NASA-7M-83561

NASA Technical Memorandum 83561

NASA-TM-83561 19840008116

HYTESS—A Hypothetical Turbofan Engine Simplified Simulation

Walter C. Merrill Lewis Research Center Cleveland, Ohio

and

Edward C. Beattie and Richard F. LaPrad Pratt & Whitney Aircraft Co. United Technologies Corp. East Hartford, Connecticut

and

Stephen M. Rock and Muhammed M. Akhter Systems Control Technology, Inc. Palo Alto, California

LIBRARY COPY

上审13 (984

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

January 1984

~ _. _ _

- ·

HYTESS - A HYPOTHETICAL TURBOFAN ENGINE SIMPLIFIED SIMULATION

Walter C. Merrill National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

Edward C. Beattie and Richard F. LaPrad Pratt & Whitney Aircraft Co. United Technologies Corp. East Hartford, Connecticut 06108

and

Stephen M. Rock and Muhammad M. Akhter Systems Control Technology, Inc. Palo Alto, California 94303

SUMMAR Y

A hypothetical turbofan engine simplified simulation is presented. The digital program, written in FORTRAN, is self-contained, efficient, realistic, and easily used. This simulation was developed from linearized operating point models but still retains essential nonlinear engine effects. The simulation is representative of a hypothetical, low bypass ratio turbofan engine. Program structure and input and output information are provided. This simulation can be used for engine dynamics and controls analysis.

INTRODUCTION

This report is a users manual for the hypothetical turbofan engine simplified simulation (HYTESS). This digital simulation exists as FORTRAN source code and was designed for use on the NASA Lewis Research Center's IBM 3033 AP computer running under the TSS/370 operating system. The program is selfcontained and was developed to offer those interested in engine dynamics and controls research an efficient, realistic, and easily used engine simulation.

Typically turbine engine simulations incorporate detailed nonlinear descriptions of both steady-state and dynamic engine operation throughout the engine's flight envelope. These detailed nonlinear simulations are very accurate and realistic and, when implemented in a digital computer, require relatively large amounts of computer storage and computer processing time. This makes these detailed simulations difficult and costly to use. HYTESS was developed as an alternative. It is structurally simpler than a full nonlinear engine simulation and therefore has reduced storage and processing requirements. HYTESS retains the essential nonlinear effects inherent in the engine's operation. This is accomplished by modeling the engine using a linear state space formulation, and incorporating the nonlinear characteristics by representing the matrix elements within the linear state space structure as nonlinear functions of various engine variables. The compromise implied in this process is that, although the fidelity of HYTESS is maintained for the variables considered, it is very difficult to identify individual component behavior

E-1940

N84-16184#

as in a detailed simulation. Also HYTESS is restricted to operation in regions about the normal operating line of the engine. The engine characteristics simulated by HYTESS, although hypothetical, are qualitatively similar to those of realistic advanced turbofan engines. Typical applications for this simulation would include open-loop engine dynamics studies as well as closed-loop controls analysis using a user generated control law.

This report begins with a description of the engine simulated by HYTESS. Next descriptions of the mathematical model and the simulation are given. Finally, some results are given. Flow charts and variable definitions are also included.

ENGINE DESCRIPTION

The engine simulated by HYTESS is representative of current high technology engines and is shown schematically in figure 1. It is a low bypass ratio, twin-spool, axial-flow turbofan engine, consisting of the following components:

- (1) Low-speed fan driven by a turbine (spool 1)
- (2) High-speed compressor driven by a turbine (spool 2)
- (3) Main burner
- (4) Annular fan duct that surrounds the basic gas generator and discharges air into the mixed flow augmentor
- (5) Variable area nozzle

Variable inlet guide vanes are used ahead of the fan to improve inlet distortion tolerance and fan efficiency. Variable stators in the high compressor improve starting and high Mach number characteristics. Airflow bleed is extracted at the compressor exit to improve starting. The exhaust nozzle variable geometry enables all three nozzle performance parameters (nozzle area, expansion ratio, and boattail drag) to be simultaneously near optimum throughout the operating range. A list of engine inputs and outputs is given in the next section.

Engine Model

A detailed nonlinear engine model can be written in vector differential equation form

 $\dot{X} = f(X, U, \phi)$ $Y = g(X, U, \phi)$

(1)

where X is a state vector, U is the vector of controls, Y is the output vector, and ϕ is a vector of environmental conditions. Detailed nonlinear engine relations are represented by the functions $f(\cdot)$ and $g(\cdot)$. At a base point, that is a steady-state point on the operating line,

$$\left.\begin{array}{c} f(X_{b}, U_{b}, \Phi_{b}) = 0\\ Y_{b} = g(X_{b}, U_{b}) \end{array}\right\}$$
(2)

In HYTESS the state space description of the model of equations (1) and (2) is implemented as

$$X_{SS} = X_{b} - F^{-1}G(U - U_{b})$$

$$\dot{X} = F(X - X_{SS})$$

$$Y = Y_{b} + H(X - X_{b}) + D(U - U_{b})$$
(3)

The subscript b is used to denote base points. The subscript ss is used to denote the steady-state value of X for a given U. The matrices F, $F^{-1}G$, H, and D are the typical system matrices. The states, control inputs, and outputs were chosen to be typical of those variables used in dynamics and controls analysis in modern turbofan engines and consist of the following variables.

States:

Xı fan speed (N1), rpm X2 X3 compressor speed (N2), rpm burner exit slow response temperature (TT4PL0), K X₄ fan turbine inlet slow response temperature (TT45L0), K Control inputs: main burner fuel flow (WFMB), kg/sec Ul U2 nozzle jet area (AJ), m² fan guide vane position (FGV), deg Uz Ù4 high compressor variable stator vane angle (SVA), deg Uς customer compressor bleed flow (BLC), percent Engine outputs: Y1 Y2 Y3 Y4 fan speed (N1), rpm compressor speed (N2), rpm burner pressure (PT4), N/m² augmentor pressure (PT6), N/m² Υ₅ Υ₆ Υ₇ fan turbine inlet temperature (FTIT), K thrust (FNMX), N compressor surge margin (SMHC)

Operating conditions:

- •] engine face pressure (PT2), N/m²
- Φ_2 engine face temperature (TT2), K

The system matrices were determined in the following manner. Linearized system matrices at several base points were found from a representative detailed nonlinear simulation using perturbational techniques. The elements of each of these matrices were regressed upon selected engine variables or elementary

. .

۰**۰**

functions of these variables (elements of Y and ϕ). As a result nonlinear polynomial functions were found that fit the change in these matrix elements for the full range of engine power through the flight envelope as shown in figure 2. An example of some typical regression polynomials for the system matrices is given in table I. Rewriting equation (3) with a more explicit functional notation yields

$$X_{SS} = X_{b}(Y,\phi) - [F^{-1}G](Y,\phi)[U - U_{b}(Y,\phi)]$$

$$\dot{X} = F(Y,\phi)[X - X_{SS}]$$

$$Y = Y_{b}(Y,\phi) + H(Y,\phi)[X - X_{b}(Y,\phi)] + D(Y,\phi)[U - U_{b}(Y,\phi)]$$
(4)

Engine Control Model

The purpose of an engine control is to manipulate thrust according to the pilot's request. In this simulation the control is simply an open-loop schedule between the pilot's request (PLA) as the independent variable and the requested engine controls as the dependent variables.

$$U_{r} = h(PLA, \phi)$$
 (5)

The function $h(\bullet)$ is selected to define the desired steady-state relations between PLA and the engine outputs. These steady-state relations are often called reference point schedules and are simulated in the subroutine RPSCH. The open-loop control law then becomes

۰.

.

$$U = U_{r} \tag{6}$$

Closed-loop control could be incorporated in the simulation by appropriately modifying the implementation of equation (6) in the subroutine TRANS. For example, immediately following the call to subroutine RPSCH in TRANS, equation (6) is implemented. Closed-loop control could be implemented here simply by including the closed-loop component U_{CL} as in equation (7).

$$U = U_{\rm R} + U_{\rm CL} \tag{7}$$

SIMULATION DESCRIPTION

This section contains a description of the program, input program requirements, output, and execution requirements. Selected test case results are also presented.

Program Description

HYTESS contains all the subroutines necessary to execute the program. There are no system library routines required. The program was originally developed for execution on a VAX 11-780 but has since been executed on an IBM 3033AP with no changes. The program is written in FORTRAN IV, and it is anticipated that few modifications will be required to execute the program on any system of adequate size that supports FORTRAN IV. The program itself consists of a main program and 27 subroutines and 3 block data routines. (See table II for program hierarchy.) There are a total of seven levels with a maximum of six levels of nested subroutines. For example at level II the subroutine INLET (called by MAIN) calls four subroutines: ALTABL, PRCMB, HFTA, and TFHA. Subsequently, PRCMB, HFTA, and TFHA all call PVAL. Subroutines are listed in the order of their first occurrence in the calling program. Several of the subroutines may be called more than once by the calling routine. No attempt has been made to show multiple calls in table II. In table III a description of the purpose of each subroutine and block data is given.

Basic program flow is shown in figure 3. Essentially, the program initializes, reads input data, calculates a steady-state point, and if required, calculates a user-specified transient. The program accepts as steady state or transient input either of the following two sets of inputs:

Input set 1 (IS1) Altitude (Alt) Mach number (MN) Power level angle (PLA)

Input set 2 (IS2)

Altitude (Alt) Mach number (MN) Fuel flow (WFMB) Nozzle area (AJ) Fan guide vane angle (FGV) High compressor stator vane angles (SVA) Bleed flow (BLC)

Input set 1 would typically be used to simulate open-loop engine response to pilot PLA requests. Input set 2 would be more useful for controls analysis. The program also accepts, as input, program control parameters which define and control steady-state and transient execution of the program. Figure 4 describes the iteration performed to establish a steady-state point. Note that all iterations require the evaluation of both the base point quantities and the system matrices as described in equation (2). The procedures for calculations depend on the particular input set chosen. If IS1 is used the base points are found from the reference point schedules (RPSCH) directly using the specified PLA. IF IS2 is used a "virtual" PLA is first found which corresponds to the specified rotor speed. This virtual PLA is then used by the reference point schedules to determine the base points (note that this is also the procedure used during transient simulation). In both cases the system matrices are determined from the base point values and the engine face conditions.

The model equations then are used to generate estimates of X and Y. The low rotor speed estimate (NI predicted) obtained from the model equations is then used to begin the steady-state calculation process anew. This iteration on low rotor speed continues until convergence is achieved and a steadystate condition is found.

The program will simulate engine transient operation for time history inputs of PLA or control inputs (WFMB, AJ, FGV, SVA, BLC). Initial conditions for a simulated transient are the steady-state values obtained using the procedure of figure 4. Transient program operation as shown in figure 5 is very similar to the steady-state case. The significant difference is that the iteration through the basic loop is not terminated by a convergence process. Each iteration represents an update of the Euler integration scheme and the iteration continues until the specified final time is reached. Appendix A is a description of important simulation parameters.

Input Requirements

HYTESS uses the FORTRAN input mode called Namelist to accept values for input parameters. There are three namelists used in subroutine READIN to define input parameters INPUT, INTRAN, and PLOT. Two examples of program input which correspond to IS1 and IS2 are given in tables IV and V, respectively.

Namelist INPUT

The namelist INPUT is used to define the steady-state input. All of the variables used to define a steady-state engine condition as well as some option control parameters are contained in namelist INPUT. The variable names, their default values, and descriptions are given in table VI. For example in table IV the namelist INPUT is used to (1) indicate that a transient is required (TRAN = 1); (2) indicate that plotting variables are to be saved (IPLOT = 1); and (3) define the initial conditions for IS1 (SALT = 0.0, SMACH = 0.0, SPLA = 20).

Namelist INTRAN

The namelist INTRAN is used to define the input necessary for an engine transient. This namelist is only read if TRAN = 1.0 in the namelist INPUT. All of the parameters entered via this namelist are entered in the following array format

ARRAY =
$$t_1, v_1, t_2, v_2, \dots, t_n, v_n$$

where ARRAY represents the respective variable array and t_1, v_1 is a time/ value pair. Up to seven pairs may be entered for each array variable, i.e., n < 7. The INTRAN namelist parameters are accepted as either step or ramp inputs. Since the particular array variable is specified at n discrete time points, the intervals between time points need to be further specified. This is accomplished by defining step and ramp inputs. For a step input the array value in any interval, say t_j to t_{j+1} , is equal to the preceding time point array value v_i . For a ramp input, the array value in any interval lies on a straight line defined by the two points t_j, v_j and t_{j+j}, v_{j+1} . Variable names, default values, and descriptions for the transient input namelist INTRAN are given in table VII. For example in table IV namelist INTRAN is used to define the print interval and the user-specified PLA transient. In this case the PLA input is specified as shown in figure 6.

Namelist PLOT

The namelist PLOT is used to specify plotted variables. This namelist will only be read if IPLOT = 1 in the namelist INPUT. Namelist PLOT contains an array variable called IPVAR1 which is dimensioned to 30 and therefore can be used to specify up to 30 variables to be plotted. A certain variable is specified for plotting by including its associated integer value (channel number) as defined in appendix A in the variable IPVAR1. For example if 13, 18, and 19 were entered into IPVAR1, then fuel flow (WFMB), fan speed (SNFAN), and compressor speed (SNCOM) would be specified for plotting.

Program Output

Figure 7 demonstrates a sample of the printout for the test case of table IV. The program first prints the number of iterations required to reach a steady-state point. Next the values of the states, controls, and outputs are printed for the converged steady-state point. This output is controlled by the subroutine STDST8. The main program output is generated by calls to the subroutine PRINT. For both steady-state and transient data subroutine PRINT prints the variables from the common ENGOUT (appendix A) and the variables from common MVCOUT (appendix B). The ENGOUT variables are labeled 'ENGINE RESPONSE VARIABLES' and the MVCOUT variables are labeled 'REFERENCE POINT SCHEDULES.' The routine PRINT uses a 10-column format. Each column corresponds to a time at which routine PRINT was called. The program also creates an unformatted binary data file written on unit 10 for plotting.

Execution Requirements

HYTESS consists of 1 main program, 3 block data routines, and 27 subroutines. Totally these 31 routines are described by 1952 lines of FORTRAN IV source code including comment statements. The approximate storage requirements for the object modules of HYTESS on the Lewis IBM 370/3033 system are summarized in table VIII. Individual storage requirements for the common blocks in the three block data routines are also given in table IX. A detailed nonlinear simulation would require approximately three times as much storage for a comparable engine.

As an indication of the execution time required by HYTESS a timing study was accomplished for the IS1 test Case of table IV. Results of the timing study are given in table X. These results show that a 10-sec simulated transient required 3.5 sec of CPU time for computation. These results were calculated with a 0.02-sec integration step size. Individual statistics were compiled for 13 of the more important subroutines. Time spent in those subroutines and functions not in this list is accumulated into the totals of the nearest (in terms of hierarchy) calling subroutine in the list. The same transient simulated on a detailed nonlinear simulation of a comparable engine would take about 20 sec of CPU time.

CONCLUDING REMARKS

A hypothetical turbofan engine simplified simulation is presented. The program is suitable for dynamics and control analysis. The simulation is structurally simpler than a detailed performance digital simulation. However, it does retain the essential nonlinearities of the engine and accurately simulates qualitative engine operation. The engine is modeled using a state space structure. Elements within the state matrices are defined by polynomials whose independent variables are functions of engine environment and engine operation. Storage and execution time requirements are significantly less than a detailed nonlinear simulation and are quite reasonable for typical dynamics and control analysis studies.

APPENDIX A

•• ••

·*:

SIMULATION PARAMETERS DEFINED IN ENGOUT

The following is the list of parameters used in the simulation. These parameters are all defined in the COMMON called ENGOUT and are also printed as the hard copy output of the program.

Channel number	Variable	Units	Description
$ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 $	T ALT SMN PLA PO TO DPO DTO PT2 TT2 VO ETARAM WFMBH AJCD FGVPOS SVAPOS BLC SNFAN SNCM TT4PLO TT45PLO SNFM SNCM PT4 PT6 TT45 FNMX SMHC XTRA1 XTRA2	sec m deg N/m ² K psia K psia K deg deg percent rpm rpm K K K rpm rpm N/m ² K N M ² K N m ²	Time Altitude Mach number Power level angle Ambient pressure Adder to ambient pressure Adder to ambient temperature Engine face pressure Engine face temperature Airspeed at the inlet Ram efficiency Fuel flow Nozzle area Fan guide vane angle High compressor stator angle Bleed flow Fan physical speed Compressor physical speed Burner exit slow response temperature Fan turbine inlet slow response temperature Fan physical speed Compressor physical speed Burner pressure Augmentor pressure Fan turbine inlet Thrust Compressor surge margin Extra dummy variable Extra dummy variable

9

. .

APPENDIX B

SIMULATION PARAMETER DEFINED IN MVCOUT

The following is a list of parameters used in the simulation. These parameters are defined in the COMMON called MVCOUT and are also printed as the hard copy output of the program.

Position number	Variable name	Units	Description	Printed
1	PLAEST	deg	Estimated PLA	N
2	TT2EST	K	Estimated TT2	N
3	PT2EST	N/m ²	Estimated PT2	Ν
2 3 4 5 6 7	SMNEST		Mach number	Ν
5	Not used			
6	SNFEST		Normalized estimated fan speed	N
/	SNCEST		Normalized estimated compressor speed	N
8	T25EST	К	Estimated TT25	Ν
9-20	Not Used			
21	PLASS	deg	Reference point PLA	Y
22	TT2SS	K	Reference point TT2	Y
23	PT2SS	N/m ²	Reference point PT2	Y
24	SMNSS		Mach number	Y
25	PMDSS	Not used		
26	SNFSCH		Normalized reference point fan speed	Y
27	SNCSCH		Normalized reference point com- pressor speed	Y
28	T25SCH	К	Reference point TT25	Y
29	FTISCH		Normalized reference point FTIT	Ŷ
30	PT4SCH		Normalized reference point PT4	Ý
31	P T 6 M S H		Normalized reference point PT6	Ŷ
32	TT4PL0		Normalized reference point TT45L0	Ý
33	TT45L0		Normalized reference point TT45L0	Ŷ
34	FNMXSH		Normalized reference point thurst	Ý
35	SMHCSH		Normalized reference point stall margin	Ŷ
36	WFMBSH	kg/sec	Reference point fuel flow	Y
37	AJSCH	kg/sec m ²	Reference point area	Ŷ
38	FGVVSH	deg	Reference point FGV	Ý
39	SVAVSH	deg	Reference point SVA	Ŷ
40	BLSCH	percent	Reference point bleed	Ý

2.

TABLE I. - TYPICAL REGRESSION POLYNOMIALS FOR THE ELEMENTS

System matrix	Element	Polynomiala				
F	(1,1)	$\frac{0.0968}{\delta} - \frac{0.0019 \text{ PT}6^2}{\delta^2} - 2.463$				
F ⁻¹ G	(4,1)	$\frac{0.000933 \text{ PT6}}{\delta} - \frac{0.97 \times 10^{-9} \text{ N1}}{\sqrt{\theta}} \cdot \frac{\text{PT6}^2}{\delta^2} - 0.03606$				
н	(5,3)	$0.0311_{\theta} + 0.5486 \times 10^{-4} \frac{TT45}{\theta} - 0.3612$				
D	(5,1)	$-0.03540 + \frac{31.35}{PT4} + 0.04914$				

OF THE SYSTEM MATRICES

 $a_{\delta} = P1/14.696; e = T1/518.67.$

			Level			
Ι	II	III	IV	v	VI	VII
MAIN	SETUP READIN INLET STDST8	ALTABL PRCMB HFTA TFHA SNFMAP SN1SCH N2TABL RPSCH	PVAL PVAL PVAL UNBAR SCURVE SCURVE N2TABL SCURVE SPRINT	UNBAR UNBAR SCURVE UNBAR	UNBAR	
		EMODEL	GVICAL SNFMPH RPSCH	UNBAR N2TABL SCURVE SPRINT	SCURVE UNBAR	UNBAR
		FILTER PRINT	ADD SUB MUL SCA SCALLA	GVICAL		
	TRANS	PRINT NUTIME INLET	SCALLA ALTABL PRCMB HFTA	PVAL PVAL		
		RPSCH	TFHA N2TABL SCURVE SPRINT GVICAL	PVAL SCURVE UNBAR	UNBAR	
		EMODEL	SNFMAP RPSCH FILTER	UNBAR N2TABL SCURVE SPRINT GVICAL ADD SUB	SCURVE UNBAR	UNBAR
ACTCRV ^a ENGPRN ^a MVCPRN ^a				MUL SCA		

TABLE II. - HYTESS PROGRAM/SUBROUTINE HIERACHY

^aBlock data.

.

TABLE III. - SUBROUTINE DESCRIPTION

.

.

Subroutine name	Purpose
ADD	General matrix addition
ALTABL	Calculates temperature and pressure corrections at various altitudes
EMODEL	Calculates appropriate engine model matrices and base points
FILTER	Updates state space model equations using Euler integration
GVICAL	Calculates fan guide vane (FGV) position
HFTA	Calculates enthalpy as a function of temperature
INLET	Solves for engine's inlet conditions
MAIN	Main program for execution of simulation
MUL	General matrix multiply
NUTIME	Finds print interval and values of ramp functions
N2TABL	Calculates N2 as a function of PLA and TT2 or PLA as a function of N2 and TT2
PRCMB	Calculates specific heat as a function of temperature
PRINT	Formats and prints output of simulation
PVAL	Function that evaluates a given polynomial
READIN	Reads input data
RPSCH	Calculates steady-state operating points
SCA	Multiplies elements of a matrix by a constant
SCALLA	Converts normalized variables to engineering units
SCURVE	Contains data (curves) for steady-state operating points
SETUP	Initializes program's named commons
SNISCH	Finds N1 as a function of TT2, SMN, and PLA
SNFMAP	Finds PLA as a function of N1, TT2, and SMN
SPRINT	Table lookup routine
STDST8	Calculates a steady-state point
SUB	General matrix subtraction
TFHA	Calculates temperature as function of enthalpy
TRANS	Controls transient execution of program
UNBAR	A table lookup routine
Block data	Purpose
ACTCRV	High compressor stator name and nozzle area data
ENGPRN	Names for engine inputs, outputs, and states
MVCPRN	Initial values for all common blocks

TABLE IV. - IS1 EXAMPLE INPUT TEST CASE

& INPUT	
TRAN=1., IPLOT=1, SALT=0., SMACH=0.,	
SPLA=20.,	
& END	
& I NTRAN	
PNTBLK=0.,0.1,10.,.1,	
PLABLK=0.,20.,0.1,20.,.5,83.,10.,8	33.,
&END	
&PLOT	
IPVAR1=1,4,22,23,24,25,26,27,28,	
&END	

TABLE V. - IS2 EXAMPLE INPUT TEST CASE

&INPUT SMACH=0.,SALT=0.,SPLA=52.,TRAN=1., SFGVV=-25.,SSVAV=6.0,
&END &INTRAN PNTBLK=0.,.1,10.,.1,
FGVBLK=0.0,-25.0,0.1,-25.0,.2,-22.5,10.,-22.5, SVABLK=0.0,6.0,5.0,6.0,5.1,5.4,10.,5.4, &END

Variable name Default		Description		
TRAN IPLOT SALT SMACH SPLA STAM SDTAM SDTAM SDPAM SDT2 STT2 STT2 SWF SAJ SFGVV SSVAV SBLC	0 0 -999	If TRAN=1 then transient run desired If IPLOT=1 then plotting desired Altitude, m Mach number Power level angle, deg Ambient temperature, K Ambient pressure, N/m ² Adder to ambient temperatuare, K Adder to ambient pressure, N/m ² Engine face total pressure, N/m ² Engine face total temperature, K Fuel flow, kg/sec Nozzle jet area, m ² Fan guide vane angle, deg Compressor stator vane angle, deg Bleed flow, percent		

.

.

TABLE VI. - DESCRIPTION OF STEADY-STATE NAMELIST INPUT

TABLE VII. - DESCRIPTION OF TRANSIENT NAMELIST INTRAN

Variable array name	Default	Description			
	_	Step input			
PNTBLK	Print interval				
	Ramp inputs				
PLABLK -999 ALTBLK XMNBLK WFBLK AJBLK FGVBLK SVABLK BLCBLK		PLA ramp input Altitude ramp input Mach number ramp input Fuel flow ramp input Nozzle area ramp input Fan guide vane ramp input Compressor stator vane angle ramp input Bleed flow ramp input			

•

Program name	Number of lines of source code	Direct module storage requirement (bytes) ^a
MAIN ALTABL ACTCRV (block data) EMODEL ENGPRN (block data) FILTER GVICAL HFTA INLET ADD SUB MUL SCA MVCPRN (block data) N2TABL NUTIME PRCMB PRINT PVAL READIN RPSCH SCURVE SETUP SNFMAP SNISCH		$\begin{array}{c} 1 & 288 \\ 2 & 616 \\ 1 & 252 \\ 8 & 488 \\ 264 \\ 1 & 228 \\ 496 \\ 404 \\ 2 & 316 \\ 548 \\ 548 \\ 548 \\ 548 \\ 548 \\ 760 \\ 516 \\ 3 & 200 \\ 1 & 064 \\ 1 & 588 \\ 904 \\ 5 & 672 \\ 1 & 860 \\ 948 \\ 3 & 568 \\ 4 & 732 \\ 176 \\ 1 & 544 \\ 960 \end{array}$
SPRINT STDST8 TFHA TRANS UNBAR SCALLA	68 77 16 83 77 15	2 100 1 884 404 1 632 1 940 400
Totals	1952	55 300

TABLE VIII. - HYTESS OBJECT MODULE STORAGE REQUIREMENTS

^a4 Bytes per word.

Block data name	Common block	Commom block storage requirement ^a	Total block data storage requirement ^a
ACTCRV ENGPRN MVCPRN	ACTCRV ENGPRN MVCPRN EBLKS BASEV STDV MVCOUT MATRIX ENGOUT ENCONTR ESSIN PTITLE RAMREC PLOTV ENGPRN	1252 264 320 1008 64 64 160 556 120 32 56 80 16 460 264	1252 264 3200

TABLE IX. - STORAGE REQUIREMENTS FOR BLOCK DATA

^aStorage requirement given in bytes.

TABLE X. - EXECUTION (CPU) TIME RESULTS FOR HYTESS TEST CASE 1

Group number	Module name	Accumulated CPU time, msec	Percent of total	Number of entries	Number of exits	CPU time average per call
1 3 4 5 6 7 8 9 10 11 12 13 Timed Overh Job t		4 6 210 25 656 179 114 202 377 2 1264 499 3538 1370 4908	$\begin{array}{c} 0.11 \\ .17 \\ 5.94 \\ .71 \\ 18.54 \\ 5.06 \\ 3.22 \\ 5.71 \\ 10.66 \\ .06 \\ 35.73 \\ 14.10 \\ 100.00 \end{array}$	1 501 1 101 1 502 1004 502 101 1003 502	1 501 101 102 1004 502 101 1003 502	4.000 6.000 .410 25.000 6.495 179.000 .227 .201 .751 .020 1.260 .994

^aOverhead is the CPU time required to calculate the CPU statistics given in table.

•

.

.

•

.

,

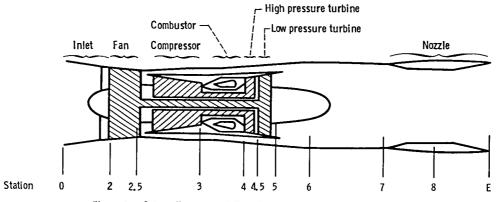
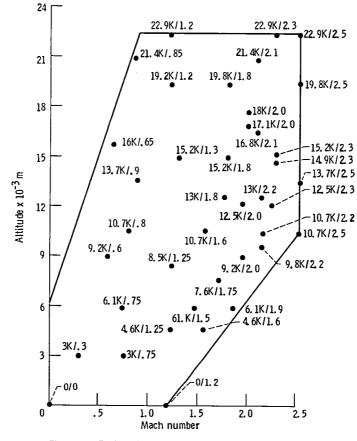
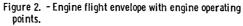




Figure 1. - Schematic representation of a hypothetical turbofan engine.

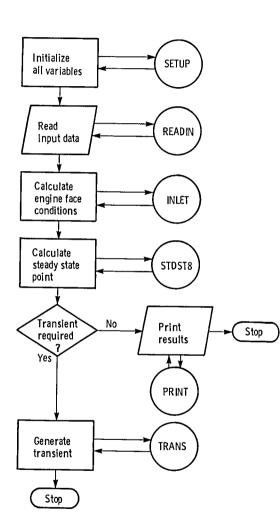
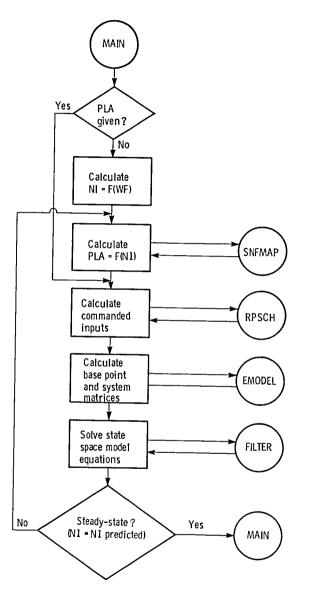
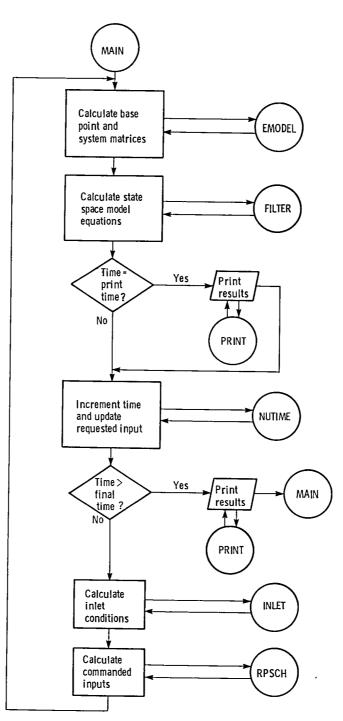
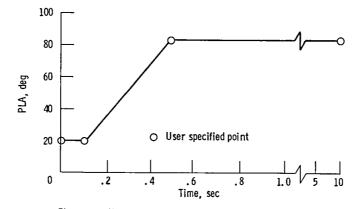
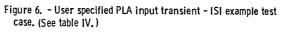



Figure 3. - Basic program flow through MAIN.


.

•




. .

,

Figure 5. - Basic program flow through TRANS.

SIMPLIFIED ENGINE SIMULATION Hypothetical jet engine

1	TIME	0.00000	0.10000E 00	*** ENG	INE RESPONSE 0.30000	VARIABLES # 0.40000	** 0.50000	0.60000	8.70000	0.80000	0.90000
	ALT	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00000	0.00000	
	SMN	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	PLA	20.000	20.000	35.750	51.500	67.250	83.000	83.000	83.000	83.000	83.000
	PÖ	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696
	TŐ	518.69	518.69	518.69	518.69	518.69	518.69	518.69	518.69	518.69	518.69
	DPO	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
8	DTO	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
9	PT2	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696
10	TT2	518.67	518.67	518.67	518.67	518.67	518.67	518.67	518.67	518.67	518.67
	vo	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	ETARAM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	WEMBH	1133.1	1133.1	3247.5	5094.6	6787.9	10588.	10588.	10588.	10588.	10588.
	AJCD	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000
15	FGVPDS	-25.000	-25.000	-25.000	-25.000	-25.000	~25.000	-25.000	-25.000	-25.000	-25.000
16	SVAPOS	-39.033	-39.033	-34.975	-21.942	-2.9506	6.0000	6.0000	6.0000	6.0000	6.0000
	BLC	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
18	SNFAN	3540.9	3540.9	3724.9	4227.7	5125.9	6801.7	7856.3	8573.0	9061.6	9273.9
	SNCOM	8695.4	8695.4	8977.2	9655.6	10607.	11534.	12046.	12221.	12254.	12217.
	TTAPLO	93.630	93.630	104.83	131.83	169.25	196.79	203.91	206.35	207.33	207.40
	T745L0	66.272	66.272	77.389	102.55	135.48	163.03	172.08	172.01	169.22	166.12
	SNFAN	3540.9	3540.9	3724.9	4227.7	5125.9	6801.7	7856.3	8573.0	9061.6	9273.9
23	SNCOM PT4	8695.4	8695.4	8977.2	9655.6	10607.	11534.	12046.	12221.	12254.	12217.
24	P76	65.498 17.571	65.498 17.571	92.335	126.50	173.43	249.93	280.98	311.87	324.16	329.73
	1145	565.79	565.79	18.462	19.751	23.779	32.409	36.080	41.742	45.717	46.422
20	FNMX	1363.9	1363.9	1342.4 1822.7	1903.7 2420.8	2158.7 4547.6	2370.9	1804.8	1629.2	1521.4	1514.6
	SMHC	0.68756	0.68756	0.51764	0.45349	9547.6 0.41861	12762.	12601.	12316.	11575.	11035.
20	anne	0.00/30	0.00/30	0.31704	ERENCE POINT	0.41001	0.17661	0.21895	0.22693	0.22756	0.21267
1	PLASS	20.000	20.000	35.750	51.500	67.250 ×	83.000	83.000	83.000		
	11255	58.970	58.970	58.970	58.970	58.970	58,970	58.970	58.970	83.000 58.970	83.000 58.970
	PT255	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696
ž	SMNSS	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
5	PMDSS	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00
6	SNESCH	0.35409	0.35409	0.69855	0.79445	0.85966	0.93653	0.93653	0.93653	0.93653	0.93653
ž	SNCSCH	0.57969	0.57969	0.67655	0.71865	0.75987	0.82078	0.82078	0.82078	0.82078	0.82078
à	T25SCH	162.70	162.70	162.70	162.70	162.70	162.70	162.70	162.70	162.70	162.70
9	FTISCH	0.35362	0.35362	0.56496 0.28448 0.18832	0.66584	0.78236	0.95261	0.95261	0.95261	0.95261	0.95261
		0.11909	0.11909	0.28448	0.36931	0.46827	0.61451	0.61451	0.61451	0.61451	0.61451
11	PT6MSH	0.13516	0.13516	0.18832	0.23672	0.29766	0.36094	0.36094	0.36094	0.36094	0.36094
12	TT4PL0	0.58519E-01	0.58519E-01	0.83647E-01	0.95640E-01	0.10949	0.12974	0.12974	0.72974	0.12974	0.12974
13	TT45L0	0.41420E-01	0.41420E-01	0.61117E-01	0.70518E-01	0.81377E-01	0.97244E-01	0.97244E-01	0.97244E-01	0.97244E-01	0.97244E-01
- 14	FNMXSH	0.54556E-01	0.54556E-01	0.27886	0.34131	0.38377	0.43383	0.43383	0.43383	0.43383	0.43383
15	SMHCSH	0.68756	0.68756	0.32503	0.27495	0.24150	0.20965	0.20965	0.20965	0.20965	0.20965
16	WFMBSH	1133.1	1133.1	3247.5	5094.6	6787.9	10588.	10588.	10588.	10588.	10588.
- 17	AJSCH	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000
18	FGVVSH	-25.000	-25.000	-25.000	-25.000	-25.000	-25.000	-25.000	-25.000	-25.000	-25.000
		-39.033	-39.033	-34.975	-21.942	-2.9506	6.0000	6.0000	6.0000	6.0000	6.0000
20	DLCSH	0.00000	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000	0.0000	0.00000	0.00000

Figure 7. - Example output for HYTESS test case.

. • . •

1. Report No.	2. Government Accessio	on No.	3. Recipient's Catalog No.						
NASA TM-83561									
4. Title and Subtitle	,L,	·····	5. Report Date	,					
		January 1984							
HYTESS - A Hypothetical T	HYTESS - A Hypothetical Turbofan Engine Simplified								
Simulation		6. Performing Organization Code							
		505-32-6B							
7. Author(s)	7. Author(s)								
Walton C. Mountill Eline		E-1940							
Walter C. Merrill, Edward LaPrad, Stephen M. Rock,	hard F.								
La rad, Stephen M. Rock,	Akhter 10	0. Work Unit No.							
9. Performing Organization Name and Address									
National Aeronautics and	tion	1. Contract or Grant No.							
Lewis Research Center									
Cleveland, Ohio 44135									
		13. Type of Report and Period Covered							
12. Sponsoring Agency Name and Address			Technical Memorandum						
National Aeronautics and	tion 14	14. Sponsoring Agency Code							
Washington, D.C. 20546									
15. Supplementary Notes Walter C. M	errill NASA Low	is Posoanch Cont	Think C	Destation					
Richard F. LaPrad, Pratt	& Whitney Aircrat	ft fo United 1	ler; Euwaru L. Tochnologios C	Beattle and					
Main St., East Hartford,	Connecticut 06108	3: Stephen M Rc	ck and Muhamm	orp., 400 od M. Akhton					
Systems control lechnolog	y, Inc., 1801 Pac	ie Mill Road, P.	0. Box 10180	Palo Alto					
California 94303.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	0. DOX 10100,	1410 A120,					
16. Abstract									
This report is a users manual for a hypothetical turbofan engine simplified sim-									
ulation. This digital sim	ulation. This digital simulation exists as FORTRAN source code. The program is								
self-contained and was dev	eloped to offer	those interested	d in engine dv	mamics and					
controls research an effic	controls research an efficient, realistic, and easily used engine simulation. The								
engine is modeled using a	engine is modeled using a state space formulation. Matrix elements within the								
linear state space structure are nonlinear functions of various engine variables.									
1									
/									
17. Key Words (Suggested by Author(s))		18. Distribution Statement							
Simulation Unclassified - unlimited									
Gas turbine engine STAR Category 07									
State space									
Dynamics									
Controls 19. Security Classif. (of this report)	20. Security: Olassit to the								
Unclassified	20. Security Classif. (of this p		21. No. of pages	22. Price*					
	Unclassified			1					

J.

.

• · · · · · · · ·

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 SPECIAL FOURTH CLASS MAIL BOOK

. •

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

۰,

NASA

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return