

Open access · Journal Article · DOI:10.2298/FIL1001097D

(I, γ)-generalized semi-closed sets in topological spaces — Source link \square

R. Devi, A. Selvakumar, M. Vigneshwaran

Published on: 01 Jan 2010 - Filomat (National Library of Serbia)

Topics: Topological vector space, Topological space, Homeomorphism, Connected space and Closed set

Related papers:

- GENERALIZED SEMI STAR b-CLOSED SETS IN TOPOLOGICAL SPACES
- On (I,γ)-g*-closed sets via ideal topological spaces
- Semi Generalized Open Sets and Generalized Semi Closed Sets in Topological Spaces
- On h"-closed sets in topological spaces
- On α Generalized Closed Sets In Ideal Topological Spaces

Share this paper: 😯 💆 in 🖂

Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **24:1** (2010), 97–100 DOI: 10.2298/FIL1001097D

(I, γ) -GENERALIZED SEMI-CLOSED SETS IN TOPOLOGICAL SPACES

R. Devi, A.Selvakumar and M. Vigneshwaran

Abstract

In this paper we introduce (I, γ) -generalized semi-closed sets in topological spaces and also introduce $\gamma S - T_I$ -spaces and investigate some of their properties.

1. Introduction

Recently Julian Dontchev et. al. [1] introduce (I, γ) -generalized closed sets via topological ideals. In this paper we introduce (I, γ) -generalized semi-closed sets and investigate some of their properties.

An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X satisfying the following two properties:

(1) $A \in I$ and $B \subset A$ implies $B \in I$

(2) $A \in I$ and $B \in I$ implies $A \cup B \in I$

For a subset $A \subset X$, $A^*(I) = \{x \in X/U \cap A \notin I \text{ for each neighbourhood U of x }\}$ is called the local function of A with respect to I and τ . Recall that $A \subseteq (X, \tau, I)$ is called τ^* -closed [2] if $A^* \subseteq A$. It is well known that $Cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for a topology $\tau^*(I)$, finer than τ . An operation γ [3,6] on the topology τ on a given topological space (X, τ) is a function from the topology itself into the power set P(X) of X such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V.

The following operators are examples of the operation γ : the closure operator γ_{cl} defined by $\gamma(U) = cl$ (U), the identity operator γ_{id} defined by $\gamma(U) = U$. Another example of the operation γ is the γ_f -operator defined by $U^{\gamma_f} = (FrU)^c = X/FrU[7]$. Two operators γ_1 and γ_2 are called mutually dual [7] if $U^{\gamma_1} \cap U^{\gamma_2} = U$ for each $U \in \tau$. For example the identity operator is mutually dual to any other operator, while the γ_f -operator is mutually dual to the closure operator [7]. Definition: A subset A of a space (X, τ) is called

(a) an α -open set [5] if $A \subseteq int(cl(int(A)))$.

2010 Mathematics Subject Classifications. 54B05, 54C08, 54D05.

Key words and Phrases. (I, γ) -g-closed set, (I, γ) -gs- closed sets, γ S - T I - spaces. Received: August 17, 2009

Communicated by Ljubisa Kocinac

- (b) a generalized closed(briefly g-closed) set [4] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (c) a (I, γ) generalized closed (briefly (I, γ) g-closed) set [1] if $A^* \subseteq U^{\gamma}$ whenever $A \subseteq U$ and U is open in (X, τ) .

We denote the family of all (I, γ) - generalized semi-closed subsets (briefly (I, γ) gs-closed) of a space (X, τ, I, γ) by IGS(X) and simply write *I*-gs-closed in case when γ is an identity operator. Throughout this paper the operator γ is defined as $\gamma: \tau^s \to P(X)$, where τ^s denotes the set of all semi-open sets of (X, τ) .

2. Basic properties of (I, γ) - generalized semi-closed sets

Definition 2.1. A subset A of a topological space (X, τ) is called (I, γ) -generalized semi-closed (briefly (I, γ) -gs-closed) if $A^* \subseteq U^{\gamma}$, whenever $A \subseteq U$ and U is semi-open in (X, τ) .

Example 2.2. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}, \text{ and } I = \{\{a\}, \{a, b\}\}.$ Here (I, γ) -gs-closed sets are $X, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}.$

Theorem 2.3. Every (I, γ) -gs-closed set is (I, γ) -g-closed set.

Proof. Let $A \subseteq U$, U is open and hence it is semi-open. Since A is (I, γ) -gs-closed, $A^* \subseteq U^{\gamma}$. Hence A is (I, γ) -g-closed.

Remark 2.4. The converse of the above theorem need not be true by the following example.

Example 2.5 Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $I = \{a\}$. Let $\gamma_1 : \tau^s \to P(X)$ and $\gamma_2 : \tau \to P(X)$ be defined by $U^{\gamma_1} = \operatorname{cl} U$ and $U^{\gamma_2} = \operatorname{cl} U$ respectively. Therefore $A = \{b, c\}$ is (I, γ) -g-closed but not (I, γ) -gs-closed.

Theorem 2.6. If A is I-gs-closed and semi-open, then A is τ^* -closed.

Proof: Since A is I-gs-closed, then $A^* \subseteq U$, U is semi-open. It is given that A is semi-open implies $A^* \subseteq U = A$, this implies that $A^* \subseteq A$. Hence A is τ^* -closed. **Theorem 2.7.** Let (X, τ, I, γ) be a topological space.

- (i) If $(A_i)_{i \in I}$ is a locally finite family of sets and each $A_i \in IGS(X)$, then $\bigcup_{i \in I} A_i \in IGS(X)$
- (ii) Finite intersection of (I, γ) -gs-closed sets need not be (I, γ) -gs-closed.

Proof:

- (i) Let $\bigcup_{i \in I} A_i \subseteq U$, where $U \in \tau^s$. Since $A_i \in IGS(X)$ for each $i \in I$, then $A_i^* \subseteq U^{\gamma}$. Hence $\bigcup_{i \in I} A_i^* \subseteq U^{\gamma}$, But we know that $(\bigcup_{i \in I} A_i)^* = \bigcup_{i \in I} A_i^*$, Therefore $(\bigcup_{i \in I} A_i)^* \subseteq U^{\gamma}$. Hence $\bigcup_{i \in I} A_i \in IGS(x)$
- (ii) Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\{a\}, \{a, b\}\}$. Set $A = \{a, b\}$ and $B = \{b, c\}$, clearly $A, B \in IGS(X)$ but $A \cap B = \{b\} \notin IGS(X)$.

Theorem 2.8. Let $(X, \tau, I, \gamma_{id})$ be a space. If $A \subseteq X$ is *I*-gs-closed and *B* is closed and τ^* -closed, then $A \cap B$ is *I*-gs-closed.

Proof: Let $U \in \tau^s$ be such that $A \cap B \subseteq U$. Then $A \subseteq U \cup (X/B)$. Since A is *I*-gs-closed, then $A^* \subseteq U \cup (X/B)$. Hence $B \cap A^* \subseteq U \cap B \subseteq U$, But we know that

 (I, γ) -generalized semi-closed sets in topological spaces

 $B^* \subseteq B$, Therefore $(A \cap B)^* \subseteq A^* \cap B^* \subseteq A^* \cap B \subseteq U$, Since B is τ^* -closed. Hence $A \cap B$ is I-gs-closed.

Result 2.9. A subset S of a space (X, τ, I) is a topological space with an ideal $I_s = \{I \cap S : I \in I\}$ on S.

Theorem 2.10. Let $A \subseteq S \subseteq (X, \tau, I, \gamma_{id})$. If A is I_s -gs-closed in $(S, \tau/s, I_s, \gamma_{id})$ and S is closed in (X, τ) , then A is I-gs-closed in $(X, \tau, I, \gamma_{id})$.

Proof: Let $A \subseteq U$, where $U \in \tau^s$. Let $x \notin U$. We consider the following two cases. Case(i) $x \in S$. By assumption, $A^*(I_s, \tau/s) \subseteq U \cap S \subset U$, We show that $A^*(I) \subseteq A^*(I_s, \tau/s)$. Let $x \notin A^*(I_s, \tau/s)$. Since $x \in S$, then for some open subset V_s of $(S, \tau/s)$ containing x, we have $V_s \cap A \in I_s$; since $V_s = V \cap S$ for some $V \in \tau$, then $(S \cap V) \cap A \in I_s \subseteq I$, that is $V \cap A \in I$ for some $V \in \tau$ containing x. This shows that $x \notin A^*(I) \subseteq U$.

Case(ii) $x \notin S$. Then X/S is an open neighbourhood of x disjoint from A. Hence $x \notin A^*(I)$. Consequently $A^*(I) \subseteq U$.

Both cases we show that the local function of A with respect to I and τ is in U. Hence A is *I-gs*-closed in $(X, \tau, I, \gamma_{id})$.

Theorem 2.11. Let $A \subseteq S \subseteq (X, \tau, I, \gamma)$. If $A \in (IGS(X))$ and $S \in \tau$, then $A \in IGS(S)$.

Proof: Let U be a semi-open subset of $(S, \tau/s)$ such that $A \subseteq U$. Since $S \in \tau$, then $U \in \tau^s$. Then $A^*(I) \subseteq U^{\gamma}$, since $A \in IGS(X)$. We show that $A^*(I_s, \tau/s) \subseteq A^*(I)$. Let $x \notin A^*(I)$. We assume that $x \in S$, since otherwise we are done. Now, for some $V \in \tau$ containing $x, V \cap S \in I$. Moreover, $V \cap A \in I_s$, since $A \subseteq S$. Then $V \cap S$ is an open neighbourhood of x in $(S, \tau/s)$ such that $(V \cap S) \cap A = V \cap A \in I_s$. This shows that $x \notin A^*(I_s, \tau/s)$. Hence $A^*(I_s, \tau/s) \subseteq U^{\gamma/s}$, where $U^{\gamma/s}$ means the image of the operation $\gamma/s : \tau^s/S \to P(S)$ defined by, $(\gamma/s)(U) = \gamma(U) \cap S$ for each $U \in \tau^s/S$. Hence $A \in IGS(S)$.

Theorem 2.12. Let A be a subset of $(X, \tau, I, \gamma_{id})$. If A is *I*-gs-closed, then A^*/A does not contain any non-empty semi-closed subset.

Proof: Assume that F is semi-closed subset of A^*/A . Clearly $A \subseteq X/F$, where A is *I*-gs-closed and $X/F \in \tau^s$. This $A^* \subseteq X/F$, that is $F \subseteq X/A^*$. Since due to our assumption $F \subseteq A^*$, $F \subseteq (X/A^*) \cap A^* = \phi$.

Theorem 2.13. If the set $A \subseteq (X, \tau, I)$ is both (I, γ_1) -gs-closed and (I, γ_2) – gsclosed, then it is *I*-gs-closed, granted the operators γ_1 and γ_2 are mutually dual.

Proof: Let $A \subseteq U$, where $U \in \tau^s$. Since $A^* \subseteq U^{\gamma_1}$ and $A^* \subseteq U^{\gamma_2}$, then $A^* \subseteq U^{\gamma_1} \cap U^{\gamma_2} = U$. Since γ_1 and γ_2 are mutually dual. Hence A is *I*-gs-closed. **Theorem 2.14.** Every set $A \subseteq (X, \tau, I)$ is (I, γ_{cl}) -gs-closed.

Proof: Let $A \subseteq U$, U is semi-open. We know that $A \cup A^* = cl^*(A) \subseteq cl(A) \subseteq cl(U)$. This implies that $A^* \subseteq cl(U)$. Hence A is (I, γ_{cl}) -gs-closed.

Corollary 2.15. For a set $A \subseteq (X, \tau, I)$, the following conditions are equivalent. (i) A is (I, γ_f) - gs-closed.

(ii) A is I-gs-closed.

Proof:

(i) \Rightarrow (ii), By the above theorem, A is (I, γ_{cl}) - gs-closed. Since γ_f and γ_{cl} are mutually dual due to [7], then $\gamma_f(U) \cap \gamma_{cl}(U) = U$. This implies that $A^* \subseteq U$, that is, A is *I*-gs-closed.

(ii) \Rightarrow (i), Let $A \subseteq U$, U is semi-open. Since A is I-gs-closed, $A^* \subseteq U$. But we know that $U \subseteq U^{\gamma_f}$, we have $A^* \subseteq U \subseteq U^{\gamma_f}$, this implies that $A^* \subseteq U^{\gamma_f}$. Therefore A is (I, γ_f) - gs- closed.

3. $\gamma S - T_I$ -space

Definition 3.1. A space (X, τ, I, γ) is called an $\gamma S - T_I$ -space if every (I, γ) -gsclosed subset of X is τ^* -closed. We use the simple notation ST_I -space, in case γ is the identity operator.

Theorem 3.2. For a space (X, τ, I) , the following conditions are equivalent.

- (i) X is a ST_I -space
- (ii) Each singleton of X is either semi-closed or τ^* -open.

Proof: (i) \Rightarrow (ii), Let $x \in X$. If $\{x\}$ is not semi-closed, then $A = X \setminus \{x\} \notin \tau^s$ and then A is trivially *I*-gs-closed. By (i) A is τ^* -closed and $\{x\}$ is τ^* -open.

(ii) \Rightarrow (i), Let A be *I*-gs-closed and let $x \in cl^*(A)$. We have the following two cases. case(i): $\{x\}$ is semi-closed. By theorem 2.12, A^*/A does not contain a non-empty semi-closed subset. This shows that $x \in A$.

case(ii): $\{x\}$ is τ^* -open. Then $\{x\} \cap A \neq \phi$. Hence $x \in A$. Thus in both cases x is in A and so $A = cl^*A$. that is A is τ^* -closed, which shows that X is a ST_I -space.

References

- Julian Dontchev, Maximilian Ganster and Takashi Noiri, Unified operation approach of generalized closed sets via topological ideals, *Math.Japon.*,49 (1999),395-401.
- [2] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [3] S.Kasahara, Operation-compact spaces, Math. Japan., 24 (1979), 97-105.
- [4] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89-96.
- [5] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [6] H.Ogata, Operations on topological spaces and associated topology, Math. Japon., 36 (1991), 175-184.
- [7] J.Tong, Expansion of open sets and decomposition of continuous mappings, Rend. Circ. Mat. Palermo (2), 43 (1994), 303-308.

Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore-29

E-mail: rdevicbe@yahoo.com