transition e € E a guarded com-
mand act(e) = (¢ — «). The guard ¢ is a convex data predicate. The command « is a
set of assignments z; := t;, at most one for each data variable x; € X, such that each t; is
a linear term over X. We write dom(c) for the set of variables that make up the left-hand
sides of the assignments in «, and ¢;(s) for the value of the linear term ¢; if interpreted in
the data state s. The command « defines a function on data states that leaves the variables
outside dom(«) unchanged: for all data states s, ai(s) = t;(s) if z; € dom(«), and «a;(s) = s;
if z; ¢ dom(«), where «;(s) denotes the i-th component of the data state a(s). A parameter
is a discrete variable that does not occur in the domain dom(a) of any command o.

In the graphical representation of a hybrid automaton, we write a for the guarded command
true — o, and ¢ for the guarded command ¢ — (), and we suppress the guarded command
true — (. In the reactor core automaton, act(no_rod,rodi) = (x = 550 — (), etc. In
HyTECH, we specify the transitions, synchronization letters, and guarded commands of the
reactor core automaton as follows:

act[core,1]={1[corel==norod &% 550==x, addl, {l[corel->rodone}}
act [core,2]={1[core]l==norod && 550==x, add2, {l[core]l->rodtwo}}
act[core,3]={1[corel==rodone && 510==x, removel, {l[corel->norod}}
act[core,4]1={1[corel==rodtwo && 510==x, remove2, {l[corel->norod}}

Notice that we encode the source and target locations of a transition within a guarded com-
mand.

2.2 Semantics

At any time instant, the state of a hybrid automaton specifies a control location and the values of
all data variables. The state can change in two ways: (1) by an instantaneous discrete transition
that changes both the control location and the values of data variables, or (2) by a time delay that
changes only the values of data variables in a continuous manner according to the rate intervals
of the corresponding control location. Accordingly, we define the following two binary relations on
the admissible states of the given automaton A.

Transition step For all admissible states (v,s) and (v',s') of A, and all synchronization letters
o, let (v,s)> (v, s') iff there exists a transition e from v to v' such that (1) syn(e) = o and

(2) act(e) = (¢ — «) with s € [¢] and s’ = a(s).

Time step For all admissible states (v,s) and (v,s’) of A, and all nonnegative reals 6 > 0, let
(v,s)—6>(v,5') iff there is a differentiable function p: [0,6] — R"™ such that (1) f(0) = s,
(2) f(6) = ¢, (3) for all reals t € [0,6], p(t) € [inv(v)], and (4) for all reals ¢t € (0,6) and
each data variable z;, dp;(t)/dt € dif (v, z;), where p;(t) denotes the i-th component of the
data state p(t).

The linear hybrid automaton A defines the labeled transition system [A] = (¥4,£,—4) that
consists of the infinite state space ¥4, the infinite label set £ = L UR>, and the binary transition
relation —,={> |oc € L} U U{i |6 >0} on X4.

For a region S, we define pre(S) to be the set of all states o such that 0 — 4 ¢’ for some state
o' € S. Similarly, we define post(S) to be the set of all states ¢ such that ¢’ — 4 o for some state
o' € S. Both pre(S) and post(S) are again regions [AHH93]. We write pre*(S) for the infinite
union [J;~q pre’(S), and post*(S) for the infinite union (J;»o post'(S). In other words, pre*(S) is
the set of all states that can reach a state in S by a finite sequence of transitions of the labeled
transition system [A]; and post™(S) is the set of all states that can be reached from a state in S

by a finite sequence of transitions of [A].

2.3 Parallel Composition

A hybrid system typically consists of several components that operate concurrently and communi-
cate with each other. We describe each component as a linear hybrid automaton. The component
automata may coordinate either through shared variables or via synchronization letters. The linear
hybrid automaton that models the entire system is then constructed from the component automata
using a product operation.

Let Ay = (X4, V1, invy, dif 1, E1, L1, syny, acty) and Ay = (Xy, Va, invs, dif 9, Eo, Lo, syns, acty)
be two linear hybrid automata. The product automaton A; x Ay generally interleaves the transitions
of the component automata A; and A,. If, however, a transition e; of A is labeled with a
synchronization letter o that is contained also in the alphabet of As, then ey can be executed only

Figure 2: The control rod automata

simultaneously with a o-labeled transition of A,. Formally, the product A1 x A, is the linear hybrid
automaton A = (XU Xy, V) x Vo, inv, dif, E, L1 U Lo, syn, act):

e Each location (v,v') in Vj x V3 has the invariant inv(v,v') = (inv;(v) A invy(v')). For each
variable € X1\ Xy, dif (v,v"),z) = dif (v, z); for each variable x € X9\ Xy, dif (v,v'),z) =
dif 5(v', x); and for each shared variable x € X1 N Xy, dif ((v,v"), z) = dif | (v,) N dif ,(V', x).

e FE contains the transition e = ((vy, v2), (v, v})) iff

(1) €1 = (vlavll) € By, vy = v'lZa and Synl(el) ¢ Ly; or
(2) e2 = (v2,vh) € Ey, v1 = v}, and syny(e2) & Lq; or
(3) e1 = (v1,v)) € Ey, e2 = (v2,0h) € Ey, and syn (e1) = syny(e2).

Suppose that acti(e1) = (¢1 — aq), and acta(ez) = (¢2 — az). In case (1), syn(e) = syn,(e1)
and act(e) = acti(e1). In case (2), syn(e) = syny(ez) and act(e) = acta(ez). In case (3),
syn(e) = syn (e1) = syny(ez); moreover, act(e) = (¢1 A ¢ — agUayz) if dom(ap)Ndom () =
0, and act(e) = (false — 0) if dom(ar) N dom(ce) # 0,

HYTECH automatically constructs the product automaton from a set of input automata.

For the reactor example, we use the two linear hybrid automata of Figure 2 to model the two
control rods. Due to the mechanics of moving control rods, after a control rod is removed from
the reactor core, it cannot be put back into the core for W seconds, where W is an unknown
parameter. This requirement is enforced by the stop-watch y; that measures the time that has
elapsed since control rod 1 was removed from the reactor core, and the stop-watch y, that measures
the time that has elapsed since control rod 2 was removed. The rod automata synchronize with
the core automaton through synchronization letters such as remove, which indicates the removal
of control rod 1. The entire reactor system, then, is obtained by constructing the product of the
core automaton of Figures 1 and the two rod automata of Figure 2.

We now show how the complete reactor temperature control system is specified in HYTECH.
First we declare the data variables:

AnaVariables = {x, yi, y2}
DisVariables = {w}

The data variables z, y1, and y2 are analog variables, and the data variable W is a discrete variable.
We have already defined the reactor core automaton. Now we define the two control rod automata:

inv[1l[rodl] == out] = 0<=yl
inv[1l[rodl] == in] = 0<=y1
inv[1l[rod2] == out] = 0<=y2
inv[1l[rod2] == in] = 0<=y2

dif[rodl,in,y1] = {0,0}
difl[rodl,out,y1] = {1,1}

difl[rod2,in,y2] = {0,0}
dif[rod2,out,y2] = {1,1}

act[rod1,1] = { 1l[rodil==out && w<=yl, addl, {l[rodi] -> in}}
act[rod1,2] = { 1l[rodil==in, removel, {l[rodi] -> out, y1 -> 0}}
act[rod2,1] = { 1[rod2]==out && w<=y2, add2, {1l[rod2] -> in}}
act[rod2,2] = { 1[rod2]==in, remove2, {l[rod2] -> out, y2 -> 0}}

The synchronization alphabet of each automaton is defined by declaring a scope for each synchro-
nization letter. The scope of the letter ¢ is the set of automata that contain ¢ in their synchro-
nization alphabet. For the reactor temperature control system, we specify

synlremovel] = {rodi,core}
synlremove2] = {rod2,core}
synladd1] = {rodi,core}
synladd2] = {rod2,core}

For example, the letter remove; is used by the reactor core automaton and by the first control rod
automaton. This means that the core automaton and the rod 1 automaton must synchronize on
transitions labeled with remowve;.

While we have given symbolic names like core and no_rod to automata and locations, the
analysis procedures of HYTECH require that all automaton names and location names are integers
starting from 1. To replace the symbolic names with integers, HYTECH calls a macro language
preprocessor m4 when it reads an input file. Therefore, we need to define the integer values of the
symbolic names at the beginning of the input file. The symbolic names that we use for the reactor
temperature control system may be defined as follows:

define(rodi,1)
define(rod2,2)
define(core, 3)
define(rodone,1)
define(rodtwo,?2)
define(norod, 3)
define(out,1)
define(in,?2)

We also must declare the number of input automata, and the number of locations and transitions
of each automaton:

AutomatalNo = 3
locationo = {2,2,3}
transitiono = {2,2,4}

The expression locationo = {2,2,3} means that the first (control rod 1), second (control rod
2), and third (reactor core) automaton has 2, 2, and 3 locations, respectively. The expression
transitiono = {2,2,4} specifies the number of transitions in each input automaton.

Global invariants for modeling urgent transitions

Although the product automaton is constructed automatically by HYTECH, it is sometimes useful
to specify global conjuncts of all invariants of the product automaton. Such global invariants permit,

. HyTEcH
Hybrid automata

Target region
MATHEMATICA maln prograim

IcTL formula ‘ ‘ [‘ ‘

C++ subroutines
7] 1

Halbwachs’s polyhedral library

Figure 3: The architecture of HyTECH

in particular, the modeling of urgent transitions, which are transitions that must be taken as soon
as possible. In the graphical representation of hybrid automata, we use boldface synchronization
letters to mark urgent transitions. HYTECH allows the user to specify location invariants for
locations of the product automaton using the command GlobalInvar. We will show how urgent
transitions can be modeled with global invariants as we analyze the examples of Section 4. The
reactor temperature control system does not have any urgent transitions, so we write:

GlobalInvar = {}

This completes the specification of the reactor temperature control system. Except for initial
define statements, all HYTECH input commands can be written in any order.

3 Symbolic Analysis of Linear Hybrid Automata in HYyTECH

The core of HYTECH is a symbolic model-checking procedure, whose primitives are pre, post, and
boolean operations on regions. The original implementation of HYTECH represented regions as
state predicates and manipulated regions by syntactic operations on formulas. We have improved
the performance of HYTECH by representing and manipulating regions geometrically: each data
region is represented as a union of convex polyhedra. The current implementation of HyTECH
consists of a MATHEMATICA main program and a collection of Ct+ subroutines that make use of
a polyhedron-manipulation library by Halbwachs [Hal93, HRP94]. The architecture of HYTECH is
shown in Figure 3.

3.1 Reachability Analysis

The reachability problem (A, ¢r, ¢r) for a linear hybrid automaton A, an initial state predicate ¢y,
and a final state predicate ¢, asks if the region post*([¢r]) N [¢r] is empty or, equivalently, if
the region [er] N pre*([er]) is empty. In other words, the reachability problem (A, @7, ¢r) asks
if there is no finite path in the underlying transition system [A] from some state in [¢;] to some
state in [or]. If [¢r] represents the set of “initial” states of the automaton A, and [¢] represents
the set of “unsafe” states specified by a safety requirement, then the safety requirement can be
verified by reachability analysis: the automaton satisfies the safety requirement iff the reachability
problem has the answer yes (i.e., post*([¢r]) N [¢r] = 0).

Unfortunately, the computation of post*([¢r]) or pre*([¢r]) may not terminate within a finite
number of post or pre operations, because the reachability problem for linear hybrid automata is
undecidable [ACHH93]. HYTECH, in other words, offers a semidecision procedure for the reacha-
bility analysis. It is our experience, however, that for practical examples, including the examples
in this paper, the computation does terminate and HYTECH solves the corresponding reachability
problems. Indeed, as for the practitioner there is little difference between a nonterminating com-
putation and one that runs out of time or space resources, we submit that decidability questions
are mostly of theoretical interest.

Suppose that in the reactor temperature control system, the reactor needs to be shut down if
the core temperature exceeds 550 degrees. We wish to check the safety requirement that the reactor
never needs to be shut down; more precisely, whenever the core temperature reaches 530 degrees,
then either y; or y, shows at least W seconds, thus allowing the corresponding control rod to be
put into the reactor core. Let A denote the product of the reactor core automaton and the two
control rod automata. We define the reachability problem (A, o7,) as follows. The initial states
are characterized by the state predicate

or = (l[rodi] = out A I[rods] = out A l[core] = no_rod A x =510 A y1 =y = W);

that is, initially no rod is in the reactor core, the initial temperature is 510 degrees, and y; = yo = W
(we write I[c] for the component of the location counter ! that is associated with the component
automaton ¢; so I[core] ranges over the locations of the reactor core automaton, etc.). The unsafe
states are characterized by the state predicate

op = (l[core] = no_rod N =550 A yy <W A ya <W);

that is, the unsafe situation is that the core temperature reaches 550 degrees and neither y; nor
y2 shows more than W seconds® (and, thus, none of the control rods is available). The answer to
the reachability problem (A, @7, pr) is yes iff the reactor temperature control system satisfies the
safety requirement.

In HYTECH, the reachability problem is specified as follows:

InitialState = 1l[rodl]l==out && 1l[rod2]==out && l[corel==norod &&
510==x && w==yl && w==y2
Bad = l[corel==norod && 550==x && yl<=w && y2<=w

Forward versus backward analysis

HYTECH can attack a reachability problem by forward analysis or by backward analysis. Given the
reachability problem (A, ¢r,¢r), the forward analysis computes the state predicate that defines
the region post*([¢r]), and then takes the conjunction with the final state predicate ¢p; the
backward analysis computes the state predicate that defines the region pre*([¢r]), and then takes
the conjunction with the initial state predicate ;. For a given reachability problem, one direction
may perform better than the other direction. In fact, it may be that one direction terminates and
the other does not. For example, only the backward analysis terminates for the reactor temperature
control system.
We ask HYTECH to perform a forward or backward analysis, respectively, by writing

Go := PrintTime[Forward]

3Remember that we are limited to nonstrict inequalities.

or
Go := PrintTime[Backward]

These commands also print the CPU time consumed by the reachability analysis.

Parametric analysis

The automatic derivation of parameters was introduced for real-time systems in [AHV93] and
applied to hybrid systems in [AHH93]. We can use HYTECH to synthesize necessary and sufficient
conditions on system parameters such that a hybrid automaton satisfies a requirement.

Recall that the reactor temperature control system contains the parameter w, which specifies
the necessary rest time for a control rod. Clearly, the safety requirement will not be satisfied
for large values of w. Indeed, the target region [¢r] N pre*([¢r]) gives a sufficient and necessary
condition on w such that the safety requirement is not satisfied. Typically the state predicate that
defines the target region is too complex to see the conditions on the parameters clearly, but these
can be isolated in HYTECH using projection operators. By writing

EliminateLocList = {rodl,rod2,core}

EliminateVarList = {x,yl,y2}

we eliminate all location information from the state predicate that defines the target region, and
we project out all information about the data variables z, y;, and y5. Then the resulting projection
of the target region, as computed by HYTECH using backward analysis, is

9w >= 184

In other words, the target region is empty if and only if 9W < 184. It follows that 9W < 184 is a
necessary and sufficient condition on the parameter W that prevents the reactor from shutdown.
The verification requires 17.27 seconds of CPU time.*

3.2 Abstract Interpretation

To expedite the reachability analysis and to force the termination of the analysis, HY TECH provides
several abstract-interpretation operators [CC77, HH95b], including the convex-hull operator and the
extrapolation operator. Our extrapolation operator is similar to the widening operator of [CHTS,
Hal93].

An abstract-interpretation operator approximates a set of convex data regions with a single
convex data region. The convez-hull operator overapproximates a union of convex data regions by
its convex hull. The extrapolation operator overapproximates a directed chain S C f(S) C f2(S) C

- of convex data regions by a “guess” of the limit region |J;», f'(S). Either operator, or the
combination of both operators, may cause the termination of a forward or backward reachability
analysis that does not terminate otherwise. However, since the use of either operator results in an
overapproximation of the target region, the abstract analysis is sound but not complete: if HYyTECH
returns the answer yes to a reachability problem, then the approximate target region is empty, and
therefore also the exact target region must be empty; but if the answer is no, then the exact
target region may still be empty, and the correct answer to the reachability problem may be yes.
In the latter case, we have to refine our approximation, by applying fewer abstract-interpretation
operators, or by using two-way iterative approximation (see below).

In HYTECH, we write

*All performance figures are given for a SPARC 670MP station.

10

TakeConvex = True

or
TakeConvex = False

to turn the convex-hull operator on or off, respectively. The extrapolation operator can be turned on
or off selectively for individual control locations. For example, if we want to apply the extrapolation
operator only to data regions that correspond to the two locations I[rod;] = out A I[rods] =
in A l[core] = no_rod and I[rod] = in A [[rods] = out A [[core] = no_rod of the reactor temperature
control system, then we write:

ExtraSet[lc_1=((1lc === 1[rodl]==out && 1l[rod2]==in && l[core]==norod)
Il (lc === 1[rodl]==in && 1l[rod2]==out && l[corel==norod))

The commands

ExtraSet[1lc_] True

and

ExtraSet[lc_] False

ask HYTECH to apply the extrapolation operator to all or none of the control locations, respectively.
(In our analysis of the reactor temperature control system, it was not necessary to use any abstract-
interpretation operators.)

Two-way iterative approximation

If inconclusive, the approximate reachability analysis can be refined by alternating approximate
forward and backward analysis [CC92, DW95]. If any abstract-interpretation operators are used,
HyTECH automatically performs a two-way iterative analysis, beginning with the specified forward
or backward pass. The readers should refer to [HH95b] for the details about the two-way iterative
analysis of hybrid systems.

3.3 IcTtL Model Checking

To check hybrid automata against more general requirements than reachability, we use the re-
quirement specification language IcTL [AHH93]. ICTL is a branching-time logic in the tradition of
CtL [CESS86], with additional clock and stop-watch variables for specifying timing constraints. For
a formal definition of IcTL, and a discussion of the model-checking algorithm, we refer the reader
to [AHHO93]; here we present only a couple of typical ICTL requirements for the reactor temperature
control system.

First, recall the safety requirement that the reactor never needs to be shut down, which was
characterized by a reachability problem (A, ¢r,¢r) in Section 3.1. In IcTL, the safety requirement
is specified by the formula

or — VO-op,

which asserts that in the labeled transition system [A], along all paths of infinite duration that
start from an initial state, no unsafe state is visited.

In addition to safety requirements, in ICTL we can specify also liveness, real-time, and duration
requirements of hybrid automata. Consider, for example, the duration requirement that it is

11

=
~

y2 2 W y

[N

Il
o =

remove; removes

Figure 4: The augmented control rod automata

possible to keep the reactor rumning without using either control rod more than one third of the
time. To specify duration requirements, we use stop-watches. The type of a stop-watch z is a set
U of control locations: the stop-watch z has the slope 1 whenever the automaton control is in a
location of U, and otherwise z has the slope 0. Then z measures the accumulated amount of time
that the automaton control spends in locations of U. We specify the type of a stop-watch by a state
predicate that constrains the location counter. For example, we write (z;: [[rod;] = in) to declare
that the variable z; is a stop-watch whose type is the set of all control locations where control
rod 1 is in the reactor core. The given duration requirement uses a clock and two stop-watches.
The clock z (a stop-watch of type true) measures the total elapsed time, the stop-watch z; of type
l[[rod,] = in measures the accumulated amount of time that control rod 1 spends in the reactor
core, and the stop-watch zp of type I[rods] = in measures the accumulated amount of time that
control rod 2 spends in the reactor core. The IcTL formula

or — (z: true)(z1 : l[rod,] = in)(z2: l[rods] = in)3d0(x < 550 A 321 < 2z A 329 < 2)

asserts that in the labeled transition system [A], there is a path of infinite duration that starts from
an initial state along which the core temperature does not exceed 550 degrees, and the accumulated
time that either control rod spends in the reactor core is always at most a third of the total elapsed
time.

While the original HYTECH prototype accepts ICTL input, we have not yet completed the im-
plementation of IcTL model checking for the current version of HYTECH. However, like safety
requirements, also many real-time and duration requirements can be reduced to reachability anal-
ysis, by moving clocks and stop-watches from the requirement specification to the system model.
Consider, for example, the duration requirement of the reactor temperature control system that
independent of the control strategy that is used for deciding which control rod to put into the reactor
core, each control rod is used at most one third of the time:

or — (z:true)(z1: l[rodi] = in)(zp: l[rods] = in) VO(32z1 < z A 329 < 2).

To verify this requirement, we move the clock z and the stop-watches z; and 22 to the control rod
automata as shown in Figure 4. Then we use HYTECH to check if any state in the unsafe region
[321 > 2 V 323 > 2] is reachable from an initial state.

4 Analysis of Nonlinear Hybrid Systems

Many physical quantities, such as temperature, exhibit nonconstant derivatives. When using lin-
ear hybrid automata for modeling, these quantities need to be either translated into piecewise-
linear quantities or approximated by rate intervals. Both options can be formalized as algorithmic
translations—the clock translation and the rate translation—from nonlinear hybrid automata to lin-
ear hybrid automata. Both translations are currently being implemented in HYTECH, and formal
definitions of the translations can be found in [HH95a].

12

r =510

add, no_rod r jd?ifo rod s
&= —50) i=Z —60
x =510 1 > x =510 Z -
removeq removes v 2510

Figure 5: The nonlinear reactor core automaton

te =0

ty =10In5 — 1, :=0 Q/ ty, =10In5 — ¢, :=0

rodq addT no_rod adds rods
te <10In5 tr <10In %
; remove;) removes ; ‘
t, =1 tr =1 ty =1
1y =10In5 — 1, :=0 I‘I:'l[)lnf—]ﬁ\tx::O

Figure 6: The clock-translated reactor core automaton

4.1 Clock Translation

Suppose that the reactor core of the reactor temperature control example is modeled by the hybrid
automaton shown in Figure 5. The core temperature x increases according to the differential
equation & = z/10 — 50 if no control rod is in the reactor core; x decreases according to the
differential equation # = /10 — 56 if control rod 1 is in the reactor core; and z decreases according
to the differential equation & = x/10— 60 if control rod 2 is in the reactor core. Since the derivative
of x is not governed by a rate interval, we say that = is a nonlinear variable, and the automaton
containing z is a nonlinear hybrid automaton.

The clock translation replaces nonlinear variables by clocks. The nonlinear variable x can
be replaced by a clock if its value is uniquely determined by the last assignment to x and the
time that has expired since that assignment. For example, the core temperature x from Figure 5
can be replaced by a clock t,. The resulting automaton, which is shown in Figure 6, is not a
linear hybrid automaton, because real numbers occur in invariants and guards. In a second step,
we overapproximate the automaton of Figure 6 by the linear hybrid automaton of Figure 7. For
instance, since 16 < 10In 5 < 16.1, we overapproximate the the invariant ¢, < 101n 5 of the location
no_rod by the invariant 10t, < 161, and we overapproximate the guard ¢, = 101n 5 of the transition
from no_rod to rod, by the guard 160 < 10¢, < 161.

Now suppose we wish to check if a final state in [¢r] is reachable from an initial state in [¢7]
according to the nonlinear hybrid automaton of Figure 5. For simplicity, assume that neither oy
nor ¢ contain the nonlinear variable z. If no final state in [] is reachable from an initial state
in [¢r] according to the linear hybrid automaton of Figure 6, which can be checked using HYTECH,
then this is also the case for the original nonlinear hybrid automaton of Figure 5. The converse,
however, is not necessarily true, because of our overapproximation of invariants and guards. So
if the reachability problem for the overapproximated automaton has a positive answer, we cannot
conclude anything about the original reachability problem and must refine our approximation.

In summary, the clock translation of nonlinear variables is exact (i.e., it preserves all IcTL

13

ty =0
160 < 10, <161 — t, =0 160 < 10t, < 161 — t; : =0

rody add; no_rod add- rods
10t, < 1615 < 2 (10t, < 89
=1 remove; =1 removes =1

160 < 10, < 161 — 5 :=0 88 < 10ty < 89 — {5 := 0

Figure 7: The overapproximated clock-translated core automaton

x =1L

/dR 2=U

addz

removes

remowvey

Figure 8: The reactor core automaton with linear worst-case assumptions

requirements) up to the representation of real numbers. The applicability of the clock translation
depends on the solvability of differential equations, and we have begun to characterize sufficient
conditions for the applicability of the clock translation [HH95a).

4.2 Rate Translation

The rate translation overapproximates nonlinear variables using linear variables that are governed
by rate intervals. For the nonlinear variable x, and for each control location v, we compute the
minimal and maximal derivative of z in v that observes the invariant of v. Consider, for example,
the location rod; of the reactor core automaton from Figure 5, with the differential equation
= x/10 — 56. Since we can strengthen the invariant to 510 < z < 550, the derivative of
z is bounded below by —5 and above by —1. Thus we can overapproximate the behavior of the
nonlinear variable z in the location rod; by replacing the differential equation with the rate interval
dif (no_rod, z) = [-5,—1]. By treating the other locations similarly, we obtain the linear hybrid
automaton of Figure 1.

Recall that HYTECH guarantees that the reactor core automaton of Figure 1 meets its safety
requirement iff the parameter W satisfies the condition 9W < 184. For the clock-translated reactor
core automaton of Figure 7, HYTECH computes the weaker condition 5W < 189. This condition
is weaker, because the clock translation of Figure 7 gives a better approximation of the nonlinear
system of Figure 5 than does the rate translation of Figure 1. Thus better approximations allow the
design engineers to use slower mechanisms for moving the control rods. If desired, the approximation
by rate translation can be refined by splitting control locations [HH95a].

Finally, suppose we replace the differential equations for the nonlinear variable x of the reactor
core automaton from Figure 5 by worst-case constant-slope assumptions. By experimenting, we find
that under these simplifying assumptions, additional parameters can be synthesized by HYTECH. In
particular, we replace the lower bound of 510 and the upper bound of 550 for the core temperature
by the parameters L and U, respectively. The resulting linear hybrid automaton is shown in

14

Sensorl Sensor?2

Figure 9: The two sensors

21‘121

Sensory

1027 < 11

Figure 10: The scheduler

Figure 8. HYTECH automatically synthesizes a necessary and sufficient condition on the three
parameters W, L, and U such that the reactor meets the safety requirement of never being shut
down:

45W < 23(U — L)

(the computation uses 17.38 seconds of CPU time). Notice that if we replace the parameters L
and U by the constants 510 and 550, respectively, we obtain exactly the condition 9W < 184 that
results from analyzing the rate-translated reactor core automaton of Figure 1.

5 Three Case Studies
We report on the application of HYTECH to three nontrivial benchmark problems.

5.1 A Distributed Control System with Time-outs

The distributed control system of [Cor94| consists of two sensors and a controller that generates
control commands to a robot according to the sensor readings. The programs for the two sensors

15

102 >29 —u:=0 102 29— u:=0

signal
102 > 36 —

Figure 11: The controller

and the controller are written in ADA. The two sensors share a single processor, and the priority
of sensor 2 for using the processor is higher than the priority of sensor 1. In other words, if both
sensor 1 and sensor 2 want to use the processor to construct a reading, only sensor 2 obtains
the processor, and sensor 1 has to wait. The two sensors are modeled by the two linear hybrid
automata in Figure 9 and the priorities for using the shared processor are modeled by the scheduler
automaton in Figure 10.

Each sensor can be constructing a reading (location read), waiting for sending the reading
(location wait), sending the reading (location send), or sleeping (location done). The processor
can be scheduled idle (location idle), serving sensor 1 (location sensor), serving sensor 2 while
sensor 1 is waiting (location sensora&wait;), or serving sensor 2 while sensor 1 is not waiting
(location sensors).

Each sensor constructs a reading and sends the reading to the controller. The shared processor
for constructing sensor readings is requested via request transitions, the completion of a reading is
signaled via read transitions, and the reading is delivered to the controller via send transitions.
Sensor 1 takes 0.5 to 1.1 milliseconds and sensor 2 takes 1.5 to 2 milliseconds of CPU time to
construct a reading. These times are measured by the stop-watches x; and z9 of the scheduler
automaton. Notice that at most one of the two stop-watches z; and x5 runs in a location of the
scheduler automaton, which reflects the fact that only one sensor can use the shared processor
at a time. If sensor 1 loses the processor because of preemption by sensor 2, it can continue the
construction of its reading after the processor is released by sensor 2.

Once constructed, the reading of sensor 1 expires if it is not delivered within 4 milliseconds, and
the reading of sensor 2 expires if it is not delivered within 8 milliseconds. These times are measured
by the clocks y; and y; of the sensor automata. If a reading expires, then a new reading must be
constructed. After successfully delivering a reading, a sensor sleeps for 6 milliseconds (measured
again by the clocks y; and y2), and then constructs the next reading.

The controller is modeled by the automaton in Figure 11. The controller is executed on a
dedicated processor, so it does not compete with the sensors for CPU time. We use the clock z

16

to measure the delays and time-outs of the controller. The controller accepts and acknowledges a
reading from each sensor, in either order, and then computes and sends a command to the robot.
The sensor readings are acknowledged via ack transitions, and the robot command is delivered
via a signal transition. It takes 0.9 to 1 milliseconds to receive and acknowledge a sensor reading.
The two sensor readings that are used to construct a robot command must be received within 10
milliseconds. If the controller receives a reading from one sensor but does not receive the reading
from the other sensor within 10 milliseconds, then the first sensor reading expires (via an ezpire
transition). Once both reading are received, the controller takes 3.6 to 5.6 milliseconds to synthesize
a robot command.

We want to know how often a robot command can be generated by the controller. For this
purpose, we add a clock ¢ to the controller automaton such that ¢ measures the elapsed time since
the last robot command was sent. The slope of the clock ¢ is 1 in all locations of the controller
automaton (this is omitted from Figure 11), and ¢ is reset to 0 whenever a robot command is
sent. We want to compute the maximum value of the clock ¢ in all states that are reachable in the
product of all four automata.

However, the product of the four automata does not model the system exactly according to
Corbett’s specification. This is because the send transitions should be urgent, that is, they should
be taken as soon as they are enabled. We model the urgency of the send transitions by adding an
additional clock, u, and global invariants. The clock u is reset whenever a sensor is ready to send a
reading to the controller, and whenever the controller is ready to receive a sensor reading. Then we
use the global invariant that u = 0 if both a sensor and the controller are ready for a transmission;
that is,

({[sensor1] = wait A [[controller] = rest — u=0) A
({[sensorg] = wait A l[controller] = rest — u=0) A
({[sensor] = wait A l[controller] = wait; — u=10) A
(I[sensora] = wait A l[controller] = waity — u=0).

This invariant enforces whenever a transmission of a sensor reading is enabled, the transmission
happens immediately.
In HYTECH, the global invariant is defined as follows:

Globallnvar = {{l[semsoril==wait && l[controller]==rest, O==u},
{1[sensor2]==wait && l[controller]==rest, O==u},
{1[sensori]==wait && l[controller]==waitl, O==u},
{1[sensor2]==wait && l[controller]==wait2, 0==u)}}

To compute the range of possible values for the clock ¢ in the reachable states, we write:

InitialState = 1l[sensori]==done && 1l[sensor2]==done && 1l[scheduler]==
idle && l[controller]==rest && O==c && 6==y1 && 6==y2 && 0==
Bad = True

EliminateLocList = {sensorl,sensor2,sched,gen}
EliminateVarList = {Xl,x2,y1,y2,z,u}

Notice that, using the two projection operators, we ask HYTECH to print only information about
the clock ¢. Using forward analysis without approximation, HYTECH returns, in 89.53 seconds of
CPU time, the following answer:

moving belt

Cbot D box 1 robot i)

service station

Figure 12: The two-robot manufacturing system

s_ready
_— _— =
d:=0
5<d

d_put,
d_turnleft el d_putdouwn
d<6 d<2
d=1 d-put, d=1
1<d—=d:=90

Figure 13: Robot D

0 <= c && -12 <= =5*xc || -7 <= -2%c && 9 <= 10%*c ||
-3 <= -c && 7 <= 10%c || -9 <= -2%c && 3 <= 2%c ||
12 <= b*c && -28 <= -b*c || 5 <= 2%c && -18 <= -2%c ||
33 <= 10*c && -105 <= -10%c || 42 <= 5*c && -56 <= -5%c

From this result (the last disjunct is 42 < 5¢ A =56 < —5¢), it follows that the maximum value of
the clock c is 11.2; that is, a robot command is generated by the controller at least once every 11.2
milliseconds. We can also apply HYTECH to analyze the same system except that the priority of
sensor 1 for using the shared processor is higher than the priority of sensor 2. In that case, a robot
command is generated at least once every 11.0 milliseconds.

5.2 A Two-robot Manufacturing System

Puri and Varaiya [PV95] designed a manufacturing system that consists of a conveyor belt with
two boxes, a service station, and two robots. The system is illustrated in Figure 12. This system
has been also modeled and analyzed in [DY95].

Robot D, one of the two robots, is modeled by the linear hybrid automaton of Figure 13. The
clock d is used to measure the time needed for the actions performed by robot D. Initially robot D
is looking at the service station (location d_stay). When it sees an unprocessed box in the service
station, it picks up that box from the service station in 1 to 2 seconds (location d_pick), makes a
right turn in 5 to 6 seconds (location d_turnright), puts the box at one end of the conveyor belt in 1
to 2 seconds (location d_putdown), makes a left turn back to the service station in 5 to 6 seconds
(location d_turnleft), and stays at there waiting for the next unprocessed box (location d_stay).

18

133 < bj;u:=0 mov_f

167 > b;
bi=1

redmark;

g-pick;

Figure 14: Box i

redmark; 3<g—g:=0
g:=0 g-pick g-picky g-turnright
g<8 g <11
g=1 — g =1
redmarks 3<g—g:=0 9

g:=20

1<g—g:=0

g_turnleft g-puty g_putdown
g <12 g <2

g=1 1<g—g:=0

g-put,
Figure 15: Robot G

The two boxes, box 1 and box 2, are modeled by the indexed linear hybrid automaton in
Figure 14, where the index i is either 1 (for box 1) or 2 (for box 2). A box may be in the service
station (location on_serve), held by robot D (location on_d), moving on the conveyor belt before a
red mark (location mov_m), moving on the conveyor belt beyond the red mark (location mov_f),
held by robot G (location on_g), or falling off the end of the conveyor belt (location fall). A box
on the conveyor belt is processed by the manufacturing system. The conveyor belt is moving at a
certain speed from one end to the other. The clock b; measures the total time that box ¢ spends on
the conveyor belt, and thus determines the position of box ¢ on the belt. A box requires 133 to 134
seconds to reach the red mark after it is placed on the belt by robot D. If a box is not picked up
by robot G before the end of the belt, then the box falls off the belt 166 to 167 seconds after it is
placed on the belt.

Robot G at the end of the conveyor belt is modeled by the automaton in Figure 15. The clock
g measures the time needed to perform the actions of robot G. Initially robot G is looking at the
red mark next to the conveyor belt (location g_stay). When it sees a processed box moving beyond
the red mark, it picks up that box from the belt in 3 to 8 seconds (location g_pick), makes a right
turn in 6 to 11 seconds (location g_turnright), waits for the service station to be empty (location
g-wait), puts the box into the service station in 6 to 11 seconds (location g_putdown), makes a left
turn back to the conveyor belt in 1 to 2 seconds (location g_turnleft), and stays there watching the
red mark (location g_stay).

19

d_pick,

ui=0 on_servi 8§<s
g 1— 0 S S 10
s_empty / i=1
g-put,
v 8§<s
s_ready)
d_pick,
u:=0

Figure 16: The service station

The service station is modeled by the automaton in Figure 16. Whenever the service station
receives a processed box, it pops up an unprocessed box for robot D to pick up. The service station
takes 8 to 10 seconds to switch the processed and unprocessed boxes, which is measured by the
clock s. Initially both boxes are on the conveyor belt before the red mark. There are at most two
boxes on the belt at any time, because the service station pops up a new box only when it receives
a processed box from robot G.

According to Puri and Varaiya’s specification, the transitions with the synchronization letters
s_ready, redmark;, redmarks,, and s_empty, are urgent; that is, robot D picks up a box from
the service station as soon as it is ready and sees a box in the service station, etc. We treat the
s_ready transitions as ordinary transitions, because this assumption will not affect our analysis.
We use the clock u and the following global invariants to model the urgent transitions:

Globallnvar = {{l[grobot]==gstay && 1l[box1]==movf, O==u},
{1[grobot]==gstay && 1l[box2]==movf, O0==u},
{1[grobot]==gwait && l[station]l==sempty, O==u}}

We want to check the safety requirement that no box will ever fall off the conveyor belt. This
requirement clearly depends on the initial positions of the two boxes on the belt. Then we use
HYTECH to analyze the reachability problem (A, ¢r,¢r), where A is the product of all five au-
tomata and

er = (I[box1] = mov_m A l[boxs] = mov_m A l[robotg] = g_stay A l[robotp] =
d_stay A l[servicestation] = s_empty A u =0),
or = (l[box1] = fall v l[boxs] = fall).

After we simplified the product automaton by eliminating unreachable locations and identifying
locations in which a box is fallen, HYTECH is able to return, in 163.41 minutes of CPU time, the
following target region:

-1 <= -b1+b2 && -9 <= b1-b2 || -1 <= b1-b2 && -9 <= -bi+b2
using backward computation without approximation. It follows that

b2 -b1>9V bl —-02>9

is a necessary and sufficient condition on the initial condition of the system so that neither box will
fall off the conveyor belt; that is, |by — ba| > 9.

20

SERNE A RER TR

Figure 17: The Manchester encoding

5.3 The Philips Audio Control Protocol

In [BPV94], the timing-based Philips audio control protocol is modeled by an extension of the timed
I/O automata model [LV92, LV93], and verified mathematically without computer support. We
model the same protocol using linear hybrid automata, and verify its correctness for input strings
up to length 8 using HYTECH.

The protocol consists of a sender and a receiver. The sender uses the Manchester encoding to
encode an input string of bits into a continuous signal (see Figure 17 for the encoding of 10011).
The voltage on the communication bus is either high or low. A 0 bit is sent as a down signal from
high to low voltage; a 1 bit is sent as a up signal from low to high voltage. The time line is divided
into time slots of equal length, and the signals are sent in the middle of each time slot. The receiver
decodes the continuous signal into an output string of bits. The protocol is correct iff the input
and output strings match.

The time slots are measured by local clocks of the sender and receiver. These local clocks,
however, may not be accurate, and their derivatives may vary within the rate interval [%, %]
Besides this potential 5% (or 1/20) timing error, the protocol faces also the following complications:

e The receiver does not know when the first time slot begins. The sender and the receiver can
synchronize at the beginning of the transmission by knowing that (1) before the transmission,
the voltage is low, and (2) the transmitted string starts with the bit 1.

e The receiver does not know the length of the bit string that is transmitted.

e The receiver sees only up signals and no down signals (because down signals are difficult to
detect).

Using HYTECH, we verify that whenever the sender encodes and sends a string of up to 8 bits, the
receiver correctly decodes all bits in string. HYTECH also shows that the protocol is incorrect in
the case that the local clocks are subject to timing errors up to 1/15.

We use four linear hybrid automata to model the input, the sender, the receiver, and the output.
The input automaton of Figure 18 generates all the possible bit strings up to a certain length. The
length of the input string is decided by the initial value of the integer variable k. Whenever a
bit is nondeterministically generated by the input automaton, the value of k is decremented by 1.
When k becomes 0, the input automaton nondeterministically generates a suffix of one or two bits.
So the input automaton generates all possible input strings of £ + 1 or k£ 4+ 2 bits. The integer
variable ¢ stores the message that is sent. If the bit 0 is sent, then ¢ is updated to 2¢; if the bit 1 is
sent, then c is updated to 2¢ + 1. The input automaton synchronizes with the sender through the
synchronization letters head; and input;, which correspond to looking at the next bit of the input
string and sending the next bit of the input string, respectively.

The sender is modeled by the automaton of Figure 19. The variable x represents the drifting

19 21] for all locations of the sender automaton.

local clock of the sender, and its rate interval is [55, 55

21

head,

last = 0
—_—
ANe=0 Ak =

headq
k=0

— last :=1 — last := ¥

odd_headq odd_headg

head, heady

mput
headg ci=2c
k:=k-1
. ast :=1
mputg evengo
c:=2c
k:=k—-1
head
input
head. P%% even_headg headg
c:=2¢c
k:=k—-1

Figure 18: The input automaton

The sender synchronizes with the receiver through the synchronization letter up, which represents
up signals.

The receiver is modeled by the automaton of Figure 20. The variable y represents the drifting
local clock of the receiver, and its rate interval is [%, %] for all locations of the receiver automaton.
The receiver sees each up signal of the sender and decides if it encodes a 0 or a 1. If no up signal is
received for a certain amount of time, the receiver times out and concludes that the transmission
is completed. The receiver synchronizes with the output automaton through the synchronization
letters output;, which represent the bits of the decoded string,.

The output automaton of Figure 21 stores the decoded bit string in the integer variable d. Then
¢ = d signals a correct decoding, and ¢ # d signals an error in the protocol. We check if it is possible
to reach a state that satisfies ¢ # d when the transmission is completed. A forward reachability
analysis with HYTECH successfully verifies the protocol for £k = 6. The performance of HYTECH is
summarized in Table 22.

Remark. Since the submission of this paper, we have reimplemented HYTECH independent
of MATHEMATICA [HHWT95]. That implementation is significantly more efficient, and achieves

22

z=0 r =0 qnputy

r=4Q — x:=0

head .

head x =4Q A -lask,

z =4Q A last

headg inputU

translowg

transhigh,

r <4Q

r <2Q

Figure 19: The sender automaton

speedup of one to three orders of magnitude. For example, the distributed control system of Sec-
tion 5.1 can be checked using 12 seconds of CPU time, and the manufacturing system of Section 5.2
can be checked using 353 seconds of CPU time.

Acknowledgement. We thank Howard Wong-Toi for the performance figures of the new imple-
mentation of HYTECH and a careful reading of this paper.

References

[ACH'95] R. Alur, C. Coucoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Oliv-
ero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3-34, 1995.

[ACHH93] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: an al-
gorithmic approach to the specification and verification of hybrid systems. In R.L.
Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid Systems, Lecture
Notes in Computer Science 736, pages 209-229. Springer-Verlag, 1993.

[AHH93] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded
systems. In Proceedings of the 14th Annual Real-time Systems Symposium, pages 2-11.
IEEE Computer Society Press, 1993.

23

[AHV93]

[BPV94]

[CCT7]

[CC92]

odd

last_is_0

3Q <y <5Q 3Q <y
—y:=0 — Y

5Q <y < 7Q
—y:=0 1l next_is 0

outputy y=0

odd

next_are_01

outputy

Up

y=10

even, Q<y 50 <7 r even
lastis.1 \Up —y:=0 —y:=0 last_is_0 Up
y <9Q ,
outputg outputy ys7Q
y =9Q stop y=7Q

y=9Q U outputy y=7Q

Figure 20: The receiver automaton

R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning. In Proceed-
ings of the 25th Annual Symposium on Theory of Computing, pages 592-601. ACM

Press, 1993.

D. Bosscher, 1. Polak, and F. Vaandrager. Verification of an audio-control protocol.
In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, FTRTFT 94: Formal
Techniques in Real-time and Fault-tolerant Systems, Lecture Notes in Computer Science

863, pages 170-192. Springer-Verlag, 1994.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the static
analysis of programs by construction or approximation of fixpoints. In Proceedings of
the Fourth Annual Symposium on Principles of Programming Languages, pages 238—

252, Los Angeles, California, 1977. ACM Press.

P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation. In PLILP, Lecture Notes in Computer Science

631, pages 269-295. Springer-Verlag, 1992.

24

[CESS6]

[CHTS]

[Cor94]

[DW93]

[DY95]

[Hal93]

[HHO5a]

[HHO5b]

output,

d:=2d+1

outputy,

Figure 21: The output automaton

Clock error | Input length |Location number| Transition number | CPU time
5o0r6 681.8 sec.
1/20 Proved
7 or 8 1300 2795 4275 sec.
1/15 5or 6 2018 sec. | Disproved

Figure 22: Verification of the audio control protocol

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal-logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244-263, 1986.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In Proceedings of the Fifth Annual Symposium on Principles of
Programming Languages. ACM Press, 1978.

J.C. Corbett. Modeling and analysis of real-time Ada tasking programs. In Proceedings
of the 15th Annual Real-time Systems Symposium. IEEE Computer Society Press, 1994.

D.L. Dill and H. Wong-Toi. Verification of real-time systems by successive over- and
underapproximation. In CAV 95: Computer-aided Verification, Lecture Notes in Com-
puter Science. Springer-Verlag, 1995.

C. Daws and S. Yovine. Verification of multirate timed automata with KRONOS: two
examples. Technical Report Spectre-95-06, VERIMAG, April 1995.

N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, editor,
CAV 93: Computer-aided Verification, Lecture Notes in Computer Science 697, pages
333 346. Springer-Verlag, 1993.

T.A. Henzinger and P.-H. Ho. Algorithmic analysis of nonlinear hybrid systems. In
CAV 95: Computer-aided Verification, Lecture Notes in Computer Science. Springer-
Verlag, 1995.

T.A. Henzinger and P.-H. Ho. A note on abstract-interpretation strategies for hybrid
automata. To appear at Proceedings of Hybrid System Workshop, 1995.

25

[HHWT95] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: The next generation. Submit-

[HRP94]

[HWO3]

[LV92]

[LV93]

[NOSY93]

[PV93]

ted, 1995.

N. Halbwachs, P. Raymond, and Y.-E. Proy. Verification of linear hybrid systems by
means of convex approximation. In B. LeCharlier, editor, International Symposium on
Static Analysis, SAS’94, Lecture Notes in Computer Science 864, Namur (belgium),
September 1994. Springer-Verlag.

P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control protocol. In CAV
95: Computer-aided Verification, Lecture Notes in Computer Science. Springer-Verlag,
1995.

N.A. Lynch and F. Vaandrager. Action transducers and timed automata. In R.J.
Cleaveland, editor, CONCUR 92: Theories of Concurrency, Lecture Notes in Computer
Science 630, pages 436-455. Springer-Verlag, 1992.

N.A. Lynch and F. Vaandrager. Forward and backward simulations, part ii: timing-
based systems. Technical Report CS-R9314, CWI, Amsterdam, 1993.

X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the description
and analysis of hybrid systems. In R.L. Grossman, A. Nerode, A.P. Ravn, and
H. Rischel, editors, Hybrid Systems, Lecture Notes in Computer Science 736, pages
149-178. Springer-Verlag, 1993.

A. Puri and P. Varaiya. Verification of hybrid systems using abstractions. To appear
at Proceedings of Hybrid System Workshop, 1995.

26

