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Abstract

Recent works on two-stage cross-domain detection have

widely explored the local feature patterns to achieve more

accurate adaptation results. These methods heavily rely on

the region proposal mechanisms and ROI-based instance-

level features to design fine-grained feature alignment

modules with respect to the foreground objects. How-

ever, for one-stage detectors, it is hard or even impossi-

ble to obtain explicit instance-level features in the detec-

tion pipelines. Motivated by this, we propose an Implicit

Instance-Invariant Network (I3Net), which is tailored for

adapting one-stage detectors and implicitly learns instance-

invariant features via exploiting the natural characteristics

of deep features in different layers. Specifically, we facil-

itate the adaptation from three aspects: (1) Dynamic and

Class-Balanced Reweighting (DCBR) strategy, which con-

siders the coexistence of intra-domain and intra-class vari-

ations to assign larger weights to those sample-scarce cate-

gories and easy-to-adapt samples; (2) Category-aware Ob-

ject Pattern Matching (COPM) module, which boosts the

cross-domain foreground objects matching guided by the

categorical information and suppresses the uninformative

background features; (3) Regularized Joint Category Align-

ment (RJCA) module, which jointly enforces the category

alignment at different domain-specific layers with a consis-

tency regularization. Experiments reveal that I3Net exceeds

the state-of-the-art performance on benchmark datasets.

1. Introduction

Object detection has achieved remarkable progress due

to the unprecedented development of deep convolutional

networks (CNNs) and the existence of large-scale annotated

*Corresponding authors

Figure 1: Upper: Illustration of previous two-stage cross-

domain detection methods. Lower: Motivation of the pro-

posed method based on the observation with respect to the

characteristics of deep features in different layers.

datasets. However, collecting large amounts of instance-

level annotated data in various domains for object detection

is prohibitively costly. An alternative would be applying

the off-the-shelf detection model trained on the source do-

main to a new target domain. However, deep object de-

tectors suffer from performance degradation when applied

to a new domain under the presence of domain shift [41].

This problem has inspired the research on Unsupervised

Domain Adaptation (UDA) [27], which aims to bridge the

distribution discrepancy between source and target domains

via knowledge transfer. Numerous approaches, such as mo-

ment matching [11, 6, 23, 25, 49] and adversarial learn-

ing [7, 42, 37, 24, 44], have been proposed for cross-domain

image classification and semantic segmentation.
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Compared to the conventional UDA problems, cross-

domain object detection is a more sophisticated and chal-

lenging problem since the adaptation of classification and

regression should be simultaneously considered. Current

methods [4, 53, 34, 1, 14, 3, 46, 52, 45] mostly resort to the

adversarial feature adaptation to explore discriminative fea-

ture patterns at local-level, global-level, and instance-level

for adapting two-stage detectors (see top of Fig. 1), Faster

R-CNN [33]. However, they heavily rely on the region pro-

posal mechanisms and ROI-based instance-level features to

design fine-grained feature alignment modules with respect

to the foreground objects. For example, Zhu et al. [53] mine

the target discriminative regions based on the region pro-

posals derived from the RPN. Cai et al. [1] regularize the

relational graphs by using the ROI-based features. Chen et

al. [3] and Xu et al. [45] assist the instance-level feature

alignment by the contextual or categorical regularization.

One-stage object detectors, such as SSD [22] and Reti-

naNet [21], have the merits of being faster and simpler in

real-world applications. Unfortunately, it is unrealistic to

obtain explicit instance-level features in the one-stage de-

tectors due to the lack of region proposal step. Hence, how

to adapt one-stage detectors is vital for practical scenarios

but yet to be thoroughly studied. The motivation of this pa-

per is shown in the bottom of Fig. 1. Deep features in the

standard CNNs must eventually transition from general to

specific along the network [48]. Inspired by this, in one-

stage detectors, we can reasonably envision that the fea-

tures at lower layers (e.g., color, corner, edge, and illumi-

nation) are expected to be mostly instance-uninformative,

while the features at higher layers (e.g., object categories)

are instance-informative. Therefore, we need to alleviate

the negative influence of uninformative features and pro-

mote the alignment of informative features, i.e., suppress

redundant (such as background) information from the lower

layers and enhance the cross-domain semantic correlation

of foreground objects at the higher layers.

In this paper, we propose an Implicit Instance-Invariant

Network (I3Net) that removes the need for requiring ex-

plicit instance-level features. Instead, we implicitly learn

instance-invariant features via the alignment of transfer-

able regions and images while preserving the inter-domain

class relationships. To be specific, we facilitate the adap-

tation of one-stage detectors from three aspects. Firstly,

upon observing that there exist two conceptually orthog-

onal distribution variations hidden in the target data, i.e.,

intra-domain and intra-class variations, we propose a Dy-

namic and Class-Balanced Reweighting (DCBR) strategy

to dynamically reweight each target sample based on its

adaptation difficulty, which is measured by the degree of

class imbalance and the prediction uncertainty of a multi-

label classifier. Secondly, considering that object with the

same category label but from different domains will share

similar object patterns, we design a Category-aware Object

Pattern Matching (COPM) module to boost cross-domain

foreground objects matching guided by the categorical in-

formation and suppress the uninformative background fea-

tures at lower layers. Finally, we develop a Regularized

Joint Category Alignment (RJCA) module to enable cat-

egory alignment by considering complementary effect of

different domain-specific layers and further incorporate a

consistency regularization term with respect to the average

prediction of different detection heads. Experimental re-

sults show that the proposed I3Net significantly improves

the state-of-the-art performance of one-stage cross-domain

object detection on three benchmarks.

2. Related Work

Unsupervised Domain Adaptation (UDA) UDA meth-

ods have attracted much attention for alleviating the dis-

tributional variations between two distinct domains in im-

age classification, semantic segmentation, and object detec-

tion. For UDA, a typical solution is to match the source

and target feature distributions in the common space by em-

bedding disparity measures into deep architectures, such as

Maximum Mean Discrepancy (MMD) [43, 23], Correlation

Alignment (CORAL) [40], Central Moment Discrepancy

(CMD) [49], and transport distance [20, 47]. Inspired by

the success of Generative Adversarial Nets (GAN) [12], a

large amount works [8, 42, 35, 30, 44, 2, 50, 17] have been

done by adversarially learning domain-invariant representa-

tions with extra categorical regularization.

Object Detection Object Detection is one of the most

fundamental computer vision problems in the past few

decades [54]. Our work focuses on how to adapt object de-

tectors, so we only review several representative two-stage

and one-stage detectors. The series of region-based convo-

lutional networks (i.e., R-CNN [10], Fast R-CNN [9], and

Faster R-CNN [33]) have achieved compelling results in

terms of detection accuracy. They count on the region pro-

posal mechanisms to classify region of interest (ROI) inde-

pendently [10], or share the convolution features with ROI

pooling layer [9], or produce the region proposals based on

a Region Proposal Network (RPN) [33]. On the other hand,

one-stage detectors, such as SSD [22], YOLO [31, 32], and

RetinaNet [21] have shown a clear superiority on the infer-

ence speed by directly carrying out the category confidence

prediction and the bounding box regression.

UDA for Object Detection Domain Adaptive Faster R-

CNN [4] is a pioneering two-stage cross-domain detection

method that reduces the distributional shift by adversarially

learning domain-invariant features on both image-level and

instance-level. Considered the local nature of object detec-

tion task, most recent efforts [53, 34, 1, 14, 3, 46, 52, 45,

15, 39, 51] are devoted to capture the local feature patterns
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Figure 2: Left: The overall structure of the proposed I3Net, where Fmlc is an image-level multi-label classifier, Dl and Dg

are pixel-level and image-level domain discriminators respectively. Non-linear fusion stands for the tensor product operation.

We adopt SSD as the base detection network. Right: DCBR, COPM, and RJCA are complementary to each other.

and explicitly align them at multiple levels. For instance,

Chen et al. [3] propose to hierarchically calibrate the trans-

ferability of different level features (i.e., local-region, im-

age, and instance) to improve the discriminability of de-

tectors; Xu et al. [46] and Zheng et al. [52] draw motiva-

tion from the cross-domain prototype alignment [44, 2, 28]

to align the foreground objects with the same category be-

tween domains. However, these methods can not be sim-

ply extended to the one-stage detectors since they highly

rely on the region proposals and pooled instance-level fea-

tures. The study on adapting one-stage object detectors is

very limited. A pioneering attempt [19] present a weak self-

training strategy by simultaneously reducing the false pos-

itives and false negatives during the hard negative mining.

However, self-training-based method may be vulnerable to

the error accumulation problem, especially on the sophisti-

cated cross-domain detection scenarios. Moreover, how to

learn instance-invariant feature representations without the

guidance of region proposal mechanisms, which is crucial

for adapting one-stage detectors, still remains unclear.

3. Methodology

In the task of cross-domain object detection, we are

given a source domainDs = {(xs
i , y

s
i , b

s
i )}Ns

i=1 (ysi ∈ Rk×1,

bsi ∈ Rk×4) of Ns labeled samples, and a target domain

Dt = {xt
j}Nt

j=1 of Nt unlabeled samples. Ds and Dt are

drawn from different data distributions, but share an identi-

cal group of classes (K classes in all). The objective of this

paper is to transfer knowledge from Ds to Dt and achieve

good detection results in Dt.

Framework Overview. To this end, we propose an Im-

plicit Instance-Invariant Network (I3Net), which is com-

prised of three components, namely, Dynamic and Class-

Balanced Reweighting (DCBR), Category-aware Object

Pattern Matching (COPM), and Regularized Joint Category

Alignment (RJCA). The overview of I3Net is demonstrated

in Figure 2. The basic idea is to utilize the inherent char-

acteristics of representations at different layers of the de-

tector to compensate for the lack of explicit instance-level

features. DCBR reweights target samples based on the

adaptation difficulty with respect to the intra-domain and

intra-class variations, COPM captures the foreground object

patterns and suppresses redundant background information,

and RJCA promotes the cross-domain category alignment

in different domain-specific layers (connected with detec-

tion heads) with a consistency regularization. Following the

prior work on adapting one-stage detectors [19], our I3Net

is based on the SSD [22] framework.

3.1. Dynamic and Class­Balanced Reweighting

To date cross-domain detection methods [4, 34, 46, 52]

mainly focus on the feature-level adaptation and treat all the

target samples equally, while they neglect the distributional

characteristics of the target data, which are crucial for the

adaptation process. By contrast, the proposed DCBR strat-

egy explicitly explores the intra-domain and intra-class vari-

ations within the unlabeled target domain to assign larger

weights to those sample-scarce categories and easy-to-adapt

samples. We analysis these two variations in the following.

Intra-Domain Variations. The class-imbalance prob-
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lem [26], which refers to the inequality among the num-

ber of examples belonging to different classes, commonly

exists in the object detection. Prior efforts, such as Focal

Loss [21] and hard example mining [22, 36], are devoted to

tackle the foreground-background class imbalance, which

is irrelevant to the number of examples per class in a sin-

gle domain. In cross-domain detection, we argue that the

foreground-foreground class imbalance, which is dataset-

relevant and may be different between domains, is prone to

deteriorate the adaptation performance since the adaptation

of each class will be affected by the number of examples

per class in both domains, i.e., the adaptation difficulty of

different categories may be distinct.

Intra-Class Variations. Owing to the difference of

background, object co-occurrence, and scene layouts across

domains, excessively align the source and target features

in the full dataset will result in negative transfer, i.e.,

some target samples may be less transferable or even non-

transferable. However, most leading cross-domain detec-

tion methods treat the target domain as a whole without

considering the structures of intra-class data distributions.

Motivated by this, we assume that the adaptation difficulty

of different samples within the same class may be distinct.

An intuitive solution is to utilize re-weighting techniques.

However, this solution suffers a critical limitation in the

context of cross-domain object detection. In contrast to the

classification problem, where a single image usually con-

tains only one semantic category, there exist multiple in-

stances within the same image in the detection problem.

Thus, how to measure the adaptation difficulty of an input

target sample in cross-domain detection remains unclear.

Based on the above discussions, we formally provide the

details of the proposed DCBR. The DCBR consists of two

steps: (i) estimate the adaptation difficulty of each individ-

ual target sample and each target class; (ii) reweight target

samples based on the estimation results. Technically, the

adaptation difficulty of an target example xt (for ease of

denotation, we omit the subscript of xs
i and xt

j when they

apply) is measured by using an image-level multi-label clas-

sifier (i.e., Fmlc in Fig. 2). We first train Fmlc based on the

labeled source samples for initialization. The multi-label

classification loss on the source domain is formulated as:

Lmlc =

K∑

k=1

ysk · log(ŷsk) + (1− ysk) · log(1− ŷsk) (1)

where ysk is the kth (k = {1, 2, ...,K}) element of ys and

ŷsk = Fmlc(G1(x
s))k (G1 is a feature extractor connected

to Fmlc). ysk = 1 means that there exists at least one object

of class k in xs; otherwise, ysk = 0 indicates that xs does

not contain the object of class k. For each target sample xt,

we denote the prediction of its multi-label classification as

ŷtk = Fmlc(G1(x
t))k. Then, we define the weight function

of a target sample xt w.r.t. the intra-class variation by using

its multi-label classification output:

wt
1 =

1

K ′

K∑

k=1

✶(ŷtk(x
t) > τ) · ŷtk(xt) + 1 (2)

where K ′ =
∑K

k=1 ✶(ŷ
t
k(x

t) > τ), and τ is a threshold.

✶(a) is an indicator function which is 1 if a is true and 0

otherwise. By doing so, target samples with higher classi-

fication confidence scores will be assigned larger weights

since they are more similar with source domain. Note that

the value of wt
1 increases continuously since the source and

target distributions are getting closer as training proceeds.

To estimate the number of examples per class in Dt, we

resort to the classification output for roughly dividing Dt

into K classes. xt is added into the target domain of the

class Dk′

t if k′ = argmax
k

ŷkt (x
t). Then, the unlabel target

samples Dt are split into K classes, i.e., Dt = {Dk
t }Kk=1.

To this end, we are able to assign larger weights to those

sample-scarce categories. The weight function of xt w.r.t.

the intra-domain variation is formulated as,

wt
2 = e(1−Nk

t
/Nt) (3)

where Nk
t denotes the number of samples in class k.

Based on Eq. (2) and Eq. (3), the overall weight function

of a target sample xt
j is formulated as follows,

wt = θwt
1 + (1− θ)wt

2 (4)

where θ is a hyper-parameter to balance wt
1 and wt

2. After

adding the weights to all target samples, the adversarial loss

of image-wise domain discriminator Dg can be written as:

Ldcbr =−
1

Ns

Ns∑

i=1

log(Dg(G2(x
s
i )))

−
1

Ns

Nt∑

j=1

wt
j · log(1−Dg(G2(x

t
j)))

(5)

where G2 is a feature extractor that is connected to Dg .

3.2. Category­Aware Object Pattern Matching

As we discussed in Section 1, the feature representa-

tions at lower layers contain various redundant information

(e.g. background) and should not be fully aligned. Pre-

vious works [4, 34], which strictly matching the low-level

features, may result in inferior performance especially on

the one-stage detection. During the exploration, we observe

that objects with the same category label but from different

domains will own similar object patterns. Object pattern,

which refers to the discriminative features of foreground

objects, can provide rich semantic information w.r.t. the

objects, such as object category, shape, size, etc. Driven
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by this finding, we propose a Category-aware Object Pat-

tern Matching (COPM) module to boost cross-domain fore-

ground objects matching guided by the categorical informa-

tion and suppress the uninformative background features.

Suppose that we have a CNN layer (e.g., Conv 4 3
in SSD300) and its corresponding activation tensor A ∈
R

C×H×W , which consists of C feature planes and has

height of H and width of W . An intuitive idea for local

feature alignment is to extract attention maps from both do-

mains and somehow match them. However, the target at-

tention map tends to focus on the predominant foreground

objects instead of the full foreground objects (cf. Fig. 3),

which will impair the localization ability of detector for de-

tecting those small or/and obscured objects. Thus, we re-

sort to leverage classification output of the detection head

(cf. Fig. 2), which is denoted by p̂m (p̂m ∈ R
K+1, m is the

anchor index in A, and m = {1, 2, ..., H ×W}), to guide

the object pattern matching. Specifically, the classification

output p̂m and the feature representation Am (Am ∈ R
C)

are nonlinearly fused via tensor product operation, i.e.,

Âm = Am ⊗ p̂m, where Âm is the fused feature vector.

In order to prevent the dimension explosion, we draw mo-

tivations from the randomized multilinear map [18, 24] to

estimate the tensor product via Hadamard product,

Âm = (R1Am)⊙ (R2p̂m), Am ∈ R
Ĉ (6)

where ⊙ denotes the Hadamard product. R1 and R2 are

random matrices and each of their element follows uniform

distribution with univariance. Ĉ is the feature dimension

after fusion (Ĉ is set to 1024 in our experiments). Based on

the category-guided activation tensor Â, we output a spa-

tial attention map via an activation-based mapping function:

F : RĈ×H×W → R
H×W , which can be written as follows:

(F(Â))m =

Ĉ∑

c=1

|Âc
m|2 (7)

To reduce computational cost, we flatten the source and tar-

get attention maps to vectors, which are denoted as fs and

f t. Finally, We align the source and target object patterns

by minimizing distance between the them,

Lla =
√
H ×W · Φ( fs

‖fs‖ 2
,

f t

‖f t‖ 2
) (8)

where Φ(x, x′) = ‖x− x′‖2 is the Euclidean distance.

Note that we incorporate a pixel-level domain discrimina-

tor (i.e., Dl in Fig. 2) into COPM to further reduce the low-

level feature disparity. Thus, the objective of COPM is for-

mulated as: Lcopm = Lla + Ladv, where Ladv is a vanilla

pixel-wise domain adversarial training loss.

3.3. Regularized Joint Category Alignment

Prototype1-based feature alignment has been widely ex-

plored to measure the category-level feature discrepancy in

UDA [44, 2, 29] and been applied to the two-stage cross-

domain detection [52, 46]. However, considering the dense

prediction property of one-stage detectors, prototype align-

ment may be error-prone in this case compared to adapting

two-stage detectors where most negative proposals will be

filtered out. Moreover, prior efforts only implement the pro-

totype alignment in a certain high-level feature layer with-

out considering the potential complementary effect of dif-

ferent domain-specific layers. Motivated by this, we pro-

pose a Regularized Joint Category Alignment (RJCA) mod-

ule to achieve the category alignment at different domain-

specific layers and regularize the average prediction consis-

tency of different layers with respect to the same category.

In the light of fully convolutional and multi-level pre-

diction characteristics of one-stage detectors, we aims at

jointly enforcing the cross-domain category alignment in

different layers. First of all, assume that the deep net-

works will generate the activations in different layers as

{(zs1i , ..., z
s|L|
i )}Ns

i=1 and {(zt1j , ..., z
t|L|
j )}Nt

i=1, where l ∈ L

and z ∈ R
C×H×W . Then, we resort to the per-pixel predic-

tion to compute the prototype of each source class in layer

l, which can be written as:

Z̄
s|l|
k =

1

nk
s

Ns∑

i=1

H×W∑

m=1

yimk
s · zs|l|im (9)

where nk
s denotes the number of source objects labeled with

class k, m is the pixel index in z. yimk
s ∈ {0, 1} is an indi-

cator for determining whether the current pixel is predicted

as class k. The source global prototype of each class is com-

puted at the beginning of training. Let the prediction of de-

tection head w.r.t. a target object be represented by p̂(z
t|l|
jm).

The target local prototype is computed by:

z̄
t|l|
k =

1

n̂
k
t

|Bt|∑

j=1

H×W∑

m=1

y
jmk
t · z

t|l|
jm (10)

where n̂k
t denotes the number of objects that are assigned

with pseudo label k and Bt is the mini-batch samples of

the target domain. Similarly, we can obtain a set of source

local prototypes {z̄s|l|k }Kk=1. The objective function of joint

category alignment is formulated as follows:

Ljca =
∑

l

[
∑

k

d(Z̄
s|l|
k

, Z̄
t|l|
k

)

︸ ︷︷ ︸

Compactness

+
∑

m,n|m 6=n

h(Z̄
s|l|
m , Z̄

t|l|
n )

︸ ︷︷ ︸

Separation

] (11)

where d and h are two different similarity functions to mea-

sure the distance between prototypes. In our case, we in-

stantiate Eq. (11) by the contrastive loss as defined in [13].

1Prototype is the mean feature of the samples within the same class.
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During training, the global prototype in Eq. (11) is updated

by the local prototype in a moving average manner,

Z̄
|l|
k ←ρZ̄

|l|
k + (1− ρ)z̄

|l|
k

(12)

where ρ is set to 0.7 in all experiments. In addition, we regu-

larize the prediction consistency of different layers w.r.t. the

same class k by respectively minimizing their symmetrized

Kullback−Leibler (KL) divergence, which is formulated as:

Lpr =
1

K

∑

l

K∑

k=1

1

2
[DKL(p̂(z̄

t|la|
k )‖p̂(z̄t|lb|k ))

+DKL(p̂(z̄
t|lb|
k )‖p̂(z̄t|la|k ))],where la, lb ∈ L.

(13)

where p̂(z̄
t|la|
k ) and p̂(z̄

t|lb|
k ) stand for the average prediction

w.r.t. the class k in different layers. Here, to smooth the pre-

diction, we add a temperature variate T (T = 2 in all exper-

iments) to the softmax function. To this end, the objective of

the proposed RJCA can be written as: Lrjca = Ljca + γLpr,

where γ is set to 0.1 in all experiments.

3.4. Training Loss

Suppose that the detection loss is denoted as Ldet, which

includes the classification and regression losses. Joint all

the presented parts, the overall objective function of I3Net

is formulated as follows,

LI3Net = Ldet + λ1Ldcbr + λ2(Lcopm + Lrjca) (14)

where λ1 and λ2 are hyper-parameters for balancing differ-

ent loss components.

4. Experiments

4.1. Datasets

We conduct experiments based on Pascal VOC [5], Cli-

part1k, Watercolor2k, and Comic2k [16] datasets. Fol-

lowing the previous one-stage method [19], we utilize the

Pascal VOC2007-trainval and VOC2012-trainval datasets

as the source domain, and Clipart1k, Watercolor2k, and

Comic2k as the target domain respectively. The Pascal

VOC [5], which is a real-world image dataset, contains

16,551 images with 20 distinct object categories. Cli-

part1k [16], which is a graphical image dataset with com-

plex backgounds, consists of 1K images and has the same

20 categories as Pascal VOC. We utilize all images of Cli-

part1k as the target domain for both training and testing.

Watercolor2k and Comic2k [16] contain 2K images respec-

tively (i.e., 1K as the train set and the other 1K as the test

set). They share 6 identical categories with the Clipart1k

dataset, i.e., bicycle, bird, cat, car, dog, and person. Fol-

lowing the prior practice [19], we leverage the train set for

training and the test set for evaluation.

4.2. Implementation Details

The base detection model in our experiments follows the

same setting in [16, 19] that utilize SSD300 [22] frame-

work with VGG-16 [38] architectures. The parameters of

VGG-16 is fine-tuned from the model that has been pre-

trained on ImageNet. In all experiments, the input images

are resized to 300 × 300 and we conduct all augmenta-

tions used in [22, 19]. The batch size is selected as 32

(16 source images and 16 target images) to fit the GPU

memory. We evaluate the cross-domain detection perfor-

mance by reporting mean average precision (mAP) with a

IoU threshold of 0.5 on the target domain. We adopt the

stochastic gradient descent (SGD) optimizer for the detec-

tion network training with a momentum of 0.9, an initial

learning rate of 0.001, weight decay of 5×10−4. The learn-

ing rate is decreased to 0.0001 after 50 epochs. Note that

the multi-label classifier Fmlc is pre-trained on the label

source domain and keeps fixed when training our adapta-

tion network. Without specific notation, we set τ = 0.5 in

Eq. (2) and θ = 0.5 in Eq. (4). For the L in RJCA, we

set L = {Conv7, Conv9 2} for the I3Net model based on

SSD. We set λ1 = 0.05 and λ2 = 1 in Eq. (14) for all exper-

iments. Our experiments are implemented with the Pytorch

deep learning framework.

4.3. Comparisons with State­of­the­Arts

State-of-the-arts. We make comparison to the state-of-

the-art cross-domain object detection methods, including

Domain Adversarial Neural Networks (DANN) [8], ad-

versarial Background Score Regularization + Weak Self-

Training (BSR+WST) [19], Strong-Weak Distribution

Alignment (SWDA†) [34], and Hierarchical Transferabil-

ity Calibration Network (HTCN†) [3]. The quantitative re-

sults of DANN, BSR, WST, and BSR+WST are cited from

the original paper [19]. We reproduce the complete SWDA

model on our one-stage scenarios. Moreover, we remove

the context-aware instance-level alignment component from

the HTCN model and re-implement the rest modules in our

experiments. Note that mainstream cross-domain detection

methods (e.g., [4, 53, 1, 14, 46, 52, 45]) are tailored for

two-stage detector and cannot be simply extended to one-

stage-based experiments since they highly count on the re-

gion proposal mechanisms.

Results on Clipart1k. Table 1 displays the adaptation re-

sults on Pascal VOC → Clipart1k. Source Only denotes

that the baseline SSD is trained on the source domain and

directly tested on the target domain without any adaptation.

The proposed I3Net significantly outperforms all the com-

pared methods in terms of mAP and improves over state-of-

the-art by +2.0% (35.8% to 37.8%). It is noteworthy that

all components of the proposed I3Net are designed appro-

priately and when we remove any one of these components,
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Table 1: Results of adapting PASCAL VOC to Clipart1k (%). mAP is reported on Clipart1k.

Methods aero bcycle bird boat bottle bus car cat chair cow table dog hrs bike prsn plnt sheep sofa train tv mAP

Source Only [22] 27.3 60.4 17.5 16.0 14.5 43.7 32.0 10.2 38.6 15.3 24.5 16.0 18.4 49.5 30.7 30.0 2.3 23.0 35.1 29.9 26.7

DANN [8] 24.1 52.6 27.5 18.5 20.3 59.3 37.4 3.8 35.1 32.6 23.9 13.8 22.5 50.9 49.9 36.3 11.6 31.3 48.0 35.8 31.8

DT+PL w/o label [16] 16.8 53.7 19.7 31.9 21.3 39.3 39.8 2.2 42.7 46.3 24.5 13.0 42.8 50.4 53.3 38.5 14.9 25.1 41.5 37.3 32.7

WST [19] 30.8 65.5 18.7 23.0 24.9 57.5 40.2 10.9 38.0 25.9 36.0 15.6 22.6 66.8 52.1 35.3 1.0 34.6 38.1 39.4 33.8

BSR [19] 26.3 56.8 21.9 20.0 24.7 55.3 42.9 11.4 40.5 30.5 25.7 17.3 23.2 66.9 50.9 35.2 11.0 33.2 47.1 38.7 34.0

SWDA† [34] 29.0 60.7 25.0 20.4 24.6 55.4 36.1 13.1 41.2 38.3 30.3 17.0 21.2 55.2 50.4 36.6 10.6 38.4 49.2 41.2 34.7

BSR+WST [19] 28.0 64.5 23.9 19.0 21.9 64.3 43.5 16.4 42.2 25.9 30.5 7.9 25.5 67.6 54.5 36.4 10.3 31.2 57.4 43.5 35.7

HTCN† [3] 28.7 67.7 25.3 16.1 28.7 56.0 38.9 12.5 41.0 33.0 29.6 12.9 22.9 69.0 55.9 36.1 11.8 34.1 48.8 46.8 35.8

I3Net w/o DCBR 30.5 66.9 25.6 17.9 24.0 47.8 35.7 13.8 40.6 36.3 27.8 16.5 24.5 71.4 56.6 38.2 10.5 39.9 50.7 44.5 36.0

I3Net w/o COPM 28.7 66.8 28.4 23.1 25.3 58.4 42.8 19.2 40.4 33.6 32.7 18.1 23.5 53.8 52.5 35.6 13.4 37.3 52.4 46.0 36.6

I3Net w/o RJCA 28.8 67.8 25.4 16.2 28.9 56.1 39.0 12.6 41.1 33.1 29.7 13.0 22.9 69.1 55.9 36.3 11.9 34.2 48.9 46.9 35.9

I3Net (Full) 30.0 67.0 32.5 21.8 29.2 62.5 41.3 11.6 37.1 39.4 27.4 19.3 25.0 67.4 55.2 42.9 19.5 36.2 50.7 39.3 37.8

Table 2: Results on adaptation from Pascal VOC to Water-

color2k (%). mAP is reported on the Watercolor2k test set.

Methods bike bird car cat dog person mAP

Source Only [22] 77.5 46.1 44.6 30.0 26.0 58.6 47.1

DANN [8] 73.4 41.0 32.4 28.6 22.1 51.4 41.5

BSR [19] 82.8 43.2 49.8 29.6 27.6 58.4 48.6

WST [19] 77.8 48.0 45.2 30.4 29.5 64.2 49.2

SWDA† [34] 73.9 48.6 44.3 36.2 31.7 62.1 49.5

BSR+WST [19] 75.6 45.8 49.3 34.1 30.3 64.1 49.9

HTCN† [3] 78.6 47.5 45.6 35.4 31.0 62.2 50.1

I3Net w/o DCBR 78.7 49.2 42.6 37.4 32.4 62.5 50.5

I3Net w/o COPM 75.6 49.2 45.9 37.9 33.2 63.6 50.9

I3Net w/o RJCA 81.8 46.3 40.4 33.3 34.0 65.1 50.2

I3Net (Full) 81.1 49.3 46.2 35.0 31.9 65.7 51.5

the final performance will drop accordingly.

Results on Watercolor2k and Comic2k. Results on

the tasks of Pascal VOC → Watercolor2k and Pascal

VOC → Comic2k are reported on Table 2 and Table 3 re-

spectively. I3Net achieves better performance on most ob-

ject categories, indicating that I3Net is capable of learning

more transferable representations and scalable for differ-

ent cross-domain detection scenarios. It is noteworthy that

I3Net substantially exhibits better adaptation performance

on the challenging transfer task (27.8% to 30.1%), i.e., Pas-

cal VOC→Comic2k, where the domain discrepancy is sub-

stantially large between source and target data.

4.4. Further Empirical Analysis

Ablation Study. We verify the effect of the proposed

DCBR, COPM, and RJCA by evaluating variants of I3Net.

The results are reported in Table 4. (1) DCBR w/o Dynamic

and DCBR w/o CB denote that we remove wt
1 and wt

2 from

Eq. (4) respectively. (2) COPM w/o C denotes that we re-

move the non-linear fusion step (Eq. (6)) and directly match

the source and target vectorized attention maps. COPM w/

MMD and COPM w/ Adv denote that we replace the L2

distance in Eq. (8) by MMD [23] and domain adversarial

loss [7] respectively. (3) RJCA w/o J is the variant that only

Table 3: Results on adaptation from Pascal VOC to

Comic2k (%). mAP is reported on the Comic2k test set.

Methods bike bird car cat dog person mAP

Source Only [22] 43.3 9.4 23.6 9.8 10.9 34.2 21.9

DANN [8] 33.3 11.3 19.7 13.4 19.6 37.4 22.5

BSR [19] 45.2 15.8 26.3 9.9 15.8 39.7 25.5

WST [19] 45.7 9.3 30.4 9.1 10.9 46.9 25.4

BSR+WST [19] 50.6 13.6 31.0 7.5 16.4 41.4 26.8

SWDA† [34] 47.4 12.9 29.5 12.7 19.1 44.1 27.6

HTCN† [3] 50.3 15.0 27.1 9.4 18.9 46.2 27.8

I3Net w/o DCBR 44.2 14.0 35.1 6.5 19.3 51.7 28.5

I3Net w/o COPM 47.1 14.5 32.3 7.1 20.3 51.8 28.9

I3Net w/o RJCA 45.0 12.1 33.9 8.0 20.1 50.5 28.3

I3Net (Full) 47.5 19.9 33.2 11.4 19.4 49.1 30.1

Table 4: Ablation of I3Net on three transfer tasks (%).

Source Pascal VOC

Target Clipart1k Watercolor2k Comic2k

DCBR w/o Dynamic 37.3 51.4 29.2

DCBR w/o CB 37.1 51.0 29.3

COPM w/o C 36.8 51.1 29.0

COPM w/ MMD 34.9 48.4 27.0

COPM w/ Adv 37.0 50.7 29.8

RJCA w/o J 36.6 50.8 29.1

RJCA w/o PR 37.4 51.5 29.4

I3Net (Full) 37.8 51.8 30.1

conducts the category alignment in one layer. RJCA w/o PR

is the variant without prediction regularization (Eq. (13)).

The results of COPM w/ MMD and COPM w/ Adv reveal

that L2 distance is able to better preserve the structured in-

formation (i.e., object patterns). The results of RJCA w/o

J verify the significance of considering the complementary

effect of different domain-specific layers.

Visualization of COPM. Figure 3 visualizes the attention

maps generated by Source Only [22], HTCN† [3], and I3Net

(Ours). The brighter the color is, the larger the weight value

is. It is notable that the proposed I3Net is capable of (i)

capturing the discriminative regions which contain rich se-

mantic information, (ii) highlighting the foreground objects
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Figure 3: Illustration of the target attention maps generated by Source Only, HTCN†, and I3Net. From left to right: input

target images with ground-truth bounding boxes, Source Only, HTCN†, I3Net.

Figure 4: Qualitative detection results on Clipart1k, Watercolor2k, and Comic2k.

even with small object size, and (iii) suppressing the redun-

dant background information.

Qualitative detection results. Figure 4 demonstrates the

example of detection results on the three target domains,

i.e., Clipart1k, Watercolor2k, and Comic2k. The pro-

posed I3Net consistently and significantly outperforms both

Source Only [22] and HTCN† [3] models in different trans-

fer tasks. Owing to the introduction of DCBR, I3Net is

capable of precisely detecting the sample-scarce categories

(e.g., (a), (d), and (e)). I3Net is able to detect those ob-

scured objects and provide accurate bounding box predic-

tions since we explicitly encourage the alignment of cross-

domain object patterns via the proposed COPM (e.g., (a),

(b), (c), and (f)). In addition, due to the presence of RJCA,

I3Net is able to ensure the cross-domain semantic consis-

tency, and thus significantly reduce the false positive results

and enhance the classification accuracy (e.g., (d) and (e)).

5. Conclusion

In this paper, we proposed the Implicit Instance-Invariant

Network (I3Net) to solve the cross-domain object detection

problem based on the one-stage detectors without requir-

ing explicit instance-level features. The key idea of our

method is to implicitly learn instance-invariant features via

exploiting the natural characteristics of deep features in dif-

ferent layers, i.e., suppressing redundant information from

the lower layers and enhancing the cross-domain semantic

correlation of foreground objects at the higher layers. Ex-

periments on three standard cross-domain detection bench-

marks verified the effectiveness of our method.
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