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Abstract

In this paper, we designed and implemented an I/O-efficient algorithm for constructing
constrained Delaunay triangulations. If the number of constraining segments is smaller than
the memory size, our algorithm runs in expected O(N

B logM/B
N
B ) I/Os for triangulating N

points in the plane, where M is the memory size and B is the disk block size. If there are more
constraining segments, the theoretical bound does not hold, but in practice the performance of
our algorithm degrades gracefully. Through an extensive set of experiments with both synthetic
and real data, we show that our algorithm is significantly faster than existing implementations,
and is also insensitive to various data features such as point distributions and segment lengths.

1 Introduction

With the emergence of new terrain mapping technologies such as Laser altimetry (LIDAR), ground
based laser scanning and Real Time Kinematic GPS (RTK-GPS), one can acquire millions of
georeferenced points within minutes to hours. Converting this data into a digital elevation model
(DEM) of the underlying terrain in an efficient manner is a challenging important problem. The so-
called triangulated irregular network (TIN) is a widely used DEM, in which a terrain is represented
as a triangulated xy-monotone surface. One of the popular methods to generate a TIN from
elevation data—a cloud of points in R

3—is to project the points onto the xy-plane, compute the
Delaunay triangulation of the projected points, and then lift the Delaunay triangulation back to
R

3. However, in addition to the elevation data one often also has data representing various linear
features on the terrain, such as rivers and road networks, in which case one would like to construct
a TIN that is consistent with this data, that is, where the linear features appear along the edges of
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the TIN. In such cases it is desirable to compute the so-called constrained Delaunay Triangulation
(CDT) of the projected point set with respect to the projection of the linear features. Roughly
speaking, the constrained Delaunay triangulation of a point set P and a segment set S is the
triangulation that is as close to the Delaunay triangulation of P under the constraint that all
segments of S appear as edges of the triangulation.

The datasets being generated by new mapping technologies are too large to fit in internal
memory and are stored in secondary memory such as disks. Traditional algorithms, which optimize
the CPU efficiency under the RAM model of computation, do not scale well with such large amounts
of data. This has led to growing interest in designing I/O-efficient algorithms that optimize the
data transfer between disk and internal memory. In this paper we study I/O-efficient algorithms
for planar constrained Delaunay triangulations.

Problem statement. Let P be a set of N points in R
2, and let S be a set of K line segments

with pairwise-disjoint interiors whose endpoints are points in P . The points p, q ∈ R
2 are visible

if the interior of the segment pq does not intersect any segment of S. The constrained Delaunay
triangulation CDT(P, S) is the triangulation of S that consists of all segments of S, as well as all
edges connecting pairs of points p, q ∈ P that are visible and that lie on the boundary of an open
disk containing only points of P that are not visible from both p and q. CDT(P, ∅) is the Delaunay
triangulation of the point set P . Refer to Figure 1. For clarity, we use segments to refer to the
“obstacles” in S, and the term “edges” for all the edges in the triangulation CDT(P, S).

We work in the standard external memory model [2]. In this model, the main memory holds
M elements and each disk access (or I/O) transmits a block of B elements between main memory
and continuous locations on disk. The complexity of an algorithm is measured in the total number
of I/Os performed, while the internal computation cost is ignored.

Related results. Delaunay triangulation is one of the most widely studied problems in com-
putational geometry; see [5] for a comprehensive survey. Several worst-case efficient O(N log N)
algorithms are known in the RAM model, which are based on different standard paradigms, such as
divide-and-conquer [12] and sweep-line. [13]. A randomized incremental algorithm with O(N log N)
expected running time was proposed in [15]. This algorithm has received much attention in both
theory and practice because of its simplicity. However, since it constructs the triangulation by
incrementally inserting points in a random order, thus accessing intermediate triangulations in a
non-local manner, it is very inefficient in modern memory hierarchies; Amenta et al. [3] gave tech-
niques to improve its practical efficiency while preserving its optimal theoretical bound. By now
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Figure 1: (a) The point set P of 7 points and segment set S of 1 segment s. (b) DT(P ) = CDT(P, ∅).
(c) CDT(P, S).
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efficient implementations of many of the developed algorithms are also available. For example, the
widely used software package triangle, developed by Shewchuk [22], has implementations of all
three algorithms mentioned above. Both CGAL [7] and LEDA [19] software libraries also offer
Delaunay triangulation implementations.

By modifying some of the algorithms for Delaunay triangulations, O(N log N) time RAM-
model algorithms have been developed for constrained Delaunay triangulations [8, 21]. However,
these algorithms are rather complicated and do not perform well in practice. A common practical
approach for computing CDT(P, S), e.g. used by triangle [22], is to first compute DT(P ) and
then add the segments of S one by one and update the triangulation. A segment s is inserted by
first removing all the triangles it intersects, and then retriangulating the two resulting polygons
on either side of s. It is believed that this incremental approach works well when there are not
too many segments and the segments are short. However, so far there has been no formal analysis
for this incremental algorithm. In fact, it is an open question whether a randomized incremental
algorithm with O(N log N) expected running time can be developed for computing the constrained
Delaunay triangulation.

In the I/O-model, Goodrich et al. [14] gave an optimal O(N
B logM/B

N
B ) I/O Delaunay triangu-

lation algorithm, but it is too complicated to implement. Crauser et al. [11] extended the random
incremental construction framework of Clarkson and Shor [10], obtaining an I/O-efficient Delaunay
triangulation algorithm that runs in expected O(N

B logM/B
N
B ) I/Os. A simplified version of this

algorithm is later implemented by Kumar and Ramos [18]. To our knowledge, there has been no
theoretical or practical study on I/O-efficient construction of constrained Delaunay triangulations.

Our results. By modifying the algorithm of Crauser et al. [11] we develop the first I/O-efficient
constrained Delaunay triangulation algorithm. It uses O(N

B logM/B
N
B ) I/Os expected, provided

that |S| ≤ c0M , where c0 is a constant. Although our algorithm falls short of the desired goal of
having an algorithm that performs O(N

B logM/B
N
B ) I/Os irrespective of the size of S, it is useful for

many practical situations. We demonstrate the efficiency and scalability of our algorithm through
an extensive experimental study with both synthetic and real-life data. Compared with existing
constrained Delaunay triangulation packages, our algorithm is significantly faster on large datasets,
and is also insensitive to various data features, such as point distribution, segment lengths, etc. For
example it can process 10GB of real-life LIDAR data using only 128MB of main memory in roughly
7.5 hours! As far as we know, this is the first implementation of constrained Delaunay triangulation
algorithm that is able to process such a large dataset. Moreover, even when S is larger than the
size of main memory, our algorithm does not fail, but its performance degrades quite gracefully.

An open question is whether there exists a randomized incremental algorithm for constructing
CDT(P, S) in O(N log N) expected time. An important step in the analysis of such an algorithm
is bounding the expected number of structural changes during the incremental construction. In
Appendix A we give an Ω(N log K) lower bound on this quantity, where K is the number of
segments. This is to be contrast with the well known Θ(N) bound for Delaunay triangulations.
We also give an O(N log2 K) upper bound. Closing this gap remains an open problem.

2 I/O-Efficient Algorithm

Let P be a set of N points in R
2, and let S be a set of K segments with pairwise-disjoint interiors

whose endpoints lie in P . Let E be the set of endpoints of segments in S. We assume that the
points of P are in general position. For simplicity of presentation, we include a point p∞ at infinity
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in P . We also add p∞ to E. Below we describe an algorithm for constructing CDT(P, S) that
follows the framework of Crauser et al. [11] for constructing Delaunay triangulations. However, we
first introduce the notion of extended Voronoi diagrams, originally proposed by Seidel [21], and
define conflict lists and kernels.

Extended Voronoi diagrams. We extend the plane to a more complicated surface as described
by Seidel [21]. Imagine the plane as a sheet of paper Σ with the points of P and the segments of S
drawn on it. Along each segment s ∈ S we “glue” an additional sheet of paper Σs, which is also a
two-dimensional plane, onto Σ; the sheets are glued only at s. These K + 1 sheets together form a
surface ΣS . We call Σ the primary sheet, and the other sheets secondary sheets. P “lives” only on
the primary sheet Σ, and a segment s ∈ S “lives” in the primary sheet Σ and the secondary sheet
Σs. For a secondary sheet Σs, we define its outer region to be the set of points that do not lie in
the strip bounded by the two lines normal to s and passing through the endpoints of s.

Assume the following connectivity on ΣS : When “traveling” in ΣS, whenever we cross a segment
s ∈ S we must switch sheet, i.e., when traveling in a secondary sheet Σs and reaching the segment s
we must switch to the primary sheet Σ, and vice versa. We can define a visibility relation using this
switching rule. Roughly speaking, two points x, y ∈ ΣS are visible if we can draw a line segment
from x to y on ΣS following the above switching rule. More precisely, x and y are visible if: x, y ∈ Σ
and the segment xy does not intersect any segment of S; x, y ∈ Σs and the segment xy does not
intersect s; x ∈ Σ, y ∈ Σs and the segment xy crosses s but no other segment; or x ∈ Σs, y ∈ Σt,
and the segment xy crosses s and t but no other segment. For x, y ∈ ΣS, we define the distance
d(x, y) between x and y to be the length of the segment connecting them if they are visible, and
d(x, y) = ∞ otherwise.

For p, q, r ∈ ΣS, if there is a point y ∈ ΣS so that d(p, y) = d(q, y) = d(r, y), then we define
the circumcircle C(p, q, r;S) = {x ∈ ΣS | d(x, y) = d(p, y)}. Otherwise C(p, q, r;S) is undefined.
Note that portions of C(p, q, r;S) may lie on different sheets of ΣS. We define D(p, q, r;S) to be
the open disk bounded by C(p, q, r;S), i.e., D(p, q, r;S) = {x ∈ ΣS | d(x, y) < d(p, y)}. Refer
to Figure 2(a). Using this circumcircle definition, the constrained Delaunay triangulation can
be defined in the same way as standard Delaunay triangulations, i.e., CDT(P, S) consists of all
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Figure 2: (a) For the point set of Figure 1(a), a portion of D(a, b, d; S) lies in the primary sheet (unshaded),
the other portion lies in the secondary sheet Σbe (shaded). (b) CDT(P, S) (solid lines) and the portion of
EVD(P, S) (dashed lines) that lies in the primary sheet. (c) The portion of EVD(P, S) (dashed lines) that
lies in the secondary sheet Σbe.
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triangles △uvw, u, v, w ∈ P , whose circumcircles do not enclose any point of P [21]. We define the
extended Voronoi region of a point p ∈ P as EV(p;P, S) = {x ∈ ΣS | d(x, p) ≤ d(x, q),∀q ∈ P},
and the extended Voronoi diagram of P (with respect to S) as EVD(P, S) = {EV(p;P, S) | p ∈ P}.
Seidel [21] showed that CDT(P, S) is the dual of EVD(P, S), in the sense that an edge pq appears in
CDT(P, S) if and only if EV(p;P, S) and EV(q;P, S) share an edge. Refer to Figure 2(b) and 2(c).
This duality relation will be useful in extending the algorithm by Crauser et al. [11] to computing
CDT(P, S).

Conflict lists and kernels. Let R ⊆ P be a subset of points such that E ⊆ R. Let e = pq be
an edge of CDT(R,S), and let △pqu and △pqv be the two triangles adjacent to e. (Since p∞ ∈ R,
each edge is adjacent to two triangles.) We define the conflict list [10] of e, denoted by P|e ⊆ P ,
as the set of points of P that lie in D(p, q, u;S) ∪ D(p, q, v;S), plus p, q, u and v. This definition
implies that for any p′ ∈ P \ {p, q, u, v}, p′ ∈ P|e if and only if at least one of △pqu and △pqv does
not appear in CDT(R ∪ {p′}, S).

One basic step in our algorithm will be to compute a triangulation of each P|e and then merge the
results together to form CDT(P, S). Let Ie = {e} if e ∈ S, and ∅ otherwise. Then the triangulation
we will compute for P|e is CDT(P|e, Ie). In order to identify the triangles of CDT(P|e, Ie) that appear
in CDT(P, S), we define the notion of the kernel of e (with respect to R and S), denoted by τ(e),
which is contained in EV(p;R,S) ∪ EV(q;R,S). A point x ∈ EV(p;R,S) (resp. x ∈ EV(q;R,S))
lies in τ(e) if the ray −→px (resp. −→qx) leaves EV(p;R,S) through the common edge of EV(p;R,S) and
EV(q;R,S). Figure 3 gives some examples, including some special cases such as that one of the
endpoints of e is p∞, and that e itself is a segment of S. Note that τ(e) depends and only depends
on e’s two adjacent triangles in CDT(R,S), since it just consists of two triangles formed by p, q,
and the common edge of EV(p;R,S) and EV(q;R,S), whose endpoints are the circumcenters of
e’s adjacent triangles by the duality of CDT(R,S) and EVD(R,S).

τ(bp∞)

τ(ad)

τ(bc)

g

a
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e

f

(a)
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g
e
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Figure 3: (a) The kernels of edges ad, bc, and bp∞. (b) The kernel of the edge be; the darker part lies in the
primary sheet, and the lighter part lies in the secondary sheet Σbe.

Lemma 1 Let E ⊆ R ⊆ P . The conflict lists and kernels of the edges in CDT(R,S) have the
following properties:

(i) The interiors of τ(e), e ∈ CDT(R,S) are pairwise disjoint.

(ii) {τ(e) | e ∈ CDT(R,S)} covers the points of ΣS that do not lie in an outer region.
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(iii) For any edge e ∈ CDT(R,S) and for any u, v,w ∈ P|e such that C(u, v,w;S) is defined with
ξ being the center, if ξ ∈ τ(e) and D(u, v,w; Ie) ∩ P|e = ∅, then D(u, v,w;S) ∩ P = ∅.

(iv) For any △uvw ∈ CDT(P, S) with circumcenter ξ, there exists an edge e ∈ CDT(R,S) such
that ξ ∈ τ(e), u, v,w ∈ P|e, and D(u, v,w; Ie) ∩ P|e = ∅.

Proof :

(i) Since any point ΣS belongs to only one Voronoi region, it belongs to at most kernel.

(ii) For any x ∈ ΣS , let x ∈ EV(p;R,S) for some p ∈ R. If x does not lie in an outer region, then
the ray −→px will eventually enter the extended Voronoi region of some q 6= p, since p∞ ∈ R.
By the duality of CDT(R,S) and EVD(R,S), pq is an edge of CDT(R,S) and x ∈ τ(pq).

(iii) We first show that D(u, v,w;S) does not contain any point of P|e. We know that D(u, v,w; Ie),
the circum-disk defined on the surface ΣIe

consisting of the primary sheet and just one
secondary Σe if e ∈ S, does not contain any point of P|e. Since D(u, v,w;S) ∩Σ, the portion
of D(u, v,w;S) lying in the primary sheet, is contained in D(u, v,w; Ie)∩Σ, and all points of
P are on the primary sheet Σ, D(u, v,w;S) does not contain any point of P|e, either.

Next we show that D(u, v,w;S) does not contain any point of P \ P|e. Suppose otherwise it
contains such a point p, then p is closer to ξ than any point in P|e, in particular the endpoints
of e. This means that if we add p to R, the shape of τ(e) will be changed since ξ will not
belong to the Voronoi region of either endpoint of e. Since τ(e) depends only on the two
adjacent triangles of e, this also implies that the insertion of p will destroy at least one of
these two triangles. Thus p is in conflict with e, which contradicts with the earlier assumption
that p ∈ P \ P|e.

(iv) First, from Property (ii), we know that there must exist an edge e ∈ CDT(R,S) such that
ξ ∈ τ(e) because ξ cannot lie in any outer region. Second, all of u, v and w must be in P|e,
since they are either the endpoints of e, or they are closer to ξ than the endpoints of e, in
which case the insertion of any of them will change τ(e). By the same reason as above, we
have u, v,w ∈ P|e.

Now we show that D(u, v,w; I|e) does not contain any point of P|e. Consider the surface ΣIe
.

D(u, v,w; Ie) must be fully contained in the union of the two circum-disks (also defined on
ΣIe

) of e’s adjacent triangles, because otherwise we could add a point p′ to P that is closer
to ξ than the endpoints of e, and is not in conflict with e, which are contradictory. Since
△uvw is a valid triangle of CDT(P, S), D(u, v,w;S) does not contain any point of P|e. Let
p be a point of P that lies in D(u, v,w; I|e) \D(u, v,w;S), then there exists a segment s ∈ S
that cuts D(u, v,w; I|e) and separates p from u, v,w, so s must also cut at least one of the
circum-disks of e’s adjacent triangles. Since u, v,w are visible from e, hence on the same side
of s as e, it follows that s separates p from e and p is not in conflict with e.

These properties imply that if we have computed CDT(R,S), we can compute CDT(P, S) by
repeating the following step for each e ∈ CDT(R,S): Compute CDT(P|e, Ie) and report a triangle
△uvw ∈ CDT(P|e, Ie) if the center of C(u, v,w;S) lies inside τ(e). Property (iii) guarantees that
the reported triangles are all valid triangles of CDT(P, S); Property (ii) and (iv) ensure that no
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triangle of CDT(P, S) is missing; and Property (i) makes sure that no duplicated triangles are
reported.

There is one more technical subtlety when we check if the center of C(u, v,w;S) lies inside τ(e):
Although both C(u, v,w;S) and τ(e) are defined on ΣS, it suffices to do the check on the simpler
surface ΣIe

, since if adding the other secondary sheets associated with S \ Ie moves the center of
C(u, v,w;S) from the primary sheet to a secondary sheet, the corresponding region of τ(e) will also
be moved to the same sheet.

In our algorithm, we will carry out the above basic step recursively and in an I/O-efficient
manner.

Our algorithm. As mentioned, the overall structure of our algorithm is the same as that of the
algorithm of Crauser et al. [11]. We call a subset R ⊆ P a p-sample if R is obtained by choosing
each point of P with probability p. We choose a sequence of subsets of P , called a gradation:

P1 ⊆ P2 ⊆ · · · ⊆ Pl = P,

where E ⊆ P1 and Pi \ E is a (B/M)-sample of Pi+1 \ E. P1 is small enough so that CDT(P1, S)
can be computed in main memory.

Initially, our algorithm constructs CDT(P1, S) using an internal memory algorithm. Then we
scan P and for each point p ∈ P \P1 determine the edges of CDT(P1, S) that it is in conflict with;
for each such edge e, we generate an (e, p) pair. In the end we sort these pairs to create the conflict
lists for all the edges of CDT(P1, S).

Next, we proceed in l − 1 rounds. In the i-th round, we are given CDT(Pi, S) and the conflict
lists for all the edges of CDT(Pi, S), and construct CDT(Pi+1, S) and the conflict lists for the edges
of CDT(Pi+1, S) (the conflict lists need not be generated for the last round). This is accomplished
by the following steps.

1. For each edge e of Ti = CDT(Pi, S), scan its conflict list and determine Pi+1|e.

2. Consider each Pi+1|e in turn:

2.1 Let te = ⌈|Pi+1|e|/c1(M/B)⌉. First take a 1/(c2te log te)-sample Ye of Pi+1|e; we add
the four vertices of the two adjacent triangles of e if they are not chosen in the sample.
Then compute Te = CDT(Ye, Ie) using an internal memory algorithm. Next for each
edge e′ of Te determine (Pi+1|e)|e′ by scanning Pi+1|e on disk. If for any e we have
|(Pi+1|e)|e′ | > c1M/B, repeat this step by taking a new sample Ye.

2.2 For each edge e′ of Te, load (Pi+1|e)|e′ into memory and compute Te′ =
CDT((Pi+1|e)|e′ , Ie′). Report only the triangles of Te′ that have their circumcircles cen-
tered inside τ(e) ∩ τ(e′). If this is not the last round, scan P|e to build the conflict
lists for these triangles (△uvw is in conflict with p if p ∈ D(u, v,w;S)). We do so by
allocating one main memory block for each of the O(M

B ) triangles and writing points to
the relevant block as they are processed; when a block is full it is written to disk.

3. After all edges of CDT(Pi, S) have been processed, Ti+1 = CDT(Pi+1, S) is simply all the
triangles reported in Step 2.2. The conflict list for an edge of CDT(Pi+1, S) is simply the
union of the conflict lists of its two adjacent triangles.
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Analysis of I/O. We wish to follow the analysis of Crauser et al. [11] that is based on the
bounds on the expected size of the conflict lists and their higher moments [10]. However, unlike
[11], Pi is not a completely random sample of Pi+1 in our case, which makes the analysis more
complicated. Nevertheless, we can prove similar bounds on the expected size of conflict lists. The
following lemma summarizes the main technical result.

Lemma 2 Let R be a p-sample of P \ E. For any constant integer c ≥ 1,

E





∑

e∈CDT(R∪E,S)

|P|e|c


 = O

( |P | − |E|
pc−1

+
|E|
pc

)

. (1)

Proof : Our proof is based on the probabilistic technique of Clarkson and Shor [10]. We define a
cell to be a 4-tuple σ = (p, q, u, v) for any 4 points p, q, u, v ∈ P . Define σ’s conflict list P|σ to
be the set of points of P that lie inside D(p, q, u;S) ∪ D(p, q, v;S), and let l(σ) = |P|σ|. For any
R ⊆ P \E, let Π(R) be the set of cells whose defining four points are in R ∪E. We say that a cell
σ ∈ Π(R) is at level c if R ∪ E contains exactly c points of P|σ. A cell at level 0 is also called an
active cell of Π(R). Let Πc(R) be the set of cells of Π(R) at level c.

Consider the active cells Π0(R) and CDT(R ∪ E,S). Since each edge of CDT(R ∪ E,S) corre-
sponds to four cells in Π0(R), and the conflict list size of the edge is equal to conflict list size of
each of the cells plus 4, it suffices to prove the following, for a (1/p)-sample R of P \ E.

E





∑

σ∈Π0(R)

(

l(σ)

c

)



 = O

( |P | − |E|
pc−1

+
|E|
pc

)

(2)

We first show that the LHS of (2) is O(E[|Πc(R)|/pc]). A cell σ appears in Πc(R) if and only if
all of its 4 defining points and exactly c points of P|σ are contained in R ∪ E. Let d0(σ) and l0(σ)
respectively be the number of defining and conflicting points of σ in E. Then,

Pr[σ ∈ Πc(R)] =

(

l(σ) − l0(σ)

c − l0(σ)

)

p4−d0(σ)+c−l0(σ)(1 − p)l(σ)−c.

Since
E[|Πc(R)|] =

∑

σ

Pr[σ ∈ Πc(R)],

we have

E[|Πc(R)|] =
∑

σ

(

l(σ) − l0(σ)

c − l0(σ)

)

p4−d0(σ)+c−l0(σ)(1 − p)l(σ)−c. (3)

The LHS of (2) is

∑

σ

(

l(σ)

c

)

Pr[σ ∈ Π0(R)] =
∑

σ

(

l(σ)

c

)(

l(σ) − l0(σ)

−l0(σ)

)

p4−d0(σ)−l0(σ)(1 − p)l(σ),

which is bounded by O(E[|Πc(R)|/pc]) by comparing with (3) and noting that

(

l(σ)

c

)(

l(σ) − l0(σ)

−l0(σ)

)

≤
(

l(σ) − l0(σ)

c − l0(σ)

)

.
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Next, we take a 1/2-sample R′ of R and consider Π0(R′). A cell σ ∈ Πc(R) appears in Π0(R′)
if and only if all of its 4− d0(σ) defining objects in R and none of its c− l0(σ) conflicting points in
R are taken into R′. So

Pr[σ ∈ Π0(R′)] =
1

24−d0(σ)+c−l0(σ)
.

If follows that

E[|Π0(R′)|] =
∑

σ∈Π(R)

Pr[σ ∈ Π0(R′)] ≥
∑

σ∈Πc(R)

Pr[σ ∈ Π0(R′)] ≥ |Πc(R)|
24+c

.

Therefore, the LHS of (2) is bounded by

O

(

E[|Πc(R)|]
pc

)

= O

(

E[|Π0(R′)|]
pc

)

= O

(

E[|R′ ∪ E|]
pc

)

= O

(

E[|R ∪ E|]
pc

)

= O

( |P | − |E|
pc−1

+
|E|
pc

)

,

as desired.

Remark 1 In our proof, the use of the random sampling framework of [10] crucially depends
on the fact that all the segments and there endpoints are included in the constrained Delaunay
triangulation of the sample, which allows us to use 4 points to define a cell. Otherwise the size of
a cell’s defining set becomes unbounded and the framework of [10] is not applicable.

In our algorithm, Pi \ E is a pi-sample of P \ E. If |E| ≤ c1M for some constant c1 small
enough, we have |E| ≤ c2E[|Pi −E|] for some constant c2, which means that “on average” at least
a constant fraction of the samples in Pi are random. In this case (1) becomes O(N/pc−1

i ). Setting
c = 1 yields that the expected total size of the conflict lists is linear.

Since the conflict list size is expected linear, the initialization step of our algorithm takes
expected O(N

B logM/B
N
B ) I/Os. In each round, Step 1 takes O(N

B ) I/Os, and since Step 2.1 is
repeated only a constant number of times with high probability, the total cost of Step 2 and 3 is

O





∑

e∈Ti

te log te ·
|P|e|
B



 (4)

for the last round and

O



|Ti+1| +
∑

e∈Ti

te log te ·
|P|e|
B





for the other rounds with high probability.
Since E[|Ti+1|] = O(N

B ) for all but the last round, we only need to argue that the expected value
of (4) is also O(N

B ). Following [11], for any integer constant c, we have

E





∑

e∈Ti

tce
|P|e|
B



 =
1

B
· O





1

(M/B)c
·E





∑

e∈Ti

|Pi+1|e|c · |P|e|









=
1

B
· O





pc
i+1

(M/B)c
·E





∑

e∈Ti

·|P|e|c+1









=
1

B
· O
(

pc
i+1

(M/B)c
· N

pc
i

)

= O

(

N

B

)

.
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Since the number of rounds of the algorithm is O(logM/B
N
B ) with high probability, summing

this expected cost over all the rounds, we obtain the following.

Theorem 1 The constrained Delaunay triangulation of a set of N points in R
2 and a set of seg-

ments S can be computed in O(N
B logM/B

N
B ) expected I/Os, provided that |S| ≤ c0M , where c0 is a

constant.

3 Experiments

In this section we describe experiments with our constrained Delaunay triangulation algorithm using
both synthetic and real-life data. We implemented and experimented with a simplified version of
the theoretical algorithm described in Section 2; we describe the simplification and implementation
details in Section 3.1. In Section 3.2 we describe our experimental setup, including the datasets we
used, and in Sections 3.3, 3.4 and 3.5 we report our experimental results.

3.1 Simplified algorithm and implementation details

We implemented and experimented with a simplified version of the theoretical algorithm described
in Section 2. The main observation behind our simplification is that one round of the multi-round
theoretical algorithm is enough to handle most real-world datasets. Even if we only have 128MB of
main memory, which is more than the amount of memory needed to triangulate 105 points, about
(105)2 = 1010 points can be processed with just one round. This naturally leads to the following
simple and practical algorithm:

1. Compute a random sample P1 of P of size c · max{K,
√

N} that includes all endpoints of
segments in S, where c is a constant. We set c = 3 in all our experiments.

2. Construct CDT(P1, S) in memory using an internal memory algorithm.

3. For each point p ∈ P in turn determine the edges that p is in conflict with, generating a pair
(e, p) for each such edge e ∈ CDT(P1, S). Then sort all these pairs to construct the conflict
list P|e for each edge e. If any conflict list is larger than M , restart the algorithm by taking
a new sample.

4. For each edge e ∈ CDT(P1, S) in turn load its conflict list P|e into memory and construct
CDT(P|e, Ie) using an internal memory algorithm. Then report all the triangles whose cir-
cumcenters are inside τ(e).

Note that since we compute CDT(P1, S) in Step 2, we require that both K and
√

N are smaller
than the memory size.

Implementation. Each of the four steps in the algorithm is relatively easy to implement both
I/O and internal memory efficiently. Step 1 can be implemented by scanning through the input
points P , and to implement Step 2 we simply use the triangle package [22].

In Step 3, we first scan through the input points, and find conflicting edges with CDT(P1, S)
kept in internal memory. To find the edges in conflict with a point p (internal memory) efficiently,
it is sufficient to find all triangles in conflict with p. Since all triangles in conflict with p are
connected, we simply first locate the triangle containing p and then perform a BFS search to find
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all triangles that are in conflict with p. Rather than using a complicated (internal memory) point
location structure to find the triangle of CDT(P1, S) containing p, we pre-sort all points according
to the Hilbert space-filling curve, which has high spatial locality, and use a simple point-location
algorithm while processing the points in Hilbert order: To locate a point p, we start from the
triangle γ where the previous point was located and “walk towards” p by traversing all triangles
intersected by the line segment from the centroid of γ to p. Since the locations of consecutive points
are likely to be very close (due to the Hilbert ordering), we in practice perform each point location
query in constant time. At the end of Step 3 we sort the list of edge-point pairs.

Finally, in Step 4, we scan this list and use the triangle package to compute the constrained
Delaunay triangulation of each conflict list.

Reducing conflict list size. In practice, the efficiency of our simplified algorithm mainly de-
pends on the total size of the conflict lists. The theoretical analysis in Section 2 shows that the
expected total size is linear and in practice the constant is roughly 9. We reduce the total conflict
size and thus improve the overall efficiency of the algorithm by combining several adjacent edges
into a single “edge group”. More precisely, we put several edges into an edge group, and a point
is in conflict with the edge group if it conflicts with any edge in the group. We then compute the
conflict list and solve the subproblem for each edge group. The idea is that if the conflict lists of
the individual edges in the same edge group contain many of the same points, then the total size of
the conflict lists of the edge groups can be much smaller than the combined size of the individual
conflict lists. However, if we merge many edges into an edge group, we need to do more work when
we report valid triangles in Step 4, as we need to report a triangle if its circumcenter lies in the
kernel of one of the edges in the group. So we need to choose an appropriate edge group size.

We use the following heuristic to merge edges into edge groups. Initially all edges are unmarked.
To form an edge group G, we first randomly choose a “seed” triangle from CDT(P1, S) with all
three edges unmarked. If no such a triangle exists, we choose one with two unmarked edges (or
one if such a triangle still does not exists). Then we mark all it unmarked edges and add them to
G. Next from this seed, we grow the edge group in a BFS manner, favoring neighboring triangles
with most unmarked edges. Once a triangle is visited, all of its unmarked edges are marked and
added to G. We continue this process to form G until we have visited ρ triangles, or there are no
neighboring triangles with at least one unmarked edge. If there are still unmarked edges left, we
form another edge group by repeating the process.

As discussed there is a tradeoff between the total conflict list size and the cost to check for
valid triangles in Step 4. The larger ρ is, the smaller the conflict list becomes, but it is also more
costly to check for valid triangles. In order to determine an appropriate value of ρ, we performed
experiments with uniformly randomly generated datasets with different values of ρ. We found that
ρ = 10 gave the best improvement: The constant factor in the conflict list size is reduced to around
3 and the total running time is reduced by 50%. In fact, the improvements with ρ ranging from 5
to 20 do not differ much. We used ρ = 10 in all of our experiments.

There is a technical subtlety here when dealing with edge groups instead of individual edges. In
Step 4, we just build CDT(P|e, Ie) if only a single edge e is considered. However, for an edge group
G, it is not enough to build CDT(∪e∈GP|e,∪e∈GIe), since points from the conflict lists of different
edges may “interfere” with each other, and generate wrong triangles. Such an example is shown
in Figure 4(a). To ensure correctness, we need to include all the effective segments of the triangles
adjacent to the edges of G during the computation of the sub-triangulation of G. An effective
segment of an triangle △uvw is a segment of S that intersects the circumcircle of △uvw and is not
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separated from the triangle by any other segment. Some examples are shown in Figure 4(b). We
determine the effective segments of each triangle of CDT(P1, S) in an additional step before Step
4: We first build an R-tree on the bounding boxes of all circumcircles, and then query the R-tree
with the segments of S in turn. Each triangle always keeps its effective segments seen so far, and
discard segments as soon as they become not effective. In the end, each triangle of CDT(P1, S)
obtains a list of all its effective segments.

a

b
c

d

e

f

g

u v

w

(a)

effective segments

u

w

s3 s4

s5

s6

v

s1

s2

(b)

Figure 4: (a) Suppose the sample is P1 = {a, . . . , g}, and set of segment is S = {be}. Let u, v, w be three
points in P \ P1, and u, w ∈ P|de, v ∈ P|eg . Consider the edge group G consisting of the dashed edges. We
also need to include the segment be when building the constrained Delaunay triangulation of G, otherwise a
wrong triangle △uvw would be reported. (b) Segments s2, s3, s4 are the effective segments of △uvw, while
the other segments are not.

3.2 Experimental setup and datasets

We implemented our simplified constrained Delaunay triangulation algorithm in C++ using
TPIE [4]. TPIE is a library that provides support for implementing I/O-efficient algorithms and
data structures. We used double to store the coordinates of each point. For experimentation, we
used a 2.4GHz Intel XEON machine with hyperthreading, running Linux with kernel 2.4.5-smp,
and a local disk system consisting of four 10000RPM 72GB SCSI disks in RAID-0 configuration.
The machine had 1GB main memory, but we restricted it to use only 128MB of memory in order
to obtain a large data size to memory size ratio. All input, output and temporary files were stored
on the local disk system.

Synthetic datasets. We experimented with both synthetic and real-life data. For the synthetic
data, we used four different distributions that have been used to evaluate the performance of
Delaunay triangulation algorithms [6]: uniform, normal, the Kuzmin, and line singularity.

• Uniform distribution: Random points in a unit square.

• Normal distribution: Points (x, y) where x, y are independent samples from the normal dis-
tribution.

• The Kuzmin distribution: Points form a radically symmetric distribution with the accumu-
lative probability function M(r) = 1 − 1/

√
1 + r2 where r is the distance to the center. The

Kuzmin distribution converges to the center at a much faster rate than the normal distribu-
tion. It is used to model the distribution of star clusters in flat galaxy formations.
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(a) Uniform (b) Normal (c) Kuzmin (d) Line singularity

Figure 5: Sample datasets of 1000 points for the four distributions.

(a) Uniform (b) Kuzmin

Figure 6: Sample datasets of 1000 points with segments. Figure 7: LIDAR data.

• Line Singularity distribution: Points form a distribution that converges to a line instead of a
point. Let u and v be two independent uniform variables in [0, 1]. A point (x, y) is obtained
by the transformation (x, y) = (b/(u − bu + b), v). We set b = 0.01.

After generating a point set P from one of the distributions, we generate the segment set S
as follows: To obtain a segment s ∈ S, we first choose one endpoint uniformly at random from
P . With some probability α we choose the other endpoint uniformly at random from P ; with
probability 1 − α we choose it uniformly at random from the endpoints of the segments already in
S. We add s to S if it does not intersect any existing segment in S and its length is smaller than
some threshold δ. In our experiments we fixed α = 0.2. Some examples of the segments generated
this way are shown in Figure 6.

Real data. Our real-life datasets consist of LIDAR data for the Neuse River Basin of North
Carolina [1]. This data consist of points p = (x, y, z) in R

3 and to obtain a point set P in R
2 we

simply used the x and y coordinates. We broke the data into a number of “tiles” geographically,
and concatenated different subsets of the tiles together to create 9 datasets of increasing sizes. For
the segments S, we used road data segments obtained from the TIGER/Line data [24]. For each
point dataset P , we used all the segments from the TIGER/Line data that completely fall into the
bounding box of P . The numbers of points and segments of the datasets are listed in Table 1; the
last dataset covers the entire Neuse River Basin and has half of billion points. Compared with the
synthetic data, the LIDAR data points are more regularly distributed, but with a few low density
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Figure 8: Delaunay triangulation results
on uniform distribution.
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Figure 9: Delaunay triangulation results
on normal distribution.

regions (e.g. lakes); the segments are better structured and tend to form long chains. A small
portion of the LIDAR data is shown in Figure 7.

Dataset 1 2 3 4 5 6 7 8 9

# points (million) 16.8 27.7 44.5 58.5 90.8 116.2 163.1 257.1 503.7

# segments (thousand) 19.5 27.8 55.7 44.9 50.5 77.3 137.3 627.1 755.0

Input file size (MB) 336 554 890 1176 1816 2324 3262 5142 10074

Table 1: The number of points and segments in each dataset of the Neuse River Basin.

3.3 Delaunay triangulation experiments

We first investigate the performance of our algorithm when S = ∅, that is, when we are computing
standard Delaunay triangulations. We compared our external memory algorithm (EM) with the
(internal memory) divide-and-conquer (D&C) and incremental (INC) algorithm as implemented
in the triangle package [22]. Since it is known that pre-sorting the points along some space-
filling curve improves the performance of D&C and especially INC greatly on modern memory
hierarchies [3], we sorted the points along the Hilbert curve in all our experiments. If the points are
not sorted, D&C starts thrashing and takes more than 10 hours to complete on a dataset of only 5
million points; INC starts thrashing on an even smaller dataset of 2 million points. The time used
to perform the Hilbert curve sort is not included in the computation times reported below.

The experimental results of our experiments on the four distributions with datasets of sizes
varying from 106 to 107 are shown in Figure 8, 9, 10 and 11. Note that the 128MB main memory
can only hold the data structure for triangulating roughly 1 million points. In all experiments, INC
performs best. Its running time is almost linear in the data size, which can be explained by the fact
that the triangle package starts by checking if a point to be inserted lies in any of the neighboring
triangles of the last inserted point; this way the more complicated point location is almost always
avoided when the points are inserted in Hilbert order, and each point is almost always handled in
constant time (since the number of structural changes needed when inserting a point is also almost
always constant). The number of I/Os (page faults) is also low since INC visits its data structure
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Figure 10: Delaunay triangulation results
on the Kuzmin distribution.
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Figure 11: Delaunay triangulation results
on line singularity distribution.

in a highly local manner. The running time of our EM algorithm is also linear in the input size,
which can be explained by the fact that the O(logM/B

N
B ) factor in the number of I/Os it performs

is basically a constant for the range of N ’s we tested. Still the algorithm performs around 20%
worse than INC because of the overhead in the conflict lists. Although the D&C algorithm is faster
than the two algorithms as long as the dataset fits in main memory, which agrees with previous
experimental studies on Delaunay triangulation algorithms [22, 23], when the dataset size grows
larger than the available main memory, its performance quickly degenerates. Although the Hilbert
ordering of points improves its performance (since the points visited in a merge step are likely to
be placed consecutively in memory), the binary nature of the algorithm results in an O(N

B log2
N
B )

I/O behavior.

3.4 Constrained Delaunay triangulation experiments

Next we compared our EM algorithm with the algorithm (INC) implemented in triangle [22],
which first constructs a Delaunay triangulation on the input points P , and then inserts all the
segments in S one by one. The triangle package offers several options for constructing Delaunay
triangulations, we used the incremental algorithm since it is shown to be fastest in the previous
section. When inserting a segment s ∈ S, INC first destroys all the triangles s intersects, and
then retriangulates the two polygons on either side of s. To retriangulate a polygon of size t
it uses a simple worst-case O(t2) algorithm, which runs in linear time in most common cases.
There exist theoretically optimal linear-time simple polygon constrained Delaunay triangulation
algorithms [9, 17], but they are too complicated to implement and unlikely to be practical. As
before we pre-sorted the points by Hilbert values; we sorted the segments by the Hilbert value of
one of their endpoints.

Experiments with synthetic data. The running times of our experiments on the four distribu-
tions are shown in Figure 12, 13, 14 and 15. We fixed the number of points to be 107 and generated
up to 105 segments, each of length at most δ = 0.003. The range of the number of segments are
chosen to resemble the segment-to-point ratios of the real-life LIDAR datasets, as well as larger
ratios. The experimental results show that our EM algorithm performs significantly better than
INC. The main reason for this is probably that while our algorithm incrementally inserts points in
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a small triangulation in memory (CDT(P1, S)), the INC algorithm incrementally inserts segments
in a much larger (and larger than main memory) triangulation containing all the points. The other
reason is that the triangle package is not fully optimized for constrained Delaunay triangulations.
See Section 3.5 for more details.

The performance of the EM algorithm starts to (very slowly) degenerate at around 60,000
segments. This can be explained by the fact that the memory usage of the algorithm almost only
depends on the sample size |P1|; at K = 60, 000 the sample is about the size of the main memory
(we consume about 5MB memory per 10,000 points, and sample 3K points; the system daemons
use roughly 30MB memory). Although in theory our algorithm only works when the sample fits in
internal memory, we see that thrashing does not happen when this assumption is violated. Instead
the performance of the algorithm degrades quite gracefully because the algorithm has a very local
memory access pattern. Note that as the number of segments approaches N , our algorithm will
eventually degenerate into INC.

Both algorithms are relatively insensitive to the data distribution. However, as the number of
segments grows, the running time of the EM algorithm degrades faster on line singularity distribu-
tion than on the other distributions. This is because the points are much denser in this dataset,
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Figure 12: Constrained Delaunay triangu-
lation results on uniform distribution.
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Figure 13: Constrained Delaunay triangu-
lation results on normal distribution.
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Figure 14: Constrained Delaunay triangu-
lation results on the Kuzmin distribution.
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Figure 15: Constrained Delaunay triangu-
lation results on line singularity distribu-
tion.
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meaning that segments are relatively longer. The EM algorithm spends more time on the R-tree
construction since one segment may intersect a lot of circumcircles.

Next we investigated how the segment length affects performance. Using 107 points from the
uniform distribution, we generated 10,000 segments with varying δ from 0.001 to 0.1 using only
segments of length between δ/2 and δ. The results of the experiments with these datasets are given
in Figure 16. As expected, the running time of INC increases as the segments get longer, since
more triangles are destroyed and created when a longer segment is inserted in the triangulation,
but the increase is not substantial. Maybe somewhat counter-intuitively, the running time of EM
decreases as the segments get longer. This is probably because while longer segments increase the
time to triangulate the sample, they also reduce the conflict list size somewhat.
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Figure 16: Constrained Delaunay triangulation
results with varying segment lengths.

Figure 17: Constrained Delaunay triangula-
tion results on real datasets.

Experiments with real data. The running times of our experiments with the LIDAR datasets
are shown in Figure 17. Note that the smallest LIDAR dataset is larger than the largest of our
synthetic dataset, thus, due to insufficient address space on a 32-bit machine (there is a 4GB limit
on the address space for each process), we were unable to run the triangle program except on the
smallest dataset. In Figure 17 we also show a breakdown of the running time of the EM algorithm
into different phases: triangulating the samples, generating the conflict lists, sorting the conflict
lists, and building the sub-triangulations. Except on the last two datasets, the total running time
is dominated by the last three phases, which essentially depends on the number of points. On the
last two datasets, the number of segments is much larger than in the other datasets, and the time
spent on building CDT(P1, S) starts to be significant. However, since P1 is still much smaller than
the entire dataset, our algorithm should still be much faster than building the entire constrained
Delaunay triangulation directly.

3.5 Optimizing the triangle program

As mentioned in Section 1, the problem of building large-scale constrained Delaunay triangulations
efficiently has not been seriously considered before. Although it is one of the most popular Delaunay
triangulation softwares publicly available, through our experiments we found that triangle still
has some efficiency issues when constrained Delaunay triangulations are considered. In this section
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we describe how we have further optimized portions of triangle’s code that deals with inserting
segments in a triangulation, and give additional experimental results with the improved code.

Improvements to the triangle program. The following improvements apply to triangle ver-
sion 1.5 (released June 4, 2004, available at http://www-2.cs.cmu.edu/~quake/triangle.html).

• locate(): This function is used in the point location routine. The code contains a bug
when taking samples from the triangulation, which sometimes causes the program to gener-
ate segmentation faults when inserting segment to a triangulation, or using the incremental
algorithm to build a Delaunay triangulation. We corrected the bug.

• flip(): This function is used in building the initial Delaunay triangulation with the incre-
mental algorithm, and in retriangulating the two polygons after a segment has been inserted.
When the program inserts segments, it maintains a mapping from vertices to triangles, so
that the point location procedure can be avoided when trying to locate the endpoints of the
segments. However, when an edge is flipped in this function, this mapping is not restored
correctly, causing some of the subsequent segment insertions to fail to use the mapping to
locate the endpoints directly, and the expensive point location procedure has to be invoked.
We added code to restore the mapping after each flip, if the flip is caused by inserting a
segment.

• getvertex(): This function is called to retrieve an endpoint of a segment from the list of
existing vertices. The current code may take O(N) time, and we improved it to constant
time.

Additional experiment results with the improved code. With the improved code, we have
rerun all the experiments of Section 3.4.

The results on the synthetic datasets are shown in Figure 18–22. From Figure 18–21, we see
that these improvements have drastically reduced the running times of triangle when the number
of segment is large. These curves in fact more reasonably demonstrate the behavior of the INC
algorithm: When there are not so many segments, each insertion may cause a page fault; but when
there are a lot of segments and they are inserted in the Hilbert order, the location of a segment is
very likely to be close to that of the previous one, thus the likelihood of a page fault is small. This
roughly explains why the INC curves start to level off as the number of segments grows. We do
not see major differences in Figure 22 for the varying-segment-length experiment.

On the smallest LIDAR dataset, the running time of triangle decreases from 2272 seconds to
1252 seconds, while that of the EM algorithm is 607 seconds. We were still unable to run triangle

on any of the other larger datasets.
In comparison with the improved triangle program, our EM algorithm is still generally a

factor of two faster, when the number of segments is smaller than the memory size. However, when
there are more segments and the point distribution is highly skewed, one needs to be careful in
choosing which triangulator to use.
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Figure 18: Constrained Delaunay triangu-
lation results on uniform distribution (with
improved code).
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Figure 19: Constrained Delaunay triangu-
lation results on normal distribution (with
improved code).
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Figure 20: Constrained Delaunay triangu-
lation results on the Kuzmin distribution
(with improved code).
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Figure 21: Constrained Delaunay triangu-
lation results on line singularity distribu-
tion (with improved code).
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Figure 22: Constrained Delaunay triangulation results with
varying segment lengths (with improved code).
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A Randomized Incremental Construction of Constrained Delau-
nay Triangulations

Randomized incremental construction (RIC) is a powerful paradigm for designing many geometric
algorithms. Typically such algorithms are conceptually simple, easy to implement, and are capable
of doing the construction in an online fashion. While optimal constrained Delaunay triangulations
algorithms following other paradigms are known, as mentioned in Section 1, there have been no
provably optimal incremental algorithms for constrained Delaunay triangulations to date, although
such an algorithm is often the choice of practitioners (e.g. Shewchuk’s Triangle software [22]).
The lack of an RIC algorithm also poses a major difficulty for us to develop an external memory
constrained Delaunay triangulation algorithm. Therefore, it will be interesting to analyze an RIC
algorithm for constructing constrained Delaunay triangulations.

Like in the Delaunay triangulation case, the first step is to bound the expected number of
structural changes when we add the segments into a Delaunay triangulation in a random order. In
this section, we report some preliminary results on this combinatorial problem, with the hope that
they may shed some lights on future investigations of RIC algorithms for constrained Delaunay
triangulations.

We first show that the expected number of structural changes is Ω(N log K) by giving such an
example. This is to be contract with the well known Θ(N) bound on such changes when a standard
Delaunay triangulation is constructed. Then we give an O(N log2 K) upper bound.

Lower bound. Our lower bound example consists of N + 3K = Θ(N) points and K segments.
We put K points p1, . . . , pK on the top of a circle, and N points q1, . . . , qN on the bottom of the
circle (see Figure 23(a)). Since we are interested in the lower bound, we will only focus on the edges
connecting some pi to some qj, ignoring all other edges. We call these edges interesting edges. To
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make sure the Delaunay triangulation is always uniquely defined, we move p1 downward by a small
distance ǫ1, such that the edges shown in Figure 23(a) are all Delaunay edges. Next, we move p2

downward by a distance of ǫ2, which is chosen small enough such that it does not affect the edges
going out from p1, but if p1 did not exist, then all the qj’s would be connected to p2. Similarly we
move pi downward by a distance of ǫi such that all the qj’s are connected to pi if and only if all
of p1, . . . , pi−1 do not exist. Finally we place the K segments, along with the remaining 2K points
serving as their endpoints, as follows. For each pi, we put a segment si that hides it from the circle,
with both endpoints of si being outside the circle (see Figure 23(b)). This is always possible if we
choose the ǫi’s small enough. It is also clear that these 2K points do not affect the interesting edges
at all.

We have finished the description of our example, now let us compute the expected number of
changes among the interesting edges when we add the K segments in a random order. It suffices
to only count the number of edges that are destroyed during the process. Let Ti be the number
of edges destroyed by the insertion of si. By our construction, Ti is N if s1, . . . , si−1 are inserted
before si, and 0 otherwise. So, we have E[Ti] = N/i. By linearity of expectation, the expected
total number of edges destroyed is E[

∑K
i=1 Ti] = Θ(N log K).

(a)

(b)

Figure 23: The lower bound example.

Upper bound. Let si be the i-th segment inserted, and let Si = {s1, . . . , si}, for i = 1, . . . ,K.
Let Ti be the number of edges of CDT(P, Si−1) intersected (in the interior) by si, thus, the insertion
of si destroys Ti+1 triangles and creates Ti+1 new ones, and the total number of structural changes
is K +

∑K
i=1 Ti.

For any segment e in the plane, define Se as the subset of segments in S that intersect e. Consider
the range space (S, {Se : e is a segment in R

2}), which has constant VC dimension. The result by
Haussler and Welzl [16] on ε-nets implies that a random sample of S of size O((1/ε) log K) is an ε-net
of the range space with probability at least 1−1/KO(1). This means that when i = Θ((1/ε) log K),
with this probability, no edge in CDT(P, Si−1) intersects more than εK segments in S, since no
edge intersects any of the sampled segments. So the expected size of Se is O(εK) = O(K/i · log K)
for each edge e in CDT(P, Si−1). When i < log K, the O(K/i · log K) bound trivially holds.
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Since si is randomly chosen from S \ Si−1, we have

E[Ti] = O

(
∑

e∈CDT(P,Si−1) |Se|
K − i

)

= O

(

NK log K

i(K − i)

)

.

Then the expected total number of structural changes is

E

[

K +

K
∑

i=1

Ti

]

= O

(

K
∑

i=1

NK log K

i(K − i)

)

= O(N log2 K).
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