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Abstract. Star clusters with a high central density contain an
ecological network of evolving binaries, affected by interactions
with passing stars, while in turn affecting the energy budget
of the cluster as a whole by giving off binding energy. This
is the first paper in a series aimed at providing the tools for
increasingly realistic simulations of these ecological networks.

Here we model the core of a globular star cluster. The two
main approximations are: a density of stars constant in space
and time, and a purely single star population in which colli-
sions between the evolving stars are modeled. In future papers
in this series, we will relax these crude approximations. Here,
however, they serve to set the stage before proceeding to the
additional complexity of binary star interactions, in paper II,
and background dynamical evolution, in later papers.

Key words: methods: numeric – celestial mechanics: stellar
dynamics – stars: evolution – stars: blue stragglers – globular
clusters: general

1. Introduction

In dense stellar systems, such as open and globular clusters and
galactic nuclei, encounters between individual stars and binaries
can affect the dynamical evolution of the system as a whole on
a time scale comparable to, or even shorter than, a Hubble time.
In order to reach a detailed theoretical understanding of such
systems, the following three steps are necessary.

First, we need to understand the basic mechanism of the
dynamical evolution, in the limit of a point-mass approximation
for the stars. Second, effects of dynamical encounters on the
internal evolution of single stars and binaries has to be taken into
account. Third, we have to model the feedback of these internal
changes onto the dynamical evolution of the whole system. Let
us briefly review each step.

Send offprint requests to: Simon Portegies Zwart

Great progress has been made with the first step, modeling
the dynamical evolution of point-mass systems. In the seven-
ties, the processes of core collapse and mass segregation were
studied with the use of various types of Fokker-Planck approx-
imations. In the eighties, these simulations were extended suc-
cessfully beyond core collapse, and various studies were made
of the phenomenon of gravothermal oscillations, ubiquitous in
the post-collapse phase. Of these models a few even include
mass loss due to the evolution of the stars (Chernoff & Wein-
berg 1990). In the nineties, we are finally beginning to switch
over from Fokker-Planck approximations to much more detailed
and realistic N -body simulations. In 1995, the construction of
the GRAPE-4, a special-purpose machine with Teraflops speed,
has made a 32, 000–body simulation feasible, providing the first
direct evidence of gravothermal oscillations (Makino, 1996ab).
Extending these simulations to the full realm of globular clus-
ters (N = 105 ∼ 106) will require Petaflops speed, something
that could be realized by future special-purpose machines in the
GRAPE series by as early as the year 2000.

While the point-mass approximation provides a good qual-
itative guide for the construction of dynamical models of dense
stellar systems, this approximation quickly breaks down when
we require quantitatively accurate results. The second step at-
tempts to model the effects of close encounters. A number of
different investigations have estimated the rate at which physical
collisions have taken place, under various circumstances (Hills
& Day 1976, Verbunt & Meylan 1988, Di Stefano & Rappa-
port 1992 and Davies & Benz 1995). However, little progress
has been made so far in following the changes induced in the
stellar population, beyond enumerating the number of mergers.
In the simulations presented below, collisions are modeled in
an evolving population of single stars in a high-density stellar
environment. Paper II in this series will extent our treatment
to follow the induced changes in binary systems, both on the
level of changes in orbital parameters as well as in the internal
structure of the stars.

However, such investigations are only a start, and cannot
lead to a quantitative modeling of dense stellar systems, since
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they are not yet self-consistent. What is needed in addition is
a treatment of the feedback mechanism, from the changes in
single stars and binaries back to the overall dynamics of the
system. This third step is being pioneered for open clusters by
Aarseth (1996). The current series of papers aims to provide
self-consistent models of this type, by coupling relatively crude
stellar evolution recipes, documented and tested in papers I and
II, to a fully dynamical N -body system.

This paper is organized as follows. Our approach to the study
of the ecology of star clusters is summarized in somewhat more
detail in Sect. 2. The next section, Sect. 3, describes our simu-
lation techniques, and the various approximations involved. In
Sect. 4, we present the result of a simulation starting a single
model, with a minimum of free parameters. The results of a
more realistic core model run are presented in Sect. 5. Sect. 6
sums up.

2. Star cluster ecology

Stellar evolution plays a role in star cluster evolution similar
to the role played by nuclear physics in stellar evolution. In
both cases, the microphysical processes play a crucial role in
the mechanism of energy generation in the central parts of the
system under consideration, a mechanism that tries to balance
the energy losses at the outskirts (tidal radius and photosphere,
respectively).

In the next two subsections we look separately at the differ-
ent forms of physics input necessary to follow the evolution of
a star cluster. The third subsection then discusses their intercon-
nection. For future reference, initial conditions are discussed in
the fourth subsection, while the last subsection provides a brief
outline of the series of papers of which this one is the first.

2.1. Stellar dynamics simulations

Great progress has been made in the study of star cluster dynam-
ics, using various approximate methods in which the stars have
been treated like a form of fluid, either three-dimensional as in
conducting gas sphere models, or six-dimensional as in Fokker-
Planck models. In both cases, the main effect of encounters
has been taken into account by a form of effective two-body
relaxation. We refer to Hut et al. (1992) for a review of these
methods.

Unfortunately, both methods have two intrinsic handicaps
that make them unsuitable for a detailed quantitative modeling
of the evolution of a globular cluster past core collapse. First,
they are not set up to deal with the separate evolution of internal
and external degrees of freedom of the binaries that play a central
role in the energy generation processes in the cluster.

The second problem stems from an introduction of a mass
spectrum, as well as a distinction between stars of different
radii, such as dwarfs, main-sequence stars, and giants. The root
of the problem here is that a gas sphere or Fokker-Planck ap-
proach does not follow individual stars, but rather distribution
functions. When the number of independent parameters charac-
terizing the distribution functions becomes too large, there will

be less than one star left in a typical cell in parameter space —
something that clearly invalidates the statistical hypothesis on
which these methods are based.

The only solution is to drop the statistical assumption, and
to revert to a star-by-star modeling of a globular cluster, through
directN -body calculations. The draw back of such an approach
has long been the prohibitive calculational costs involved, and
until recently typical production runs only included a few thou-
sand stars. To extend such numbers to include several hundred
thousand stars, characteristic of realistic globular clusters, re-
quires an increase of two orders of magnitude in star number,
or a factor million in computational cost, from Gigaflops days
to Petaflops days (Hut et al. 1988).

Recently, the number of stars modeled in direct N -body
calculations has been increased significantly, to N = 32, 000,
using the GRAPE-4, a form of special-purpose hardware devel-
oped by a group of astrophysicists at Tokyo University, running
at a speed of 1 Tflops (Makino 1996a). The first scientific re-
sults of the GRAPE-4, including the first convincing evidence of
gravothermal oscillations in N -body simulations, predicted by
Sugimoto & Bettwieser (1983), have been presented by Makino
(1996ab).

The next, and definitive step that will enable any globular
cluster to be modeled realistically might take place as early as
the year 2000. If funding can be found, there is no technological
obstacle standing in the way of a speedup of the current GRAPE-
4 machine by a factor of a thousand, during the next five years.
Most of this speed-up will come from further miniaturization,
allowing a larger number of gates to be mounted on a single
chip, and allowing a higher clock speed as well. A Petaflops
machine by the year 2000, allowing simulations of core collapse
and post-collapse evolution with up to 106 particles, is thus a
realistic goal.

2.2. Stellar evolution population synthesis

The first serious attempts to understand and simulate the evo-
lution of close binaries were made in the mid thirties (Haffner
& Heckmann 1937) and late fifties by Crawford (1955), Kopal
(1956) and Huang (1956) followed by Morton (1960) and the
standard work in binary evolution from Kippenhahn & Weigert
(1967). Synthesis of complete populations of single stars be-
came popular in the mid seventies when Tinsley & Gunn (1976)
simulated the giant-branch luminosity functions for giant ellip-
tical galaxies. However, it is only recently that detailed studies
simulate complete populations of close binaries starting with
Dewey & Cordes (1987) who tried to understand the evolution-
ary sequence of radio pulsars and the presence of an asym-
metry in the velocity distribution of single radio pulsars. In
later papers, similar evolutionary scenarios for the formation
of binary neutron stars were studied in more detail (Tutukov
& Yungelson 1993, Lipunov et al. 1995, Portegies Zwart &
Spreeuw 1996 and Lipunov et al. 1996), for high mass X-ray
binaries and the supernova rate in the galaxy (Tutukov et al.
1992, Lipunov 1994, Dalton & Sarazin 1995, Portegies Zwart
& Verbunt 1996) and for lower mass systems with a neutron star
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(Webbink & Kalogera 1993, Pols & Marinus 1994) or a white
dwarf (de Kool 1990, Kolb & Ritter 1992) as the accreting ob-
ject. The first couragous attempt to combine stellar and binary
evolution within the collisional evironment of a globular cluster
was performed by Sutantyo (1975), followed more recently by
Di Stefano & Rappaport (1992), Sigurdsson & Phinney (1993),
Leonard (1994), Davies & Benz (1995) and Davies (1995).

2.3. Ecological networks

Purely stellar-dynamical calculations often rely on rather severe
approximations, such as a representation of stars by equal-mass
point-masses. And there is a good reason for doing so, since
any single deviation from that simple recipe requires other de-
viations as well. Let us look at one example.

As soon as we introduce a mass spectrum in a star cluster
simulation, we will see that the heavier stars start sinking to-
ward the center, on the dynamical friction time scale, shorter
than the two-body relaxation time by a factor proportional to
the mass ratio of individual heavy stars with respect to that of
typical stellar masses. The reason is that relaxation tends to-
ward equipartition of energy, which implies that heavier stars
will move more slowly and therefore gather at the bottom of the
cluster potential well.

If stars would live forever, there would be a large overcon-
centration of heavy stars in the core of a star cluster. However,
in reality there is an important counter-effect: heavy stars burn
up much faster than lighter ones. They may or may not leave
degenerate remnants, that may or may not be heavier than the
average stellar mass in the cluster (a quantity that decreases
in time). Clearly, it would be grossly unrealistic to introduce
a mass spectrum without removing most of the mass of the
heaviest stars on the time scale of their evolution off the main
sequence and across the giant branches.

Another reason for introducing finite life times for stars
comes from abandoning the very restrictive point mass model.
As soon as we do that, giving our stars a finite radius will give
rise to stellar collisions. The heavier stars produced in the col-
lision of two turn-off stars, for example, will burn up on a time
scale an order of magnitude smaller than the age of the clus-
ter. Again, we have to take this into account to be consistent,
especially since the merger products themselves are prime can-
didates for further merging collisions.

The need to let many stars shed most of their mass, together
with the fact that most of the energy in a globular cluster is locked
up in binaries, poses a formidable consistency problem. Since
binaries play a central role in cluster dynamics, consistency
requires that we follow their complex stellar evolution, which
involves mass overflow (which can be stable or unstable, and
can take place on dynamical or thermal or nuclear time scales)
and the possibility of a phase of common-envelope evolution.
On top of all that, we will have to find simple recipes for the
hydrodynamic effects occurring in three-body and four-body
reactions, and in occasional N > 4 reactions, which are bound
to occur in dense cluster centers.

To sum up: there does not seem to be a half-way stopping
point, at which we can expect to carry out consistent cluster
evolution simulations. Either we study the interesting but un-
realistic mathematical-physics problem of an equal-mass point
particle model, or we opt for a realistic model with some set of
stellar-evolution recipes. The main question here is: what is the
simplest set that is still consistent?

2.4. Initial conditions

In most stellar dynamics simulations of star clusters, the Plum-
mer model is used as a standard model to specify the initial
conditions for the distribution of the point particles. While not
very realistic, this choice has had the advantage of making com-
parisons between different runs, as well as between different ap-
proaches, relatively straightforward. Of course, when attempts
are made to model particular star clusters, other models have
often replaced the Plummer model as a starting point. King
models, for example, are already more realistic in that they pro-
vide a form of spatial cut-off that can be interpreted as a tidal
radius.

For similar reasons, we will use a standard model for our
simulations that combine stellar dynamics and stellar evolution.
In most cases, the use of our standard model will be mostly for
illustrative reasons, to provide a gauge for comparison between
our various results, as well as between our results and that of
others. For historical reasons, we choose our standard model to
be based on a Plummer model for the macroscopic initial star
distribution, and a Salpeter model for the initial mass function.

An additional advantage of these simple choices is that they
limit the number of free parameters. The Plummer model, for
example, contains only one free parameter, N , the number of
stars in the system (apart from a choice of mass and length
scales, that are irrelevant in the point particle case). In contrast
to the Plummer model, our standard model can be expected
to form a multi-parameter family. As soon as we abandon the
point-mass approach, we have to deal with microscopic as well
as macroscopic mass and length scales.

Of these various scales, the macroscopic quantities can be
chosen independently, while the microscopic ones can be fixed,
statistically, by specifying a mass distribution together with ap-
propriate cut-off masses at the high and low end. In general, an
arbitrary functional form for the mass distribution function can
lead to an arbitrarily large number of parameters. Interestingly,
our standard model definition allows us to limit the total number
of free parameters to three.

Starting from the macroscopic side, we can take the total
mass M and the half-mass radius rh of the Plummer model as
our first two free parameters. With a Salpeter choice of powerlaw
distribution function, the third free parameter can be chosen in
the form of the lower mass cut-off m−. The higher-mass cut-
off m+ could be specified independently, but this is not strictly
necessary: since the Salpeter distribution function converges at
the high-mass end, we can simply parcel out the total mass M
over different stellar masses, between star masses of m = m−
and m+ = ∞, and we will naturally be left with a single most
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massive star. This procedure is not unrealistic: nature probably
limits the number of high-mass stars in medium-size galactic
clusters in a similar way.

In fact, we can go even further, and make the following
somewhat arbitrary but natural choices: rh = 10 pc, m− =
0.1M�. This leaves only the total mass M to be specified, or
equivalently, the total number of stars N . For future conve-
nience, we will refer to this ‘most standard’ model as our ref-
erence model. For systems with a few thousand stars, we are
dealing with a typical open cluster, with velocity dispersions of
order 1 km/s, while for a few hundred thousand stars, we have a
reasonable approximation to a globular cluster, for which typical
stellar velocities are an order of magnitude higher.

In addition to this standard model, the various papers in
this series will also contain the results of more realistic mod-
els. However, we will typically provide at least one run from a
standard model, in order to provide comparison material for the
more detailed models.

2.5. Stepping stones

In the current series of papers, our goal is to provide a series of
ecological simulations, based on a flexible stellar dynamics code
coupled to a comprehensive set of stellar evolution modules.
These modules in turn are based on recipes that govern the
behavior of both single star and binary star evolution, as well as
interactions between larger numbers of stars.

In order to present results that can be reproduced and criti-
cally assessed by other groups, we clearly document the recipes
used, as well as their coupling to the dynamics. With this aim,
we give a detailed description of our approach in the first few
papers in this series, which will form stepping stones towards a
full-fledged ecological star cluster evolution code.

The present paper starts off with rather extreme approxima-
tions for the stellar dynamics, as well as the stellar evolution
parts of our simulations. With respect to the former, we start
with a laboratory-type situation, in which we consider a homo-
geneous distribution of stars, kept constant in time. With respect
to the latter, we consider a population of single stars only. Paper
II relaxes the second assumption, by introducing a population of
primordial binaries, and allowing the formation of new binaries
as well (see Portegies Zwart et al. 1997). Later papers will sub-
sequently relax the former assumption, with the ultimate goal
of using a self-consistent N -body code.

3. A static homogeneous environment with single stars

3.1. Initial conditions

In the present paper, we keep the dynamical environment as sim-
ple as possible, in order to focus on the stellar evolution recipes,
that are introduced here and used in subsequent papers as well.
The stellar distribution is take to be in thermal equilibrium,
with a density that is constant in space and time. In addition, an
additional simplification is obtained by excluding any primor-
dial binaries, and ignoring binary formation channels. Within
this setting, random encounters between single stars will lead to

collisions resulting in the formation of merger products, the evo-
lution of which can then be followed along with the evolution
of the original single stars.

3.1.1. Initial mass function

While our main aim is to set-up and clarify our stellar evolution
recipes, we present two calculations that could be interpreted as
having a limited astrophysical interpretation, one for the core
of an ω-Centauri-like cluster (Sect. 4), and one for the core of
an M-15-like cluster (Sect. 5). Our choice of constant density
implies that we can only hope to model the history of a clus-
ter core, not that of a cluster as a whole. To specify the mass
distribution, we first take our standard choice: a Salpeter initial
mass function (Sect. 4), which we will use to model a relatively
unevolved core. Our second choice will be a much more flat
distribution, which is more appropriate for a high-density post-
collapse cluster core (Sect. 5).

3.1.2. Mass and number densities

If we specify the mass density ρ for the stars in our cluster case,
we can use the mass function to determine the number density
n = n(ρ). In a homogeneous medium the relation is linear, and
for the simplest case of a powerlaw mass functionf (m) ∝ m−α,
we find

n

ρ
=
α− 2
α− 1

m1−α
− −m1−α

+

m2−α
− −m2−α

+
, (1)

where m− and m+ are the lower and upper mass cut-offs, re-
spectively. For the example of an initial Salpeter mass function,
α = 2.35, we find

n

ρ
=

0.26
m−

, (2)

when we neglect the fact that the upper mass cut-off is finite.
The inverse quantity mav is the average stellar mass:

mav = 3.9m− = 0.39M� (3)

in our standard case where we take a lower cut-off mass of
0.1M�. The median mass mmed for a Salpeter distribution is

mmed = 2
1

α−1m− = 0.17M� (4)

which means that in our standard population most stars have a
mass well below 0.2M�.

Even in our simple case of a homogeneous system, the lin-
ear relationship n(ρ)/ρ = 1/mav involves a complicated time
dependent factormav . Not only does the upper mass cut-offm+

(roughly the main sequence turn-off mass) depend on time, but
what is worse, the distribution of remnants, in the form of black
holes, neutron stars and white dwarfs, does not obey any simple
power law, even if their progenitors did. In general, therefore,
the coefficient n/ρ has to be determined numerically, as a func-
tion of time.
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3.1.3. Velocity dispersions

In thermal equilibrium, equipartition of kinetic energy tells
us how the velocity dispersions scale for stars with different
masses. We only have to specify the three-dimensional veloc-
ity dispersion v for one particular mass, say v(1M�) = v�, in
order to determine the 3D velocity dispersion v(m) for stars of
general mass m:

v(m) =

(
1M�
m

)1/2

v�. (5)

3.1.4. Core radius and core mass

The three choices discussed so far, namely that of an initial
mass function, a density, and a temperature, specify the intensive
thermodynamic properties. This in turn enables us to calculate
the local rate of collisions, per unit time, and per unit volume. In
order to extract global information, we have to specify extensive
quantities as well, such as the total volume or total mass of
our system. This will allow us to determine a global collision
rate per unit time, which we can then compare with that of an
astrophysical system, such as the core of a globular cluster.

For an equal-mass cluster model that is close to thermody-
namic equilibrium, the density drops by roughly a factor three,
from the center to the edge of the core. This implies that the
local density of collisions, which is proportional to the square
of the density, drops by an order of magnitude. In the more real-
istic case of a mass spectrum the situation is even worse, since
the density of the heavier stars drops off faster than that of the
lightest stars. In the present paper we will not attempt to model
these density dependent effects, and instead we will keep the
density of all mass groups constant throughout the region of our
simulation. It is clear, therefore, that our results are mainly for
the purpose of illustration, and that any comparison with actual
systems will have to be taken with many grains of salt.

The only question remaining is the definition of a core radius
rc. For an equal mass system, we have (Spitzer 1987)

rc =

(
3

4πGρ

)1/2

vc. (6)

In the presence of a mass spectrum, we have to modify this
equation. Although the velocity dispersion is now quite different
for different mass groups, the average kinetic energy per star
(1/N )Ekin is independent of mass, with N the total number of
stars in the core. Rewriting the above formula, we have:

r2
c =

3
4πGρ

2
M

Ekin, (7)

whereM is the core mass. For a general mass spectrum, we can
substitute Ekin = (N/2)M�v�2 which gives

rc =

(
3

4πGρ

)1/2(M�
mav

)1/2

v�. (8)

In this expression, the right hand side contains only local quan-
tities, and the global quantity rc is given in terms of those.

Note that this is not the only possible generalization of the
equal-mass expression, but it is a natural one, and it reverts to
the original expression in cases where the mass of the core is
dominated by stars in a relatively small mass range, as is the
case, for example, in a post-collapse core of a globular cluster.

Other global quantities can be derived from rc, such as the
core mass M :

M =
2
3
πr3

cρ, (9)

where we have used the fact that in an isothermal sphere the
average density in the core is roughly half the central density, a
relationship, while not exact, is certainly good enough for our
purpose of relating our results to astrophysical systems.

3.2. Recipes for stellar evolution

The stars in our computations are evolving using the stellar
evolution model called SeBa (see Portegies Zwart & Verbunt
1996). To describe their evolution, we use the formulae fitted
to the results of full stellar evolution calculations, by Eggleton
et al. (1989). These formulae give the radius and luminosity
(for population I stars) as a function of time, on the main se-
quence, in the Hertzsprung gap, the (sub)giant branch, on the
horizontal branch, and on the asymptotic giant-branch. We use
these population I recipes, because the more appropriate data
for population II stars are not available in the same convenient
form. In addition to the radius, we need the core mass for stars
that have left the main sequence. We derive these from the lumi-
nosity, according to Eggleton et al. (1989), and core-mass lumi-
nosity relations, according to Boothroyd & Sackmann (1988),
Paczyński (1970) and Iben & Truran (1978). The details of this
procedure are described in Portegies Zwart & Verbunt (1996,
Section 2.1).

3.3. Recipes for individual encounters

In this paper, we only treat single stars, and accordingly the only
outcome allowed for a close encounter is a merged object. The
merging between the two stars in an encounter in our calculation
is generally assumed to conserve mass, which in fact may be
a reasonable approximation (Benz and Hills 1987, 1989, 1992,
Rasio & Shapiro 1991, 1992).

Only a limited number of simulations of encounters between
stars has been performed, and these does not cover all possible
combinations that may occur in a cluster. Also, different authors
do not agree on the details of the outcomes for the same type
of encounter. We therefore have chosen to use a set of simple
prescriptions for the outcome of stellar collisions, often chosen
without detailed justification. In the future these prescriptions
can be refined, when more accurate calculations for collisions
become available. Meanwhile, our results will help in determin-
ing which of all possible types of encounter are most frequent,
and therefore deserve closer attention.

We describe our treatment of the possible outcomes of the
encounters of two stars ordered by the evolutionary state of the
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Table 1. Simplified representation of possible merger outcomes. The
four columns correspond to the four choices given for the type of mas-
sive star (primary), while the four rows indicate the type of less massive
star (secondary): main-sequence star (ms), (sub)giant (sg), white dwarf
(wd) and neutron star (ns). In this table we do not discriminate between
stars in the Hertzsprung gap (Hg) or on the first and second ascent on
the asymptotic-giant branch (AGB).

primary
star ms sg wd ns

wd ns
ms ms sg + +

disc disc
wd ns

sg Hg AGB + +
disc disc

wd sg AGB – –

ns TŻO TŻO – –

more massive of the two, the primary. Table 1 summarizes this
treatment.

3.3.1. Main-sequence primary

If both stars involved in the encounter are main-sequence stars
the less massive star is accreted conservatively onto the most
massive star. The resulting star is a rejuvenated main-sequence
star (see Lai et al. 1993, Lombardi et al. 1995). The details of
this procedure are described in Appendix C4 of Portegies Zwart
& Verbunt (1996).

If the less massive star in the encounter has a well devel-
oped core (giant or subgiant) this core is treated as the core of
the merger product. The main-sequence star and the envelope
of the giant are added together to form the new envelope of
the merger. In general the mass of the core is relatively small
compared to its envelope and the star is assumed to continue
its evolution through the Hertzsprung gap. Note that this type
of encounter can only occur when the main-sequence star is in
itself a collision product (e.g. a blue straggler).

When a main-sequence star encounters a less massive white
dwarf, we assume that the merger product is a giant, whose core
and envelope have the masses of the white dwarf and the main-
sequence star, respectively. We then determine the evolutionary
state of the merger product, as follows. We calculate the total
time tagb that a single, unperturbed star with a mass equal to
that of the merged star spends on the asymptotic giant-branch,
and the mass mc,agb of its core at the tip of the giant branch.
The age of the merger product is then calculated by adding
tagbmc/mc,agb to the age of an unperturbed star with the same
mass at the bottom of the asymptotic giant branch. For exam-
ple, a single, unperturbed 1.4M� star leaves the main-sequence
after 2.52 Gyr, spends 60 Myr in the Hertzsprung gap, moves

to the horizontal branch at 2.96 Gyr, and reaches the tip of the
asymptotic giant branch after 3.06 Gyr, with a core of 0.64 M�.
Thus, if a 0.6 M� white dwarf mergers with an 0.8 M� main-
sequence star, the merger product has an age of 2.87 Gyr, leaving
it another 180 Myr before it reaches the tip of the asymptotic
giant-branch.

If the less massive star is a neutron star a Thorne
Żytkow object (Thorne & Żytkow 1977) is formed.

3.3.2. Evolved primary

When a (sub)giant or asymptotic branch giant encounters a less
massive main-sequence star, the main-sequence star is added
to the envelope of the giant, which stays in the same evolu-
tionary state, i.e. remains a (sub)giant, c.q. asymptotic branch
giant. Its age within that state is changed, however, according to
the rejuvenation calculation described in Sect. C.3 of Portegies
Zwart & Verbunt (1996). For example, an encounter of a giant
of 0.95 M� and age 11.34 Gyr with a 0.45 M� main-sequence
star produces a giant of 1.4 M� with an age of 2.67 Gyr.

When both stars are (sub)giants the two cores are added to-
gether and form the core of the merger product (see also the
results of the smoothed particle hydrodynamics computations
performed by Davies et al. 1991 and Rasio & Shapiro 1995).
Half the envelope mass of the (less massive) encountering star
is accreted onto the primary. The merger product continues its
evolution starting at the next evolutionary state; thus a (sub)giant
continues its evolution on the horizontal branch and a horizon-
tal branch star becomes an asymptotic-giant branch star. The
reasoning behind this assumption is that an increased core mass
corresponds to a later evolutionary stage.

If the less massive star is a white dwarf then its mass is
simply added to the core mass of the giant, and the envelope
is retained. If the age of the giant before the encounter exceeds
the total life time of a single unperturbed star with the mass of
the merger, then the newly formed giant immediately sheds its
envelope, and its core turns into a single white dwarf; if not then
the merged giant is assumed to have the same age (in years) as
the giant before the collision, and continues its evolution as a
single unperturbed star.

If the encountering star is a less massive neutron-star a
Thorne Żytkow object is formed.

3.3.3. White-dwarf primary

In an encounter between a white dwarf and a less massive main-
sequence star, the latter is completely disrupted and forms a
disk around the white dwarf (Ruffert & Müller 1990, Rasio &
Shapiro 1991). The white dwarf accretes from this disk at a rate
of one percent of the Eddington limit. If the mass in the disc
exceeds 5% of the mass of the white dwarf, the excess mass is
expelled from the disc at a rate equal to the Eddington limit.

If a white dwarf encounters a less massive (sub)giant, a new
white dwarf is formed with a mass equal to the sum of the
pre-encounter core of the (sub)giant and the white-dwarf. The
newly formed white dwarf is surrounded by a disk formed from
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half the envelope of the (sub)giant before the encounter. If the
mass of the white dwarf surpasses the Chandrasekhar limit, it is
destroyed, without leaving a remnant (Nomoto & Kondo 1991
and Livio & Truran 1985).

Collisions between white dwarfs are ignored.

3.3.4. Neutron-star or black-hole primary

All encounters with a neutron star or black hole primary lead
to the formation of a massive disk around the compact star. If
the compact star had a disk prior to the collision, this disk is
expelled. This disk accretes onto the compact star at a rate of
5% of the Eddington limit. An accreting neutron star turns into
a millisecond radio-pulsar, or – when its mass exceeds 2M� –
into a black hole. Mutual encounters between neutron stars and
black holes are ignored, as are collisions between these stars
and white dwarfs.

3.4. Monte Carlo simulations of ensembles of encounters

Each star in our model can encounter any of the other stars.
To reduce computational cost, we bin the stars in intervals of
mass and radius, and compute the probability for encounters
between bins, giving all stars in one bin the same mass and
radius, and, through Eq. 2, choosing their velocities from the
same distribution. The cross section σij for a encounter with a
distance of closest approach within d between a star from bin i
and a star from bin j contains a geometrical and a gravitational
focusing contribution:

σij = πd2

(
1 + 2G

mi + mj

v2
ijd

)
, (10)

where vij is the relative velocity between the stars at infinity.
For the minimum separation between the two stars that leads to
a collision d = 2(ri + rj) is used. (The exact distance at which
the transition between merger and binary formation occurs is
not known –Kochanek 1992, Lai et al. 1993–, we choose the
factor 2 arbitrarily.)

In the present paper, we model the stellar distributions as
being spatially homogeneous. In order to make contact with
astrophysical applications, we will consider our stars to be con-
tained within in a fixed sphere with radius rc. While we can
consider this radius to stand for the notion of ‘core radius’ in a
post-collapse cluster, we want to point out that this interpreta-
tion is only an approximate one. In realistic star clusters, there
is a significant drop in density across the core, from the center
to the core radius. For most stars the density drops by roughly
a factor of three, but for the heavier stars, such as neutron stars
and especially black holes, this factor can be much larger.

The encounter rate Γij of stars from bin i with stars from
bin j, anywhere in the volume of the sphere with radius rc is
given by two separate equations:

Γij =

{
1
2ni(nj − 1) 〈σijvij〉 4

3πr
3
c for i = j

ninj 〈σijvij〉 4
3πr

3
c i < j,

(11)

Fig. 1. Relative encounter probabilities in model calculation S, at time
t = 12 Gyr, when the turnoff mass is Mto = 0.91 M�, for a single star
with 1M� and 1R� as a function of mass and radius of the other star
involved in the encounter. Darker shades indicate higher probabilities.
The compact stars (nominally with zero radius) are shown as a bar
below 0.1 R�: neutron stars between 1.34 and 2 M� and white dwarfs
at lower masses. All other stars with radius in excess of the radius at
the turnoff are the evolved stars. The masses of these stars is similar to
the turnoff mass. A small fraction of blue stragglers is visible as an ex-
tension of the main-sequence (to the right of the turnoff). The vertical
bar in the upper left corner presents a scaling to the gray shades. The
lowest square corresponds to an encounter rate of once every 12.7 Tyr
decreasing with a factor of two for each subsequent square. The inte-
grated encounter frequency of the 1M�, 1R� star is 1 encounter every
1.68 Tyr. Almost 13% of the encounters occur with a main-sequence
star with a mass of about ∼ 0.13M� (black squares below and to the
left).

where ni and nj are the number densities of stars in bins i
and j, respectively, and where 〈 〉 indicates averaging over the
distribution of relative velocities vij (Note that we should have
written the last equation with an extra factor 1/2, if we would
have summed over all combinations i /= j, in order to avoid
double-counting of collisions).

Since the stars in bins i, j have Maxwellian velocity dis-
tributions with root-mean-square velocity vi and vj , given by
Eq.(2), the relative velocities vij also have a Maxwellian distri-
bution, with a root-mean-square velocity given by

√
vi2 + vj2.

Hence

〈σijvij〉 =
4l3√
π

∫ ∞
0

v3
ijσij exp(−l2v2

ij)dvij

=
2πd2

l
√
π

(
1 + 2G

mi + mj

d
l2
)
, (12)

where we have defined

l2 =
3

2(vi2 + vj2)
. (13)



S.F. Portegies Zwart et al.: Star cluster ecology. I 137

Fig. 2. Relative frequencies of various types
of encounters (upper panel, the curly brack-
ets indicate the collision) and their outcomes
(lower panel), for model computation S, in-
tegrated over the duration of the calculation.
Abbreviations: ms main-sequence star, gs
giant, wd white dwarf, ns neutron star, Bss
blue straggler, Yss yellow straggler.

With this result, we write the encounter rates Γij in conve-
nient units:

Γij =
ni

103pc−3

nj
103pc−3

(
rc

pc

)3

×
[

3.61 · 10−3

(
mi + mj

M�

)(
rij
R�

)(
km s−1

vij

)

+ 6.31 · 10−9

(
rij
R�

)2
(

km s−1

vij

)−1


[Myr−1]. (14)

The total encounter-rate follows as

Γ =
N∑
ij=1

Γij ≡ 1
τenc

, (15)

where N gives the total number of bins in mass and radius and
τenc is the average time interval between two encounters.

The stellar population in our calculation changes both due to
encounters between stars, and due to evolution of the stars. The
shortest evolutionary time-scale of importance to us is the time
scale on which the evolving stars expand; the fastest evolving
star in the sample is used to set the evolution time scale

τev ≡ min(R/Ṙ), (16)

where R and Ṙ are the stellar radius and its time derivative,
respectively.

At the beginning of each time step, we distribute the stars
over the bins in radius and mass, calculate the number densi-
ties of stars in each bin, and the evolution and collision time
scales τev and τenc. The sum over all bins ij is less daunting as
may appear at first sight, as many bins contain no stars. This
is illustrated in Figs. 1 and 3. The time step to be taken is then
calculated as

dt = min(0.2τenc, τev), (17)

to ensure that changes in the stellar population are followed with
sufficient resolution.

At this point, a rejection technique is used to keep track of
collisions, as follows. We choose a random number between 0
and 1. If this number is larger than Γdt, we conclude that no
collision has occurred. We evolve all stars over a time dt, and
continue with the next step.

If the random number is smaller than Γdt, a collision has
occurred. In calculating the sum (Eq. 15) over the bins, we keep
track of the partial sum after addition of each bin combination
ij. The first bin combination for which this growing partial sum
exceeds the random number identifies the bins involved in the
collision. We then assign a sequence number to each star in bin
i, and select one of these numbers randomly; and repeat this
for bin j. If i and j are identical, care is taken that the same
star is not selected twice. From the prescriptions in the previous
section, we decide the outcome of the collision between the two
selected stars.

We then select another random number between 0 and 1,
to see whether a second collision has occurred. If so, we de-
termine its outcome. This procedure is repeated until a random
number larger than Γdt is found, which indicates that no further
encounter has occurred in the time step under consideration.

After each time step dt a number of stars equal to the num-
ber of encounters that have taken place is lost from the stellar
system; these stars have merged into single objects. For each
lost star a new star is added to the computation, in order to guar-
antee a constant number of stars. The mass of this ‘halo guest’
is determined by the present-day mass-function of the cluster.

4. A dynamically evolving salpeter mass function

A total of two models are computed, one with a Salpeter type
mass function which we call model S (from Salpeter), and one
model which we call model C (from Collapsed) with a mass
function that is affected strongly by mass segregation.

In the volume of the stellar system in model S, we sprin-
kle stars according to a Salpeter mass distribution between
0.1M�and 100M�. The total number of stars is irrelevant, since
we are considering these stars to be contained in a laboratory-
type enclosure, with a thermal distribution of stellar velocities.
Our choice for the ‘temperature’ of this distribution is fixed by
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requiring that stars with a mass m = 1M� will have a one-
dimensional velocity dispersion of 10.0 km/s, in conformity
with the same choice made in Sect. 5. The radius of the core
was chosen to be rc = 4 pc and the computation is started at
t = 0 and terminated at an age of 16 Gyr. For the computation
of the encounter rate a total of 30 bins in mass, equally spaced
in the logarithm of the mass between 0.1 and 100 M�, and 30
bins in radius, equally spaced in the logarithm of radius between
0.1 and 2000 R� are used. An additional bin with zero radius is
used for the compact stars, i.e. the white dwarfs, neutron stars
and black holes.

Fig. 1 shows for model computation S, the relative proba-
bilities of encounters with various types of stars for a 1M�, 1R�
star, at an age of the cluster of 12 Gyr. Due to the small encounter
frequency hardly any collision products are present in the stel-
lar system. Only a small number of blue stragglers (stars with a
mass larger than the turnoff and with similar radii) have finite
probability to be involved in an encounter. The most probable
partners for an encounter with a 1M�, 1R� star are the stars at
the low end of the main sequence.

In Fig. 2 we show the relative frequencies of encounters
of different types, and of the resulting collision products for
model S. Because the steep mass function the collisions rate
is dominated by main-sequence stars; the fraction of collisions
involving giants is only small. The most frequent type of en-
counter is one involving two main-sequence stars, leading to a
main-sequence merger remnant with a mass smaller than the
turnoff mass or a blue straggler when the mass of the merger
exceeds the turnoff mass. If the mass of the merger is less than
the turnoff mass, the product is a main-sequence star which
is younger than primordial main-sequence stars with the same
mass. Such a star will be left behind as a blue straggler once the
primordial main-sequence stars leave the main-sequence. Yel-
low stragglers, i.e. giants not on the main (sub)giant branch of
the cluster (which approximately coincides with the evolution-
ary track of a star with the turn off mass), can be formed directly
from encounters between a main-sequence star and a giant, be-
tween a main-sequence star and a white dwarf and between
a giant and a white dwarf, in decreasing order of importance;
encounters between two giants are extremely rare. Our prescrip-
tions put every merger product on the evolutionary track of an
ordinary star; the presence of yellow stragglers in our calcula-
tions is therefore only due to the formation of giants with a mass
larger than about the turnoff mass.

5. A more realistic mass function

The initial conditions for the mass function of the computation
of modelC (for collapsed cluster core) are chosen to be more re-
alistic, in the sense that the mass function is flattened due to mass
segregation in the previous evolution of the stellar system. The
lack of detailed computations concerning the present-day mass
function in the cores of globular clusters, justifies our choice to
use a mass function similar to the one described by Verbunt &
Meylan (1988). For the mass function of model C we consider
three classes of objects: non-degenerate stars (main-sequence

Fig. 3. Relative encounter probabilities in model calculation C, at time
t = 12 Gyr, when the turnoff mass is Mto = 0.91 M�, for a single star
with 1M� and 1R� as a function of mass and radius of the other star in-
volved in the encounter (similar to Fig. 3). The high encounter-rate and
different mass function result in an enormous enrichment of collision
products in the stellar system. Besides the small fraction of black holes
(nominally with zero radius an with a mass larger than 2M�), there is
also a rich population of blue stragglers (in the area with a mass larger
than the turn off and a radius larger than about one R�) and yellow
stragglers (stars with a radius larger than that of the blue stragglers).
Except for the neutron stars and black holes (nominally with zero ra-
dius an with a mass larger than 2M�) all stars with mass in excess of
the turnoff mass are the products of previous encounters. The vertical
bar in the upper left corner presents a scaling to the gray shades. The
lowest square corresponds to an encounter rate of once every 21 Gyr
decreasing with a factor of two for each subsequent square. The inte-
grated encounter frequency of the 1M�, 1R� star is 1 encounter every
3.1 Gyr. Almost 15% of the encounters occur with a white dwarf with
a mass of about ∼ 0.7M� (black square in the middle and below).

stars and giants), white dwarfs, and neutron stars. The more
massive stars have all evolved, and left inert remnants (white
dwarfs or neutron stars). We assign a certain fraction of the to-
tal number of stars in the stellar system to each of these classes.
All neutron stars (5% of the total number of stars) are assumed to
have the same mass (of 1.34M�). The mass distribution within
the two other classes are described with power-laws with a slope
of α = 0 for the main-sequence stars and the (sub)giants and a
slope ofα = 1 for the white dwarf progenitors. At the start of the
dynamical modeling a total number fraction of main-sequence
stars and giants of 70% is chosen, this number decreases as the
stellar system evolves. The minimum initial mass of a main-
sequence star is chosen to be 0.2M� instead of the 0.1M� for
models S.

The numbers of stars in the different classes change as time
evolves due to stellar evolution, encounters between stars, and
due to the addition of a star, each time that the number of stars
has decreased by one in a merger process.

Model C has a core radius of rc = 0.1 pc and a 1-
dimensional velocity-dispersion for a 1 M�star of 10 km/s. We
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Table 2. Parameters of the different model computations, and corresponding characteristics. Subsequent columns give the name of the model,
indication whether a Salpeter mass function or a mass function that is affected by mass segregation is used, core radius, 3-dimensional velocity
dispersion v� time at which encounters are started, the age of the population at the start of the dynamical interactions, the central stellar
number-density in the core, the ratio of the number of stars in the computation to the actual number of stars in the core, the number of encounters
during the calculation per star, and the average time between two encounters, anywhere in the core.

Model mf rc v� tcc lognc fc nenc τenc

[pc] [km/s] [Gyr] [? pc−3] ?−1 [Myr]
S Salpeter 4.0 17.3 0 3.93 0.298 0.002 5.17
C Segregated 0.1 17.3 10 6.64 8.750 0.660 1.28

Fig. 4. Relative frequencies of various types
of encounters (upper panel) and their out-
comes (lower panel), for model computa-
tion C, integrated over the duration of the
calculation (see also Fig. 1). Apart from the
variation in the relative encounter frequen-
cies between various types of stars, encoun-
ters between two giants become noticeable
and Thorne Żytkow objects (TŻO) appear
(in very small numbers) as the result of a
collision.

switch-on the dynamics at tcc =10 Gyr and terminate the model
at t =16 Gyr.

The number of stars used in the computation is higher than
the calculated number of stars in the core for the parameters of
model C; as a result the Poissonian noise in our calculation is
smaller than it would be in an actual core.

Fig. 3 shows for model computation C, the relative prob-
abilities of encounters with various types of stars for a sin-
gle 1M�, 1R� star, at an age of the cluster of 12 Gyr. At this
age, products of previous encounters are already present in the
cluster, and have a finite probability of undergoing another en-
counter. However, the most probable partner for an encounter
with a 1M�, 1R� star is a white dwarf with a mass of about
0.7M�.

The relative importance of the various types of encounters
is very different in modelC compared to model S, as illustrated
in Fig. 5, and consequently the relative frequencies of merger
outcomes are very different as well. The fraction of collisions
that directly result in the formation of a blue straggler rises
sharply as does the relative formation-rate of yellow stragglers
and white dwarfs with a massive disc. Because the mass function
in model C is flat, the region of the main sequence around the
turn-off is well populated with massive main-sequence stars and
consequently the total number of giants is much larger than in
model S where a steep mass function is used.

Fig. 5. Hertzsprung-Russell diagram of model C, at ca. t = 12 Gyr.
104 stars (corresponding to about the total number of stars in the core)
were selected randomly from all stars involved in the simulation.

5.1. An evolved H-R diagram

A Hertzsprung–Russell diagram of model C after about 12 Gyr
is shown in Fig. 5. The dots (representing individual stars) that
are positioned in the color magnitude diagram at a position that
deviates from the isochrone of the stellar system are the result
of a collision. Blue stragglers can be identified close to the zero-
age main-sequence but are bluer and more luminous than the
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Fig. 6. Fraction of stars in the computation of model C that are
blue stragglers (upper solid line) and the fraction of stars on the
main-sequence that were left behind as blue stragglers when primordial
stars of equal mass evolved into giants (lower solid line), as a function
of time. Due to the slow evolution on the main sequence, the lower line
is less susceptible to Poissonian fluctuations. The dotted lines show the
fraction of stars that are yellow stragglers, for all yellow stragglers (up-
per dotted line) and for those that evolved from blue stragglers (lower
dotted line).

turn-off, whereas yellow stragglers are situated above the giant
branch. Because the stars in our calculation evolve, the number
of collision products present at any time in the core is not at all
proportional to their formation rate. For example, blue stragglers
(a main sequence star with mass M > Mto), formed by merg-
ing of two main-sequence stars, often evolve into giants before
our calculation is stopped, because of the short main-sequence
lifetime of more massive stars. Evolving blue stragglers turn
into yellow stragglers, and in fact most of the yellow stragglers
present in the cluster have evolved from blue stragglers. The
yellow stragglers formed directly from collisions with giants
evolve too fast to contribute as strongly to the presence of yel-
low stragglers. This is illustrated in Fig. 6, which also shows that
the fraction of stars that are yellow stragglers is rather constant
throughout the computation.

Merged main-sequence stars with a mass smaller than the
turnoff mass upon formation are left behind as blue stragglers
when the equally massive primordial stars leave the main se-
quence. As illustrated in Fig. 6 (lower solid line), the fraction
of such blue stragglers is relatively small. On the other hand, the
fraction of stars that are blue stragglers rises rapidly at first, but
levels off when the evolution rate of blue stragglers into yellow
stragglers and beyond becomes competitive with their forma-
tion rate. Thus, the fraction of stars that are blue stragglers does
not rise much above 3% at any given time, even though 26% of
the stars in the computation is directly turned into a blue strag-
gler at some time or after a collision. The dotted line in Fig. 6
illustrates that the total number of yellow stragglers is roughly
constant from the beginning of the dynamical simulation.

Fig. 7. Total number of stars formed in model C during the compu-
tation with dynamical encounters divided by the number formed from
a non-dynamical model as a function of time. The dotted line indi-
cates the fraction of main-sequence stars, the dashed line the stars
on the Hertzsprung gap and (sub)giant branch, and the solid line the
relative fraction of horizontal-branch stars (averaged in 100 Myr in-
tervals). Stars on the (sub)giant branch are more depleted than the
main-sequence stars as time evolves. The fraction of horizontal-branch
stars is roughly 50% larger in the stellar system where collisions are
included. The Poissonian noise for the main-sequence stars is smallest,
as expected, followed by that in the number of (sub)giants. The noise
in the fraction of horizontal branch stars is largest. The 3σ error bar
(lower left) indicates the Poissonian error for the giants (the dashed
line).

Giants which undergo a collision become more massive in
our prescription, and thus evolve faster than their unperturbed
counterparts. As a result, the number of giants in the model is
smaller than it would have been in a cluster without collisions,
as illustrated in Fig. 7. At the end of the computation the number
of giants is depleted by roughly 70%. The fraction of stars on
the horizontal branch is roughly 50% larger than expected from
a non-dynamically evolving stellar system. This enhancement
of the fraction of horizontal branch stars is the result of two
effects: most collisions between a giant and another star result
in aging of the giant which is then evolved closer towards the
horizontal branch and the majority of the collisions between a
main-sequence star and a white dwarf results in the formation
of a star that is about to terminate its giant lifetime (e.g. close
to or on the horizontal branch).

6. Conclusions

The models discussed in this paper are very crude in their treat-
ment of the encounter processes, of the result of a collision
between two stars, and of the evolution of the merger products.
Apart from these approximations and the fact that we use a stel-
lar evolution model for population I instead of pop. II stars, the
adopted mass function is also highly uncertain. Nonetheless,
some interesting results can be delineated.
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Comparison with the calculations of Davies & Benz (1995)
shows the effect of allowing the merger products to evolve. An
immediate consequence of this is the lower prediction for the
number of blue and yellow stragglers present in the cluster (as is
clear from Fig. 6). The formation rates of blue and yellow strag-
glers give a poor indication for the actual number of stragglers
present in the cluster at a particular instant.

Due to the low density of model S the collision frequency is
small. The steep Salpeter mass function also suppresses the en-
counter rate and the production of stellar curiosities; the major-
ity of the collisions involve two rather low mass main-sequence
stars which results in a merger that evolves too slow to produce
a blue straggler within the time span of the simulation.

The Hertzsprung-Russell diagram of our model cluster
(model C) shows that blue stragglers close to the turn-off point
lie on the main sequence, whereas blue stragglers above the
turnoff point are mostly found at some distance from the main
sequence. The reason for this is that collisions only become im-
portant in the cluster when an initial period of low density is fol-
lowed by the contraction of the cluster core. The more massive
blue stragglers are formed in collisions between stars close to
the terminal-age main sequence, and evolve relatively quickly.
Blue stragglers close to the turn-off are formed in collisions be-
tween relatively low-mass stars which did not evolve very far
away from the zero-age main sequence, and therefore also the
merger products are close to the zero-age main sequence, and
evolve slowly. Thus, the point where blue stragglers have left
the main sequence gives an indication of the time when colli-
sions in the cluster became frequent (see also Portegies Zwart
1996).

Our modelC predicts a depletion of giants, in the core only,
up to ∼ 50% shortly after tcc relative to a collision-less stellar
system, in globular clusters with a collapsed core where the frac-
tion of horizontal-branch stars is enhanced. Consequently the
depletion of giants relative to the number of horizontal branch
stars is strongly present in the high-density stellar system. Col-
lisions between single stars cannot explain the observation that
giants can be depleted well outside the core or completely ab-
sent in it, as observed in the core of M 15 (Djorgovski et al.
1991).

In our simulated cluster cores the total number of white
dwarfs that exceed the Chandrasekhar limit due to accretion
from a circum-stellar disc is small, even in the cluster simu-
lation with the highest density. In model C 8% of the white
dwarfs experience an accretion-induced collapse, which (after
correction for the ratio fc between the number of stars in the
model and in an actual core – see Table 2) corresponds to 190
supernovae of type Ia during the 6 Gyr of our calculation. If all
of these collapses would lead to the formation of a neutron star,
and if all of these would remain in the core, this would be a
substantial addition to the total number of neutron stars in the
core, which is about 460 (after correction for fc) at the start
of our calculation. This result, however, strongly depends on
the adopted mass function for the white dwarfs. The formation-
rate of neutron stars with an accretion disc and the subsequent
formation of a recycled pulsar or black hole is (to first order) lin-

early dependent on the number of neutron stars, which depends
not only on the initial mass function but also on the subsequent
mass segregation in the cluster.

The encounter rates between neutron stars and main-
sequence stars are similar in our calculations to the rates found
in the calculations by Verbunt & Meylan (1988), by Di Stefano
& Rappaport (1992) and by Davies & Benz (1995). After a col-
lision between a neutron star and another cluster member the
merged object becomes visible as an X-ray source (for at most
1 Gyr) after which it becomes a recycled pulsar or, if its mass
exceeds 2 M�, a black hole. The total number of such X-ray
sources, recycled pulsars or black holes scales linearly, in first
order, with the number of neutron stars in the cluster core, which
is rather uncertain.

Our computations reveal that collisions between single stars
result in a small number of recycled pulsars: about 70 are formed
in a core (after correction for fc) according to modelC. Whether
this is enough to explain the observed numbers is not clear.
The intrinsic luminosity distribution of millisecond pulsars, and
hence the fraction of them that is detectable in a typical cluster, is
not known; and some clusters with high encounter rates show re-
markably few recycled pulsars, the globular cluster NGC 6342
is an example (see Lyne 1993).
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Göttingen
Hills J. G., Day C. A. 1976, ApJL 17, 87
Huang S. S. 1956, AJ 61, 49
Hut P., Makino J., McMillan S. 1988, Nat 336, 31
Hut P., McMillan S., Goodman J., et al. 1992, PASP 104, 981
Iben I. J., Truran J. W. 1978, ApJ 220, 980
Kippenhahn R., Weigert A. 1967, Zeit. für Astr. 65, 58
Kochanek C. 1992, ApJ 385, 604



142 S.F. Portegies Zwart et al.: Star cluster ecology. I

Kolb U., Ritter H. 1992, A&A 254, 213
Kopal Z. 1956, Ann. Ap. 19, 198
Lai D., Rasio F., Shapiro S. 1993, ApJ 412, 593
Leonard P. J. T. 1994, MNRAS 277, 1080
Lipunov A. 1994, in F. d’Antona, et al. (eds.), Evolutionary relations

in the Zoo of interacting binaries Mem. Soc. Astron. Ital. 21
Lipunov V., Postnov K., Prokhorov M. 1996, A&A 454, 593
Lipunov V., Postnov K., Prokhorov M., Panchenko I., Jorgensen H.

1995, ApJL 454, 593
Livio M., Truran J. W. 1985, ApJ 389, 695
Lombardi J. C., Rasio F. A., Shapiro S. L. 1995, ApJL 445, 117
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