
 Open access  Proceedings Article  DOI:10.1109/IPDPS.2011.106

I/O-Optimal Distribution Sweeping on Private-Cache Chip Multiprocessors
— Source link 

Deepak Ajwani, Nodari Sitchinava, Norbert Zeh

Institutions: University College Cork, Aarhus University, Dalhousie University

Published on: 16 May 2011 - International Parallel and Distributed Processing Symposium

Topics: Input/output and sort

Related papers:

 Fundamental parallel algorithms for private-cache chip multiprocessors

 Provably good multicore cache performance for divide-and-conquer algorithms

 Parallel and I/O efficient set covering algorithms

 Geometric algorithms for private-cache chip multiprocessors

 The input/output complexity of sorting and related problems

Share this paper:    

View more about this paper here: https://typeset.io/papers/i-o-optimal-distribution-sweeping-on-private-cache-chip-
3dqly349wx

https://typeset.io/
https://www.doi.org/10.1109/IPDPS.2011.106
https://typeset.io/papers/i-o-optimal-distribution-sweeping-on-private-cache-chip-3dqly349wx
https://typeset.io/authors/deepak-ajwani-3zvpbbvhtu
https://typeset.io/authors/nodari-sitchinava-51rg1i9dzx
https://typeset.io/authors/norbert-zeh-19pm851v0f
https://typeset.io/institutions/university-college-cork-35m7wrtv
https://typeset.io/institutions/aarhus-university-2s1zo7wa
https://typeset.io/institutions/dalhousie-university-3bk8uwp6
https://typeset.io/conferences/international-parallel-and-distributed-processing-symposium-lhyhe1tq
https://typeset.io/topics/input-output-adez53fj
https://typeset.io/topics/sort-5ob2rckz
https://typeset.io/papers/fundamental-parallel-algorithms-for-private-cache-chip-48dox5vfrh
https://typeset.io/papers/provably-good-multicore-cache-performance-for-divide-and-1ogp4tfsbc
https://typeset.io/papers/parallel-and-i-o-efficient-set-covering-algorithms-58nk0rgq6d
https://typeset.io/papers/geometric-algorithms-for-private-cache-chip-multiprocessors-3ozly1ufm3
https://typeset.io/papers/the-input-output-complexity-of-sorting-and-related-problems-3764pqyfqw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/i-o-optimal-distribution-sweeping-on-private-cache-chip-3dqly349wx
https://twitter.com/intent/tweet?text=I/O-Optimal%20Distribution%20Sweeping%20on%20Private-Cache%20Chip%20Multiprocessors&url=https://typeset.io/papers/i-o-optimal-distribution-sweeping-on-private-cache-chip-3dqly349wx
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/i-o-optimal-distribution-sweeping-on-private-cache-chip-3dqly349wx
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/i-o-optimal-distribution-sweeping-on-private-cache-chip-3dqly349wx
https://typeset.io/papers/i-o-optimal-distribution-sweeping-on-private-cache-chip-3dqly349wx


Provided by the author(s) and University College Dublin Library in accordance with publisher 

policies. Please cite the published version when available.

Title I/O-Optimal Distribution Sweeping on Private-Cache Chip Multiprocessors

Authors(s) Ajwani, Deepak; Sitchinava, Nodari; Zeh, Norbert

Publication date 2011-09-08

Publication information 2011 IEEE International Parallel & Distributed Processing Symposium (IPDPS): 16-20 May 

2011, Anchorage, Alaska, USA

Conference details The 2011 IEEE International Parallel & Distributed Processing Symposium (IPDPS), 

Anchorage, Alaska, 16-20 May 2011

Publisher IEEE

Item record/more information http://hdl.handle.net/10197/9898

Publisher's statement © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including reprinting/republishing 

this material for advertising or promotional purposes, creating new collective works, for 

resale or redistribution to servers or lists, or reuse of any copyrighted component of this 

work in other works.

Publisher's version (DOI) 10.1109/IPDPS.2011.106

Downloaded 2022-05-29T19:50:14Z

The UCD community has made this article openly available. Please share how this access 

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1109%2FIPDPS.2011.106&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F9898


I/O-Optimal Distribution Sweeping on Private-Cache Chip Multiprocessors

Deepak Ajwani

Centre for Unified Computing

University College Cork

Cork, Ireland

d.ajwani@cs.ucc.ie

Nodari Sitchinava

MADALGO

Department of Computer Science

University of Aarhus

Aarhus, Denmark

nodari@madalgo.au.dk

Norbert Zeh

Faculty of Computer Science

Dalhousie University

Halifax, Canada

nzeh@cs.dal.ca

Abstract—The parallel external memory (PEM) model has
been used as a basis for the design and analysis of a wide
range of algorithms for private-cache multi-core architectures.
As a tool for developing geometric algorithms in this model,
a parallel version of the I/O-efficient distribution sweeping
framework was introduced recently, and a number of algo-
rithms for problems on axis-aligned objects were obtained
using this framework. The obtained algorithms were efficient
but not optimal. In this paper, we improve the framework
to obtain algorithms with the optimal I/O complexity of
O(sort𝑷 (𝑵) + 𝑲/𝑷𝑩) for a number of problems on axis-
aligned objects; 𝑷 denotes the number of cores/processors, 𝑩
denotes the number of elements that fit in a cache line, 𝑵
and 𝑲 denote the sizes of the input and output, respectively,
and sort𝑷 (𝑵) denotes the I/O complexity of sorting 𝑵 items
using 𝑷 processors in the PEM model.

To obtain the above improvement, we present a new one-
dimensional batched range counting algorithm on a sorted
list of ranges and points that achieves an I/O complexity of
O((𝑵 + 𝑲)/𝑷𝑩), where 𝑲 is the sum of the counts of all
the ranges. The key to achieving efficient load balancing among
the processors in this algorithm is a new method to count the
output without enumerating it, which might be of independent
interest.

Keywords-parallel external memory, PEM, multicore algo-
rithms, computational geometry, parallel distribution sweeping

I. INTRODUCTION

Multicore processors are becoming increasingly main-

stream. The average desktop computer today contains two

to four cores, but Intel announced a 48-core prototype

recently [1] and the number is projected to reach hundreds

of cores in the near future [2]–[4]. Thus, there is a need for

techniques for designing parallel algorithms that can fully

utilize these processors [5]. While parallel algorithms have

been studied intensively in the past, using very fine-grained

models, such as the PRAM model, or rather coarse-grained

models, such as the BSP model, none of these approaches
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National Research Foundation.

The third author was supported in part by the Natural Sciences and
Engineering Research Council of Canada and the Canada Research Chairs
programme.

seem perfectly suited for multicore processors. The reason

is the memory hierarchy of these processors. Even a sin-

gle core can process data faster than it can be retrieved

from main memory. To hide the latency of accessing main

memory, modern multicore processors equip each core with

a private low-latency cache that can be accessed quickly;

this architecture became commonly known as private-cache

chip multiprocessor (CMP). To benefit from these caches,

algorithms need to be designed so that most of the time

they access data in cache, just as in sequential I/O-efficient

algorithms. In this paper, we design cache-efficient parallel

algorithms for solving a number of fundamental geometric

problems on axis-aligned objects on a private-cache CMP.

We design our algorithms in the parallel external memory

(PEM) model. The remainder of this section reviews this

model, discusses previous work, and discusses our new

contributions in more detail.

A. Model of Computation and Previous Work

The parallel external memory (PEM) model by Arge

et al. [6] (see Figure 1) is a parallel extension of the

external memory model by Aggarwal and Vitter [7]. It

consists of 𝑃 processors, each with a cache of size 𝑀 .

These caches are private to the processors, that is, each

processor can access only its own cache. In addition, all

processors have access to a shared memory of conceptually

unlimited size, which simultaneously serves as a storage area

for data that does not fit in cache and as the only means of

exchanging information between processors. The processors

independently manipulate the data in their private caches. In

CPU P

M/B

B

B

CPU 1

M/B

CPU 2

M/B

CacheCache Cache

Shared Memory

Figure 1. The PEM model



order to manipulate a data item currently not in its cache, a

processor must first load the data item from shared memory.

To communicate with each other, the processors write data

from their private caches back to shared memory. This data

can then be read by other processors. Formally, data is

transferred between the shared memory and the caches by

means of input-output (I/O) operations. Each such operation

transfers one block of 𝐵 consecutive data elements between

each processor’s cache and shared memory. Different pro-

cessors can access different blocks of shared memory in the

same I/O operation. Thus, a single I/O operation can transfer

up to 𝑃 blocks between shared memory and the caches,

one block per processor. The measure of performance of an

algorithm in the PEM model is the number of such (parallel)

I/O operations it performs. Thus, when considering only

one processor, the PEM model becomes identical to the

sequential I/O model. An issue that does not arise in the

sequential case is how to resolve conflicts between different

processors trying to access the same shared memory block

in the same I/O operation. Just as in the PRAM model, we

can specify whether to allow or disallow such concurrent

read or write I/Os or to allow one but not the other. In this

paper, we allow any number of processors to concurrently

read the same block but disallow concurrent writes to the

same block. This is equivalent to the CREW (concurrent-

read-exclusive-write) regime of the PRAM model.

The PEM model is the simplest model of current multi-

core architectures, focusing on the challenges of combining

parallelism with the requirement for spatial locality for

efficient use of caches. A number of other, more complicated

models of multicore architectures have been proposed in the

literature. In [8], Bender et al. studied concurrent searching

and updating of cache-oblivious B-trees by multiple pro-

cessors. In [9]–[14] several different multicore models were

considered and cache- and processor-oblivious algorithms

were presented for fundamental combinatorial, graph, and

matrix-based problems. It remains to be seen which of

the different models provides the best trade-off between

accurately predicting the real performance of algorithms on

modern memory hierarchies and simplicity as an aid for

designing algorithms.

In the PEM model, a number of problems have been

studied so far. In their paper introducing the model [6],

Arge et al. studied a number of fundamental combinatorial

problems, such as computing prefix sums and sorting. They

showed that the cost of sorting 𝑁 elements in the PEM

model is sort𝑃 (𝑁) = O
(

𝑁
𝑃𝐵 log𝑀/𝐵

𝑁
𝐵

)

I/Os, provided

𝑃 ≤ 𝑁/𝐵2 and 𝑀 = 𝐵𝑂(1). In [15], solutions to a

number of fundamental graph problems, such as computing

the connected components or a minimum spanning tree,

were presented. Most recently, Ajwani et al. [16] presented

solutions to a number of geometric problems, including

convex hull computation and a number of problems on axis-

aligned objects, such as orthogonal line segment intersection.

To obtain solutions to orthogonal line segment intersection

and batched orthogonal range reporting, Ajwani et al. intro-

duced a parallel version of the distribution sweeping tech-

nique introduced in [17] as a tool for obtaining sequential

I/O-efficient solutions to these problems. The main challenge

in obtaining optimal solutions to these problems is that the

optimal I/O complexity is O(sort𝑃 (𝑁)+𝐾/𝑃𝐵), where 𝐾
is the size of the output. The sequential distribution sweeping

technique achieves this complexity for the case 𝑃 = 1 by

combining the distribution paradigm with the plane sweep

paradigm: each recursive call scans the data, and each data

access can be charged to an input element or an output

element. The same ideas extend to the sequential cache-

oblivious model [18], [19]. Existing solutions in the PRAM

model [20], [21] achieve the optimal I/O complexity for the

case 𝐵 = 1 using completely different techniques that ensure

that all processors produce roughly equal portions of the

output but rely on very fine-grained access to the shared

memory. Achieving the optimal complexity for the case

𝑃 > 1 and 𝐵 > 1 requires novel ideas that combine load

balancing with blockwise access to shared memory. Ajwani

et al. [16] presented a technique for determining the contri-

bution of each input element to the output size efficiently.

Using this technique, the data could then be distributed

across the processors to achieve good load balancing. They

presented two different solutions, both suboptimal. The first

one involved a counting step at each level of recursion

in the distribution sweep. Since there are log𝑑 𝑃 levels of

recursion, where 𝑑 := max(2,min(
√

𝑁/𝑃 ,𝑀/𝐵)), and

the counting step required sorting the input elements, this

resulted in an I/O complexity of O(sort𝑃 (𝑁) log𝑑 𝑃 +
𝐾/𝑃𝐵). The second solution avoided these counting steps

by deferring the reporting of intersections to the last level

of recursion. This, however, came at the cost of an increase

of the input size to the last level of recursion to O(𝑁 +𝐾),
which gives an I/O complexity of O(sort𝑃 (𝑁 +𝐾)) I/Os.

B. New Results

In this paper, we show how to implement the counting

step at each level of recursion in the distribution sweeping

framework of [16] without sorting. This reduces the cost of

each level of recursion to O((𝑁+𝐾𝑘)/𝑃𝐵) I/Os, where 𝐾𝑘

is the output size produced at this level of recursion, and thus

leads to solutions to batched range reporting and orthogonal

line segment intersection with an overall I/O complexity of

O(sort𝑃 (𝑁) +𝐾/𝑃𝐵) I/Os, which is optimal.

The key to achieving this is a new one-dimensional

batched range counting algorithm, which takes O((𝑁 +
𝐾)/𝑃𝐵) I/Os if the input points and ranges are sorted

(which is the case when using this algorithm as part of

the distribution sweeping technique), where 𝐾 is the sum

of all the range counts. While the equivalent bound of

O((𝑁 + 𝐾)/𝐵) I/Os can be achieved trivially in the



sequential external memory model by scanning the input

and enumerating the whole output, achieving this bound in

the PEM model is more challenging. The problem is that

(𝑁 + 𝐾)/𝑃 , the number of elements a single processor

is allowed to inspect in order to achieve the above I/O

complexity, may be less than the number of points in a given

range. Thus, to achieve the O((𝑁+𝐾)/𝑃𝐵) I/O complexity,

we need to count the output without enumerating it.

Unless stated otherwise, we assume that 𝑃 ≤ min{𝑁/𝐵2,
𝑁/(𝐵 log𝑁)} and 𝑀 = 𝐵O(1) throughout this paper.

The assumptions that 𝑃 ≤ 𝑁/𝐵2 and 𝑀 = 𝐵O(1) are

required for optimal sorting in the PEM model [6], while

𝑃 ≤ 𝑁/(𝐵 log𝑁) is required by the distribution sweeping

framework of [16].

The remainder of this paper is organized as follows. In

Section II, we introduce some notation used throughout the

paper and discuss some primitives we use repeatedly. In Sec-

tion III, we present our new 1-d range counting algorithm. In

Section IV, we review the distribution sweeping framework

of Ajwani et al. [16]. In Sections V and VI, finally, we

put everything together to obtain optimal algorithms for

orthogonal line segment intersection and related problems.

We give some concluding remarks in Section VII.

II. TOOLS AND NOTATION

In this section, we review a number of primitives we

use repeatedly throughout this paper. These primitives were

originally discussed in [6] and [16].

A. Prefix Sum and Compaction

Given an array 𝐴[1 . . 𝑁 ], the prefix sum problem is to

compute an array 𝑆[1 . . 𝑁 ] such that 𝑆[𝑖] =
∑𝑖

𝑗=1𝐴[𝑗].
Given a second Boolean array 𝑀 [1 . . 𝑁 ], the compaction

problem is to arrange all elements 𝐴[𝑖] such that𝑀 [𝑖] = true

consecutively at the beginning of 𝐴 without changing their

relative order. PEM algorithms for these problems with I/O

complexity O(𝑁/𝑃𝐵 + log𝑃 ) were presented in [6] (also

see [22]).

B. Sorting

Arge et al [6] showed that an array of 𝑁 elements can be

sorted using sort𝑃 (𝑁) := O
(

𝑁
𝑃𝐵 log𝑀/𝐵

𝑁
𝐵

)

I/Os.

C. Global Load Balancing

Let 𝐴1, 𝐴2, . . . , 𝐴𝑟 be a collection of arrays with 𝑟 =
O(𝑃 ) and

∑𝑟
𝑗=1 ∣𝐴𝑗 ∣ = 𝑁 , and assume each element 𝑥

has a positive weight 𝑤𝑥. Let 𝑤max := max𝑥 𝑤𝑥, 𝑊𝑗 :=
∑

𝑥∈𝐴𝑗
𝑤𝑥 and 𝑊 :=

∑𝑟
𝑗=1𝑊𝑗 . A global load balancing

operation assigns contiguous subarrays of 𝐴1, 𝐴2, . . . , 𝐴𝑟

to processors so that only a constant number of subarrays

are assigned to each processor and the total weight of the

elements assigned to any processor is O(𝑊/𝑃+𝑤max). This

operation can be implemented by running a constant number

of prefix sum and compaction operations and, hence, takes

O(𝑁/𝑃𝐵 + log𝑃 ) I/Os. The details of the algorithm can

be found in [16] and, for the sake of completeness, are also

provided in Appendix A.

III. BATCHED 1-D RANGE COUNTING

Given a set 𝒫 of points on the real line and a set 𝒬 of

intervals over the real line, the batched 1-d range counting

problem asks to compute the number 𝑘𝑞 of points in 𝒫
contained in each interval 𝑞 ∈ 𝒬. In this section, we show

how to solve this problem efficiently, provided the points

and intervals are given in sorted order.

Theorem 1. The batched 1-d range counting prob-

lem can be solved using O((𝑁 + 𝐾)/𝑃𝐵 + log𝑃 )
I/Os, where 𝐾 =

∑

𝑞∈𝒬 𝑘𝑞 , provided the input is

given as a sorted list of points and interval end-

points and 𝑃 ≤ min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2). For 𝑃 ≤
min(𝑁/(𝐵 log2𝑁), 𝑁/𝐵2), the I/O complexity of the al-

gorithm becomes O((𝑁 +𝐾)/𝑃𝐵).

The following corollary is an immediate consequence

of Theorem 1, as we can produce the sorted input list

required by Theorem 1 by replacing each interval with its

two endpoints and sorting the resulting list of points and

interval endpoints.

Corollary 1. The batched 1-d range counting problem can

be solved using O(sort𝑃 (𝑁) + 𝐾/𝑃𝐵) I/Os, where 𝐾 =
∑

𝑞∈𝒬 𝑘𝑞 , provided 𝑃 ≤ min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2).

We use 𝒰 to denote the sorted input list of points and

interval endpoints. For an interval 𝑞 ∈ 𝒬, we use 𝑞𝑙 and 𝑞𝑟
to denote its left and right endpoints, respectively. Our goal

is to annotate every left endpoint 𝑞𝑙 in 𝒰 with the number

𝑘𝑞 of points in 𝒫 contained in 𝑞. For an interval endpoint 𝑞′,
let ix(𝑞′) denote the number of points in 𝒫 that precede 𝑞′

in 𝒰 . We call ix(𝑞′) the index of 𝑞′ in 𝒫 . Since the elements

in 𝒰 are sorted, it is easy to see that 𝑘𝑞 = ix(𝑞𝑟) − ix(𝑞𝑙).
Thus, our task is to compute ix(𝑞𝑟) and ix(𝑞𝑙), for every

interval 𝑞 ∈ 𝑄, and store their difference with 𝑞𝑙.

A. Computing the Indices of Left Endpoints

The index of every interval endpoint can be computed

using a prefix sum computation on 𝒰 . First we assign weight

1 to every point 𝑝 ∈ 𝒫 and weight 0 to every interval

endpoint. The index of an interval endpoint 𝑞′ ∈ 𝒰 is the

prefix sum of 𝑞′ over these weights. Since a prefix sum

computation takes O(𝑁/𝑃𝐵+ log𝑃 ) I/Os (see Section II),

we can compute the indices of all interval endpoints us-

ing O(𝑁/𝑃𝐵 + log𝑃 ) I/Os. The batched range counting

algorithm of [16] computes the indices of left and right

interval endpoints in this manner and then sorts the list of

interval endpoints to store the left and right endpoints of each

interval consecutively, in order to computer the difference of

their indices. Here we use this strategy only to compute the

indices of all left endpoints using O(𝑁/𝑃𝐵 + log𝑃 ) I/Os.



Next we describe how to annotate every left endpoint 𝑞𝑙 with

the index ix(𝑞𝑟) of its corresponding right endpoint without

sorting the endpoints.

B. Computing the Indices of Right Endpoints

For the computation of right endpoint indices, we distin-

guish between light and heavy intervals in 𝒬. An interval

is light if it contains less than 𝑑𝐵 points, and heavy

otherwise. For the sake of simplicity, we also refer to the

endpoints of light or heavy intervals as light or heavy,

respectively. The basic idea of our solution is the following.

For light intervals, there are not too many points in 𝒫
between their left and right endpoints. Thus, after balancing

these points between processors, each processor can use the

trivial sequential range counting approach to determine the

indices of the light right endpoints it is in charge of. In

total, the indices of all light endpoints can be computed

using O(𝑁/𝑃𝐵 + log𝑃 ) I/Os. The number of heavy right

endpoints is at most 𝐾/𝑑𝐵. This allows us to allocate an

equal number of them to each processor; each processor

then performs a binary search on 𝒫 to determine the index

of each heavy right endpoint. By itself, this strategy is

too costly, as it would cost O((𝐾/𝑑𝑃𝐵) log𝑁) I/Os to

determine the indices of all heavy right endpoints. Instead,

we first limit the search for the index ix(𝑞𝑟) of each heavy

right endpoint 𝑞𝑟 to the interval between the ix(𝑞𝑙)th point

and the (ix(𝑞𝑙) + 𝑑
2𝐵)th point in 𝒫 . This strategy finds the

indices of most heavy right endpoints and fails for at most

𝐾/𝑑2𝐵 heavy endpoints. For these endpoints, we widen

the search interval, allowing the search to succeed for all

but 𝐾/𝑑3𝐵 endpoints. We continue in this manner until all

indices have been computed, and we show that the total cost

of this parametric search is O(𝐾/𝑃𝐵) I/Os for all heavy

endpoints. By summing the costs of finding the indices of

light and heavy right endpoints, we obtain the desired bound

of O((𝑁 +𝐾)/𝑃𝐵+ log𝑃 ) I/Os. Next we discuss the two

phases in detail. We start by extracting the sorted lists 𝒫
and 𝒬𝑙 of points and left interval endpoints from 𝒰 . This

takes O(𝑁/𝑃𝐵 + log𝑃 ) I/Os by applying two compaction

operations to 𝒰 .

Computing indices of light right endpoints. Let

𝑞1,𝑙, 𝑞2,𝑙, . . . , 𝑞𝑡,𝑙 be the list of left endpoints as they are

stored in 𝒬𝑙. The procedure for computing the indices of

light right endpoints consists of two steps. In the first step,

we partition 𝒬𝑙 into 𝑃 contiguous sublists to be assigned to

each processor. In the second step, each processor computes

the indices of all light right endpoints corresponding to its

assigned left endpoints.

To partition 𝒬𝑙 into sublists, we assign a weight 𝑤𝑞𝑗,𝑙

to each such endpoint, which is defined as 𝑤𝑞𝑗,𝑙 :=
min(𝑑𝐵,max(1, ix(𝑞𝑗+1,𝑙) − ix(𝑞𝑗,𝑙))), for 1 ≤ 𝑗 < 𝑡, and

𝑤𝑞𝑡,𝑙 := min(𝑑𝐵,max(1, ∣𝒫∣ − ix(𝑞𝑡,𝑙))). Then we use the

global load balancing operation from Section II to partition

𝒬𝑙 into sublists according to these weights.

Now let 𝒬𝑙,𝑖 be the list of left endpoints assigned to

processor 𝑝𝑖. To determine the indices of all light right

endpoints corresponding to left endpoints in 𝒬𝑙,𝑖, processor

𝑝𝑖 scans 𝒬𝑙,𝑖. For every left endpoint 𝑞𝑙 ∈ 𝒬𝑙,𝑖, it loads

the subarray 𝒫[ix(𝑞𝑙) + 1 . . ix(𝑞𝑙) + 𝑑𝐵] into its cache.

Note that this subarray may overlap the subarray of points

loaded for 𝑞𝑙’s predecessor in 𝒬𝑙,𝑖. Then 𝑝𝑖 loads only the

portion of 𝑞𝑙’s subarray not already in its cache and evicts

the portion of the predecessor’s subarray not needed by 𝑞𝑙.
Since 𝑑 ≤𝑀/𝐵, 𝑑𝐵 points can be held in cache. Now, if 𝑞
is a light interval, the subarray 𝒫[ix(𝑞𝑙) + 1 . . ix(𝑞𝑙) + 𝑑𝐵]
contains all points in 𝑞, as well as at least one point not

in 𝑞. Thus, by inspecting this subarray in its cache, 𝑝𝑖 can

determine whether 𝑞 is light or heavy and, in the former

case, compute ix(𝑞𝑟) and store it with 𝑞𝑙.

Lemma 1. The indices of light right endpoints can be

computed using O(𝑁/𝑃𝐵 + log𝑃 ) I/Os, provided 𝑃 ≤
min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2).

Proof: The weights of the left endpoints in 𝒬𝑙 can be

computed by distributing these endpoints evenly over the 𝑃
processors and having each processor scan its assigned list

of points. Thus, this takes O(𝑁/𝑃𝐵) I/Os. The global load

balancing based on these weights then takes O(𝑁/𝑃𝐵 +
log𝑃 ) I/Os, as discussed in Section II.

Let 𝑊 be the total weight of all points in 𝒬𝑙, and

let 𝑊𝑖 be the weight assigned to processor 𝑝𝑖. Since the

maximum weight of each element in 𝒬𝑙 is 𝑑𝐵, the global

load balancing operation ensures that 𝑊𝑖 ≤ 𝑊/𝑃 + 𝑑𝐵.

We prove that 𝑊 ≤ 𝑁 and that each processor performs

O(𝑊𝑖/𝐵 + 𝑑) I/Os to compute the indices of its assigned

light right endpoints. This shows that the cost of the second

step is O(𝑁/𝑃𝐵 + 𝑑) = O(𝑁/𝑃𝐵) I/Os. By adding the

costs of the two steps, we obtain the lemma.

To bound 𝑊 =
∑𝑡

𝑗=1 𝑤𝑞𝑗,𝑙 , let 𝑤′
𝑞𝑗,𝑙

:= 1 + ix(𝑞𝑗+1,𝑙)−
ix(𝑞𝑗,𝑙), for 1 ≤ 𝑗 < 𝑡, and 𝑤′

𝑞𝑡,𝑙
:= 1+ ∣𝒫∣ − ix(𝑞𝑡,𝑙). Then

𝑤𝑞𝑗,𝑙 ≤ 𝑤′
𝑞𝑗,𝑙

, for all 1 ≤ 𝑗 ≤ 𝑡, and hence 𝑊 ≤ 𝑊 ′ :=
∑𝑡

𝑗=1 𝑤
′
𝑞𝑗,𝑙

. Now observe that a point 𝑝 ∈ 𝒫 contributes to

the weight 𝑤′
𝑞𝑗,𝑙

of a point 𝑞𝑗,𝑙 only if 𝑞𝑗,𝑙 ≤ 𝑝 ≤ 𝑞𝑗+1,𝑙 or

𝑗 = 𝑡 and 𝑞𝑗,𝑙 ≤ 𝑝. This immediately implies that every point

𝑝 ∈ 𝒫 contributes to the weight of at most one left interval

endpoint and, hence, that 𝑊 ≤𝑊 ′ ≤ ∣𝒬∣+ ∣𝒫∣ ≤ 𝑁 .

To bound the number of I/Os performed by each processor

𝑝𝑖, observe that, for two consecutive points 𝑞𝑗,𝑙 and 𝑞𝑗+1,𝑙 in

𝒬𝑙,𝑖, ix(𝑞𝑗,𝑙) ≤ ix(𝑞𝑗+1,𝑙). This implies that each processor

scans 𝒬𝑙,𝑖 and a portion of 𝒫 , possibly skipping elements

in 𝒫 if ix(𝑞𝑗+1,𝑙) > ix(𝑞𝑗,𝑙) + 𝑑𝐵, for some 𝑗. The cost

of scanning 𝒬𝑙,𝑖 is bounded by O(𝑊𝑖/𝐵) because each

element of 𝒬𝑙,𝑖 has weight at least 1. Now observe that

processor 𝑝𝑖 loads 𝑑𝐵 points from 𝒫 into its cache, for the

first endpoint in 𝒬𝑙,𝑖. For every subsequent point 𝑞𝑗,𝑙 ∈ 𝒬𝑙,𝑖,

the number of new points loaded into the cache is bounded

by 𝑤𝑞𝑗,𝑙 . Hence, the total number of points processor 𝑝𝑖
reads from 𝒫 is at most 𝑊𝑖 + 𝑑𝐵. These points are



read sequentially, except when skipping over points because

ix(𝑞𝑗+1,𝑙) > ix(𝑞𝑗,𝑙) + 𝑑𝐵. The cost of sequentially reading

𝑊𝑖 + 𝑑𝐵 elements is O(𝑊𝑖/𝐵 + 𝑑) I/Os. Skipping over

points incurs a random disk access. However, in this case

𝑑𝐵 new points are read from 𝒫 , which implies that the cost

of these random disk accesses is also bounded by O(𝑊𝑖/𝐵)
I/Os.

Computing the indices of heavy right endpoints. To

start the computation of the indices of heavy right endpoints,

we apply a compaction operation to 𝒬𝑙 to obtain the list

𝒬1
𝑙 of heavy left endpoints. We store with each endpoint

𝑞𝑙 ∈ 𝒬1
𝑙 its position in 𝒬𝑙, in order to be able to copy

the index of the corresponding right endpoint back to 𝒬𝑙

once it has been computed. Since, apart from computing

the indices of light right endpoints, the previous phase also

identified all heavy left endpoints, this compaction operation

takes O(𝑁/𝑃𝐵 + log𝑃 ) I/Os, as discussed in Section II.

Now the computation of the indices of heavy right end-

points proceeds in iterations. The ℎth iteration takes a list

𝒬ℎ
𝑙 of left endpoints as input. This list contains exactly those

left endpoints 𝑞𝑙 for which ix(𝑞𝑟)− ix(𝑞𝑙) ≥ 𝑑ℎ𝐵. Its output

is the list of indices of all heavy right endpoints 𝑞𝑟 with

ix(𝑞𝑟)− ix(𝑞𝑙) < 𝑑
ℎ+1𝐵, as well as the list 𝒬ℎ+1

𝑙 that forms

the input to the next iteration.

In the ℎth iteration, we distribute the elements of 𝒬ℎ
𝑙

evenly across the 𝑃 processors. Let 𝒬ℎ
𝑙,𝑖 be the list allo-

cated to processor 𝑝𝑖. Then processor 𝑝𝑖 inspects each left

endpoint 𝑞𝑙 ∈ 𝒬ℎ
𝑙,𝑖 in turn and performs a binary search

on 𝒫[ix(𝑞𝑙) . . ix(𝑞𝑙) + 𝑑
ℎ+1𝐵] to either determine ix(𝑞𝑟) or

decide that ix(𝑞𝑟) ≥ ix(𝑞𝑙) + 𝑑ℎ+1𝐵. In the former case,

it writes ix(𝑞𝑟) to the original position of 𝑞𝑙 in 𝒬𝑙 (which

is stored with 𝑞𝑙 in𝒬ℎ
𝑙,𝑖). In the latter case, it marks 𝑞𝑙 for

processing in the next iteration.

Once all processors have processed their allocated left

endpoints in 𝒬ℎ
𝑙 in this manner, we apply a compaction

operation to 𝒬ℎ
𝑙 to extract the list 𝒬ℎ+1

𝑙 for the next iteration.

This iterative procedure stops as soon as 𝒬ℎ+1
𝑙 is empty.

Lemma 2. The indices of heavy right endpoints can be

computed using O((𝑁 + 𝐾)/𝑃𝐵 + log𝑃 ) I/Os, provided

𝑃 ≤ min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2).

Proof: The compaction performed in preparation for

the first iteration takes O(𝑁/𝑃𝐵 + log𝑃 ) I/Os because 𝒬𝑙

contains at most 𝑁 elements. Next we bound the cost of the

iterations by O((𝑁 +𝐾)/𝑃𝐵), which proves the lemma.

Consider the ℎth iteration. Each interval 𝑞 such that

𝑞𝑙 ∈ 𝒬ℎ
𝑙 contains at least 𝑑ℎ𝐵 points. Hence, the size of

𝒬ℎ
𝑙 is bounded by 𝐾/(𝑑ℎ𝐵), and each processor operates

on 𝐾/(𝑑ℎ𝑃𝐵) elements. For each element, the processor

performs a binary search of a subarray of 𝒫 of size 𝑑ℎ+1𝐵,

which costs O(log(𝑑ℎ+1𝐵) − log𝐵) = O((ℎ + 1) log 𝑑)
I/Os, as the last log𝐵 binary search steps remain within

two consecutive blocks of 𝒫 . Thus, the I/O complexity of

all binary searches in the ℎth iteration is O
(𝐾(ℎ+1) log 𝑑

𝑑ℎ𝑃𝐵

)

.

The compaction cost in the ℎth iteration is bounded by

O(𝐾/(𝑑ℎ𝑃𝐵) + log𝑃 ), as discussed in Section II.

Next we observe that the computation of right endpoint in-

dices terminates after at most log𝑑(𝑁/𝐵) iterations because,

for ℎ = log𝑑(𝑁/𝐵), we have 𝑑ℎ𝐵 = 𝑁 and, hence, the

ℎth iteration succeeds in determining the indices of all right

endpoints corresponding to left endpoints left in 𝒬ℎ
𝑙 . Thus,

omitting big-Oh notation for brevity, the cost of all iterations

needed to compute the indices of heavy right endpoints is

bounded by

log𝑑(𝑁/𝐵)
∑

ℎ=1

(

𝐾(ℎ+ 1) log 𝑑

𝑑ℎ𝑃𝐵
+ log𝑃

)

≤
𝐾 log 𝑑

𝑃𝐵

⎛

⎝

log𝑑(𝑁/𝐵)
∑

ℎ=1

ℎ+ 1

𝑑ℎ

⎞

⎠+ log𝑃 log𝑑
𝑁

𝐵

≤
𝐾 log 𝑑

𝑃𝐵
⋅
2𝑑− 1

(𝑑− 1)2
+ log𝑃 log𝑑

𝑁

𝐵

=
𝐾 log 𝑑

𝑃𝐵
⋅O

(

1

𝑑

)

+ log𝑃 log𝑑
𝑁

𝐵

= O

(

𝐾

𝑃𝐵
+ log𝑃 log𝑑

𝑁

𝐵

)

,

which is bounded by O((𝑁+𝐾)/𝑃𝐵), given the constraints

on 𝑃 .

Theorem 1 follows from Lemmas 1 and 2.

C. Multiple Instances of Batched 1-d Range Counting

When applying batched 1-d range counting in the context

of the distribution sweeping framework, we need to solve

several instances of batched 1-d range counting simulta-

neously at each level of recursion. The following result

generalizes Theorem 1 to solving up to 𝑃 instances simul-

taneously.

Theorem 2. Let 𝒰1,𝒰2, . . . ,𝒰𝑟 be sorted lists of points and

segment endpoints, each representing the input of a batched

1-d range counting instance, and let 𝑁 :=
∑𝑟

𝑖=1 ∣𝒰𝑖∣. If

𝑟 ≤ 𝑃 and 𝑃 ≤ min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2), the 𝑟 range

counting instances represented by 𝒰1,𝒰2, . . . ,𝒰𝑟 can be

solved simultaneously using O((𝑁+𝐾)/𝑃𝐵+log𝑃 ) I/Os,

where 𝐾 :=
∑𝑟

𝑖=1

∑

𝑞∈𝒬𝑖
𝑘𝑞 and 𝒬𝑖 denotes the set of

intervals in the range counting instance represented by 𝒰𝑖.

For 𝑃 ≤ min(𝑁/(𝐵 log2𝑁), 𝑁/𝐵2), the I/O complexity of

the algorithm becomes O((𝑁 +𝐾)/𝑃𝐵).

Proof: The batched range counting algorithm relies on

a prefix sum computation and compaction operations on

each list 𝒰𝑖 and on using global load balancing to allocate

segments to processors. The prefix sum computation on

all lists 𝒰1,𝒰2, . . . ,𝒰𝑟 can be carried out by applying a

single segmented prefix sum operation to the concatenation

of these lists. (A segmented prefix sum operation does not

sum across the boundary between consecutive lists and can



𝐼𝑘+1
𝜎1

𝐼𝑘+1
𝜎2

𝐼𝑘+1
𝜎3

𝐼𝑘+1
𝜎4

𝐼𝑘𝜎

ℎ1

ℎ2

ℎ3

𝑣1

𝑣2

Figure 2. Invocation 𝐼𝑘𝜎 of the distribution sweeping framework. Given
the above segments, the lists generated at invocation 𝐼𝑘𝜎 look as follows:

𝑌 𝑘+1
𝜎1

= {ℎ2}, 𝑌 𝑘+1
𝜎2

= {𝑣1}, 𝑌 𝑘+1
𝜎3

= {ℎ3}, 𝑌 𝑘+1
𝜎4

= {𝑣2, ℎ2, ℎ3};

𝑅𝑘
𝜎2

= {𝑣1, ℎ2}, 𝑅𝑘
𝜎4

= {𝑣2}. The intermediate sets look as fol-

lows: 𝐸𝑘
𝜎1

= {ℎ2}, 𝐸𝑘
𝜎3

= {ℎ3}, 𝐸𝑘
𝜎4

= {ℎ2, ℎ3}; 𝑆𝑘
𝜎2

= {ℎ2};

𝑉 𝑘
𝜎2

= {𝑣1}, 𝑉 𝑘
𝜎4

= {𝑣2}. Note that the intersection between ℎ1 and

𝑣2 is reported at the parent invocation of 𝐼𝑘𝜎 : since ℎ1 spans the whole
slab 𝜎 = ∪4

𝑗=1
𝜎𝑗 , it does not belong to 𝑌 𝑘

𝜎 . Also note that, although ℎ2

spans 𝜎3, it does not participate in an intersection in 𝜎3 and therefore does
not appear in 𝑆𝑘

𝜎3
nor in 𝑅𝑘

𝜎3
.

be implemented in the same complexity as a regular prefix

sum operation.)

The global load balancing operation also relies only on

prefix sum operations, which can be replaced with their seg-

mented version, in order to allocate portions of multiple lists

𝒰1,𝒰2, . . . ,𝒰𝑟 to the processors. In addition, it requires that

we allocate portions of no more than 𝑃 lists to processors,

which is guaranteed by the condition 𝑟 ≤ 𝑃 .

In summary, the cost of the batched 1-d range counting

procedure is not affected by operating on multiple instances

of total size 𝑁 simultaneously, as long as the total number

of instances does not exceed 𝑃 .

IV. PARALLEL DISTRIBUTION SWEEPING FRAMEWORK

In this section we review the parallel distribution sweep-

ing framework by Ajwani et al. [16], using orthogonal

line segment intersection as illustrating example. Parallel

distribution sweeping recursively divides the plane into

vertical slabs, starting with the entire plane as one slab

and in each recursive step dividing a given slab into 𝑑 :=
max(2,min(

√

𝑁/𝑃 ,𝑀/𝐵)) child slabs; refer to Figure 2.

This division is chosen so that each slab at a given level

of recursion contains roughly the same number of objects

(horizontal segment endpoints and vertical segments). The

lowest level of recursion divides the plane into 𝑃 slabs, each

containing Θ(𝑁/𝑃 ) objects. By viewing the recursion as a

rooted tree, we can naturally define leaf invocations, non-leaf

invocations, and children of non-leaf invocations. We denote

an invocation on a slab 𝜎 at the 𝑘th level of recursion by 𝐼𝑘𝜎 .

We process all invocations at the same level of recursion in

parallel.

Each invocation 𝐼𝑘𝜎 receives a 𝑦-sorted list 𝑌 𝑘
𝜎 as input;

this list contains all vertical segment endpoints in 𝜎, as well

as all horizontal segments with one endpoint in 𝜎. For the

root invocation 𝐼0
ℝ2 , 𝑌 0

ℝ2 is a 𝑦-sorted list of all vertical

segment endpoints and horizontal segments. We generate

this list before starting the framework by replacing each

vertical segment with its two endpoints and sorting the

resulting list of horizontal segments and vertical segment

endpoints.

For a non-leaf invocation 𝐼𝑘𝜎 , let 𝐼𝑘+1
𝜎1

, 𝐼𝑘+1
𝜎2

, . . . , 𝐼𝑘+1
𝜎𝑑

denote its child invocations. The task of this invocation

is to produce the input lists 𝑌 𝑘+1
𝜎1

, 𝑌 𝑘+1
𝜎2

, . . . , 𝑌 𝑘+1
𝜎𝑑

of its

child invocations and to report for each child slab 𝜎𝑖 the

intersections between vertical segments in 𝜎𝑖 and horizontal

segments completely spanning 𝜎𝑖. To achieve this, invoca-

tion 𝐼𝑘𝜎 generates a number of lists from 𝑌 𝑘
𝜎 . Let 𝐸𝑘

𝜎𝑗
be the

𝑦-sorted list of horizontal segments in 𝑌 𝑘
𝜎 with an endpoint

in 𝜎𝑗 , 𝑆𝑘
𝜎𝑗

the 𝑦-sorted list of horizontal segments in 𝑌 𝑘
𝜎

spanning 𝜎𝑗 and with an intersection in 𝜎𝑗 , and 𝑉 𝑘
𝜎𝑗

the

𝑦-sorted list of vertical segment endpoints in 𝑌 𝑘
𝜎 contained

in 𝜎𝑗 . For each child slab 𝜎𝑗 , we construct two 𝑦-sorted

lists 𝑅𝑘
𝜎𝑗

:= 𝑆𝑘
𝜎𝑗

∪ 𝑉 𝑘
𝜎𝑗

and 𝑌 𝑘+1
𝜎𝑗

:= 𝐸𝑘
𝜎𝑗

∪ 𝑉 𝑘
𝜎𝑗

. Then,

for each child slab 𝜎𝑗 , we report all intersections between

elements of 𝑅𝑘
𝜎𝑗

and recursively pass the list 𝑌 𝑘+1
𝜎𝑗

to the

child invocation 𝐼𝑘+1
𝜎𝑗

. The different lists are illustrated in

Figure 2.

The task of a leaf invocation 𝐼𝑘𝜎 is to report all intersec-

tions between the elements of 𝑌 𝑘
𝜎 without recursing further.

This is done using sequential I/O-efficient techniques after

allocating portions of the input lists of all leaf invocations to

processors so that each processor is responsible for reporting

roughly the same number of intersections.

In [16], Ajwani et al. discussed how to produce the

lists 𝑅𝑘
𝜎𝑗

and 𝑌 𝑘+1
𝜎𝑗

at each non-leaf invocation using

O(sort𝑃 (𝑁) + 𝐾/𝐷𝐵) I/Os in total for all invocations.

The reason why they did not achieve this I/O complex-

ity for the whole algorithm was the need to balance the

load of reporting intersections over all processors at each

level of recursion. To achieve this, it was necessary (a)

to ensure that no vertical segment participates in more

than max(𝑁/𝑃,𝐾/(𝑃 log𝑑 𝑃 )) intersections at each level

of recursion and (b) to count the number of intersections a

vertical segment participates in at each level of recursion.

To ensure that no segment is involved in too many inter-

sections at each level of recursion, Ajwani et al. presented

an approach of splitting vertical segments with too many

intersections at each level of recursion immediately before

reporting intersections at this level. The cost of this splitting

step was O(sort𝑃 (𝑁)) I/Os. Since this splitting step is per-

formed at each of log𝑑 𝑃 levels of recursion, this increased

the I/O complexity to O(sort𝑃 (𝑁) log𝑑 𝑃 +𝐾/𝑃𝐵).



As we discuss next, counting the number of intersections

of a vertical segment at each level of recursion amounts

to solving up to 𝑃 instances of batched range counting.

Recall that in invocation 𝐼𝑘𝜎 , we report intersections among

the segments in 𝑅𝑘
𝜎𝑗

= 𝑉 𝑘
𝜎𝑗

∪ 𝑆𝑘
𝜎𝑗

, for each of 𝑑 child

slabs 𝜎𝑗 of 𝜎. Also recall that the segments in 𝑆𝑘
𝜎𝑗

fully

span the slab 𝜎𝑗 . Thus, a vertical segment 𝑣 in 𝑅𝑘
𝜎𝑗

and

a horizontal segment ℎ in 𝑅𝑘
𝜎𝑗

intersect if and only if

ℎ’s 𝑦-coordinate is contained in the 𝑦-range of 𝑣, and the

problem of computing the intersection counts for the vertical

segments in 𝑅𝑘
𝜎𝑗

reduces to batched one-dimensional range

counting on 𝑅𝑘
𝜎𝑗

, treating vertical segments as intervals over

the 𝑦-axis and horizontal segments as points on the 𝑦-axis.

The total number of child slabs at each level of recursion

is bounded by the number of leaf invocations, which is

𝑃 . Thus, if the batched range counting algorithm supports

solving up to 𝑃 instances simultaneously, the batched range

counting problems at each level of recursion can be solved

in a single invocation of this algorithm. The batched range

counting algorithm presented in [16] takes O(sort𝑃 (𝑁))
I/Os. Since this algorithm is invoked once per level of

recursion, this adds another O(sort𝑃 (𝑁) log𝑑 𝑃 ) I/Os to the

total I/O complexity of the algorithm.

Next we discuss how to achieve the optimal I/O com-

plexity of O(sort𝑃 (𝑁) + 𝐾/𝑃𝐵) I/Os for the orthogonal

line segment intersection problem. We present this solu-

tion in two parts. In Section V, we present an algorithm

for splitting vertical segments with more than 𝐾 ′ :=
max(𝑁/𝑃,𝐾/(𝑃 log𝑑 𝑃 )) intersections into segments with

at most 𝐾 ′ intersections. This algorithm has I/O complexity

O(sort𝑃 (𝑁)) and produces a set of at most O(𝑁) segments.

In Section VI, we show how to achieve the optimal I/O

complexity of O(sort𝑃 (𝑁) + 𝐾/𝑃𝐵) I/Os, provided no

vertical segment is involved in more than 𝐾 ′ intersections.

To do this, we implement the batched range counting steps

at each level of recursion using our batched range counting

algorithm from Section III.

V. SPLITTING SEGMENTS WITH MANY INTERSECTIONS

Let us call a segment heavy if it participates in more than

𝐾 ′ := max{𝑁/𝑃,𝐾/(𝑃 log𝑑 𝑃 )} intersections, and light

otherwise. In this section, we discuss how to split the heavy

segments in a collection of 𝑁 horizontal and vertical seg-

ments so that the resulting collection of segments contains

only light segments and the total number of segments is

O(𝑁). We discuss how to split heavy horizontal segments

here. Heavy vertical segments can be split by exchanging

the roles of the coordinates.

We start by counting the number of intersections each hor-

izontal segment is involved in. This takes O(sort𝑃 (𝑁)) I/Os

using an algorithm of [16]. Using a compaction operation

(see Section II), we extract the list 𝐻𝑙 of heavy horizontal

segments. Let 𝑉 be the set of vertical segments.

The central part of our algorithm is to generate a list

𝐿ℎ of 𝑥-coordinates where to split each heavy segment

ℎ ∈ 𝐻𝑙. Our algorithm generates the elements of all these

lists 𝐿ℎ simultaneously, in no particular order. To distinguish

which list an 𝑥-coordinate 𝑥 belongs to, we represent an 𝑥-

coordinate in 𝐿ℎ as the pair (ℎ, 𝑥). To generate the light

subsegments of the segments in 𝐻𝑙, we sort the list 𝐿 of all

such pairs we generate primarily by the lists 𝐿ℎ they belong

to and secondarily by their 𝑥-coordinates. Given this sorted

list, the light subsegments of all heavy horizontal segments

can then be generated using a single parallel scan. We argue

below that the total number of pairs (ℎ, 𝑥) generated for all

heavy horizontal segments is O(𝑁). Thus, once these pairs

have been generated, the sorting and scanning steps needed

to generate the subsegments take O(sort𝑃 (𝑁)) I/Os.

To split a segment ℎ ∈ 𝐻𝑙, we intuitively add 𝑥-

coordinates to 𝐿ℎ such that there are 𝐾 ′ intersection points

between each pair of consecutive 𝑥-coordinates. Doing this

precisely is difficult. Instead, we allow these splitting coor-

dinates to deviate by up to 𝑁/𝑃 intersection points from

their ideal positions. This may increase the number of inter-

sections per generated subsegment to 𝐾 ′ +𝑁/𝑃 = O(𝐾 ′),
which is sufficient for our purposes.

The high-level procedure is as follows: We use the dis-

tribution sweeping framework, starting with a 𝑦-sorted list

𝑌 0
ℝ2 of vertical segment endpoints and horizontal segments

as the input to the root invocation 𝐼0
ℝ2 . For an invocation

𝐼𝑘𝜎 with input list 𝑌 𝑘
𝜎 , we send all the vertical segment

endpoints in 𝑌 𝑘
𝜎 to the appropriate child lists 𝑌 𝑘+1

𝜎𝑗
. We

add a horizontal segment to 𝑌 𝑘+1
𝜎𝑗

if it has an endpoint in

𝜎𝑗 or it should be split at an 𝑥-coordinate inside 𝜎𝑗 . We

determine the positions where to split a horizontal segment

ℎ as follows: Consider the first invocation 𝐼𝑘𝜎 such that ℎ
is completely contained in 𝜎 but spans at least one slab

boundary between child slabs of 𝜎. We define the leftmost

such intersection between ℎ and a slab boundary to be the

anchor of ℎ; see Figure 3. We split ℎ at its anchor. The

remaining split coordinates of ℎ are chosen by “walking”

left and right from the anchor and placing a split point each

time we pass 𝐾 ′ intersections points. These split coordinates

are ideal in the sense that they would guarantee exactly 𝐾 ′

intersection points per generated subsegment of ℎ, except

possibly for the two end pieces including the endpoints

of ℎ, which may have fewer than 𝐾 ′ intersections. When

this recursive process reaches the leaf level of recursion,

the input list of a leaf invocation 𝐼𝑘𝜎 contains exactly those

horizontal segments that have an endpoint in 𝜎 or should be

split at an 𝑥-coordinate inside 𝜎. Note that no segment in 𝐻𝑙

can be completely contained in such a leaf slab 𝜎 because 𝜎
contains only 𝑁/𝑃 vertical segments and, hence, a segment

contained in 𝜎 can have only 𝑁/𝑃 ≤ 𝐾 ′ intersections.

Thus, every segment in 𝑌 𝑘
𝜎 intersects at least one of the

boundaries of 𝜎. We split all segments intersecting the left



boundary of 𝜎 at this left boundary. (We do not need to

split segments at the right boundary because this is the left

boundary for the next slab to the right, and the segment will

be split in the corresponding invocation.) Note that, by doing

so, we do not necessarily split segments at their ideal split

coordinates. However, since 𝜎 contains only 𝑁/𝑃 vertical

segments, moving the ideal split point of a segment ℎ ∈ 𝑌 𝑘
𝜎

to the left boundary of 𝜎 adds at most 𝑁/𝑃 intersection

points to the subsegment of ℎ to the right of this split point.

Thus, each of the subsegments generated using these split

coordinates intersects at most 𝐾 ′ +𝑁/𝑃 vertical segments,

as desired.

It remains to discuss how to decide for a non-leaf invoca-

tion 𝐼𝑘𝜎 whether a horizontal segment ℎ ∈ 𝑌 𝑘
𝜎 has an ideal

split point inside a child slab 𝜎𝑗 of 𝜎, in order to add ℎ
to the input list 𝑌 𝑘+1

𝜎𝑗
of the corresponding child invocation

𝐼𝑘+1
𝜎𝑗

. As long as a horizontal segment ℎ has not reached an

invocation yet where it intersects a slab boundary, nothing

special needs to be done for this segment. Once we have

fixed the anchor of ℎ, we operate on the two subsegments

ℎ𝑙 and ℎ𝑟 left and right of the anchor independently. Here

we discuss how to handle the right subsegment ℎ𝑟; the left

subsegment can be handled symmetrically. As ℎ𝑟 moves

towards the leaf invocation corresponding to the leaf slab

containing its right endpoint, we maintain a weight 𝑤(ℎ𝑟)
of ℎ𝑟. When ℎ𝑟 is at an invocation 𝐼𝑘𝜎 , the weight of

ℎ𝑟 is the number of intersections ℎ𝑟 has between its left

endpoint (the anchor of ℎ) and the left boundary of 𝜎. For

the invocation 𝐼𝑘𝜎 that determines the anchor of ℎ, ℎ𝑟 is

completely contained in 𝜎. Hence, we initialize the weight

of ℎ𝑟 to 0. Then, for any invocation 𝐼𝑘𝜎 that processes ℎ𝑟,

we consider all child slabs 𝜎𝑖, 𝜎𝑖+1, . . . , 𝜎𝑗 of 𝜎 which

ℎ𝑟 spans completely. Let 𝛽𝑖, 𝛽𝑖+1, . . . , 𝛽𝑗+1 be the slab

boundaries defining these slabs, and let 𝑘𝑞 be the number of

intersections ℎ𝑟 has inside the slab 𝜎𝑞 , for 𝑖 ≤ 𝑞 ≤ 𝑗. We

define the rank of a slab boundary 𝛽𝑞 , for 𝑖 ≤ 𝑞 ≤ 𝑗 + 1,

as rankℎ𝑟
(𝛽𝑞) := 𝑤(ℎ𝑟) +

∑𝑞−1
𝑞′=𝑖 𝑘𝑞′ . It is not hard to see

that ℎ𝑟 has an ideal split coordinate in a child slab 𝜎𝑞 if

⌊rankℎ𝑟
(𝛽𝑞)/𝐾

′⌋ < ⌊rankℎ𝑟
(𝛽𝑞+1)/𝐾

′⌋. In this case, we

add ℎ𝑟 to the list 𝑌 𝑘+1
𝜎𝑞

. When adding ℎ𝑟 to such a list

𝑌 𝑘+1
𝜎𝑞

, we set its weight in 𝑌 𝑘+1
𝜎𝑞

to rankℎ𝑟
(𝛽𝑞).

The implementation of this procedure requires counting

for every horizontal segment the number of intersections it

has in each child slab it completely spans. In [16] it is shown

how do this using O(𝑁𝑘/𝑃𝐵) I/Os per level of recursion,

where 𝑁𝑘 is the input size to all invocations at level 𝑘. Next

we show that 𝑁𝑘 = O(𝑁), for all 𝑘, which implies that

the cost of this counting step and the cost of distributing

segments to the child lists at each level of recursion is

O(𝑁/𝑃𝐵) I/Os. By summing over all levels of recursion,

we obtain that the total cost of generating the input lists for

the leaf invocations is O((𝑁/𝑃𝐵) log𝑑 𝑃 ) = O(sort𝑃 (𝑁))
I/Os. We have already argued that the cost of generating the

anchor 𝑏ℎ

ℎ𝑙 ℎ𝑟

ℎ

Figure 3. An example of anchoring segment ℎ at 𝑏ℎ.

light subsegments from the input lists of the leaf invocations

takes O(sort𝑃 (𝑁)) I/Os. Hence, the total I/O complexity

of this procedure is O(sort𝑃 (𝑁)), and the total number of

segments we generate is bounded by the total input size of

all leaf invocations, which is O(𝑁).
The bound on 𝑁𝑘 follows if we can bound the total

number of ideal split coordinates by O(𝑁) because a

horizontal segment belongs to the input of an invocation

𝐼𝑘𝜎 only if it has an endpoint or an ideal split coordinate

inside 𝜎. However, since every two consecutive ideal split

coordinates of a segment have exactly 𝐾 ′ intersections

between them, the total number of ideal split coordinates is

at most 𝐾/𝐾 ′ ≤ 𝑃 log𝑑 𝑃 ≤ 𝑁 , where the latter inequality

follows from the bound 𝑃 ≤ 𝑁/(𝐵 log𝑁).

Theorem 3. A list of 𝑁 horizontal and vertical segments

can be replaced with a list of O(𝑁) horizontal and vertical

segments with the same intersection points and such that

each segment has at most 𝐾 ′ := max(𝑁/𝑃,𝐾/(𝑃 log𝑑 𝑃 ))
intersections. If 𝑃 ≤ min(𝑁/𝐵2, 𝑁/𝐵 log𝑁), the I/O

complexity of the algorithm to do this is O(sort𝑃 (𝑁)).

VI. OPTIMAL ORTHOGONAL LINE SEGMENT

INTERSECTION REPORTING

As discussed in Section IV, the orthogonal line segment

intersection algorithm of [16] achieves the optimal I/O

complexity of O(sort𝑃 (𝑁) + 𝐾/𝑃𝐵) I/Os, excluding the

cost of splitting heavy segments and the cost of counting the

number of intersections each vertical segment is involved in

at each level of recursion.

In Section V, we have shown how to split heavy segments

into light ones using O(sort𝑃 (𝑁)) I/Os and without increas-

ing the number of segments by more than a constant factor.

Thus, to achieve the optimal I/O complexity, it suffices to

show that we can count the number of intersections each

vertical segment is involved in at each level of recursion

using a total of at most O(sort𝑃 (𝑁) +𝐾/𝑃𝐵) I/Os for all

levels.

Let 𝐾𝑘 be the total number of intersections to be reported

at all invocations at the 𝑘th level of recursion, and let 𝑁𝑘

be the total size of the lists 𝑅𝑘
𝜎𝑗

constructed at this level

in order to report these intersections. Since a horizontal



segment belongs to such a list 𝑅𝑘
𝜎𝑗

if and only if it spans

𝜎𝑗 and has an intersection with a vertical segment in 𝜎𝑗 , it

follows that 𝑁𝑘 ≤ 𝑁 + 𝐾𝑘. Also, since all vertical and

horizontal segments appear at each level of recursion in

the slab containing their endpoints, 𝑁𝑘 ≥ 𝑁 . As argued

in Section IV, counting the number of intersections each

vertical segment is involved in at this level of recursion

amounts to batched 1-d range counting on all the lists 𝑅𝑘
𝜎𝑗

at this level. Since there are at most 𝑃 such lists 𝑅𝑘
𝜎𝑗

at

any level of recursion, Theorem 2 shows that we can solve

all these batched 1-d range counting problems simultane-

ously using O((𝑁𝑘 + 𝐾𝑘)/𝑃𝐵) = O((𝑁 + 𝐾𝑘)/𝑃𝐵)
I/Os, provided 𝑃 ≤ min(𝑁/(𝐵 log2𝑁), 𝑁/𝐵2). Since
∑

𝑘𝐾𝑘 ≤ 𝐾 and there are log𝑑 𝑃 levels of recursion, the

total cost of all these batched range counting steps is there-

fore O((𝑁 log𝑑 𝑃 + 𝐾)/𝑃𝐵) = O(sort𝑃 (𝑁) + 𝐾/𝑃𝐵).
This proves the following theorem.

Theorem 4. Orthogonal line segment intersection reporting

can be solved using O(sort𝑃 (𝑁)+𝐾/𝑃𝐵) I/Os and O(𝑁+
𝐾) space, provided 𝑃 ≤ min(𝑁/(𝐵 log2𝑁), 𝑁/𝐵2).

Note that the permissible number of processors is no more

than 𝑁/(𝐵 log2𝑁), while the suboptimal solution in [16]

worked for up to min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2) processors. We

can achieve the optimal I/O complexity in Theorem 4 also

for up to this number of processors, at the expense of using

more space.

Theorem 5. Orthogonal line segment intersection

reporting can be solved using O(sort𝑃 (𝑁) + 𝐾/𝑃𝐵)
I/Os and O(𝑁 log𝑑 𝑃 + 𝐾) space, where

𝑑 := max(2,min(
√

𝑁/𝑃 ,𝑀/𝐵)), provided

𝑃 ≤ min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2).

Proof: The only part of our orthogonal line segment

intersection algorithm that relies on the assumption that

𝑃 ≤ 𝑁/(𝐵 log2𝑁) is the batched range counting algorithm.

For 𝑁/(𝐵 log2𝑁) < 𝑃 ≤ min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2), the

cost of batched range counting becomes O((𝑁 +𝐾)/𝑃𝐵+
log𝑃 ) I/Os, which would increase the total cost of the

batched range counting steps over all levels of recursion to

O(sort𝑃 (𝑁) +𝐾/𝑃𝐵 + log𝑃 log𝑑 𝑃 ).
To avoid this blow-up of the range counting cost, we

first generate the lists 𝑅𝑘
𝜎𝑗

for all levels of recursion and

then run one batched range counting step on all these lists,

followed by reporting the intersections in all these lists.

This is possible because the total number of these lists

over all levels of recursion is still O(𝑃 ). As we have

argued above, the size of the lists 𝑅𝑘
𝜎𝑗

at one level of

recursion is O(𝑁 +𝐾𝑘). By summing this over all levels,

we obtain a total size of these lists of O(𝑁 log𝑑 𝑃 + 𝐾),
which gives the increased space bound in the theorem. The

cost of running batched range counting on these lists is

O((𝑁 log𝑑 𝑃 +𝐾)/𝑃𝐵+log𝑃 ) = O(sort𝑃 (𝑁)+𝐾/𝑃𝐵)
because 𝑃 ≤ 𝑁/(𝐵 log𝑁) implies that log𝑃 ≤ 𝑁/𝑃𝐵.

This gives the I/O complexity claimed in the theorem.

VII. DISCUSSION

This paper improves the parallel distribution sweeping

framework of [16] to obtain an optimal O(sort𝑃 (𝑁) +
𝐾/𝑃𝐵) I/Os orthogonal line segment intersection reporting

algorithm. In order to achieve this, we had to address two

challenges:

∙ Ensure that no vertical segment participates in more

than 𝐾 ′ = max{𝑁/𝑃,𝐾/(𝑃 log𝑑 𝑃 )} intersections at

each level of recursion.

∙ Count the number of intersections a vertical segment

participates in at each level of recursion within the

optimal I/O bound.

We achieved the first goal by splitting the segments in a

preprocessing step. To attain the second goal, we used our

O((𝑁+𝐾)/𝑃𝐵) I/O 1-d batched range counting algorithm.

It remains open whether similar results can be obtained

on hardware-oblivious models of private-cache chip multi-

processors. It would be particularly interesting to see if an

I/O-optimal low-depth cache-oblivious distribution sweeping

paradigm can be designed, along the lines of [14].
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APPENDIX A.

GLOBAL LOAD BALANCING

Let 𝐴1, 𝐴2, . . . , 𝐴𝑟 be arrays each of whose elements

𝑒 has a positive weight 𝑤𝑒. Assume further that 𝑟 ≤ 𝑃
and

∑𝑟
𝑖=1 ∣𝐴𝑖∣ = 𝑁 , and let 𝑊𝑖 :=

∑

𝑒∈𝐴𝑖
𝑤𝑒 be the

total weight of the elements in array 𝐴𝑖, 𝑊 :=
∑𝑟

𝑖=1𝑊𝑖,

and 𝑤max := max1≤𝑖≤𝑟 max𝑒∈𝐴𝑖
𝑤𝑒. The global load bal-

ancing problem is to assign contiguous chunks of arrays

𝐴1, 𝐴2, . . . , 𝐴𝑟 to processors so that each processor re-

ceives O(1) chunks and the total weight of the elements

assigned to each processor is O(𝑊/𝑃+𝑤max). In Section II,

we claimed that this operation can be implemented using

O(𝑁/𝑃𝐵+log𝑃 ) I/Os and gave a sketch of the algorithm.

Here we provide the details.

Without loss of generality, we assume that every array 𝐴𝑖

is aligned at a block boundary and its size is a multiple of 𝐵.

If that is not the case, we can pad each array with dummy

entries of weight 0 at the end and remove the padding after

the completion of the load balancing procedure. Note that

the padding does not asymptotically increase the total size

of the arrays because the padding is at most 𝐵−1 elements

for each array, 𝑟(𝐵− 1) ≤ 𝑃 (𝐵− 1) ≤ 𝑁 elements in total

because 𝑃 ≤ 𝑁/𝐵.

First we apply a prefix sum operation to the weights of

the elements in each array 𝐴𝑖. This can be implemented

using a single “segmented” prefix sum operation applied

to the concatenation 𝐴 of arrays 𝐴1, 𝐴2, . . . , 𝐴𝑟, which

does not sum across the boundary of two consecutive arrays

𝐴𝑖 and 𝐴𝑖+1. Thus, this step takes O(𝑁/𝑃𝐵 + log𝑃 )
I/Os. Next we divide 𝐴 into 𝑃 chunks of size ⌈𝑁/𝑃 ⌉
and assign one chunk to each processor. This can be done

using simple index arithmetic on 𝐴. Each processor inspects

every element 𝑒 in its assigned chunk and marks it if either

𝑒 is the first element of an array 𝐴𝑖 or the prefix sums

𝑊𝑒 and 𝑊𝑒′ of 𝑒 and its predecessor 𝑒′ in 𝐴𝑖 satisfy

⌊𝑃𝑊𝑒′/𝑊 ⌋ < ⌊𝑃𝑊𝑒/𝑊 ⌋. Next we apply a compaction

operation to 𝐴 to obtain the list of marked elements, each

annotated with the array 𝐴𝑖 it belongs to and its position

in 𝐴𝑖. These marked elements are the start elements of

the chunks we wanted to construct, and we assign two

consecutive chunks to each processor. The I/O complexity

of this procedure is easily seen to be O(𝑁/𝑃𝐵 + log𝑃 ),
as it involves a prefix sum and a compaction operation, plus

sequential processing of ⌈𝑁/𝑃𝐵⌉ blocks per processor and

one access to two consecutive elements per processor in the

array of marked elements. The constructed chunks have the

desired properties:

∙ Since the first element of every array 𝐴𝑖 is marked, ev-

ery chunk contains elements from exactly one array 𝐴𝑖.

∙ The number of chunks is at most 2𝑃 , that is, by

assigning two chunks to each processor, we do assign

all chunks to processors. To see this, observe that the

number of marked elements per array 𝐴𝑖 is at most

1+ ⌊𝑊𝑖𝑃/𝑊 ⌋, which implies that the total number of

marked elements, that is, the total number of chunks is

at most 𝑟 + 𝑃 ≤ 2𝑃 .

∙ Every chunk has total weight at most 𝑊/𝑃 + 𝑤max.

To see this, consider a chunk with first element 𝑒 and

last element 𝑒′, and let 𝑊𝑒 and 𝑊𝑒′ denote their prefix

sums. Then ⌊𝑃𝑊𝑒/𝑊 ⌋ = ⌊𝑃𝑊𝑒′/𝑊 ⌋, that is, the total

weight of the elements in the chunk, excluding 𝑒, is at

most 𝑊/𝑃 . Since 𝑒 has weight at most 𝑤max, the total

weight of the chunk is at most 𝑊/𝑃 + 𝑤max.




