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We analyze the spectrum of two- and three-pion states of maximal isospin obtained recently for

isosymmetric QCD with pion mass M ≈ 200 MeV in Hörz and Hanlon, [Phys. Rev. Lett. 123, 142002

(2019)]. Using the relativistic three-particle quantization condition, we find ∼2σ evidence for a nonzero

value for the contact part of the 3πþ (I ¼ 3) scattering amplitude. We also compare our results to leading-

order chiral perturbation theory. We find good agreement at threshold and some tension in the energy

dependent part of the 3πþ scattering amplitude. We also find that the 2πþ (I ¼ 2) spectrum is fit well by an

s-wave phase shift that incorporates the expected Adler zero.
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Introduction.—Lattice QCD (LQCD) provides a

powerful (if indirect) tool for ab initio calculations of

strong-interaction scattering amplitudes. The formalism for

determining two-particle amplitudes is well understood

[1–12], and there has been enormous progress in its

implementation in recent years [13–32] (see Ref. [33] for

a review). The present frontier is the determination of three-

particle scattering amplitudes and related decay amplitudes.

LQCD calculations promise access to three-particle scatter-

ing processes that are difficult or impossible to access

experimentally. Examples of important applications are

understanding properties of resonances with significant

three-particle branching ratios (including the Roper reso-

nance [34], and many of the X, Y, and Z resonances [35]),

determining the three-nucleon interaction (important for

large nuclei and neutron star properties), predicting weak

decays to three particles (e.g., K → 3π), and calculating the

3π contribution to the hadronic-vacuum polarization that

enters into the prediction of muonic g − 2 [36].

Three-particle amplitudes are determined using LQCD

by calculating the energies of two- and three-particle states

in a finite volume [37,38]. The challenges to carrying this

out are twofold. On the one hand, the calculation of spectral

levels becomes more challenging as the number of particles

increases. On the other, one must develop a theoretical

formalism relating the spectrum to scattering amplitudes.

Significant progress has recently been achieved in both

directions, with energies well above the three-particle

threshold being successfully measured, and a formalism

for three identical (pseudo)scalar particles available. The

formalism has been developed and implemented following

three approaches: generic relativistic effective field theory

(RFT) [39–45], nonrelativistic effective field theory

[46–49], and (relativistic) finite volume unitarity (FVU)

[50,51] (see, also, Refs. [52,53] and Ref. [54] for a review).

To date, only the RFT formalism has been explicitly

worked out including higher partial waves. The application

to LQCD results has, so far, been restricted to the energy of

the three-particle ground state, either using the threshold

expansion [55–57], or, more recently, the FVU approach

for 3πþ [51].

Recently, precise results were presented for the spectrum

of 2πþ and 3πþ states in OðaÞ-improved isosymmetric

QCD with pions having close to physical mass, M ≈

200 MeV [58]. These were obtained in a cubic box of

length L with ML ≈ 4.2, for several values of the total

momentum P⃗ ¼ ð2π=LÞd⃗ with d⃗ ∈ Z
3, and for several

irreducible representations (irreps) of the corresponding

symmetry groups. Isospin symmetry ensures that G parity

is exactly conserved and, thus, that the 2πþ and 3πþ sectors

are decoupled. In total, sixteen 2πþ levels and eleven

3πþ levels were obtained below the respective inelastic

thresholds at E�
2
¼ 4M and E� ¼ 5M, Here, E�

2
and

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
− P⃗

2
p

are the corresponding center-of-mass

energies, with E the total three-particle energy.

The purpose of this Letter is to perform a global analysis

of the spectra of Ref. [58] using the RFT formalism and

determine the underlying 3πþ interaction. This breaks new

ground for an analysis of the three-particle spectrum in

several ways: we use multiple excited states, in both trivial

and nontrivial irreps, including results frommoving frames.

Therefore, this analysis serves as a testing ground for the

utility of the three-particle formalism in an almost physical

example. An additional appealing feature is that the size of
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the 3πþ interaction can be calculated using chiral pertur-

bation theory (χPT). We present the leading order (LO)

prediction here.

After this Letter was made public, an independent study

of the results of Ref. [58], using the FVU approach,

appeared [59].

Formalism and implementation.—All approaches to

determining three-particle scattering amplitudes using

LQCD proceed in two steps, which we outline here. In

the first step, one uses a quantization condition (QC), which

predicts the finite-volume spectrum in terms of an inter-

mediate infinite-volume three-particle scattering quantity.

In the RFTapproach, the QC for identical, spinless particles

with a G-parity-like Z2 symmetry takes the form (up to

corrections of Oð1%Þ that are exponentially suppressed in

ML) [39]

det ½F3ðE; P⃗; LÞ−1 þKdf;3ðE�Þ� ¼ 0: ð1Þ

Here, F3 and Kdf;3 are matrices in a space describing three

on-shell particles in finite volume. They have indices of

angular momentum of the interacting pair, l; m, and finite-

volume momentum of the spectator particle, k. F3 depends

on the two-particle scattering amplitude and on known

geometric functions, while Kdf;3 is the three-particle

scattering quantity referred to above. It is quasilocal, real,

and free of singularities related to three-particle threshold

(and so “divergence-free”, i.e., df), thus, playing a similar

role to the two-particle K matrix K2 in two-particle

scattering. It is, however, unphysical, as it depends on

an ultraviolet (UV) cutoff. Given prior knowledge of K2,

and a parametrization ofKdf;3, the energies of finite-volume

states are determined by the vanishing of the determinant in

Eq. (1). The parameters in Kdf;3 are then adjusted to fit

to the numerically determined spectrum. Examples on

how to numerically solve Eq. (1) have been presented in

Refs. [42,44,45].

The second step requires solving infinite-volume integral

equations in order to relate Kdf;3 to the three-particle

scattering amplitude M3. In fact, as explained below, it

is a divergence-free version of the latter, denoted Mdf;3,

that is most useful. The equations relating Kdf;3 to Mdf;3

were derived in Ref. [40], and solved in Ref. [42].

The parametrizations we use for K2 and Kdf;3 are based

on an expansion about two- and three-particle thresholds.

For K2, this leads to the standard effective range expansion

(ERE), recalled below. At linear order in this expansion

only s-wave interactions are nonvanishing, with d-wave
interactions first entering at quadratic order (p-wave
interactions are forbidden by Bose symmetry). For Kdf;3,

the expansion is in powers of Δ ¼ ðE�2
− 9M2Þ=ð9M2Þ,

and was developed in Refs. [42,44] based on the Lorentz

and particle-interchange invariance ofKdf;3. Through linear

order in Δ, Kdf;3 is given by

Kdf;3 ¼ Kiso
df;3 ¼ K

iso;0
df;3 þK

iso;1
df;3 Δ; ð2Þ

where K
iso;0
df;3 and K

iso;1
df;3 are constants. There is no depend-

ence on the momenta of the three particles at this order;

this corresponds to a contact interaction, and leads to the

designation “isotropic” (iso). Momentum dependence first

enters at OðΔ2Þ.
In our main analysis, we keep only the s-wave two-

particle interaction and the isotropic terms in Eq. (2). With

these approximations, the QC of Eq. (1) reduces to a finite

matrix equation that can be solved by straightforward

numerical methods. Previous implementations have con-

sidered only the three-particle rest frame, P⃗ ¼ 0 [42,44,45]

(see, also, Ref. [48,51]). Here, we have extended the

implementation to moving frames, so that we can use all

the results obtained by Ref. [58].

In the Supplemental Material [60], we provide further

details of the implementation for a general frame, as well as

additional details concerning the fits and error estimates

described in the remainder of this Letter.

χPT prediction for Kdf;3 and Mdf;3.—Mdf;3 and Kdf;3

have not previously been calculated in χPT, so here, we

present the LO result. The LO Lagrangian in the isosym-

metric two-flavor theory is [61,62]

Lχ ¼
F2

4
trð∂μU∂μU†Þ þM2F2

4
trðU þ U†Þ; with

U ¼ eiϕ=F and ϕ ¼
�

π0
ffiffiffi

2
p

πþ
ffiffiffi

2
p

π− −π0

�

: ð3Þ

Here, F is the decay constant in the chiral limit, normalized

such that Fπ ¼ 92.4 MeV. We note that, at this order,

F ¼ Fπ . Expanding in powers of the pion fields, L ¼
L2π þ L4π þ L6π þ � � �, we need only the 4π and 6π

vertices.

From L4π, we obtain the standard LO result for the 2πþ

scattering amplitude [63],

M2 ¼
2M2

− E�2
2

F2
; ð4Þ

which displays the well-known Adler zero below threshold

at E�2
2

¼ 2M2 [64]. Given the ERE parametrization of the

s-wave phase shift,

q cot δ0ðqÞ ¼ −
1

a0
þ rq2

2
þ Pr3q4 þ � � � ; ð5Þ

where q2 ¼ E�2
2
=4 −M2, one can infer from Eq. (4) the LO

results for the scattering length and effective range

Ma0 ¼
M2

16πF2
and M2ra0 ¼ 3: ð6Þ
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The 3πþ amplitude M3 is given at LO by the diagrams

of Fig. 1. As is well known, M3 diverges for certain

external momenta, as the propagator in Fig. 1(a) can go on

shell. This motivated the introduction of a divergence-free

amplitude in Ref. [39]

Mdf;3 ≡M3 −D; ð7Þ

D ¼ S

�

−M2ðs12Þ
1

b2 −M2
M2ðs012Þ

�

þOðM3

2
Þ; ð8Þ

where s12 ¼ ðp1 þ p2Þ2, s0
12

¼ ðk1 þ k2Þ2, b ¼ p1þ
p2 − k3, and S indicates symmetrization over momentum

assignments. D is defined to have the same divergences as

M3, so that their difference is finite. At LO in χPT, only the

LO term in D contributes, and we find

M2Mdf;3 ¼
M4

F4
ð18þ 27ΔÞ

¼ ð16πMa0Þ2ð18þ 27ΔÞ; ð9Þ

a result that is real and isotropic. As a side result, we have

also calculated the related threshold amplitude that enters

into the 1=L expansion of the three-particle energy [65],

finding M3;th ¼ 27M2=F4.

The last step is to relate Mdf;3 to Kdf;3. We find these

quantities to be equal at LO

Kdf;3 ¼ Mdf;3½1þOðM2=F2Þ�; ð10Þ

so that Kdf;3 is also given by Eq. (9). This implies that Kdf;3

is scheme independent at LO in χPT. We can also quantify

the expected size of the corrections, finding them to range

between 10% and 50%, with the larger error applying to the

term linear in Δ.

Fitting the two-particle spectrum.—Determining the

two-particle phase shift is an essential step, as it enters

into the three-particle QC. In particular, we need a para-

metrization valid below threshold, as the two-particle

momentum in the three-particle QC takes values in the

range q2=M2
∈ ½−1; 3�. We extract information on the

s-wave phase shift using a form of the two-particle QC

that holds in all frames for those irreps that couple to J ¼ 0.

We use the bootstrap samples provided in Ref. [58] to

determine statistical errors, so that correlations are

accounted for properly.

We use a parametrization of the phase shift (adapted

from that of Ref. [66]; see, also, Ref. [67]) that includes the

Adler zero predicted by χPT, as well as the kinematical

factor E�
2

q

M
cot δ0ðqÞ ¼

E�
2
M

E�2
2
− 2z2

2

�

B0 þ B1

q2

M2
þ B2

q4

M4
þ � � �

�

:

ð11Þ

We either set z2
2
¼ M2, the LO value, or leave it as a free

parameter. B0 and B1 are related in a simple way to a0
and r. Previous lattice studies have used the ERE, Eq. (5)

(see, e.g., Refs. [68–70]), but this has the disadvantage, due

to the Adler zero, of having a radius of convergence of

jq2j ¼ jM2
− z2

2
=2j ≈M2=2. In particular, the ERE gives

results for −1 < q2=M2 < 0 that are substantially different

FIG. 1. LO contributions to the three-particle scattering am-

plitude M3. Momentum assignments must be symmetrized.

TABLE I. Fits of the two-particle spectrum to the Adler-zero form of q cot δ0, Eq. (11).

Fit B0 B1 B2 z2
2
=M2 χ2=d:o:f: Ma0 M2ra0

1 −11.2ð7Þ −2.1ð3Þ � � � 1 (fixed) 12.13/(11-2) 0.089(6) 2.63(8)

2 −10.4ð9Þ −3.7ð1.0Þ 0.5(3) 1 (fixed) 9.75/(11-3) 0.096(8) 2.3(3)

3 −11.7ð1.8Þ −2.0ð4Þ � � � 0.94(22) 12.06/(11-3) 0.091(9) 2.4(9)
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from the Adler-zero form. This is related to the fact that

in (11), B1 andB2 are both of next-to-leading order (NLO) in

χPT, in contrast to the ERE form where r and P are both

nonzero at LO, as can be seen from the explicit χPT

expressions given in Ref. [68]. The formal radius of

convergence of our expression (11) is jq2j ¼ M2, due to

the left-hand cut, but following common practice, we ignore

this and use it up to q2=M2 ¼ 3. We find that fitting with the

restriction jq2j=M2 < 1 has only a small impact on the

resulting parameters. We have also checked that fits using

the ERE form provide a worse description of the data.

The results of several fits are listed in Table I and shown

in Fig. 2. All fits give reasonable values of χ2 divided by the

number of degrees of freedom, χ2=d:o:f:, and yield values

for M2ra0 close to the predicted LO value of 3. Using the

value of F obtained from the same lattice configurations in

Ref. [71,72], the LO chiral prediction from Eq. (6) is

Ma0 ¼ 0.0938ð12Þ, and this is also in good agreement with

the results of the fits. Overall, we conclude that the

spectrum from Ref. [58] confirms the expectations from

χPT. We choose the minimal fit 1 as our standard choice

since B2 is poorly determined (fit 2) and the Adler-zero

position is consistent with the LO result if allowed to float

(fit 3).

We have performed a similar fit to the five energy levels

from Ref. [58] which are sensitive only to the d-wave
amplitude. Despite very small shifts from the free energies,

we find a 3σ signal for the d-wave scattering length,

ðMa2Þ5 ¼ 0.0006ð2Þ. The smallness of this result is

qualitatively consistent with the fact that this is a NLO

effect in χPT, and justifies our neglect of d waves in the

three-particle analysis.

Fitting the three-particle spectrum.—Now, we use the

three-particle spectrum to determine Kiso
df;3. Eight levels are

sensitive to Kiso
df;3, while three are in irreps only sensitive to

two-particle interactions. Since all levels are correlated, a

global fit to two- and three-particle spectra is needed to

properly estimate errors.

Before presenting the global fits, however, we use an

approach (“method 1”) that allows a separate determination

of Kiso
df;3 for each of the eight levels sensitive to this

parameter. Within each bootstrap sample, we fit the two-

particle levels to the fit 1 Adler-zero form described above,

and then adjust Kiso
df;3 so that the three-particle QC repro-

duces the energy of the level under consideration. The

results are shown in Fig. 3. The values of Kiso
df;3 are all

positive, and a constant fit yields M2Kiso
df;3 ¼ 560ð270Þ

with χ2=d:o:f: ¼ 8.5=7. The LO χPT result (given by

M2Kiso
df;3 ¼ 360þ 540Δ, taking Ma0 from fit 1) is reason-

ably consistent with the linear fit, as shown. This indicates

that a significant result forKiso
df;3 of the expected size may be

obtainable.

This fit does not include three-particle energy levels in

irreps sensitive only to δ0. These, however, can be used as a

consistency check. We find good agreement between the

data and the energies predicted by the QC.

FIG. 2. Values of q cot δ0 obtained from the two-particle

spectrum of Ref. [58] using the two-particle QC, together with

various fits.

FIG. 3. Results for M2Kiso
df;3 from individual three-particle

levels, using method 1, together with constant and linear fits,

and the LO prediction of χPT.

TABLE II. Global fits to the two- and three-particle spectrum using the two- and three-particle QCs.

Fit B0 B1 z2
2
=M2 M2K

iso;0
df;3 M2K

iso;1
df;3 χ2=d:o:f: Ma0 M2ra0

4 −11.1ð7Þ −2.3ð3Þ 1 (fixed) 270(160) � � � 27.06/(22-3) 0.090(6) 2.59(8)

5 −11.1ð7Þ −2.4ð3Þ 1 (fixed) 550(330) −280ð290Þ 26.04/(22-4) 0.090(5) 2.57(8)
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To establish the true significance of the results for Kiso
df;3

we perform global fits to the eleven two-particle and eleven

three-particle levels that depend on δ0 and/or K
iso
df;3. We do

so both for constant and linear Kiso
df;3. The results are

collected in Table II. Fit 4 finds a value for Kiso
df;3 that

has around 1.8σ statistical significance and also gives

values for B0 and B1 that are consistent with those from

fits 1–3 above and with the LO χPT predictions. The p
value of the fit is p ¼ 0.103.

In fit 5, we try a linear ansatz for Kiso
df;3, and find that the

current dataset of Ref. [58] is insufficient for a separate

extraction of both constant and linear terms. We note,

however, that, even in this fit, the scenario Kiso
df;3 ¼ 0 is

excluded at ∼2σ.

In Fig. 4, we present a summary of the errors resulting

from the global fits. We also include the value from LO

χPT, along with an estimate of the NLO corrections. As can

be seen, the constant term agrees well with the prediction,

whereas the larger disagreement for the linear term is only

of marginal significance given the large uncertainty in the

χPT prediction.

One concern with our global fits is that we are using the

forms for K2 and Kiso
df;3 beyond their radii of convergence.

For Kiso
df;3, we do not know the radius of convergence, but a

reasonable estimate is that one should use levels only with

jΔj < 1. To check the importance of this issue, we have

repeated the global fits imposing q2=M2 < 1 and Δ < 1, so

that the fit includes only five 2πþ and five 3πþ levels. We

find fit parameters that are consistent with those in Table II,

but with much larger errors. For example, the result from

the equivalent of fit 4 gives M2K
iso;0
df;3 ¼ 610ð350Þ.

We close by commenting on sources of systematic

errors. The results of Ref. [58] are subject to discretization

errors, but these are ofOða2Þ, and likely small compared to

the statistical errors from [58]. The quantization condition

itself neglects exponentially suppressed corrections, but

these are numerically small (e−ML
∼ 1%) compared to our

final statistical error. Errors from truncation of the threshold

expansion for K2 and Kdf;3 are also present but harder

to estimate.

Conclusions.—We have presented statistical evidence for

a nonzero 3πþ contact interaction, obtained by analyzing

the spectrum of three pion states in isosymmetric QCDwith

M ≈ 200 MeV obtained in Ref. [58]. This illustrates the

utility of the three-particle quantization condition. It also

emphasizes the need for a relativistic formalism, since most

of the spectral levels used here are in the relativistic regime.

It gives an example where lattice methods can provide

results for scattering quantities that are not directly acces-

sible to experiment.

We expect that forthcoming generalizations to the

formalism (to incorporate nondegenerate particles with

spin, etc.), combined with advances in the methods of

lattice QCD (to allow the accurate determination of the

spectrum in an increasing array of systems), will allow

generalization of the present results to resonant three-

particle systems in the next few years.
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