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Abstract

The complexity of networks has outpaced our
tools to debug them; today, administrators use man-
ual tools to diagnose problems. In this paper, we
show how packet histories—the full stories of every
packet’s journey through the network—can simplify
network diagnosis. To demonstrate the usefulness
of packet histories and the practical feasibility of
constructing them, we built NetSight, an extensible
platform that captures packet histories and enables
applications to concisely and flexibly retrieve packet
histories of interest. Atop NetSight, we built four
applications that illustrate its flexibility: an inter-
active network debugger, a live invariant monitor,
a path-aware history logger, and a hierarchical net-
work profiler. On a single modern multi-core server,
NetSight can process packet histories for the traf-
fic of multiple 10 Gb/s links. For larger networks,
NetSight scales linearly with additional servers and
scales even further with straightforward additions to
hardware- and hypervisor-based switches.

1 Introduction
Operating networks is hard. When networks go
down, administrators have only a rudimentary set of
tools at their disposal (traceroute, ping, SNMP, Net-
Flow, sFlow) to track down the root cause of the out-
age. This debugging toolkit has remained essentially
unchanged, despite an increase in distributed proto-
cols that modify network state. Network adminis-
trators have become “masters of complexity” [40]
who use their skill and experience to divine the root
cause of each bug. Humans are involved almost ev-
ery time something goes wrong, and we are still far
from an era of automated troubleshooting.

We could easily diagnose many network problems
if we could ask the network about suspect traffic and
receive an immediate answer. For example:

1. “Host A cannot talk to Host B. Show me where
packets from A intended for B are going, along
with any header modifications.”

2. “I don’t want forwarding loops in my network,
even transient ones. Show me every packet that
passes the same switch twice.”

3. “Some hosts are failing to grab IP addresses.
Show me where DHCP traffic is going in the
network.”

4. “One port is experiencing congestion. Show me
the traffic sources causing the congestion.”

Today, we cannot “just ask” these questions. Our
network diagnosis tools either provide no way to
pose such a question, or lack access to the informa-
tion needed to provide a useful answer. But, these
questions could be answered with an omniscient view
of every packet’s journey through the network. We
call this notion a packet history. More specifically,

Definition A packet history is the route a packet
takes through a network plus the switch state and
header modifications it encounters at each hop.

A single packet history can be the “smoking gun”
that reveals why, how, and where a network failed,
evidence that would otherwise remain hidden in gi-
gabytes of message logs, flow records [8, 34], and
packet dumps [15, 18, 32].
Using this construct, it becomes possible to build

network analysis programs to diagnose problems.
We built four such applications: (1) ndb, an inter-
active network debugger, (2) netwatch, a live net-
work invariant monitor, (3) netshark, a network-
wide packet history logger, and (4) nprof, a hier-
archical network profiler. The problems described
above are a small sample from the set of problems
these applications can help solve.
These four applications run on top of a prototype

platform we built, called NetSight. With a view of
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every packet history in the network, NetSight sup-
ports both real-time and postmortem analysis. Ap-
plications use Packet History Filter, a regex-like lan-
guage that we developed, to concisely specify paths,
switch state, and packet header fields for packet his-
tories of interest. The fact that each application is
less than 200 lines of code demonstrates the power
of Packet History Filter in NetSight.
NetSight assembles packet histories using

postcards—event records created whenever a packet
traverses a switch. Each postcard contains a copy of
the packet header, the switch ID, the output ports,
and a version number for the switch forwarding
state. To generate postcards, our prototype trans-
parently interposes on the control channel between
switches and controllers, and we have tested it with
both hardware and software OpenFlow switches.1

The challenge for any system offering packet his-
tories is to efficiently and scalably process a stream
of postcards into archived, queryable packet histo-
ries. Surprisingly, a single NetSight server suffices
to assemble and store packet histories from packet
headers collected at each hop, for every packet that
crosses 14 routers in the Stanford backbone net-
work. To support larger networks, NetSight scales
out on general-purpose servers—increasing its as-
sembly, query, and storage capabilities linearly with
the number of processing cores, servers, and disks.
To scale further to bandwidth-heavy enterprise and
data center networks, we present two additional Net-
Sight variants. NetSight-SwitchAssist proposes new
switch hardware changes to reduce postcard band-
width, while NetSight-HostAssist spreads postcard
and history processing among virtualized servers. In
contrast to the näıve method of collecting packet
headers that requires 31% bandwidth overhead in
the average case (§8), the SwitchAssist and HostAs-
sist designs drastically reduce the bandwidth over-
head to 7% and 3%, respectively (§8).
To summarize, our contributions include:

• Language: Packet History Filter concisely rep-
resents packet histories of interest. (§3)

• Applications: a suite of network diagnosis
apps built atop the NetSight API. (§4)

• Platform: the design (§5), implementa-
tion (§6), and evaluation (§7) of NetSight.

• A discussion of the two other designs, NetSight-
SwitchAssist and NetSight-HostAssist (§8).

This method of network analysis complements
techniques that model network behavior [23, 24].
Rather than predict the forwarding behavior of hy-

1Our prototype uses OpenFlow but the design does not require it.

packet [dl_src: 0x123, ...]:

switch 1: { inport: p0, outports: [p1]

mods: [dl_dst -> 0x345]

matched flow: 23 [...]

matched table version: 3 }

switch 2: { inport: p0, outports: [p2]

mods: []

matched flow: 11 [...]

matched table version: 7 }

...

switch N: { inport: p0

table miss

matched table version: 8 }

Figure 1: A packet history shows the path taken by a packet
along with the modifications and switch state encountered
by it at each hop.

pothetical packets, NetSight shows the actual for-
warding behavior of real packets. NetSight makes no
assumptions about the correctness of network con-
trol software. However, it assumes that the hard-
ware correctly forwards postcards to the NetSight
server(s). If it doesn’t, NetSight can flag it as a hard-
ware error, but the information might not be helpful
in accurately homing in on the root cause. Thus,
NetSight helps network operators, control program
developers, and switch implementers to discover and
fix errors in firmware or control protocols that cause
network elements to behave in unexpected ways.
The source code of our NetSight prototype is pub-

licly available with a permissive license [1]. We en-
courage the readers to download, use, extend, and
contribute to the codebase.

2 Motivating Packet Histories
In this section, we define packet histories, show an
example, note their challenges, and describe where
Software-Defined Networking (SDN) can help.
Packet History Definition. A packet history

tells the full story of a packet’s journey through the
network. More precisely, a packet history describes:
• what the packet looked like as it entered the
network (headers)

• where the packet was forwarded (switches +
ports)

• how it was changed (header modifications)

• why it was forwarded that way (matched
flow/actions + flow table).

Figure 1 shows an example packet history.
Why Packet Histories? Put simply, packet his-

tories provide direct evidence to diagnose network
problems. For example, consider a WiFi handover
problem we recently encountered [26]. To diagnose
the problem, our network admins started with pings.
Then they collected and manually inspected for-
warding rules. Then they visually parsed control

2



USENIX Association  11th USENIX Symposium on Networked Systems Design and Implementation 73

plane logs, looking for the problem. After hours of
debugging, they diagnosed the (surprisingly simple)
cause: upon handover to a new AP, forwarding rules
in the upstream wired switch were improperly up-
dated, sending incoming packets to the original AP.

Instead, our admins might simply ask NetSight:
“Show me all packet histories for packets to the
client when the handover occurred.” Each history
would have shown a packet going to the wrong AP
along with the upstream flow table state that caused
the error, enabling an immediate diagnosis.

This example shows how just one packet history
can single-handedly confirm or disprove a hypothesis
about a network problem, by showing events that
actually transpired in the network, along with all
relevant state. Access to the stream of all packet
histories enables diagnostics that would otherwise
be impractical, time-consuming, or impossible for a
network administrator using conventional tools.

Challenges. Generating, archiving, and query-
ing packet histories in operational networks requires:

(1) Path Visibility: we must somehow view and
record the paths taken by every packet.

(2) State Visibility: we must reconstruct the ex-
act switch state encountered at each packet hop.

(3) Modification Visibility: we must know
where and how each packet has changed.

(4) Collection Scale: all of the above must run
at the maximum observed traffic rate.

(5) Storage Scale: querying histories requires
storing everything, for some time.

(6) Processing Scale: query processing should
keep up with collection and storage.

Observing switch states from an external van-
tage point, by either logging the control messages
or querying the switches for their state, will not
guarantee precise state-packet correlation. The only
place where packets can be correlated with the exact
switch state is the data plane itself [20].

Opportunities with SDN. SDN offers a path
to the correlated visibility we need: logically cen-
tralized control provides a natural location to mod-
ify forwarding rules, while a common representa-
tion of switch state enables us to reason about any
changes. Later, in §6, we show how to precisely cor-
relate packets with the state used to forward them.
We solve the remaining scale concerns with careful
system architecture, aggressive packet header com-
pression, and an optimized implementation. Next,
we describe our API for specifying packet histories.

3 The NetSight API

NetSight exposes an API for applications to spec-
ify, receive, and act upon packet histories of in-
terest. NetSight provides a regular-expression-like
language—Packet History Filter (PHF)—to express
interest in packet histories with specific trajectories,
encountered switch state, and header fields. The
main function of the NetSight API is:2

add_filter(packet_history_filter, callback)

For every packet history matching the PHF
packet_history_filter , the callback function is
called along with the complete packet history.

Postcard Filters. The atomic element in a
PHF is the postcard filter (PF). A PF is a filter
to match a packet at a hop. Syntactically, a PF
is a conjunction of filters on various qualifiers:
packet headers, switch ID (known as datapath ID,
or dpid), input port, output port, and the switch
state encountered by the packet (referenced by a
“version” as described in §5). A PF is written as
follows:
--bpf [not] <BPF> --dpid [not] <switch ID>

--inport [not] <input port> --outport [not]

<output port> --version [not] <version>

where, <BPF> is a Berkeley Packet Filter [30] expres-
sion. The nots are optional and negate matches. A
PF must have at least one of the above qualifiers.
For example, a PF for a packet with source IP A,
entering switch S at any input port other than port
P is written as:
--bpf "ip src A" --dpid S --inport not P.

Packet History Filter Examples. A PHF is a
regular expression built with PFs, where each PF is
enclosed within double braces. The following sample
PHFs use X and Y as PFs to match packets that:

• start at X: ^{{X}}

• end at X: {{X}}$

• go through X: {{X}}

• go through X, and later Y: {{X}}.*{{Y}}

• start at X, never reach Y: ^{{X}}[^{{Y}}]*$

• experience a loop: (.).*(\1)

4 Applications

The ability to specify and receive packet histories
of interest enables new network-diagnosis applica-
tions. This section demonstrates the utility of the
NetSight API by presenting the four applications we
built upon it.

2The other important function is delete_filter.
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4.1 ndb: Interactive Network Debugger

The original motivating application for NetSight is
ndb, an interactive network debugger. The goal of
ndb is to provide interactive debugging features for
networks, analogous to those provided by gdb for
software programs. Using ndb, network application
developers can set PHFs on errant network behavior.
Whenever these occur, the returned packet histories
will contain the sequence of switch forwarding events
that led to the errant behavior, helping to diagnose
common bugs like the following:

Reachability Error: Suppose host A is unable
to reach host B. Using ndb, the developer would
use a PHF to specify packets from A destined for B
that never reach the intended final hop:
^{{--bpf "ip src A and dst B" --dpid X --

inport p1}}[^{{--dpid Y --outport p2}}]*$

where, (X, p1) and (Y, p2) are the (switch, port)
tuples at which hosts A and B are attached. Recall
that the regular expression ‘^X’ matches any string
that starts with character X, but ‘[^X]’ matches any
character except ‘X’. Thus, the above PHF matches
all packet histories with (source,destination)-IP
addresses (A,B) that start at (X,p1) but never
traverse (Y,p2).

Race condition: A controller may insert new
flow entries on multiple switches in response to net-
work events such as link failures or new flow ar-
rivals. If a controller’s flow entry insertions are de-
layed, packets can get dropped, or the controller
can get spurious ‘packet-in’ notifications. To query
such events, NetSight inserts a forwarding rule at
the lowest priority in all switches at switch initial-
ization time. This rule generates postcards and per-
forms the default action (by sending to either out-
port NULL that would drop the packet, or to out-
port CONTROLLER that would send the packet to
the controller). Since this rule is hit only when there
is no other matching flow entry, the following PHF
captures such events, by matching on packet histo-
ries that do not match any flow entry at switch X:
{{--dpid X --outport NULL}}$

Incorrect packet modification: Networks with
many nodes and rules can make it difficult to see
where and why errant packet modifications occurred.
Packets reaching the destination with unexpected
headers can be captured by the following PHF:
^{{--bpf "BPF1"}}.*{{--bpf "BPF2"}}$

Where BPF1 matches the packet when it enters the
network and BPF2matches the modified packet when
it reached the destination.

4.2 netwatch: Live Invariant Monitor
The second application is netwatch, a live network
invariant monitor. netwatch allows the operator to
specify desired network behavior in the form of in-
variants, and triggers alarms whenever a packet vio-
lates any invariant (e.g., freedom from traffic loops).
netwatch is a library of invariants written using
PHFs to match packets that violate those invari-
ants. Once PHFs are pushed to NetSight, the call-
back returns the packet history that violated the in-
variant(s). The callback not only notifies the opera-
tor of an invariant violation, but the PHF provides
useful context around why it happened. netwatch

currently supports the following network invariants:

Isolation: Hosts in group A should not be able
to communicate with hosts in group B. Raise an
alarm whenever this condition is violated. The func-
tion isolation(a_host_set, b_host_set, topo)

pushes down two PHFs:
^{{ GroupA }}.*{{ GroupB }}$

^{{ GroupB }}.*{{ GroupA }}$

GroupA and GroupB can be described by a set of
host IP addresses or by network locations (switch,
port) of hosts. This PHF matches packets that are
routed from GroupA to GroupB.

Loop Freedom: The network should have no
traffic loops. The function loop_freedom() pushes
down one PHF: (.).*(\1)

Waypoint routing: Certain types of traffic
should go through specific waypoints. For ex-
ample, all HTTP traffic should go through the
proxy, or guest traffic should go through the IDS
and Firewall. The function waypoint_routing(

traffic_class, waypoint_id) installs a PHF of
the form: {{--bpf "traffic_class" --dpid not

"waypoint_id"}}{{--dpid not "waypoint_id

"}}*$

This PHF catches packet histories of packets that
belong to traffic_class and never go through the
specified waypoint.

Max-path-length: No path should ever exceed
a specified maximum length, such as the diameter
of the network. The function max_path_length(n)

installs a PHF of the form: .{n+1}
This PHF catches all paths whose lengths exceed n.

4.3 netshark: Network-wide Path-Aware
Packet Logger

The third application is netshark, a wireshark-like
application that enables users to set filters on the
entire history of packets, including their paths and
header values at each hop. For example, a user could
look for all HTTP packets with src IP A and dst IP

4
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B arriving at (switch X, port p) that have also tra-
versed through switch Y. netshark accepts PHFs
from the user, returns the collected packet histories
matching the query, and includes a wireshark dis-
sector to analyze the results. The user can then view
properties of a packet at a hop (packet header val-
ues, switch ID, input port, output port, and matched
flow table version) as well as properties of the packet
history to which it belongs (path, path length, etc.).

4.4 nprof: Hierarchical Network Profiler
The fourth application is nprof, a hierarchical net-
work profiler. The goal of nprof is to ‘profile’ any
collection of network links to understand the traffic
characteristics and routing decisions that contribute
to link utilization. For example, to profile a partic-
ular link, nprof first pushes a PHF specifying the
link of interest:
{{--dpid X --outport p}}

nprof combines the resulting packet histories with
the topology information to provide a live hierar-
chical profile, showing which switches are sourcing
traffic to the link, and how much. The profile tree
can be further expanded to show which particular
flow entries in those switches are responsible.
nprof can be used to not only identify end hosts

(or applications) that are congesting links of inter-
est, but also identify how a subset of traffic is be-
ing routed across the network. This information can
suggest better ways to distribute traffic in the net-
work, or show packet headers that cause uneven load
distributions on routing mechanisms such as equal-
cost or weighted-cost multi-path.

5 How NetSight Works
In this section, we present NetSight, a platform to
realize the collection, storage, and filtering of all
packet histories, upon which one can build a range
of applications to troubleshoot networks.
The astute reader is likely to doubt the scalability

of any system that attempts to store every header
traversing a network, along with its corresponding
path, state, and modifications, as well as apply com-
plex filters. This is a lot of data to forward, let alone
process and archive.
Hence, NetSight is designed from the beginning to

scale out and see linear improvements with increas-
ing numbers of servers. The design implements all
software processing, such as table lookups, compres-
sion operations, and querying, in ways that are sim-
ple enough to enable hardware implementations. As
an existence proof that such a system is indeed fea-
sible, the implementation described in §6 and eval-
uated in §7 can perform all packet history process-
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Figure 2: NetSight architecture.

ing and storage steps for a moderately-sized network
like the Stanford University backbone network on a
single server. For networks with higher aggregate
bandwidths, processing capabilities increase linearly
with the number of servers.

5.1 NetSight Philosophy
NetSight assembles packet histories using postcards,
event records sent out whenever a packet traverses
a switch. This approach decouples the fate of the
postcard from the original packet, helping to trou-
bleshoot packets lost down the road, unlike ap-
proaches that append to the original packet. Each
postcard contains the packet header, switch ID, out-
put port, and current version of the switch state.
Combining topology information with the postcards
generated by a packet, we can reconstruct the com-
plete packet history: the exact path taken by the
packet along with the state and header modifications
encountered by it at each hop along the path.
We first explain how NetSight works in the com-

mon case, where: (1) the network does not drop
postcards, (2) the network does not modify packets,
and (3) packets are all unicast. Then, in §5.4, we
show how NetSight handles these edge cases.

5.2 System Architecture
Figure 2 sketches the architectural components of
NetSight. NetSight employs a central coordinator to
manage multiple workers (called NetSight servers).
NetSight applications issue PHF-based triggers and
queries to the coordinator, which then returns a
stream or batch of matching packet histories. The
coordinator sets up the transmission of postcards
from switches to NetSight servers and the transmis-
sion of state change records from the network con-
trol plane to the coordinator. Finally, the coordi-
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nator performs periodic liveness checks, broadcasts
queries and triggers, and communicates topology in-
formation for the workers to use when assembling
packet histories.

5.3 Life Of a Postcard
NetSight turns postcards into packet histories. To
explain this process, we now follow the steps per-
formed inside a NetSight server, shown in Figure 3.

Postcard Generation. Goal: record all infor-
mation relevant to a forwarding event and send for
analysis. As a packet enters a switch, the switch
creates a postcard by duplicating the packet, trun-
cating it to the minimum packet size, marking it
with relevant state, and forwarding it to a NetSight
server. The marked state includes the switch ID,
the output port to which this packet is about to be
forwarded, and a version ID representing the exact
state of this switch when the packet was forwarded.
The original packet remains untouched and contin-
ues on its way. Switches today already perform
similar packet duplication actions to divert packets
for monitoring (e.g. RSPAN [7] and sFlow). Post-
card generation should be much faster than normal
packet forwarding, because it does not require any
expensive IP lookups. It requires encapsulating the
packet to a known port and duplicating the packet
output; both of these are cheap operations relative
to typical IP lookups. Newer switches [17] also sup-
port hardware-accelerated encapsulation for tunnel-
ing traffic at line-rate (e.g., MPLS, GRE, VXLAN,
etc.).

Postcard Collection. Goal: to send all post-
cards for a packet to one server, so that its packet
history can be assembled. In order to reconstruct

packet histories, NetSight needs to collect all post-
cards corresponding to a single packet at a single
server. To scale processing, NetSight needs to en-
sure that these groups of postcards are load balanced
across servers. NetSight achieves this by shuffling
postcards between NetSight servers, using a hash on
the flow ID (5-tuple) to ensure postcard locality.

Postcard shuffling is batched into time-based
“rounds.” At the end of a round, servers send post-
cards collected during the round to their final desti-
nation, where the corresponding packet histories can
be assembled and archived. This stage provides an
opportunity to compress postcard data before shuf-
fling, by exploiting the redundancy of header values,
both within a flow, and between flows. Section 6
details NetSight’s fast network-specific compression
technique to reduce network bandwidth usage.

History Assembly. Goal: to assemble packet
histories from out-of-order postcards. Packet his-
tories must be ordered, but postcards can arrive
out-of-order due to varying propagation and queuing
delays from switches to NetSight servers. NetSight
uses topology information, rather than fine-grained
timestamps, to place postcards in order.

When a NetSight server has received the complete
round of postcards from every other server, it decom-
presses and merges each one into the Path Table, a
data structure that helps combine all postcards for
a single packet into a group. To identify all post-
cards corresponding to a packet, NetSight combines
immutable header fields such as IP ID, fragment off-
set, and TCP sequence number fields into a “packet
ID,” which uniquely identifies a packet within a flow.
To evaluate the strategy of using immutable header
fields to identify packets, we analyzed a 400k-packet

6
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trace of enterprise packet headers [28]. Nearly 11.3%
of packets were indistinguishable from at least one
other packet within a one-second time window. On
closer inspection, we found that these were mostly
UDP packets with IPID 0 generated by an NFS
server. Ignoring these UDP packets removed all
IP packet ambiguity, leaving only seven ambiguous
ARPs. This initial analysis suggests that most of the
packets have enough entropy in their header fields to
be uniquely identified. The Path Table is simply a
hash table indexed by packet ID, where values are
lists of corresponding postcards.

The NetSight server extracts these postcard
groups, one-at-a-time, to assemble them into packet
histories. For each group, NetSight then performs a
topological sort, using switch IDs and output ports,
along with topology data.3 The resulting sorted list
of postcards is the packet history.

Filter triggers. Goal: to immediately notify ap-
plications of fresh packet histories matching a pre-
installed PHF. Once the packet history is assem-
bled, NetSight matches it against any “live” PHFs
pre-installed by applications such as netwatch, and
immediately triggers notifications back to the appli-
cation on a successful match.

History archival. Goal: to efficiently store the
full set of packet histories. Next, the stream of
packet histories generated in each round is written to
a file. NetSight compresses these records using the
same compression algorithm that is used before the
shuffle phase to exploit redundancy between post-
cards of a packet and between packets of a flow.

Historical queries. Goal: to enable applications
to issue PHF queries against archived packet histo-
ries. When an application issues a historical PHF
query to a specified time region, that query runs in
parallel on all NetSight servers. Compression helps
to improve effective disk throughput here, and hence
reduces query completion times.4

5.4 Relaxing the Assumptions
We now describe how NetSight handles corner cases.

Dropped Postcards. When postcard drops oc-
cur (e.g., due to congestion), packet histories be-
come incomplete, causing NetSight to return er-
rantly matched histories as well as to miss histories
that should have matched the installed PHFs. Net-
Sight delegates the responsibility for handling these
events to apps. For example, ndb returns partial his-

3In the current implementation the topology data needs to be exter-
nally fed into NetSight. Alternatively, with the SDN implementation
described in §6, the proxy can dynamically learn the topology.

4Ideally the filesystem is log-structured, to restore individual rounds
at the full disk throughput, with minimal seeking [37].

tories to the user, who can often resolve the omis-
sion by using the topology information and filling
the missing postcards.5 Out-of-band control links
and highest-priority queues for postcards can help
to minimize postcard drops.
Non-unicast Packets. For broadcast and mul-

ticast traffic, NetSight returns packet histories as di-
rected graphs, rather than lists. For loops, NetSight
returns the packet history with an arbitrary starting
point and marks it as a loop.
Modified Packets. When Network Address

Translation (NAT) boxes modify the header fields in
the flow key, the postcards for one packet may arrive
at different NetSight servers, preventing complete
packet history assembly. Using immutable headers
or hashes of packet contents in the shuffle phase
would ensure that all postcards for one packet ar-
rive at the same server.6 However, with such keys,
packet histories of packets belonging to a single flow
will be evenly spread among servers, reducing oppor-
tunities for storage compression: each of n servers
will see packet histories of 1/n-th of the packets of
each flow.
Adding a second shuffle stage can ensure both cor-

rectness and storage efficiency. In the first stage,
packet histories are shuffled for assembly using their
packet ID, while in the second stage, they are shuf-
fled for storage using a hash of the 5-tuple flow key
of their first packet. The reduced storage comes at
a cost of additional network traffic and processing.

6 NetSight Implementation
Our NetSight implementation has two processes:
one interposes between an OpenFlow controller and
its switches to record configuration changes, while
another does all postcard and history processing. To
verify that it operates correctly on physical switches,
we ran it on a chain topology of 6 NEC IP8800
switches [31]. To verify that it ran with unmodified
controllers, we tested it on the Mininet emulation en-
vironment [27] with multiple controllers (OpenFlow
reference, NOX [19], POX [35], RipL-POX [36]) on
multiple topologies (chains, trees, and fat trees).
This section describes the individual pieces of our
prototype, which implements all postcard and his-
tory processing in C++ and implements the control
channel proxy in Python.

6.1 Postcard Generation
The NetSight prototype is for SDN, leveraging the
fact that network state changes are coordinated by

5These can indicate an unexpected switch configuration too, as we
saw the first time using NetSight on a network (§6.4).

6That is, if middleboxes don’t mess with packet contents.
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a controller. This provides an ideal place to mon-
itor and intercept switch configuration changes. It
uses a transparent proxy called the flow table state
recorder (recorder for short) that sits on the control
path between the controller and OpenFlow switches.
When a controller modifies flow tables on a switch,

the recorder intercepts the message and stores it in a
database. For each OpenFlow rule sent by the con-
troller to the switch, the recorder appends new ac-
tions to generate a postcard for each packet match-
ing the rule in addition to the controller-specified
forwarding.
Specifically, the actions create a copy of the packet

and tag it with the switch ID,7 the output port, and
a version number for the matching flow entry. The
version number is simply a counter that is incre-
mented for every flow modification message. The
tag values overwrite the original destination MAC
address (the original packet header is otherwise un-
changed). Once assembled, postcards are sent to
a NetSight server over a separate VLAN. Postcard
forwarding can be handled out-of-band via a sepa-
rate network, or in-band over the regular network;
both methods are supported. In the in-band mode,
switches recognize postcards using a special VLAN
tag to avoid generating postcards for postcards.

6.2 Compression
NetSight compresses postcards in two places: (1) be-
fore shuffling them to servers, and (2) before archiv-
ing assembled packet histories to disk. While we
can use off-the-shelf compression algorithms (such as
LZMA) to compress the stream of packets, we can do
better by leveraging the structure in packet headers
and the fact that all the packets in a flow—identified
by the 5-tuple flow id (srcip, dstip, srcport,

dstport, protocol)—look similar.
NetSight compresses packets by computing diffs

between successive packets in the same stream.
A diff is a (Header,Value) pair, where Header

uniquely identifies the field that changed and Value

is its new value. Certain fields (e.g. IPID and TCP
Sequence numbers) compress better if we just store
the successive deltas. Compression works as fol-
lows: the first packet of each flow is stored verba-
tim. Subsequent packets are only encoded as the
(Header,Value) tuples that change, with a back-
reference to the previous packet in the same stream.
Finally, NetSight pipes the stream of encoded diffs
through a standard fast compression algorithm (e.g.
gzip at level 1). Our compression algorithm is a gen-

7To fit into the limited tag space, NetSight uses a locally created
“pseudo switch ID” (PSID) and maintains an internal mapping from
the 8 B datapath ID to the PSID.

eralization of Van Jacobson’s compression of TCP
packets over slow links [21].

6.3 PHF Matching
The PHF matching engine in NetSight is based on
the RE1 regex engine [9] and uses the Linux x86 BPF
compiler [5] to match packet headers against BPF
filters. RE1 compiles a subset (concatenation, alter-
nation and the Kleene star) of regular expressions
into byte codes. This byte code implements a Non-
deterministic Finite Automaton which RE1 executes
on an input string. In RE1, character matches trig-
ger state machine transitions; we modify RE1 and
“overload” the character equality check to match
postcards against postcard filters.

6.4 Test Deployment Anecdote
NetSight helped to uncover a subtle bug during our
initial test deployment. While connectivity between
hosts seemed normal, the packet histories returned
by ndb for packets that should have passed through a
particular switch were consistently returned as two
partial paths on either side of the switch. These
packet histories provided all the context our admin-
istrator needed to immediately diagnose the prob-
lem: due to a misconfiguration, the switch was be-
having like an unmanaged layer-2 switch, rather
than an OpenFlow switch as we intended.
With no apparent connectivity issues, this bug

would have gone unnoticed, and might have mani-
fested later in a much less benign form, as forwarding
loops or security policy violations. This unexpected
debugging experience further highlights the power of
packet histories.

7 Evaluation
This section quantifies the performance of the server-
side mechanisms that comprise NetSight, to investi-
gate the feasibility of collecting and storing every
packet history. From measurements of each step, in-
cluding compression, assembly, and filtering, we can
determine the data rate that a single core can han-
dle. For switch-side mechanisms and scaling them,
skip to §8.
7.1 Compression
NetSight compresses postcards before the shuffle
phase to reduce network bandwidth, then com-
presses packet histories again during the archival
phase to reduce storage costs. We investigate three
questions:

Compression: how tightly can NetSight compress
packet headers, and how does this compare to off-
the-shelf options?

8
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Compression Type Description
Wire Raw packets on the wire
PCAP All IP packets, truncated up to

Layer-4 headers
gzip PCAP compressed by gzip level 6
NetSight (NS) Van Jacobson-style compression

for all IP 5-tuples
NetSight + gzip
(NS+GZ)

Compress packet differences with
gzip level 1

Table 1: Compression techniques.

Speed: how expensive are the compression and de-
compression routines, and what are their time vs.
size tradeoffs?

Duration: how does the round length (time be-
tween data snapshots) affect compression proper-
ties, and is there a sweet spot?

Traces. While we do not have a hardware imple-
mentation of the compression techniques, we answer
the performance questions using thirteen packet cap-
ture (pcap) data sets: one from a university enter-
prise network (UNIV), two from university data cen-
ters (DCs), and nine from a WAN. We preprocessed
all traces and removed all non-IPv4, non-TCP and
non-UDP packets, then stripped packet headers be-
yond the layer 4 TCP header, which accounted for
less than 1% of all traffic. UNIV is the largest trace,
containing 31 GB of packet headers collected over an
hour on a weekday afternoon. The average flow size
over the duration of this trace is 76 packets. The
data center traces DC1 and DC2 have average flow
sizes of about 29 and 333 packets per flow respec-
tively. However, in the WAN traces, we observed
that flows, on average, have less than 3 packets over
the duration of the trace. We do not know why;
however, this extreme point stresses the efficiency of
the compression algorithm.

The UNIV trace contains packets seen at one core
router connecting Clemson University to the Inter-
net. The data center traces—DC1 and DC2—are
from [4] whose IP addresses were anonymized using
SHA1 hash. And finally, each WAN trace (from [43])
accounts for a minute of packet data collected by
a hardware packet capture device. IP addresses in
this trace are anonymized using a CryptoPan prefix-
preserving anonymization.

Storage vs CPU costs. Figure 4 answers many
of our performance questions, showing the tradeoff
between compression storage costs and CPU costs,
for different traces and compression methods. This
graph compares four candidate methods, listed in
Table 1: (a) PCAP: the uncompressed list packet
headers, (b) gzip compression directly on the pcap

Figure 4: NetSight reduces storage relative to PCAP files, at
a low CPU cost. Combining NS with gzip (NS+GZ) reduces
the size better than gzip, at a fraction of gzip’s CPU costs.
The WAN traces compress less as we observe fewer packets
in a flow compared to other traces.

file, (c) NS: the adaptation of Van Jacobson’s com-
pression algorithm, (d) NS+GZ: output of (c) fol-
lowed by gzip compression (level 1, fastest). Each
one is lossless with respect to headers; they recover
all header fields and timestamps and maintain the
packet ordering.

We find that all candidates reduce storage rela-
tive to PCAP files, by up to 4x, and as expected,
their CPU costs vary. GZ, an off-the-shelf option,
compresses well, but has a higher CPU cost than
both NS and NS+GZ, which leverage knowledge of
packet formats in their compression. NetSight uses
NS+GZ, because for every trace, it compresses better
than pure GZ, at a reasonably low CPU cost.

We also find that the compressed sizes depend
heavily on the average flow size of the trace. Most
of the benefits come from storing differences between
successive packets of a flow, and a smaller average
flow size reduces opportunities to compress. We see
this in the WAN traces, which have shorter flows
and compress less. Most of the flow entropy is in
a few fields such as IP identification, IP checksums
and TCP checksums, and the cost of storing diffs for
these fields is much lower than the cost of storing a
whole packet header.

To put these speeds in perspective, consider our
most challenging scenario, NS+GZ in the WAN,
shown by the blue stars. The average process time
per packet is 3.5µs, meaning that one of the many
cores in a modern CPU can process 285K postcard-
s/sec. Assuming an average packet size of 600 bytes,
this translates to about 1.37 Gb/s of network traffic,
and this number scales linearly with the number of
cores. Moreover, the storage cost (for postcards) is
about 6.84 MB/s; a 1 TB disk array can store all

9
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Figure 5: Packet compression quality for NS+GZ as a func-
tion of packets seen in the trace. In our traces from three
operating environments, we find that NetSight quickly ben-
efits from compression after processing a few 100s of thou-
sands of packets.

Scenario Enterprise WAN Data Center
CPU cost 0.725µs 0.434µs 0.585µs
per packet

Table 2: Decompression Speeds.

postcards for an entire day. The actual duration for
which postcards need to be stored depends on the
scenario and the organizational needs. For exam-
ple, to troubleshoot routine network crashes whose
symptoms are usually instantly visible, storing a day
or two worth of postcards might suffice. On the
other hand, to troubleshoot security breaches, whose
effects might show up much later, postcards might
have to be stored for a longer period, say a week.
Most of this storage cost goes into storing the first
packet of a flow; as the number of packets per flow in-
creases (e.g. in datacenter traces), the storage costs
reduce further.

Duration. A key parameter for NetSight is the
round length. Longer rounds present more opportu-
nities for postcard compression, but increase the de-
lay until the applications see matching packet histo-
ries. Smaller rounds reduce the size of the hash table
used to store flow keys in NS compression, speeding
up software implementations and making hardware
implementations easier. Figure 5 shows packet com-
pression performance as a function of the number of
packets in a round. This graph suggests that short
rounds of 1000 packets see many of the compression
benefits, while long rounds of 1M postcards maxi-
mize them. On most lightly loaded 10Gb/s links, a
1M postcard round translates to about a second.

Decompression Speed. Table 2 shows NS+GZ
decompression costs for one trace from each of the
environments. In every case, NS+GZ decompres-
sion is significantly faster than compression. These
numbers underrepresent the achievable per-postcard

Packet History Length

La
te

nc
y 

(u
s)

.*X

X.*X

X.*X.*X

.*X.*
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Figure 6: PHF matching latency microbenchmark for vari-
ous sample PHFs and packet histories of increasing length.

latencies, because the implementation loads the en-
tire set of first packets and timestamps into memory
before iterating through the list of diff records. As
with compression, a small round timer would im-
prove cache locality and use less memory.

7.2 Packet History Assembly
At the end of the shuffle phase, each NetSight server
assembles packet histories by topologically sorting
received postcards, which may have arrived out-of-
order. We measure the speed of our history assembly
module written in C++. Topological sorting is fast
– it runs in O(p), where p is the number of postcards
in the packet history, and typically, p will be small.
For typical packet history lengths (2 to 8 hops long in
each of the networks we observed) history assembly
takes less than 100 nanoseconds. In other words, a
single NetSight server can assemble more than 10
million packet histories per second per core.

7.3 Triggering and Query Processing
NetSight needs to match assembled packet histories
against PHFs, either on a live stream of packet his-
tories or on an archive. In this section, we measure
the speed of packet history matching using both mi-
crobenchmarks and a macrobenchmark suite, look-
ing for where matching might be slowest. The PHF
match latency depends on (1) the length of the
packet history, (2) the size and type of the PHF,
and (3) whether the packet history matches against
the PHF.

Microbenchmarks. Figure 6 shows the perfor-
mance of our PHF implementation for sample PHFs
of varying size on packet histories of varying length.
The sample PHFs are of the type .*X, .*X.*, X.*X,
and X.*X.*X, where each X is a postcard filter and
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Figure 7: Representative results from the macrobenchmark
suite of queries run on the Clemson trace. The most expen-
sive queries were those with complex BPF expressions.

contains filters on packet headers (BPF), switch ID,
and input ports. We match a large number of packet
histories against each PHF and calculate the aver-
age latency per match. In order to avoid any data-
caching effects, we read the packet histories from a
6GB file, and we ignore the I/O latency incurred
while reading packet histories from the disk.
The dashed lines show the latency when the

packet history matches the PHF (“match”), while
the solid lines show the latency when the packet his-
tory does match the PHF (“no-match”). We see that
the “match” latencies are typically smaller than the
corresponding “non-match” latencies, since the code
can return as soon as a match is detected. We also
see that the match latency increases with the num-
ber of PFs in the PHF as well as the length of the
packet history. Importantly, the region of interest is
the bottom left corner – packet histories of length 2
to 8. Here, the match latency is low: a few hundred
nanoseconds.
Macrobenchmarks. The UNIV trace was cap-

tured at the core router connecting two large dat-
acenters and 150 buildings to the Internet. We re-
construct packet histories for packets in this trace
using topology and subnet information. Then we
run a suite of 28 benchmark PHF queries which in-
clude filters on specific hosts, locations (datacenter,
campus and Internet), paths between locations, and
headers. Figure 7 shows the average PHF match
time (on a single CPU core) for a representative set
of queries on hosts, subnets (campus), and paths
(dc hdr–campus hdr). Most matches execute fast
(<300ns/match); the most expensive ones (900ns/-
match) are complex BPF queries that contain a pre-
dictate on 24 subnets.
The above results show that even an unoptimized

single-threaded implementation of PHF matching
can achieve high throughput. In addition, PHF

matching is embarrassingly parallel: each packet his-
tory can be matched against a PHF independent of
all other packet histories, enabling linear multi-core
scalability. A future optimized implementation can
also perform the matching directly on compressed
archives of packet histories, rather than on each in-
dividual packet history.

7.4 Provisioning Scenario
At the beginning of this paper, we suggested a set
of questions, each of which maps to a filter in Net-
Sight. With performance numbers for each piece of
NetSight, we can estimate the traffic rate it can han-
dle to answer those questions.
Adding up the end-to-end processing costs in

NetSight – compressing, decompressing, assembling,
and filtering packets – yields a per-core through-
put of 240K postcards/second. With five hops on
the typical path and 1000-byte packets, a single 16-
core server, available for under $2000, can handle
6.1 Gb/s of network traffic. This is approximately
the average rate of the transit traffic in our cam-
pus backbone. To handle the peak, a few additional
servers would suffice, and as the network grows, the
administrator can add servers knowing that Net-
Sight will scale to handle the added demand.
The key takeaway is that NetSight is able to han-

dle the load from an entire campus backbone with
20,000 users, with a small number of servers.

8 Scaling NetSight
If we do not compress postcards before sending them
over the network, we need to send them each as a
min-sized packet. We can calculate the bandwidth
cost as a fraction of the data traffic as:

cost = postcard packet size
avg packet size ×avg number of hops.

The bandwidth cost is inversely proportional to
the average packet size in the network.
For example, consider our university campus

backbone with 14 internal routers connected by
10Gb/s links, two Internet-facing routers, a net-
work diameter of 5 hops, and an average packet
size of 1031 bytes. If we assume postcards are
minimum-sized Ethernet packets, they increase traf-
fic by 64B

1031B ×5(hops) = 31%.8

The average aggregate utilization in our university
backbone is about 5.9Gb/s, for which postcard traf-
fic adds 1.8Gb/s. Adding together the peak traffic
seen at each campus router, we get 25Gb/s of packet
data, which will generate 7.8Gb/s of postcard traffic,

8If we overcome the min-size requirement by aggregating the 40
byte postcards into larger packets before sending them, the bandwidth
overhead reduces to 19%.
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Figure 8: NetSight uses only dedicated servers, but
adding switch processing (-SwitchAssist) and VM servers
(-HostAssist) can reduce bandwidth costs and increase scal-
ability. Postcard generation is common to all approaches.

yet can be handled by two NetSight servers (§7.4).
If the postcards are sent in-band, this extra traffic
may affect the network performance.

For a low-utilization network, especially test net-
works or production networks in the bring-up phase,
these bandwidth costs may be acceptable for the de-
bugging functionality NetSight provides. But for a
live network with more hops, smaller packets, or
higher utilization, our NetSight may consume too
much network bandwidth. To scale NetSight to a
large data center or an enterprise, we present two
design modifications that reduce network bandwidth
by moving some of the processing into the switches
and end hosts, respectively.

NetSight-SwitchAssist, shown in the middle
of Figure 8, uses additional logic in the switches
to locally implement the Postcard Stage with com-
pression, thus avoiding the extra network capacity
needed to transport uncompressed postcards to the
NetSight servers in minimum-size packets. Since
switches send compressed aggregates of postcards
to NetSight servers (rather than individual uncom-
pressed postcards), the bandwidth requirement di-
minishes. For example, with a size of 15 bytes per
compressed postcard (as shown in §7), the band-
width requirement reduces from 31% to 7%.

NetSight-HostAssist, shown at the bottom of
Figure 8, is suited for environments where end hosts
can be modified. This design reduces postcard traf-
fic by using a thin shim layer at each end host (e.g.

in a software switch such as Open vSwitch [33]) to
tag packets to help switches succinctly describe post-
cards. The shim tags each outgoing packet with a
sequentially-incrementing globally-unique packet ID
and locally stores the mapping between the ID and
the packet header. When a switch receives a packet,
it extracts the tag and generates a mini-postcard
that contains only the packet ID, the flow table state
and the input/output ports. This state is appended
to a hash table entry keyed by the source address
of this packet. Since a packet ID is valid only to a
particular host, the shim can use fewer bytes (e.g. 4
bytes) to uniquely identify a packet. When enough
bytes accumulate, the switch dispatches the hash en-
try (a list of packet IDs and state) to the source. At
the end of a round, the hosts locally assemble and
archive the packet history.
If on average, it takes 15 bytes per packet to store

compressed headers at the VM hosts (§7), and 6
bytes per mini-postcard, the bandwidth overhead to
collect postcards in the network reduces to 3%. This
number contrasts with 31% overhead when post-
cards are collected naively. Since each end host
stores packet histories for its own traffic, the mech-
anism scales with the number of hosts. If 3% is
still unacceptable, then NetSight may be deployed
for a subset of packets or a subset of switches. How-
ever, both of these options are qualitatively different;
either NetSight cannot guarantee that a requested
packet history will be available when ignoring some
packets, or NetSight cannot guarantee that each gen-
erated packet history will represent a packet’s com-
plete path when not enabled network-wide.
To put things in perspective, while NetSight re-

quires firmware modifications to expose existing
hardware functionality, NetSight-SwitchAssist and
NetSight-HostAssist require hardware modifications
in the switches. If our campus network (§7.4) were
to get upgraded to NetSight-SwitchAssist, one of
the expensive compression steps would go away and
yield a traffic processing rate of 7.3 Gb/s per server.
Adding NetSight-HostAssist would yield a rate of
55 Gb/s per server, because mini-postcards require
no compression or decompression. The processing
costs are heavily dominated by compression, and re-
ducing these costs seems like a worthwhile future
direction to improve NetSight.

9 Related Work
Commercial tools for troubleshooting networks pro-
vide visibility through packet sampling [8, 34], con-
figurable packet duplication [15, 18, 32], or log anal-
ysis [42]. Most lack the network-wide visibility and
the packet-level state consistency provided by Net-
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Sight. cPacket Networks has a commercial product
that offers a central view with a grep-based interface,
but it is unclear whether they support mechanisms
to obtain network state that pertains to a specific
packet’s forwarding [10].
In the SDN space, OFRewind [45] records and

plays back SDN control plane traffic; like NetSight,
it also records flow table state via a proxy and logs
packet traces. ndb [20] proposes the postcard-based
approach to reconstruct the path taken by a packet.
In this paper, we build upon those ideas with the
packet history abstraction, the PHF API, four trou-
bleshooting applications, and also describe and eval-
uate methods to scale the system. Other academic
work, IP traceback, builds paths to locate denial-
of-service attacks on the Internet [12, 38, 41]. Flow
sampling monitors traffic and its distribution [14] or
improves sampling efficiency and fairness [2, 13, 39];
NetSight has a different goal (network diagnosis) and
uses different methods. Packet Obituaries [3] pro-
poses an accountability framework to provide infor-
mation about the fate of packets. Its notion of a
“report” is similar to a packet history but provides
only the inter-AS path information. Each lacks a
systematic framework to pose questions of these re-
ports in a scalable way.
Another class of related systems look for invari-

ant violations atop a model of network behavior.
These include data-plane configuration checkers like
Anteater [29], Header Space Analysis [23, 22], and
VeriFlow [25], as well as tools like NICE [6], which
combines model checking and symbolic execution to
verify network programs. These systems all model
network behavior, but firmware and hardware bugs
can creep in and break this idealized model. Net-
Sight on the other hand, takes a more direct ap-
proach – it finds bugs that manifest themselves as
errantly forwarded packets and provides direct ev-
idence to help identify their root cause. Auto-
matic Test Packet Generation [46] shares our overall
approach, but uses a completely different method:
sending test packets, as opposed to monitoring ex-
isting traffic. NetSight appears better suited for net-
works with rapidly changing state, because it avoids
the expensive test packet set minimization step.
Virtual Network Diagnosis [44] shares surface sim-

ilarities with NetSight, such as a distributed imple-
mentation and a query API; however, its focus is per-
formance diagnosis for tenants, rather than connec-
tivity debugging for the infrastructure owner. Gigas-
cope [11] is a stream query processing system used to
process large streams of packet data using an SQL-
like query language. NetSight’s query engine uses
PHF, a regular-expression-like query language for

fast processing of packet histories. X-Trace [16] is
a tracing framework that helps in debugging general
distributed systems by tracing tasks across differ-
ent administrative domains. While similar in spirit,
NetSight takes a different approach to address state-
correlation and scalability challenges specific to trac-
ing, storing, and querying packet histories.

10 Summary
Networks are inherently distributed, with highly
concurrent data-plane and control-plane events, and
they move data at aggregate rates greater than any
single server can process. These factors make it
challenging to pause or “single-step” a network, and
none of our network diagnosis tools try to connect
packet events to control events. As a result, admin-
istrators find it hard to construct a packet’s perspec-
tive of its forwarding journey, despite the value for
diagnosing problems.

NetSight addresses these challenges to improve
network visibility in operational networks, by lever-
aging SDN to first gain visibility into forwarding
events, and then tackling performance concerns with
a scale-out system architecture, aggressive packet
header compression, and carefully optimized C++
code. The surprising result is the feasibility and
practicality of collecting and storing complete packet
histories for all traffic on moderate-size networks.

Furthermore, NetSight demonstrates that given
access to a network’s complete packet histories, one
can implement a number of compelling new appli-
cations. Atop the NetSight Packet History Filter
(PHF) API, we implemented four applications—a
network debugger, invariant monitor, packet logger,
and hierarchical network profiler—none of which re-
quired more than 200 lines of code. These tools
manifested their utility immediately, when a sin-
gle, incompletely assembled packet history revealed
a switch configuration error within minutes of our
first test deployment.
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