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Abstract

I explore the sample size in qualitative research that is required to reach theoretical satura-

tion. I conceptualize a population as consisting of sub-populations that contain different

types of information sources that hold a number of codes. Theoretical saturation is reached

after all the codes in the population have been observed once in the sample. I delineate

three different scenarios to sample information sources: “random chance,” which is based

on probability sampling, “minimal information,” which yields at least one new code per sam-

pling step, and “maximum information,” which yields the largest number of new codes per

sampling step. Next, I use simulations to assess the minimum sample size for each scenario

for systematically varying hypothetical populations. I show that theoretical saturation is

more dependent on the mean probability of observing codes than on the number of codes in

a population. Moreover, the minimal and maximal information scenarios are significantly

more efficient than random chance, but yield fewer repetitions per code to validate the find-

ings. I formulate guidelines for purposive sampling and recommend that researchers follow

a minimum information scenario.

Introduction

Qualitative research is becoming an increasingly prominent way to conduct scientific research in

business, management, and organization studies [1]. In the first decade of the twenty-first cen-

tury, more qualitative research has been published in top American management journals than

in the preceding 20 years [2]. Qualitative research is seen as crucial in the process of building

new theories [2–4] and it allows researchers to describe how change processes unfold over time

[5,6]. Moreover, it gives close-up and in-depth insights into various organizational phenomena

[7,8] perspectives and motivations for actions [1,8]. However, despite the explicit attention of

journal editors to what qualitative research is and how it could or should be conducted [8–10], it

is not always transparent how particular research was actually conducted [2,11]. A typical topic

of debate is what the size of a sample should be for inductive qualitative research to be credible

and dependable [9,12] (Note that in this paper, I refer to qualitative research in an inductive con-

text. I recognize that there are more deductive-oriented forms of qualitative research).
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A general statement from inductive qualitative research about sample size is that the data

collection and analysis should continue until the point at which no new codes or concepts

emerge [13,14]. This does not only mean that no new stories emerge, but also that no new

codes that signify new properties of uncovered patterns emerge [15]. At this point, “theoretical

saturation” is reached; all the relevant information that is needed to gain complete insights

into a topic has been found [1,13]. (Note that to prevent confusion, I use the term ‘code’ in this

article to refer to information uncovered in qualitative research. I reserve the term ‘concept’ to

refer to the concepts in the theoretical framework).

Most qualitative researchers who aim for theoretical saturation do not rely on probability

sampling. Rather, the sampling procedure is purposive [14,16]. It aims “to select information-

rich cases whose study will illuminate the questions under study” [12]. The researcher decides

which cases to include in the sample based on prior information like theory or insights gained

during the data collection.

However, the minimum size of a purposive sample needed to reach theoretical saturation is

difficult to estimate [9,17–22].

There are two reasons why the minimum size of a purposive sample deserves more atten-

tion. First, theoretical saturation seems to call for a “more is better” sampling approach, as

this minimizes the chances of codes being missed. However, the coding process in qualitative

research is laborious and time consuming. As such, especially researchers with scarce

resources do not want to oversample too much. Some scholars give tentative indications of

sample sizes that often lie between 20 and 30 and are usually below 50 [23,24], but the theoreti-

cal mechanism on which these estimates are based is unknown.

Second, most research argues that determining whether theoretical saturation has been

reached remains at the discretion of the researcher, who uses her or his own judgment and

experience [9,22,25,26]. Patton [12] even states that “there are no rules for sample size in quali-

tative inquiry” (p. 184). As such, the guidelines for judging the sample size are often implicit.

The reason for this is that most qualitative research is largely an interpretivistic endeavor

[27] that requires flexible creative thinking, experience, and tacit knowledge [9]. However,

researchers from the field of management [8,11,28], information sciences [24,29], health

[30,31] and the social sciences in general [12,13,32,33], acknowledge the need for transparency

in the process of qualitative research. Moreover, not all researchers have the required experi-

ence to assess intuitively whether theoretical saturation has been reached. For them, articulat-

ing the assessment criteria in a set of guidelines can be helpful [33].

In this paper I explore the sample size that is required to reach theoretical saturation in

various scenarios and I use these insights to formulate guidelines about purposive sampling.

Following a simulation approach, I assess experimentally the effects of different population

parameters on the minimum sample size. I first generate a series of systematically varying

hypothetical populations. For each population, I assess the minimum sample sizes required to

reach theoretical saturation for three different sampling scenarios: “random chance,” which is

based on probability sampling, “minimal information,” which yields at least one new code per

sampling step, and “maximum information,” which yields the largest number of new codes

per sampling step. The latter two are purposive sampling scenarios.

The results demonstrate that theoretical saturation is more dependent on the mean proba-

bility of observing codes than on the number of codes in a population. Moreover, when the

mean probability of observing codes is low, the minimal information and maximum informa-

tion scenarios are much more efficient in reaching theoretical saturation than the random

chance scenario. However, the purposive scenarios yield significantly fewer multiple observa-

tions per code that can be used to validate the findings.

A simulation and guidelines for sample sizes in qualitative research
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By using simulations, this study adds to earlier studies that base their sample size estimates

on empirical data [16,17], or own experience [22]. Simulating the factors that influence the

minimum purposive sample size gives these estimates a theoretical basis [34]. Moreover, the

simulations show that the earlier empirical estimates for theoretical saturation are reasonable

under most purposive sampling conditions. To my knowledge, there is one earlier study that

uses simulations to predict minimum sample size in qualitative research based on random

sampling [35]. The present study extends this work by taking into account the process of pur-

posive sampling, using different sampling scenarios.

Based on my analyses, I offer a set of guidelines that researchers can use to estimate whether

theoretical saturation has been reached. These guidelines help to make more informed choices

for sampling and add to the transparency of the research, but are by no means intended as

mechanistic rules that reduce the flexibility of the researcher [10].

In section 2, I discuss the theoretical concepts about purposive sampling. Section 3 describes

the simulation, and the results are presented in section 4. In section 5, I draw conclusions, dis-

cuss the limitations, and offer recommendations.

Theoretical concepts

I base this section largely on the existing literature on purposive sampling. I also introduce

some new ideas that are sometimes implied by the literature, but that were never conceptual-

ized. Table 1 summarizes the main concepts in this paper, and the symbols used to denote

them.

Table 1. An overview of themain concepts, definitions and symbols.

Concept Definition Symbol

Information source The unit from which information is gathered i

Population The total set of information sources that are potentially relevant
to answering the research question

J

Sub-population A subset of information sources that are potentially relevant to
answering the research question

j

Sampling step The number of information sources sampled so far n

Code A unique piece of information in the population relevant to the
research

Ck

Number of codes The number of unique pieces of information relevant to the
research in the population

k

Theoretical saturation All codes are observed at least once. s

Probability of reaching
theoretical saturation

The probability that each code is observed at least once pn

Sampling steps to reach
theoretical saturation

The number of sampling steps needed to observe each code at
least once

ns

Mean probability of observing
codes

The mean probability that a code is observed at an information
source

Φc

Repetitive codes Codes that are observed more than once. -

Minimum number of repetitive
codes

The minimum number of times that a code needs to be observed v

Sampling strategy How the researcher selects the information sources; commonly
empirically based.

-

Sampling scenario Three theory based scenarios on how the sampling process
proceeds: random chance, minimal information, maximal
information

-

Efficiency The fewer sampling steps that a scenario requires to reach
theoretical saturation, the more efficient it is

-

https://doi.org/10.1371/journal.pone.0181689.t001
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Populations, information sources, and sampling steps

A population is the “universe of units of analysis” from which a sample can be drawn [36].

However, in qualitative research, the unit of analysis does not have to be the same as the unit

from which information is gathered. I call the latter “information sources.” In the context of

interviews, information sources are often referred to as informants [16,37], but they can be

any source that informs the researcher: other examples are sites to collect observational data,

existing documents, or archival data. I refer to the total set of information sources that are

potentially relevant to answering the research question as the population.

From this population, one or multiple information sources are sampled as part of an itera-

tive process that includes data collection, analysis, and interpretation. At each iteration the

researcher has the opportunity to adjust the sampling procedure and to select a new informa-

tion source to be sampled. I assume in this paper that at each iteration only one source is sam-

pled; this assumption has no further consequences for the remainder of the paper. Moreover, I

use the term “sampling steps” rather than iterations, as this excludes analysis and interpreta-

tion. Finally, contrarily to formal quantitative sampling terminology, I count as sampling steps

only observations that participated in the research, thus excluding non-response or the inabil-

ity to access sources. This eases interpretation.

Sub-populations

A population of information sources is usually not homogeneous. Multiple sub-populations

can often be distinguished, for example the difference between interviewees, documents, or

focus groups. This is important as the researcher can choose different sampling procedures

and data collection methods for each sub-population. The exact delineation of sub-populations

depends on the judgment of the researcher. However, I argue there are a number of restric-

tions on the delineation of sub-populations.

• First, if there are differences in the type of information source, sampling strategy, type of

data, data collection, or methods of analysis, then there are sub-populations. The reason

for this criterion is that different methods are needed. These different methods need to be

accounted for [32] as they can explain differences in outcomes.

• Second, information sources should be interchangeable at the sub-population level. Within a

sub-population, no single information source may be critical for reaching theoretical satura-

tion. Hence, no single information source in a sub-population can contain information that

is not found in other information sources in that sub-population. The reason for this crite-

rion is that if a particular information source is critical for theoretical saturation, it should by

definition be included in the research. Observing critical information is not guaranteed if

the inclusion is dependent on a particular sampling strategy. A critical information source

should then be treated as a separate sub-population of size one.

• Second, if cases or groups are compared, it is important to treat these as sub-populations.

For example, distinguishing between sub-populations is a condition for data triangulation,

because the researcher effectively compares the results from one sub-population (for exam-

ple interviews with managers) with the results from another (for example annual reports).

Furthermore, comparative case studies [4,38] involve the comparison of sub-populations.

The concept of sub-populations implies that theoretical saturation can be reached at the

level of the overall population or at the level of the sub-population. Reaching theoretical satura-

tion in all the sub-populations is not a condition for reaching theoretical saturation at the level

of the population, since sub-populations can have an overlap in information. However, it is
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necessary to reach theoretical saturation in each sub-population in comparative research or

when triangulating results, as this is the only way to make a valid comparison.

Codes and theoretical saturation

In most cases of inductive qualitative research, information is extracted from information

sources, interpreted and translated into codes. I refer to codes here in the context of inductive

qualitative data analysis, which means that they can be seen as “tags” or “labels” on unique

pieces of information [13]. Codes can represent any sort of information and may be related to

each other (for example phenomena, explanations or contextualization). The only conditions

that I impose are that each code represents only one piece of information and that two differ-

ent codes are not allowed to represent the same information. In practice, this means that

synonyms are removed during qualitative data analysis. Thereby, codes can be interpreted as

unique “bits” of information.

The population contains all the codes that can be potentially observed. At the start of a

study, the codes in the population are unobserved and the exact number of codes in the popu-

lation is unknown. Consulting information sources sampled from the population allows codes

to become observed. Theoretical saturation is reached when each code in the population has

been observed at least once.

Number of codes and mean probability of observing codes

I let, the number of sampling steps required to reach theoretical saturation depend on two

population characteristics. First, the larger the number of codes distinguished in the population,

the more sampling steps are required to observe them all. The number of codes can vary

greatly per study, depending on the complexity of the research question, and the amount of

theory in the literature. A number of 100 is common. Second, the more often a code is present

in the population, the larger are the chances that it will become observed. As theoretical satura-

tion takes place at the population level, the distribution of codes in the population is important.

For example, interviews can vary in length or some documents can contain more relevant

information than others. In general, one would expect that the higher the “mean probability of

observing codes” in a population is, the fewer sampling steps are required to reach theoretical

saturation. By definition, these probabilities vary between 0 and 1. A mean probability of

observing codes of 0.5 means that, on average, a code is observed at 50% of the information

sources.

Purposive sampling allows the researcher to make an informed estimation about the proba-

bility of observing a given code at each sampling step, using (theoretical) prior information,

like sampling frames [39] or insights gained during the data analysis. (This conceptualizing of

purposive sampling is also consistent with the notion of theoretical sampling. Both terms are

often used interchangeably. Theoretical sampling can be seen as a special case of purposive

sampling [14]). However, when the number of codes is large, it is easier simply to estimate the

mean probability of observing all the codes in the population. To make such estimations, it is

important to consider what the probability of observing codes actually represents. The proba-

bility of a code being present at least depends on: the likelihood of an information source actu-

ally containing the code, the willingness and ability of the source (or its authors) to let the code

be uncovered, and the ability of the researcher to observe the code. These probability estima-

tions are based on the characteristics of the information source and the researcher. The proba-

bility of observing a certain code can decrease when the information source (for example an

interviewee) has strategic reasons not to share information. The strategic behavior of actors

can also lead to the discovery of other additional codes about the motivations and the actions
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of these actors. The relevance of these codes depends on the research question. In addition, if

the researcher has less experience with the technique used to uncover codes from a source or

with correctly interpreting information during the data analysis, the probability of observing

codes decreases. Having multiple independent coders, on the other hand, can increase the

probability of observing a code.

Repetitive codes

Some researchers consider codes that are observed more than once as redundant, since they

do not add new information to the data [12,26,32]. I refer to codes that are observed more

than once more neutrally as “repetitive codes.” Repetitive codes are important for a methodo-

logical purpose: they can help guard against misinformation. That is, information sources may

have given false codes, for reasons of social desirability, strategy, or accidental errors.

To guard against misinformation and to enhance the credibility of the research, it can be

advisable to aim for a sample in which each code is observed multiple times (this also follows

from the logic behind triangulation). One could argue that if a code, after a substantial number

of sampling steps, is still observed only once while almost all other codes have a higher inci-

dence, a critical examination of the code is warranted. In many cases, the researcher may

already be suspicious of such a code during the analysis. A frequency of one does not mean

that the code is wrong by definition; it is possible that the code is just rare or that the low fre-

quency is just a coincidence. However, it is relatively easy to make an argumentative judgment

about the plausibility of rare codes (for example based on theory).

Sampling strategies, sampling scenarios, and efficiency

A sampling strategy describes how the researcher selects the information sources. The most

elaborate inventory of sampling strategies comes from Patton [12], who identifies 15 purposive

sampling strategies for qualitative research. Examples include “maximum variation sampling,”

“typical case sampling,” and “snowball sampling”. These strategies are based strongly on

research practices, but the underlying theoretical criteria for distinguishing between the strate-

gies are left implicit. For example, a criterion that can explain the difference between “maxi-

mum variation sampling,” “typical case sampling,” and “extreme case sampling” is the focus of

the research question. “Snowball sampling” and “opportunistic sampling” differ in the way in

which they obtain information about the next information source that is to be sampled. “Con-

firming or disconfirming sampling” and “including politically sensitive cases” as strategies are

motivated by a delineation of the population. Overall, Patton [12] acknowledges that purposive

sampling in qualitative research can be a mixture of the strategies identified and that some of

these strategies overlap. These strategies also make implicit assumptions regarding the prior

knowledge of the researcher about the population. For example, “extreme case sampling”

implicitly assumes that the researcher has knowledge about the full population; otherwise, he

or she would be not be able to identify the extreme cases. “Snowball sampling” assumes that

the researcher does not have full knowledge of the population, as relevant leads are only identi-

fied at each sampling step.

I use the concepts described above to formulate three generic sampling scenarios. I refer to

sampling scenarios to avoid confusion with the sampling strategies. The term scenarios term

signifies that they are based on theoretical notions, instead of empirical data or observed prac-

tices. The three sampling scenarios are based on the number of newly observed codes that a

sampled information source adds. This criterion is motivated by the premise of purposive

sampling: based on the expected information, the researcher makes an informed decision

about the next information source to be sampled at each sampling step. This informed
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decision implies that the researcher can thus reasonably foresee whether, and perhaps how

many, new codes will be observed at the next sampling step. The fewer sampling steps that a

scenario requires to reach theoretical saturation, the more efficient it is.

The three scenarios that I identify are “random chance,” “minimal information,” and “max-

imal information.”

• Random chance assumes that the researcher does not use prior information during each

sampling step. The researcher randomly samples an information source from the population

and adds it to the sample. This scenario is solely based on probability and is considered to

be inappropriate for most qualitative studies [14,16]. However, there are good reasons to

include this scenario. First, there are conditions under which random chance is an appropri-

ate scenario for sampling. One of these is when no information is gained about the popula-

tion during the sampling steps, such as when documents or websites are analyzed. Second,

random chance can be seen as a worst-case scenario. If a researcher is uncertain about how a

sampling process actually worked, it is always possible to explore whether theoretical satura-

tion would have been reached under the conservative conditions of random chance. Third,

random chance is the only scenario for which the number of sampling steps can be calcu-

lated mathematically. Finally, the random chance scenario can serve as a benchmark to

which the number of sampling steps in the other scenarios can be compared.

• Minimal information is a purposive scenario that works in the same way as random chance,

but adds as extra condition that at least one new code must be observed at each sampling

step. This is equivalent to a situation in which the researcher actively seeks information

sources that reveal new codes, for example by making enquiries about the source before-

hand. It is not uncommon for a researcher to discuss topics with a potential interviewee

prior to the actual interview to assess whether the interview will be worthwhile. The minimal

information scenario captures these kinds of enquiries. Similarly, researchers may be

referred to a next source that adds new codes as part of a snowball strategy. Overall, the crite-

rion of observing at least one new code per sampling step seems to be relatively easy to

achieve as long as the researcher has some information about the population at each step.

This makes the scenario broadly applicable and more efficient than random chance.

• Maximal information is a purposive scenario that assumes that the researcher has almost

full knowledge of the codes that exist in the population and the information sources in

which they are present. At each sampling step, an information source is added to the sample

that leads to the largest possible increase in observed codes. This scenario is in line with the

theoretical aim of purposive sampling. However, it does not reflect scenarios where popula-

tions’ sizes are unknown and too large. It makes large assumptions regarding the prior

knowledge of the researcher about the population. An example of when this scenario might

be realistic occurs when the researcher is extremely familiar with the field and the specific

setting that he or she is investigating.

Simulation

I use simulations as they allow me to assess the effects of the three scenarios for a series of

hypothetical populations that vary systematically regarding (1) the number of codes in the

population and (2) the mean probability of observing codes. The controlled setting allows me

to assess the relative influence of each of these factors on the reaching of theoretical saturation.

In an empirical setting, this would not be possible, because the researcher can generally not

control the characteristics of the population under study, because the number of populations
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that can be studied is limited and because it is never entirely certain whether theoretical satura-

tion has been reached [27].

To keep the paper readable for audiences with either a quantitative or qualitative back-

ground, I minimize the mathematical details in the main text as much as possible. The full

technical details of the simulation are in S1 Appendix, which can be read instead of sections

3.1 and 3.2. To relate sections 3.1 and 3.2 to S1 Appendix, I assign symbols to the most impor-

tant concepts in the main text, and refer to the appropriate sections of S1 Appendix.

Definitions

I denote the number of sampling steps to reach theoretical saturation by ns, and the number of

codes in the population as k. Theoretical saturation is reached when all k codes are observed

(see S1 Appendix Section A: Definitions). I further denote the mean probability of observing

codes as Φc . I take the mean, because not all codes have the same probability of being observed.

This means that some codes are more difficult to uncover than others (see S1 Appendix Sec-

tion B: Mean probability of observing codes). However, making the unrealistic assumption

that all codes have the same probability of being uncovered allows me to calculate the number

of sampling steps mathematically (see S1 Appendix Section C: Reaching theoretical satura-

tion). This calculation is not a result of the paper, it only helps me to validate results from the

simulations. When there is a difference in probabilities of observing codes, it is not possible to

mathematically calculate the number of sampling steps. Therefore, I use simulations. I denote

the required minimum number of occurrences of a code by v. I will calculate the effect of this

factor on the number of sampling steps for theoretical saturation (see S1 Appendix Section D:

Repetitive codes). Finally, my simulations apply to the sub-population level, the results for the

sub-populations can be aggregated to the population level (see S1 Appendix Section E: From

sub-population to population).

Simulation of scenarios

Using the R-program [40], I generate 1100 hypothetical populations of 5000 information

sources. The populations vary systematically by the number of codes (k) from 1 to 101 with

increments of 10. I let the mean probability of observing codes vary between 0.09 (1/11) and

0.91 (10/11) (see S1 Appendix Section F: Simulation). Further, in line with my earlier argu-

ment about interchangeability of information sources, I impose a condition whereby each

code should actually be present in at least two information sources in the population.

For each hypothetical population, I simulate the number of sampling steps necessary to

reach theoretical saturation under the three scenarios from section 2.5. Fig 1 gives a schematic

overview of how the algorithms for each scenario operate. The full R-code is available as S1

File: R-code for the simulations, the resulting data is available as S2 File: Simulated data.

All three scenarios operate in a similar manner. After generating a population, an informa-

tion source is selected:

• Random chance selects information sources based on probability.

• Minimal information works in the same way as random chance, but adds as extra condition

that at least one new code must be observed per sampling step. Otherwise the information

source is discarded, and does not count towards the number of sampling steps.

• Maximal information first identifies a set of information sources that contain the largest

number of unobserved codes. From this set, which often consists of a small number of infor-

mation sources, it randomly selects an information source.
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If the source has not been selected before, it is added to the sample. After each sampling

step, the model evaluates if theoretical saturation is reached. If so, the process stops and the

number of sampling steps ns is reported. Otherwise, the next sampling step takes place and a

new information source is selected from the population.

As there are multiple combinations of information sources that allow reaching theoretical

saturation per population, I apply each of the three sampling scenarios to each population 500

times. This produces a distribution for each scenario with values of the number of sampling

steps to reach theoretical saturation. From this distribution, I report the value that leads to the-

oretical saturation in 95% of the 500 simulations of a population as main outcome. The value

of 95% is in line with statistical conventions, and makes my results more robust.

Finally, for each code in a population, I calculate the mean number of occurrences over the

500 simulations. From this set of numbers I again take the mean, which I denote by F . This

number serves as an indicator of repetitive codes

Results

Fig 2 plots the 95th percentile of the number of sampling steps required to reach theoretical

saturation (ns) against the mean probability of observing codes ðΦcÞ for the number of codes

in the population (k). Note that the y-axis is logarithmic. The solid black line indicates the

Fig 1. A schematic overview of how the algorithms for each scenario operate.

https://doi.org/10.1371/journal.pone.0181689.g001
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mathematically calculated values based on random chance, and no variation in probabilities of

observing codes. The dots represent the simulated random chance scenario, the diamonds rep-

resent minimal information, and the triangles represent maximal information. The random

chance scenario generally follows the mathematical calculation based on random chance, but

requires more sampling steps. This is due to the fact that having a variation in the mean proba-

bility of observing codes, means that some codes become rare, which requires more sampling

steps. Overall, the relationship between the calculated and simulated random chance demon-

strates that the algorithm for the random chance scenario worked well.

Fig 2 shows that in the random chance scenario, a low mean probability of observing codes

leads to over 4000 sampling steps to reach theoretical saturation, regardless of the number of

codes. As the mean probability of observing codes increases, the number of sampling steps

declines rapidly with a decreasing trend to below 10 for all number of codes. This implies that

mean probability of observing codes is more important than the number of codes for reaching

theoretical saturation. The figure also shows that both purposive scenarios are more efficient

than random chance. For a low mean probability of observing codes, the differences between

scenarios are the largest. With the random chance scenario, 101 codes in the population and a

mean probability of observing codes that is smaller 0.1, it generally requires more than 1000

sampling steps to reach theoretical saturation in 95% of the cases. Under the same conditions,

this number is reduced to about 46 information sources in the minimal information scenario

and to about 20 in the maximal information scenario. As the mean probability of observing

codes becomes larger, the random chance and minimal information scenarios require about

the same number of sampling steps for theoretical saturation, while the maximal information

scenario requires less. Notable is that the numbers of both purposive scenarios fall within the

Fig 2. The 95th percentile of ns against Φc for the values of k between 11 and 101.Note that the y-axis is logarithmic. The solid black line indicates the
calculated random chance’s value of n based on F11. The blue dots represent random chance, the green diamonds represent minimal information, and
the red triangles represent maximal information.

https://doi.org/10.1371/journal.pone.0181689.g002
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range of common indications of sample size from the literature (below 50). Our result con-

firms that this indication is not far from accurate. Finally, in the maximal information sce-

nario, the number of sampling steps for reaching theoretical saturation has little variance for

different values of the mean probability of observing codes. This is because the high level of

efficiency gives little room for variation.

Fig 3 plots the mean number of observations per code ðFÞ upon reaching theoretical satura-

tion for each scenario against the mean probability of observing codes for different values of

the number of codes. Again, the dots represent random chance, the diamonds represent mini-

mal information, and the triangles represent maximal information.

In line with the result above, the mean probability of observing codes has a greater influence

than the number of codes on the mean number of observations per code in the random chance

scenario. Second, the random chance scenario gives the largest number of repetitive codes

(over 400) at a low mean probabilities of observing codes. This is explained by the fact that this

scenario has the most sampling steps on average. However, for higher mean probabilities of

observing codes, the random chance scenario yields about the same number of codes as mini-

mal information, which is between 3 and 5. Finally, the maximal information scenario only

yields between 1 and 3 observations per code. This low number of codes makes the use of

repetitive codes for maximal information very limited.

Overall, the results show that there is a clear trade-off between the efficiency of the scenario

and the number of repetitive codes. To increase the credibility of one’s research, it is possible

to aim for a minimum number of observations of each code (ν). For reasons of space, I do not

simulate the various scenarios for different minimum numbers of observations of each code,

but a calculation (see S1 Appendix Section D: Repetitive codes: F14) reveals that it is relatively

Fig 3. F upon reaching theoretical saturation against Φ
c
for the values of k between 11 and 101. The blue dots represent random chance, the green

diamonds represent minimal information, and the red triangles represent maximal information.

https://doi.org/10.1371/journal.pone.0181689.g003
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easy to aim for observing codes multiple times. On average, to obtain a repetition of one

(ν = 2) based on the calculated random chance, 2.3 extra sampling steps are required, which is

an increase of about 10%. For ν = 3, 3.66 extra steps are required (about 17%), and for ν = 4,

4.66 extra steps are required (about 21%). The number of extra steps required is even smaller

for both purposive scenarios as these are more efficient.

Conclusions

The results for the purposive scenarios produced the same range of minimum sample sizes

(below 50 information sources) as tentatively indicated in the literature. The simulations also

uncovered mechanisms that give key insights into the estimation of the minimum size of a

qualitative sample. The mean probability of observing codes is more important than the num-

ber of codes in the population for reaching theoretical saturation. Furthermore, when the

probability of observing codes is low, the purposive scenarios are much more efficient than the

random chance scenario. When this probability is high, the differences between scenarios are

small. Finally, the more efficient a scenario is, the lower the mean number of observations per

code, but only a few sampling steps are required to increase the minimum number of observa-

tions of all the codes.

Limitations and further research

This paper has two potential limitations that deserve discussion. First, critics could claim that

the scenarios are mechanistic and do not represent real-world sampling procedures. I used

ideal typical scenarios that capture the full range of possible empirical sampling procedures.

Researchers who view their research through the lens of these scenarios are likely to observe

that their sampling procedure shares characteristics with at least one of the three scenarios or

that their sampling procedure is a mixture of two scenarios. Future researchers can also simu-

late other scenarios that they conceive and even include different sampling strategies in their

simulations, like snowball sampling or sampling for maximal variation [12,13].

Second, I simulated a broad range of scenarios for the purpose of this paper, but other sim-

ulations are also possible. For example, I simulated only one population per combination of

mean probabilities of observing codes and the number of codes. This lack of variation could

cast doubt on the robustness of my results. However, there was a large variation among the

1100 populations, as the number of codes was not important for the minimum sample size and

because the variance around the mean probability of observing codes was not important. By

letting the mean probability of observing codes vary between 0.09 and 0.91, I only considered

a range of probabilities that is realistic in an empirical setting. I also did not vary the popula-

tion sizes. Instead, I chose a large number that produced conservative estimates of the minimal

sample size. It would be empirically interesting to vary the sample sizes in the simulations.

For computational reasons and to reduce the complexity of this paper, I left this challenge for

future researchers. Finally, I did not simulate different minimum observations per code, as the

formula based on random chance gave sufficient insights into this issue.

Guidelines for purposive sampling

Based on these insights, I formulate a set of guidelines for sampling in qualitative research. I

am aware that such guidelines are contested by many qualitative researchers, but Tracy [33]

rightfully argues that criteria or guidelines are useful to represent the core of the craft of doing

research, and help improve quality. Some of these guidelines are already implemented by

many scholars, but for completeness I mention them here. The guidelines are not intended as
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formal mechanistic rules, but rather as an aid to making informed choices about the sampling

and how to report it.

The guidelines for sampling in qualitative research are as follows:

1. Identify a population of information sources and sub-populations. This does not need to

be a formal sampling frame, but the researcher does need to sketch the kind of information

sources that exist in the population and whether there are sub-populations. If there are sub-

populations, the researcher can argue:

a. The basis for distinguishing sub-populations.

b. Whether the sources are interchangeable in a sub-population.

c. Whether the sub-populations serve a comparative purpose or are used for other means.

d. The process of data collection, sampling, and analysis per sub-population.

e. Other criteria that are deemed important by the researcher.

The more detailed the researcher’s description of the population and sub-populations,

the better. This is especially true when the researcher aims to use a maximal information

scenario. However, as the researcher usually keeps an eye open for new developments,

the delineation of the population and sub-populations can be updated at each sampling

step.

2. Estimate an order of magnitude of the number of codes per sub-population. This esti-

mation is based on:

a. The complexity and scope of the research question.

b. The existing theory and information available about the sub-population.

c. Other possible factors that are deemed to be of influence.

Because the influence of the number of codes on theoretical saturation is small, it is

more important to give an order of magnitude than an exact number. The estimation

can be adapted after each sampling step.

3. Estimate the mean probability of a code being observed. The researcher does not need to

know what a reasonable probability is at the start of the research, but it is likely that after

consulting a number of information sources, the researcher will have enough information

to make the assessment. The judgment at least depends on:

a. The likelihood of an information source actually containing codes (is required informa-

tion rare in the population and what are the chances of non-response?).

b. The willingness and ability of the source (or its authors) to let the code be uncovered

(are there strategic interests?).

c. The probability that the researcher is able to observe the code (based on the researcher’s

prior research experience and familiarity with the topic).

d. Other criteria that are deemed important by the researcher.

4. Assess which scenario is most applicable to each sub-population.

a. Random chance is only appropriate if after a substantial number of sampling steps, the

researcher still has little or no idea about the characteristics of the sub-population and

where codes can be found. In that case, random chance serves as a fallback scenario. If
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theoretical saturation is reached under random chance, then it is also reached in the

other two scenarios. With conservative estimates of the mean probability of observing

codes, the minimum sample size is over 4000 information sources, while for higher

means, the minimum sample size rapidly drops to below 100 at probabilities of around

0.3 and below 50 at probabilities of 0.4.

b. Choosing a minimal information scenario requires some argumentation. Most impor-

tant is that the researcher makes it plausible that a new code will be observed at each

sampling step. This is something that the researcher will experience as the research pro-

gresses. If at a sampling step an information source does not yield any new codes, the

researcher can opt for increasing the number of sampling steps by one. Usually there is

little need to aim deliberately for multiple observations per code, because the scenario

delivers sufficient repetitive codes. Under low estimates of the mean probability of

observing codes, the minimum sample size for minimal information is around 50, while

for higher means the minimum sample size is below 25.

c. The researcher can only choose maximum information when there is already a full over-

view of all the information sources in the (sub-)population and how information-rich

these sources are (e.g. how many codes they contain). However, as maximum informa-

tion makes very strong assumptions, the choice needs proper argumentation. The bene-

fit of the maximum information scenario is that even under low estimates of the mean

probability of observing codes, the minimum sample size is only 20 information sources.

For higher means, the minimum sample size drops below 10. However, unless there is

already strong theory present, I advise to aim for multiple observations of each code to

guard against misinformation.

It is unlikely that a scenario will be followed exactly; rather, the researcher will notice

that the sampling procedure falls somewhere in between the scenarios. As such, the

researcher can argue which scenario the sampling procedure resembles most. The

researcher can use the results from the simulations above to assess whether theoretical

saturation is likely to have been reached.

5. Choose a fitting sampling strategy. The researcher should take into account that the sam-

pling strategy (see [12,13]) needs to lead to a sufficiently broad reach across information

sources in the population to be able to cover all the codes relevant to answering the research

question.

6. Account for these steps when reporting the research. State why a scenario, with its associ-

ated minimum sample size is appropriate. The researcher can choose to report the total

number of unique codes observed after a given number of sampling steps (for example:

4–5). This can help assess the plausibility of the scenario. The researcher can further report

the number of times each code was observed and whether there were reasons to suspect

that some codes were not credible. Finally, the researcher can assess if theoretical saturation

at the population level was reached.

Following these recommendations does not mean that overall quality of the research is

good. The recommendations can only help to improve the sampling, which is but one aspect

of the entire process. In addition, in many instances, codes are not yet fixed at the start of the

research. Rather, they become more known as the research progresses. I suggest that research-

ers reevaluate their assessment during each sampling step.

Keeping the analyses in mind, I recommend that researchers should generally opt for a

minimal information strategy, as it makes reasonable assumptions, it is efficient, and it yields
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sufficient codes. Whether saturation has been reached remains in the argumentative judgment

of the researcher. These guidelines can aid the researcher in making this judgment and the

readers in assessing it. Overall, the results and the guidelines offered in this paper can improve

the quality and transparency of purposive sampling procedures. Therefore, I encourage fellow

researchers to consider using these ideas and guidelines and to improve upon them where they

see fit.
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