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ABSTRACT 

CHAPTER I

One- and two-electrpn cavity species of metal-ammonia solu

tions have been investigated with twelve- and eighteen-molecules 

in the first coordination shell of molecules and a continuum beyond 

the first layer. The important electron-molecule and molecule-molecule 

interactions are considered. The electron-dipole interactions are 

found to be the greatest stabilizing factor while the hydrogen-hydrogen 

interactions of the surface molecules determine the cavity size in most 

cases. The density of the molecules in the first layer is found to be 

less than the bulk density for the most stable cavities. The energy 

of a quasi-free electron, Vo, is treated as a parameter. The twelve- 

molecule models are found to be more stable than the eighteen-molecule 

models for the values of Vo considered. The two-electron species are 

found to be unstable relative to two one-electron cavities. Most 

findings are in reasonable agreement with experimental results although 

exact agreement is not found. The temperature dependence and asymmetry 

of the spectra are considered. Several extensions are also proposed. 

Arguments are given to indicate that the conclusions are general and 

go beyond the specific models presented.

CHAPTER II

Three-body nonadditive corrections to various assumed argon- 

argon potentials have been investigated. For intermediate gaseous.argon 

densities, the triple-dipole interaction is shown to be the major cor

rection for many-body interactions and yields very accurate "effective" 

intermolecular pair potentials. These potentials should lead to the



correct radial-distribution function. The results suggest a density 

dependence of the minimum of the effective potential of only about 

+ 17 "p (in degrees Kelvin), where is the density in grams per cubic 

centimeter. The small contribution of the nonadditive effect to the 

x-ray structure factor of the liquid is briefly examined.



I. STUDIES OF CAVITIES CONTAINING ONE AND TWO ELECTRONS 

IN METAL-AMMONIA SOLUTIONS 

A. INTRODUCTION

1. EXPERIMENTAL BACKGROUND

Since the discovery of the solubility of the alkali metals 

in liquid ammonia over one hundred hears ago by Weyl,^ alkali metal-

ammonia solutions have sparked considerable experimental and theoretical
2interest related to the nature of the solutions. The first evidence 

of the uniqueness of the alkali metal-ammonia solutions was reported 

in 1897 by Cady. Cady measured the conductance of sodium dissolved in 

liquid ammonia and noted that these solutions were better conductors 

than similar solutions of sodium salts. In a series of papers from 

I9O7 to 1922, Kraus confirmed the conclusions of Cady and made similar 
conclusions about lithium and potassium solutions. Although Weyl 

reported that alkali metal solutions have a blue color for dilute 

solutions and a bronze sheen for more concentrated ones, it was Kraus 

who noted that the blue color moved toward the anode when a voltage 

was placed across one of the dilute solutions. From the quantitative 

conductance data of Kraus it follows that the metal atoms are solvated 

by the ammonia in some manner and yield the positive ions of the metals 

and stable "solvated electrons".^ The mobility of the negative charge 

carrier in the metal-ammonia solutions is the most conclusive evidence 

for the existence of the "solvated electron". For a solution of high 

sodium concentration, the specific conductance is found to be about 

one-sixth that of mercury and for a solution of low sodium concen

tration, the mobility of the negative charge carrier is found to be

1



seven times greater than the mobility of the positive sodium ion.

Other researchers have reported conductance data,^’̂  and their results

are within one percent of the results obtained by Kraus. The very low

concentration conductance data of Kraus has been questioned by Dewald,
7but the discrepancy is no larger than fifteen percent.

Even though the work of Kraus confirmed the existence of 

the "solvated electron", it did not indicate the actual structure of 

the species present in the metal-ammonia solutions. In 19̂ -6, Ogg 

postulated that an electron, or possibly an electron pair, resides in 

a cavity in the metal-ammonia solutions surrounded by ammonia mole-
g

cules. Ogg's postulate is based on volume expansion data, jL.ê  , the

volume of the metal-ammonia solution is markedly in excess of the

volume of the constituents. Ogg's value for the volume expansion is
9-11incorrect, but the volume expansion has been confirmed, The

rupturing of hydrogen bonds and/or the formation of cavities could be

responsible for the volume expansion. If the volume expansion arises 

only from the formation of cavities that are assumed to be spherical

and to contain one electron, the radius of a cavity is between 5*7 and
1" -5 10-I56.6a0 for dilute solutions (jL.e.. , 10 M (molar)). J This result

is obtained by extrapolating volume expansion data to infinite dilu

tion. Extreme care must be taken in estimating the volume of the 

metal ions since electrostriction is important and the ionic radii 

of the metal ions are not accurately known. Evers and coworkers^ 

have reported a minimum in the volume expansion in the region 0.01 to

^Lengths will be given in Bohr radii (1 ao = O .5292 k) and energies 
will be given in Hartrees (27-21 eV).



0.023 M, but more recent data by Gunn indicate that a minimum does 

not occur.

In dilute solutions of the alkali and alkali-earth metals 

a very broad asymmetric absorption band is found in the infrared in 

the neighborhood of 7)000 cm  ̂ and is reported to be independent of
1 j ̂ -| ̂

the solute. This band has only a slight trend toward lower
lkenergies with increasing concentrations. This band extends into 

the visible region of the spectra and gives rise to the observed blue 

color. The details and trends of this band have been the subject of 

considerable controversy. Another characteristic of the dilute solu- 

tions that is independent of the solute is a single, very narrow 

spin-resonance line which gives a static spin susceptibility very
17-close to the free spin value when extrapolated to infinite dilution. 

These two properties, as well as the conductance and volume expansion 

data, have been shown for dilute solutions to be consistent with the 

cavity model.

As the concentration of the metal-ammonia solutions is 
-3increased through the 10 ^ to .5 M region, a small decrease in the

equivalent conductivity and a substantial decrease in the molar mag-
17 20netic susceptibility are found. ’ The decrease in the spin para

magnetism implies that at least one diamagnetic species is being 

formed as the concentration is increased. Various equilibria have 

been postulated to explain the decreases, but the equilibrium con

stants obtained from magnetic data and from conductance data are not
21 22 5 consistent. The equilibria that have been most considered are



We shall denote the "solvated electron" by (e )am> and a weakly bound 

electron that is in an "expanded orbital" relative to a metal ion by 

(M+ *e ). This monomer species is similar to the ion-pair species of 

ionic solutions. The dimer species, M^, has been described as a pair 

of ammoniated metal ions held together by two electrons in a molecular 

orbital situated largely between the two ions. Agreement with sus

ceptibility data has also been obtained by using equilibria (l) and^

(M+ -e') + (e") am ^=5= M". (5)

The various species have been chosen because of their diamagnetism, 

their possible stability, or their conductivity. Another equilibrium 

that could explain at least part of the decrease in the paramagnetism
ls19,2b

(e'>am * (ePam- W

The dielectron species, (e2)am’ ^as not been considered important 
since the theoretical work involving this species supposedly had not

found the dielectron species stable relative to two one-electron
25 26species. Many factors related to the stability of the dielectron

species have been assumed without proof and some of these factors are 

found to be incorrect. This stability will be explored more fully 
later.

At a concentration of the metal greater than 1 M, the con

ductivity and magnetic data clearly indicate a nonmetal to metal 

transition. Dimer formation and dimer clustering have accounted for



some of the metallic properties, but the lack of experimental data 

and the lack of adequate theories for disordered systems have pre

vented the determination of an acceptable model for this concentra

tion region. This concentration region will not be considered in 

this work.

As will be shown in the remainder of this section, no 

theoretical model has included all of the effects leading to a 

stable cavity, and only one reasonable theoretical investigation has 

been carried out for the dielectron species. The agreement with ex

periment and theory has been obtained ad hoc. If a Is to 2p transi

tion is assumed for the one-electron-in-a-cavity species, the transi

tion energy and solvation energy are found to agree with the experi

mental values when the radius of the cavity is specified for a
1̂5 26dielectric continuum model. Before we propose an explicit model

for the cavity species at low metal concentrations, we shall review 

the various calculations that have been executed in order to deter

mine the limitations and reliability of the models.

2. FACTORS LEADING TO CAVITY FORMATION

Let us suppose that we wish to carry out an a priori calcu

lation for the one-electron cavity species in a metal-ammonia solu

tion. For such a calculation we would have to consider the inter

action of the electron in the cavity with every molecule in the 

solution and every molecule-molecule interaction. This would include 

for each molecule ten electrons as well as four nuclei. If we were 

not considering the low concentration region, we would also have to 

consider the various interactions with the metal ions. We will be



interested only in the low concentration region where the electron- 

ion separations are large and such interactions can be neglected to a 

first approximation. Even by neglecting the ion interactions we 

would still be left with an impossible calculation. Clearly some 

sacrifices have to be made before any calculation can be carried out. 

Based on assumptions of varying degrees of approximation, models have 

been proposed. Several models have been based on the assumption that 

the medium outside the cavity can be considered a continuum. If the 

stability of the cavity arises from long range interactions or if 

the penetration of the excess electron into the medium is sufficient 

to justify the use of the bulk properties of the medium, then the con

tinuum assumption is very good. Two models have been proposed which 

assume some structure for the first coordination shell of the ammonia 

molecules. This assumption is very good if the stability arises 

mainly from short-range interactions.

The previous models did not consider all of the factors 

necessary for a "realistic" model. The object of this work was to 

investigate all of the factors and to consider consistently one- and 

two-electron species by using a simple, complete model.

The total energy of an electron cavity E^ after the re

ordering of the molecules in the liquid is complete can be expressed 

by the relation

E_ = E + E + E + E (5)T e st pv

where E is the dipole-dipole interactions of the molecules in the 

medium, Egt is the energy required to form a surface and is often 

related to surface tension, and E^v is the energy related to the 

pressure-volume work.
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An _a priori calculation might be considered for obtaining 

the electronic energies, Ee> but this procedure would be very diffi

cult. The exchange interaction of the electron with the molecules on 

the surface of the cavity would be a minimal requirement for such a 

calculation. Also, the interaction of the electron with the multipole 

moments of the ammonia molecules could not be handled simply. Changes 

in the molecular structure of each of the molecules would have to be 

considered because of the electric field of the excess electron.

Much of the difficulty arises when the electron is close to the mole

cules, but this region can not be neglected. Because of the diffi

culty involved in priori calculations for the electronic energies 

and the difficulty of interpreting these results in terms of the 

dominant factors, model systems must also be used for this energy.

The various problems mentioned above must be kept in mind in any 

reasonable formulation if any valid comparisons are to be made with 

real situations.

We shall now consider what features must be included in a 

model for the electron-cavity species of metal-ammonia solutions. 

Because ammonia molecules have a rather large dipole moment (1.V7 
Debye), it is reasonable to assume that this factor must be considered. 

A model which includes the first coordination shell of spherical 

molecules could take this factor into account by considering each 

molecule to have a point dipole at its center. If the reordering of 

the molecules in the medium by the electric field of the electron 

could be considered as an average effect that can be handled by the 

bulk parameters of the liquid, the liquid outside the cavity might be
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treated as a continuum. From what has been considered important in 

previous models and what is now known about the excess electron in 

polar and non-polar liquids, the electronic energy Eg can be broken 

down into its various contributions as follows:

E = T + E + E „  + V (6)e e em poj& o > '

where T is the kinetic energy of the electron, E is the sum of the e em
charge-multipole interaction energies, E ^ is the charge-induced di

pole (polarization) interaction energy, and Vq is the energy of the 

quasi-free electron. We shall explore the importance of the various 

energies before we review how they have been handled by other re

searchers .
The kinetic energy of the electron has obviously been in

cluded in all previous models with the common quantum mechanical ex

pressions. The charge-multipole interaction energy has not been 

included in all of the previous models. Included in this energy,

E , is the interaction of the electron with the multipole moments em
of the medium molecules with the charge-dipole interaction as the 

dominant stabilizing contribution. A charge-quadrupole interaction 

is also included in E and is a small destabilizing factor. Other 

multipole interactions might be included, but these interactions make 

only a minor contribution to the energy. From a simple dimensional 

analysis it can be seen why the charge-dipole interaction dominates 

the charge-quadrupole interaction. For the size cavities that we

are interested in, the charge-dipole energy decreases (in absolute
2 3value) as l/R-m while the charge-quadrupole energy decreases as 1/R^

where R is the distance from the center of the cavity to the center m



of a molecule in the first coordination shell of molecules on the 

surface of the cavity (Figure I-A). The only important charge- 

multipole interactions are the ones where the electron is in the 

cavity and interacting with the first coordination shell since the 

other interactions are decreased by distance and by a dielectric 

screening. Since dipoles orient in electric fields, it is reason

able to assume that the surface molecular dipoles will be oriented 

by the electric field of the cavity electron. This orientation will 

yield the maximum charge-dipole stabilizing energy.

Many relations have been used in determining the polariza

tion energy E ^ and all but one of the calculations has assumed 

that the dielectric constants, optical and static, characterize the 

polarizations. The static (or total) polarization accounts for the 

molecular orientational and all distortional contributions to the 

energy Eg while the electronic (or optical) polarization accounts for 

only the electronic distortions of the molecules. The form that the 

polarization interactions take is based on how the cavities are formed. 

We shall discuss the assumptions behind the formulations as they are 

considered in various models. The polarization interactions are im

portant, although they are not the most important interactions leading 

to stability.

Since an electron in a liquid is not in free space, it only 

sees differences in the total potential. Because of this character

istic, the energy of a localized electron must be measured relative 

to a quasi-free electron, the electron in the liquid with no medium 

rearrangement. The energy V0 of the quasi-free electron mainly comes 

from electron-molecular exchange scattering and long range polarization



Figure I Radii that are used in model calculations,

(A) Radii used in structured models,

(B) Radii used in continuum models.

10
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interactions. A small repulsive electron-molecule interaction or a 

large polarization would favor the quasi-free electron instead of the 

localized electron (such that Vo < E^). If an electron is localized 

in a cavity it would be possible to break Vo into two parts. One part 

would consist of the interaction of the electron with the first co

ordination shell of molecules around the cavity. This interaction 

would take into account the exchange interaction of the electron with 

the surface molecules. Since NH, is unstable, one can approximate 

the unperturbed ammonia-electron interaction (neglecting the dipole 

moment and polarizability) by an effective repulsive potential. This 

is the pseudo potential which is a result of the antisymmetry prin

ciple acting on the total electronic wave function of the electron 

and ammonia system. Instead of modifying the wave function, one can 

express this effect in the form of an effective potential. The details

and justification for this approach for metal-ammonia solutions have
27been explored by Jortner and Kestner.

The second part of Vo would involve the energy of the electron 

when it is outside the cavity, i,.je. , when the electron is in the medium 

and can be considered entirely as a quasi-free electron. Like an 

electron in a crystal, the electron in the liquid can be considered

in the conduction band of the liquid. Because of this similarity,

several experimental measurements might be proposed for determining 

this part of Vo. Photoconduction is one measurement that could yield 

an experimental value for Vq . Adiabatic ejection of electrons from a

photo cathode immersed in a liquid has been shown to give an excess
28 29electron in the quasi-free state in liquid rare gases. ’ Such a 

technique might be developed for polar liquids. The photoelectric
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effect has also been suggested as a possible avenue of approach, but

the magnitude and sign of the surface potentials for polar liquids are

u n k n o w n . A  radial distribution function (or as it is sometimes

called, pair correlation function) might be combined with the various

interactions of the electron in the liquid to determine the energy of
27the quasi-free electron as well as the energy of the cavity species. 

However, the theory of polar liquids is much to primitive at present. 

The sign and magnitude of Vo is unknown, but it is suspected to be 

positive because of the first part mentioned above.

We shall now consider the energies that must be combined with 

the electronic energy to obtain the total energy E^. Only the unreal

istic infinite-well cavity models have tried to determine the total 

energy of the system. The other calculations have assumed a radius 

for the cavity ad hoc and then carried out the calculation for the 

electronic energy. The dipole-dipole repulsion energy E and the 

surface energy E could be combined to form one energy relation, butS u
we have divided the contributions to take into account the short-range 

interactions which are important in systems involving polar liquids.

The energy required to form a surface is related to the free energy 

of the surface which takes into account the kinetic energy of the mole

cules on the surface and their interactions with the medium as well as

the other molecules on the surface. Scaled particle theory as re- 
31viewed by Frisclr gives the most appropriate choice for determining 

this energy for cavities in non-polar liquids. A deficiency of the 

scaled particle theory procedure for polar liquids is found in

its neglect of dipole-dipole repulsions (and other multipole inter

actions) caused by molecules reorienting on the surface of the cavity,
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jL._e. , the polar molecules on the surface of the cavity reorient in 

the field created by the electron trapped in the cavity. A procedure

might be developed that takes these multipole interactions into
52account. The methods of Hiroike, et al. which used a radial distri

bution function and a molecular pair potential to take into account 

the configuration changes of liquid helium caused by an excess elec

tron is probably the most consistent procedure for determining the
2energy Egt- This procedure obtained the correct Rc dependence for 

the surface energy which is in accord with scaled particle theory.

A simpler approach would be to consider in addition only the speci

fic short range interactions between the molecules on the surface of

the cavity caused by their orientation and neglect the molecules in
55the medium. Such a neglect would lead to only a minor error. For

the ammonia cavity species the hydrogen-hydrogen interactions must be

considered as the most important factor for determining the size of a

cavity since the trapped electron forces the hydrogens to be directed

into the cavity. We shall discuss such a formulation in Section D.

If E is not taken into account in the determination of E , WJ sc’
it must be considered as a separate contribution to Ê , since it is very

54large. The continuum model calculations of Iguchi, which considered 

electrons in alcohols, is the only treatment that takes the dipole- 

dipole repulsion energy into consideration. This model is inappro

priate for disordered systems since it assumes that the dipoles form 

layers. This model can not explain volume expansion data either. By 

assuming a fixed number of surface molecules this energy can be 

handled easily. The determination of E will be considered in 

Section D along with the dipole-quadrupole repulsions between the 

molecules on the surface of the cavity.
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A contribution to Em from the pressure-volume work E canT pv
be considered negligible at normal pressures (,e.£. , less than 10 

atmospheres), but is important for studying spectral characteristics

at high pressures (e.g. , 200 atmospheres or greater). Cohen and
35Jortner have shown that the quasi-free electron is more stable than 

the localized electron in solid helium at very high pressures. The 

pressure volume work arises from the work needed to expand the cavity 

against the hydrostatic pressure of the liquid. This energy can be 

obtained from the relation

y p R 3 (T)

where p is the hydrostatic pressure in the liquid. For a cavity radius

R equal to 6 a0 at normal atmospheric pressure, the energy obtained
-6from equation (j) would be about 10 Hartrees. We shall therefore 

neglect any further consideration of E .

3. PREVIOUS MODELS OF ONE-ELECTRON CAVITY

We shall now review how the various energies have been 

handled by other investigators. With the electron totally confined 

to the cavity, the models of Ogg,^ Lipscomb,^ and Stairs'^ assumed 

that the medium outside the cavity could be treated as a continuum. 

These three models assumed that the polarization potential of the con

tinuum dielectric medium takes the form (z = l)

■ (l - 1 ’ <8)

where z is the amount of charge in the cavity, e is the electrostatic 

charge, R^ (Figure I-B) is the distance from the center of the cavity



15
to the beginning of the continuum, and Dg (equal to 22 at -55° C.) is 

the static dielectric constant. The relation given in equation (8) 

is the well-known Born expression for the total polarization energy

is applicable if both the molecular and electronic polarizations con

tribute to the formation of the cavity. An additional polarization
12contribution was included in the Lipscomb model by solving a boundary 

value problem that assumes a constant surface charge at the cavity- 

continuum boundary. If the electron is not totally confined to the 

cavity, this additional contribution would be negligible. These three 

models could be interpreted as having Vo equal to infinity. Because 

of the very high transition energies for an electron in a spherical 

box (Appendix i) and the lack of agreement with experimentally deter

mined characteristics, these models are unrealistic in assuming an 

infinitely deep well. Nevertheless, no other model considers Vo to 

have a value other than zero. The kinetic energy is the only other 

electronic energy considered by these models.

continuum dielectric model which also makes use of the Born expres

sion. In this model the polarization energy is given by

where iL was taken to be a hydrogen-like Is wave function, and f. (r) J.S 1. s
is defined for a spherically symmetric cavity by the relation

57of a negative charge surrounded by a liquid medium. This expression

58Jortner has considered a self-consistent field (SCF)

(10)
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with P(t) defined as the fraction of the electronic charge within the 

region r = 0  -* t, e.g. ,

P(t) = eJ’|fls|2dT (11)
o

For the case considered in this model, f, (r) take:; the formis

(r) = . e + e(lH- te)exP(-gto) ( }
Is ' r r v '

where X is a variational parameter, the exponent of the Is wave func- 

tion. It should be noted that equation (9) approximates the Born ex
pression if the electron is totally confined to the cavity and if 

is large. The second integral relation, of equation (9) is included 
because the electron outside the cavity also polarizes the medium.

The kinetic energy of the electron and polarization energy given above

are the only electronic energies considered in this SCF calculation.
15Jortner ^ has also proposed a model that is similar to the 

polaron model of solid state physics. This polaron model correctly 

assumed that the electron is localized by the permanent dipoles and 

not by the optical (electronic) polarization of the liquid. By re

moving the optical polarization from the Born expression, which in

cludes both optical and molecular polarizations, Jortner obtained 

the trapping potential

B 2v (r)   for r < ^  (15“A)

= - f o r r > R b (13-B)

where |30 = (l/D0 - 1/DS) and D0 (equal to I.76 at -33° C.) is the



optical dielectric constant. After the electron is trapped, a further 

lowering of the energy is obtained from the optical polarization which 

was taken into account in this model by the approximate relation

2 i_L) (LM
2r k Do' v J

where r is the mean radius of the electron. The kinetic energy was 

also included in the minimization of the energy with the potential 

given in equation (13). This model is very successful in explaining 

all of the qualitative features as well as many of the quantitative 

ones for the trapped electron.
XQ liQDavydov and Diegen formulated polaron models similar to 

the one above but did not truncate the potential V(r) (equation (13-A)) 
at the cavity boundary. Their formulations have been shown to be in-

41correct for metal-ammonia systems.

Two models have considered the first coordination shell to 

be formed by several oriented point dipoles. The model of Land and
p"Z p£\O'Reilly is based on the assumption that from 10 to I5 ammonia

molecules will fit on the surface of the cavity with the same density
42as the bulk medium while a model due to Jortner assumed that there

13were only 4 molecules on the surface. As in Jortner's polaron 

model, the model of Land and O'Reilly broke the permanent and

optical polarizations into two parts, and included the optical polari

zation after minimizing the energy. The optical polarization was in

cluded in this model by a relation, similar to the Born expression,
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Since this model assumes some structure for the first coordination 

shell of molecules , the molecular polarization potential of the con

tinuum was divided into regions that omit the first layer as follows:

CO . .
-3oJ dt for r < Rd (16-A)

Rd *

° °  ( \

“P0/ P 2 dt for r > Rd (16-B)r t

where is the distance from the center of the cavity to the con

tinuum (Figure I-A). Even though this model had a. discrete number of 

molecules on the surface of the cavity, it used dielectric constants 

which are bulk properties of the liquid.
k-2Jortner also assumed the potential given in equation 

(13-B) for his model with structure. This model used the molecular 

approach in handling the polarization when the electron is inside the 

cavity. The model assumed the potential

- for rL < Rb (17)

for the molecules on the surface of the cavity and 

2
gffPdgQe
v 2v 3

for r^ < (18)

for the continuum where ob ds the optical polarizability, is the 

number density of the ammonia molecules in the bulk medium, and R ^
3

is the radius of the ammonia molecule (Figure I-B). These relations 

are based on the assumption that the charge is at the center of the 

cavity. Equation (18) does not contain the Lorentz screening which



b~bhas been shown by Lekner to be important. The Lorentz screening 

arises from the local field acting on the molecules in the liquid, 

which consists of the direct field of the electron and the sum of all 

other fields due to the dipoles induced on the neighboring molecules. 

The deficiencies can be removed from equation (18) by using the rela-
kktion derived by Springett, jet al. for excess electrons in helium.

The derivation of that equation and similar equations will be discussed 

in Section B.
k2 23 26The structure models of Jortner and Land and O'Reilly ^ ’

used the common charge-dipole potential

- for r, < E (19)r2 i m
m

where N is the number of molecules in the first layer, Ho is the am

monia dipole moment, and R is the distance from the center of the c ’ m
cavity to the center of a molecule on the surface of the cavity

(Figure I-A). Although the model of Land and O ' R e i l l y ^ d i d  not

have the explicit form given in equation (19)> it is in essence the 
same if a uniform bulk density is assumed for the surface layer. In

Section D, we shall show that this latter feature is not correct. A

thermal average value of the dipole moment V“e££ was approximated from 

the Langevin function in this model by the relation

“eff ' t20-4 )o Xoc

where k is the Boltzmann constant, T is the absolute temperature of 

the system under consideration, and is the local electric field

at the ammonia molecule. All of the reported calculations on this



20

model assumed that

Ejfoc = T T  t20-8)Km

where z is the amount of charge in the cavity. The value of z for any

calculation should be obtained by a self consistent procedure if the

electron is not totally confined to the cavity, but the calculations

for this model were not obtained by such a procedure. Nevertheless,

some of their results are general enough to be interpreted as though

the procedure had been followed.
2*z 26Land and O'Reilly also took the charge-quadrupole inter

action into account in the calculation of E . This interaction wasem
obtained from the potential

zNQe
*3m
5 (21)

where Q is the average quadrupole moment of the molecules.
12Only the infinite-well cavity models of Lipscomb and

36Stairs have tried to determine the total energy of the system, Ê ,. 

The other calculations have assumed a radius for the cavity ad hoc 

and then carried out the calculation for the electronic energy. The
12 5̂6models of Lipscomb and Stairs assumed that the surface energy Es t

could be obtained from the relation

41TRJT (R± = Rb or R ) (22)

where T is the surface tension of the surface of the cavity. The 

proper choice for the value of the surface tension T is very difficult,
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31Scaled particle theory as reviewed by Frisctr gives the most appro

priate choice of T for non-polar liquids by the relation

r = rQ (1 + f V  (23)
Ri

where T0 is the planar surface tension and 6 is a parameter which is

a measure of the curvature of the surface of a microscopic cavity.
12An inappropriate value for T was used in the Lipscomb calculation

and a value of T more in line with scaled particle theory was used
36in the calculation of Stairs. Both models neglected the important 

structural changes in the first coordination shell of molecules.

From the binding energy Ê , of a ground state electron, the 

solvation energy of the electron can be obtained from the relation

- w ± = et  - n -s  (2k)

where 2 is the energy required to form the cavity and n is the energy

required to polarize the permanent dipoles of the solvent. From 

simple electrostatic arguments, the latter is obtained from the rela

tion

n " Isl5 '5 *1' (25)

where D is the electric displacement. A value for n can also be 

obtained from the equivalent relation

n = iJpsdT = ^/|tls|2$dT (26)

where p is the electron charge density, and $ is the electrostatic 

potential resulting from the polarization. We find $ and D from the 

relations
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V2§ = hTfe | ijfLs |2 (27)

and

D = -V$ (28)

where V is the del operator and V2 is the Laplacian operator. The 

potential obtained from equations (27) and (28) is similar to the 
potential that is obtained for the interaction of two spherical 

charge distributions since the ground state wave function i|r̂ is

spherically symmetric. A relation for obtaining n was correctly
2̂5 26formulated in the model of Land and O'Reilly and was given by

the relation

Por? „ / \ . ,2 2n
"d

2-c| G0(r)ltlsr r dr + G0(Rd)p(Rd ^  (29)

where f3QGo is the potential and GQ(r) is defined by

"]C 00

G„(r) - + /i*l s i2^  (50)o r

The truncation of the potential at the continuum boundary is reason

able for the cavity species, but this neglects the orientational

energy needed for the first coordination shell. The formula for cal-
15culation of n in Jortner's ^ polaron model is incorrect as given. The 

relation was reported to be

00

■e|^V(r)^2slHTr2dr (3I)

where V(r) is given in equation (13~B). This relation does not take 

into consideration the polarization arising from the charge in the 

cavity.
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The energy 2 was also included in the model of Land and 

O ' R e i l l y . B y  creating a cavity in a metal-ammonia solution, the 

molecules on the surface of the cavity will not be interacting with 

as many molecules as a molecule in the bulk liquid. Thus 2 is taken 

as a measure of the energy difference created by the loss of interac

tions, mainly short range ones. Estimates of this energy were per

formed by Land and O' .Reilly‘S  with the relation

2 = ^  AH (32)3 Vm vap w

where £Hvap (equal to O.OO889 Hartreesat -33°c) is the heat of 
vaporization per molecule, Vm is the volume of an ammonia molecule, 

and Rq is the distance from the center of the cavity to a distance 

R̂ jj from the center of the molecules in the first coordination 

shell (Figure I-A). The expression given in equation (32) takes into 

account many factors that would be hard to handle separately, but 

overestimates 2 by over emphasizing long-range interactions. Since 

the cavity is formed by pushing molecules aside and not by removing 

molecules from the solution, another procedure is needed. Short 

range interactions are most important in estimates of 2. We shall 

propose an expression intermediate between these in Section D.

U. PREVIOUS MODELS OF TWO-ELECTRON CAVITY

Calculations involving the two-electron cavity have been 

carried out for only the Ogg^ and Land and O'Reilly^’̂  models.
sApplying first-order perturbation theory, Ogg found that the total



energy of the two-electron, infinite-well cavity species was

h2 < ! - £ ■ >  + s £ t ^  (33)
u”* b  ®b

where h is Planck's constant, m is the electronic mass, the first term

is the kinetic energy of the two electrons, the second term is four

times the one-electron polarization energy since this term depends on

the square of the amount of charge in the cavity, and the integral is

the average electron-electron repulsion. The ri2 in the integral of
equation (33) is the distance between the electrons (Figure II).

e2Ogg estimated the value of the integral to be — . With this value

for the Coulomb integral, the two-electron cavity species is found
25to be stable relative to two one-electron cavities. Hill showed

•jg e2that the repulsion was actually *■-/  . This interaction energy
*b

makes the two-electron species unlikely at zero concentration and 

zero temperature. However, Hill was able to show that at finite 

concentrations and at reasonable temperatures the two-electron 

species would actually be preferred, e. £. at 0.1 M and 220°K he 
predicted that 72 percent of the electrons could be paired if there 
were no other competing equilibria. The inadequacy of the one- 

electron infinite-well cavity species discussed above is also
Q

applicable to the Ogg two-electron model.

The binding energies of the two-electron cavity species
2*5 26investigated by Land and O'Reilly were taken to be



2where EL is the energy of the (Is) ground state, EL is the energy
1 P of the lowest P state, and E, and E_ are the one-electron Is andIs 2p

2p energies respectively. This model combined the repulsive inter

action of the two electrons in the cavity with the polarization 

interaction that is induced because of the second electron in the 

cavity to obtain an "effective" repulsive interaction. This "effec

tive" repulsive interaction was reported to be

G(r) = G0(r) - (1 - f°r r ^ Rm (36-A)

= G0(r)/D0 for r S (36-b)

All of the electron-electron repulsion integrals were expressed in

the form given in equation (36) in these calculations. The polariza

tion interaction part of equation (j6) was obtained by an expansion 

of the potential of the addition electron in spherical harmonics.

The two-electron calculations of the model were carried out for Rq 

equal to 11 a0 which was chosen ad hoc and will be shown to be inap
propriate in Section D.

The heat of solution AH2 of the two-electron species was
23 26obtained in the calculation of Land and O'Reilly by the

relation
-ah2 = e1 ■- n - s (37)

s

where n is four times the relation given in equation (31)a and S was 
obtained from equation (3*0 * The heat of the reaction given in
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equation (k) was obtained from

£HaX = %WS - AHi (38)

5. GENERAL CONCLUSIONS CONCERNING PREVIOUS MODELS
13 .Of the models considered, the Jortner polaron model

gives the most consistent agreement with experimental quantities
23 2^while the model of Land and O'Reilly seems to be the most con

sistent in its formulation of the problem. Because of the emphasis
13on long range interactions in Jortner's polaron model and on the 

short range interactions in the model of Land and O'Reilly, the 

question of which is the more important is still open. The results 

of these two calculations are given in Table I so that they can be 

compared with the results that we have obtained. The one-electrons s 

to p transition energy is denoted by AE and the two-electron by

In the models previously considered, polarization inter

actions have been assumed to be the most important stabilizing factors
b-2of the cavity species. Only in Jortner*s structure model was the 

short-range electronic polarization considered, explicitly, _i.e., 

the polarization of the surface molecules. The calculation of Land 

and O'Reillyf^’̂  which included the multipole interactions of the 

electron, is a strong indication of the importance of the electron- 

dipole interaction. This model assumed that all of the electronic 

polarization could be characterized by a bulk property. This assump

tion is not very good because of the close proximity of the maximum



TABLE I

EXPERIMENTAL AND PREVIOUS THEORETICAL RESULTS

(A) Results obtained by Jortner from his polaron 
model of the one-electron cavity species in 
ammonia at -33°C.

Ro(ao) ^ s E2p

p—
n -AHi ae ps

5.67

6.05

6.52

-0.0796
-O.O76I+
-O.O72U

-0 .0^82 

-0.0*1-75 
-0.0*1-53

0.0182

0.0175
0 .015*1-

0.0616 

0.0590 
0.0572

0.0313

0.0299
0.0273

(b ) Results obtained by Land and O'Reilly for the
one- and two-electron cavity species in ammonia 
at 2T°C. The one-electron cavity was assumed 
to have Rq = 9 ao an(* two-electron cavity was 
assumed to have Rq =11 a0.c

-AHi AEps AE2ps AHal

Calculated 0.12*1- 0.0*1-2 0.023 -0.033

Experimental^ 0.062 ± 0.03 0.033 0.030e 0 .oo6e

Results taken from Reference (13 )« 
Energies are given in Hartree units. 
Results taken from Reference (26).
Results taken from Reference (2). 
Unconfirmed results. See Reference (2*0*

27
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electron density to the surface molecules. In addition, all of the 

models have neglected the energy of a quasi-free electron in the medium. 

Until a value of Vo is determined, the validity of this assumption is 

questionable.

The most important feature of the cavity species has in 

fact been neglected in all of the reasonable models; namely the 

cavity has not been shown to be stable. Without this latter point, 

models can always be adjusted to yield the correct experimental 

parameters without proving the validity of the model or providing 

insight into the problems of electrons in other solvents. Only when 

the stability problem is treated correctly can one hope to provide a 

consistent picture of why the cavity forms as well as how it should 

be dependent on such factors as temperature and pressure. Only when 

we have an adequate model can such details as the asymmetry of the 

band and volume expansion data be discussed.

B. FORMULATION OF THE HAMILTONIANS

To expect realistic numbers from a model calculation requires 

that the model be brought as close to reality as possible. We have 

assumed a very dilute metal-ammonia solution so that ion-electron 

interactions can be neglected. In studying the problem of electrons 

in polar as opposed to non-polar liquids one faces many rather serious 

problems which limit the accuracy one can expect. The most serious 

aspect involves hydrogen bonding. At the level of a semi-empirical 

study one can only pay a limited amount of attention to this vital
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problem. In what follows we have considered its influence to be weak, 

at least weaker than electrostatic effects acting on the first layer of 

polar molecules surrounding the electron cavity. We have assumed that 

beyond the first layer hydrogen bonding and statistical effects dominate 

over electrostatic orienting effects especially since electrostatic 

effects are rapidly screened by the dielectric constant. In this model

such assumptions are probably adequate for ammonia but possibly suspect
27for strongly hydrogen bonded liquids like water. Another aspect that 

might be considered serious is the distortion of the molecules in the 

first layer caused by the electrostatic field of the electron in the 

cavity, but this distortion has been shown to be adequately taken into 

account by a (linear; polarization.

In this section we will formulate the model for the one- and 

two-electron cavity species of metal-ammonia solutions. We have taken 

a very molecular point of view and used molecular parameters whenever 

possible. The model that we have considered consists of N polarizable, 

spherical molecules symmetrically distributed on the surface of a 

spherical cavity with a polarizable continuum outside the first coor

dination shell of molecules. At the center of each molecule we have 

assumed that there is a point dipole which has its dipole moment 

oriented toward the center of the cavity. We have also assumed that 

at the center of each molecule there is a point quadrupole which is 

cylindrically symmetric along the dipole moment axis. With these 

multipole moments we have been able to specify the moments with scalar
k6quantities. Each molecule will be assumed to have a hard core radius
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R (Figure I-A) which would be characteristic of an electron scatteringH
cross section with polarization and multipole interactions removed. As 

is the usual case, this hard-core radius is less than the average

radius R ^  (approximately equal to 3,66 a0 at -33°C) of the molecule
3 b-7 i+8in the bulk liquid. * The electronic polarization of each molecule 

is assumed to be characterized by the optical polarizability Qq. For 

lack of a molecular counter part, the (3o used in the previous models 
has been used to account for the molecular polarization in the con

tinuum beyond the first layer.

The hard-core radius R^ mentioned above defines the region 

in which one must worry about the internal structure of the ammonia
U8molecule. Based on many molecules Bader, Henneker, and Cade have 

defined a criterion for such a hard core. Using the ammonia molecule 

charge distributions of Bader and Jones^ a value of I .85 ao is obtained, 
Since such charge distributions can be poor, a value of 2.0 ao was also 

tried with but a slight effect.

We ahall now formulate the Hamiltonian that we have used 

for the one-electron cavity species. The various parts of the 

Hamiltonian will be expressed in Hartree units. With the electron 

at an arbitrary point in the cavity, the electron-dipole potential 

takes the form
vi . . M f l i  (39)

■>?

where jL indicates that the electron is interacting with the ith mol

ecule, and p and 0 are defined as shown in Figure II. We have 1 a



Figure II. Coordinates used in the 
various potentials.
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assumed that the thermal average magnitude of the dipole moment can be 

obtained from the high field limit as expressed in equation (20-A) 

with the amount of charge, z, used in determining E ^ c (equation (20-B)), 

taken as the amount of charge in the region 0.0 to (Figure I-A).

This region will be referred to as the void region. The value of z 

was obtained through a self consistent procedure. We have taken the 

gas phase dipole moment for po equal to 0.57^ ao (1*^7 Debye)

With the electron at an arbitrary point in the cavity, the 

electron-quadrupole potential takes the form

VeQ = + &3cos*ea - 1) (bO)

p!

where p and 0 are the same as defined above. A thermal averagel a
was not considered for the magnitude of the quadrupole moment since 

this term makes only a small contribution (less then twenty percent) 

to the total energy and the actual electron-quadrupole interaction

would be very difficult to handle. We have taken a theoretical value
2 b9for the quadrupole moment Q equal to 0.82 ao. This quadrupole 

moment is smaller than some of the experimental values but the
k6difference makes only a minor contribution to the final energies.

The potential energy of an induced dipole (polarization) 

in an electric field g, is

- «“4 44 -4 ., .
- i £ • < v  £ (Ul)

where oto is the polarizability tensor of a molecule under considera-
b6tion. Because the ammonia molecule has an almost uniform
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polarizability tensor we have approximated the tensor with a scalar 

polarizability otQ (equal to 15.3 ao) times a unit t e n s o r W i t h  

this assumption equation (41) reduces to

SLc2

For the one-electron cavity species we have assumed that the electric 

field is the one-electron field

tl - (43)
Pi

Thus we have found that the induced dipole potential for each of the 

molecules for the one-electron cavity species takes the form

v pojJ - T &  <w >
2pi

The contribution of the long range electronic polarization potential 

exerted by the molecules in the continuum can be expressed in the forn/^

v° . - - ^poj£ 2 J* §(r) t(r)dT (45)

where r is the distance from the center of ...the cavity to an arbitrary 

point in the medium, s is the distance from the electron to the point 

in the medium (Figure II), is the number density of the bulk dielec

tric continuum, and the integration over the volume includes the volume 
of the continuum only. The c superscript denotes an electron-continuum 

interaction. Here, g(r) is the radial distribution function relative 

to the center of the cavity which we shall approximate by the relation



g(r) = 0 r < Rd^ Rm + ^ 3^

3k

(46)

= 1 r > Rd

To provide a rough estimate of the screening function L(r) we have
35taken the form that Lekner has shown to be adequate for liquid 

argon, .i.e.,

L(r) = 1  for r < Rd (47)

1
(1 + 8TTa0Pd) 

3

for r > Rd

Combining equations (45), (46) and (47) yields the integral relation

“°Pd f - T T dTVPo SL / -1 * 8TT —  \ y, 1(1 + —  a0pd) Rd S

which yields on integrating over the region Rd to infinity

,cV
r - 3 ®—  +|_(E? - r2) ri lEd riil

for rx < Rd - R^ and if (49)

the electron is in the continuum region equation (49) is not applicable. 

To determine the electronic polarization for this region we have 

assumed that the potential is determined by the amount of charge 

enclosed in a spherical region. To keep in line with the molecular 

approach we have assumed that we can use the Clausius-Mossotti 

relation to .convert (1 

-

— ) to molecular parameters. The resulting



potential for the electronic polarization for the electron in the con-

The molecular polarization of the continuum has been included by using

as the two separate effects mentioned in the Introduction, but later 

abandoned this approach since an experimental investigation would not 

be able to distinguish between the amount of contribution that each 

would make separately to the total energy. It is of interest to con

sider how we handled the determination of the electron-molecule inter

action for the surface since such a technique might be used if the 

external contribution to Vo is ever evaluated. We have tried to 

approximate the repulsion by fitting electron-neon (no polarization 

included) scattering cross sections to a simple B e potential 

since neon is isoelectric with the ammonia molecule. Some adjustment was 

made for the larger size of the ammonia molecule relative, to neon.

The stability of the cavity, however, was not very sensitive to the 

parameters A and B for the case where the external Vo was assumed to 

be zero. In our final calculations we have assumed that Vq can be

tinuum is found to be for the region not considered by equation (^9)

(50)

13the potential that was used in Jortner's polaron model and approximately
2*z 2^equal to the potential used by Land and O’Reilly :

for rx < (51)

for rx > Rd

In some of the preliminary calculations we considered Vq
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approximated with one empirical parameter. We have assumed that the 

electron will interact with a barrier of height Vo defined by the 

relation

Vo(ri) = 0 for rx < Rq (52)

= V0 for rx > Rc

For the two-electron species we must consider several 

additional potentials. The electron-electron interaction potential takes 

the familiar form l/ri2 but several cases must be considered since each 
of the electrons has a probability of being outside the cavity where 

the dielectric screening must be considered. With the screening 

taken into account from a molecular point of view and remembering 

that only the electronic polarization responds to the instantaneous 

positions of the electrons, the repulsive potential takes the form

V„ , = rx < R ; r2 < R (53)Coul. rX2 c’ ^ c

T̂T -  \
(1 ~ T  W  1 5-=---------    for rx < R , rP > R ;
d  + f v ' i )  ri25 ri > Rc. r2 < R,

t1 - t W  1  ,  , . . ttz----------    for rx and rP > R/, . off -  \ rX2 ^ c(i + Y < W

where we have expressed 1/D0p terms of polarizability which is

obtained from the Clausius-Mossotti relation in the manner shown to
i+3be appropriate by Lekner. We have assumed that the number density 

of the first layer is appropriate for the screening when one of 

the electrons is outside of the void region and the number density
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of the bulk medium is appropriate when both electrons are outside 

of the void region.

When both electrons are inside the cavity, the electron- 

electron interaction is mediated by the polarization of the ammonia 

molecules in the liquid. In the model that we have considered, this 

mediation comes from the interaction of the electrons with the 

first layer and with the continuum. If the electric field is defined 

for the two-electron species by

-*
-* P1 p2
& 2  =  3  3  ( 5 4 )

P1 p2

where and p^ are shown in Figure II, the potential is found by 

using equation (42) to be

% _  fo_ ao COs9b 
" 9«4 ’ 9«4 ’ n2 (55)2pl P2 P1 P2

where 0^ is shown in Figure II. The first two terms of this 

equation are the polarization of each of the electrons while the 

third term

a co s 0,
v2Poi - -  V r *  (56>

p2
is the polarization interaction arising from an additional electron 

in the cavity. Equation (56) has been converted to coordinates 

relative to the center of the cavity to yield the following relation
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for the polarization interaction with a molecule in the first 

layer (Appendix II):

~ir2 rfari-n ^ 2(2n-n)(awi)
-.n+m+2^/^2 2, Vl2 2? " , J 2  2W „2 2.  ̂ n^ V  m^ V

n mat oo oo r."
V1 = - ~  S y 2po# 2 _n+m+2L,_2 2 ' ,„2 2. ,„2 2stJ2 2.v n=o m=o R (R -r„) (R -r-) (R -r.)(R -r„)m N m 2' x m r  m V  m 2

(57)

where Pn(cos0) is a Legendre polynomial in terms of cos0. The 

polarization interaction with the continuum arising from equation 

(56) is found to be given by (Appendix III)

V2po* - - S  &  S i  Pn(c°s012> <58>
(1' T “o',d) nss° Rd

If we were to combine equations (53),(57) and (58) we would have 

an expression similar to the "effective" repulsion used in the iiibdel 

of Land and O'Reilly^’^  (equation (36)).

The kinetic energies of the one- and two-electron species 

were obtained from the common kinetic energy operators

Tx = (59)

for the one electron species and

i2 - - K  - ¥ 1  (60>

for the two-electron species. Combining the various one-electron 

potentials with the kinetic energy we obtain the Hamiltonian for the
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one-electron species

(61)

where N is the number of molecules in the first layer. The

two-electron Hamiltonian is given by

poA mpo£ o Coul
electrons N N .

(62)
In the next section we present trial wavefunctions and

evaluate the integrals of the various potentials.to obtain the 

electronic energies.

C. METHOD OF CALCULATION AND RESULTS FOR THE ELECTRONIC ENERGIES

To begin this calculation, some assumptions had to be made 

about the liquid structure. Since little is known of this even in 

the pure liquid, we have based this model on what is known about the 

solid. We have assumed that there are twelve or eighteen molecules 

in the first coordination shell of molecules since the solid crystalizes 

in a slightly distorted cubic-close-packed (cep) structure. ^  This 

structure for the first layer would be analogous to having a vacant 

lattice site at which the electron is confined. The structure of 

twelve-molecule first layer is shown in Figure III. Since a ccp 

structure has only twelve nearest neighbors for each site in the 

lattice, we have assumed that an additional molecule could reside 

on each of the six faces of the ccp structure and give rise to the
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eighteen-molecule first layer. One of the additional molecules for

the 18 molecule configuration is shown in Figure IV-A. Other numbers

of surface molecules might be considered, but for the size cavities 

suggested by volume expansion data this seems unlikely. Cavities 

could exist with from six to twenty molecules in the first layer, 

but the most probable number is between eight and eighteen. A 

distribution of cavities with different numbers of molecules on the 

surface could explain some of the asymmetry of the spectra of the 

one-electron species.

For the one-electron species the lowest S state wavefunction 

was assumed to be of the form (unnormalized)

1SA = (1 + o?r + 8r2)eYr Yqo(0,A) (63)

and the first P state wavefunction was assumed to be of the form

*A lm  “ <64>

where oi, 8, y and £ are variational parameters and ^ ^ ( 9,(0 is a 
spherical harmonic. The notation Is and 2p is used in analogy with 

atomic calculations. In the case of the two-electron species the 

ground state wavefunction was

W  = lSBU )1SB(2)/^[a(1)B(2) - 0(l)of(2)] (65)

where the subscript B refers to a different set of parameters than 

those obtained for the one-electron species and a(i) and 8(i) are 
spin functions. The two model calculations that have previously



Figure III. Positions of molecules in ccp structure 
that are used in the 12 molecule model. 
The arrows indicate centrally oriented 
point dipoles.
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Figure IV. Possible positions for additional molecules
on the ccp structure. The arrows with crosses 
indicate the additional molecule.

(A) Position of one of six additional molecules. 
This structure is used in the 18 molecule 
model.

(B) Position of one of eight additional 
molecules.



(A)

( B )
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considered the two-electron species (Section A) have neglected electron 

correlation effects, namely the reduction of the electron repulsion 

when the electrons are allowed to avoid one another. We have 

determined that the correlation energy 8E2 is almost one electron
g

volt for the system used in the Ogg model (Appendix I). Because 

correlation energy is an unknown factor that should be considered 

in determining the stability of the two-electron species, we have 

carried out a configuration interaction (Cl) procedure to determine 

the correlation energy. The correlation energy 6E2 for the system 
considered is defined as the difference between the energy obtained 

for the configuration interaction and the energy obtained with the 

uncorrelated ground state wavefunction. The correlated wavefunction 

was assumed to be of the form

s
^CI = Cl^SCF + /3^2pB l l ^ 2pB l - l ^ +2pB l - l ^ 2pB l l ^

- 2pB10(l)2pB10(2)] “ [>(1)8(2) - 0(l)Qf(2)] (66)

where 2pB^m is the appropriate 2p excited orbital with appropriately 
optimized parameters. The 2pB^^ was obtained by optimizing the first 

excited state wavefunction

* = ^ { l S B(l)2pB10(2) + lSB(2)2pBl0(l)}-^[a(l)8(2)-B(l)cif(2)]

(67)

where lS^l) was obtained by optimizing the wavefunction given inD

equation (65).
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For the trial functions given above we may compute the

quantity

(68)

the expectation value of the energy of the system in a normalized 

state where the subscript j denotes a one- or two-electron 

state. By applying the variational method to equation (68) we have 

obtained the energies of the systems under consideration. Since the 

excited state wavefunctions are orthogonal to the ground state 

wavefunctions for a given j, the variational method is also applicable 

for determining the energies for excited states. We have minimized 

the energies by a brute force technique since several of the expressions 

involved are not simple. Since the angular dependence of the various 

potentials can be readily integrated out of equation (68), we shall 

give the resulting radial integrals that we have evaluated to determine 

the electronic energies.

For the centrally oriented dipoles of the 12 and 18 molecule 

models, the electron-dipole interaction energy is given by

where i|i is a normalized one-electron radial wavefunction. This result is 

obtained by simply converting the coordinate system of equation (39)

that the molecules of the first layer are spherically distributed on 

the surface of the cavity, equation (69) is also valid for the p state

r dr (69)
m

to bicentric coordinates and integrating. 51 Because we have assumed
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wavefunctions. Similarly we have obtained the electron-quadrupole 

interaction energy of equation (^0):

When an electron is in the layer of molecules, _i._e., in the region 

Rc to Rm + R^, the electron still interacts with the multipole moments. 

The electron-dipole interaction for this region is

The dielectric screening (polarization screening) is included in this 

expression since the molecules will screen the electron-dipole 

interactions. The energy arising from equation (Tl) is only a minor 

contribution to the total electronic energy. We have neglected the 

electron-dipole interaction for the continuum region and have neglected 

the electron-quadrupole interaction except in the region considered 

by equation (70) for reasons considered in the early part of Section B.

The electronic polarization of the first layer of molecules 

was obtained from the relations

(TO)
m

(71)
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Na  r +rh
, 8tt - n „ „2Jr— r

V h Kc
'rdr

No? -r 2 2 r.
2 ( n | \ p d> JV KH <r2-Km)2

where equation (72-B) is approximated from

dr

(72-B)

(72-C)

Na

SCinf^opp Rm

R +. m-r
*iiR c

!rdr - J
R +m 'rdr
R (Rc+r)

(73)

Three regions are used to evaluate equation (44) since the polarization

interaction of the electron with a molecule is not appropriate inside
44the hard core of the molecule. The results given in equations (72)

and (73) are obtained from simple bicentric coordinate integrations.

We have included the appropriate Lorentz screening factors in equations 

(72) and (73). The electronic polarization of the continuum is easily 

obtained from equations (49) and (50):

TOo^d R ,rJo ■v
(l43^oPd)

2 m oPd
ftrr

(1+T ^ oPd) Rd_RH

9 R,rIV —2 „2. + 2ta

r
(Rd-r )

"rdr

r+R,

LRd'r
}rdr (7 4-A)

(74-B)

Equation (51) yields for the molecular polarization the simple result:

■ 2 2

8o f "rdr

(75-A)

(75-B)
R,
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From equation (52) we obtain the repulsive interaction of an electron 

with the medium molecules, _i.e., with the first layer and the 

continuum:

<®1 |V0 !*1> = VoJ^ I* I2 r2dr (76)
c

Using the appropriate one-electron wavefunction i|; we have 

determined the electronic energies, E^, for the s and 2p states for 

the values of the parameter Vq equal to 0.0, 0.01838, 0.03675, and 

0.07350 Hartrees (which are respectively 0.0, 0.5, 1.0, and 2.0 eV)• 

The 12 molecule results are given in Tables II and III, and the 18 

molecule results in Tables IV and V.

We have also obtained the oscillator strengths for the 

various transitions from the relation

° P .  = H s I<1Sa 'ZI2PA10>|2 <” >

where AEpg is the Is to 2p transition energy and (^^| z |2p^ q )

is the value of the transition dipole. Values of the oscillator

strength were found to be fairly constant for the cavities

considered for a given value of V . Some values of the oscillatoro
strengths will be given in the next section.

We shall now consider how we have obtained the electronic

energies for the two-electron species. With the Hamiltonian 3C,

in equation (68) we have taken the parameters a and 6 from the
1 1one-electron calculations and have minimized the S and P energies
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TABLE II
ELECTRONIC ENERGIES AND WAVE FUNCTION PARAMETERS FOR 

ONE-ELECTRON-TWELVE-MOLECULE CAVITY

Rc a P Y < § E2p AEps
Vo = 0.00 eV
5.00 2.01 -0.141 0.36953 -0.19328 0.37734 -0.12902 0.06427
5.25 2.02 -0.136 0.35234 -0.18245 0.36328 -0.12328 0.05917
5.50 2.07 -0.134 0.33672 -0.17262 0.34922 -0.11793 0.05469
5.75 2.10 -0.131 0.32266 -0.16365 0.33828 -0.11293 0.05072
6.00 2.09 -0.126 0.30859 -0.15540 0.32578 -0.10824 0.04716
6.25 2.17 -0.126 0.29766 -0.14787 0.31641 -0.10388 0.04399
6.50 2.21 -0.124 0.28672 -0.14092 0.30547 -0.09979 0.04112
6.75 2.21 -0.120 0.27578 -0.13447 0.29609 -0.09595 0.03853
7.00 2.28 -0.120 0.26641 -0.12854 0.28828 -0.09236 0.03618

Vo = 0. 50 eV
5.00 1.91 -0.139 0.38359 -0.18620 0.38984 -0.11721 0.06900
5.25 1.90 -0.133 0.36641 -0.17550 0.37578 -0.11168 0.06382
5.50 1.88 -0.127 0.35078 -0.16576 0.36328 -0.10652 0.05925
5.75 1.87 -0.122 0.33672 -0.15688 0.35078 -0.10169 0.05519
6.00 1.91 -0.120 0.32578 -0.14877 0.33984 -0.09719 0.05158
6.25 1.89 -0.115 0.31328 -0.14131 0.33047 -0.09298 0.04833
6.50 1.88 -0.111 0.30234 -0.13445 0.32109 -0.08904 0.04541
6.75 1.89 -0.108 0.29297 -0.12814 0.31172 -0.08536 0.04278
7.00 1.89 -0.105 0.28359 -0.12229 0.30234 -0.08191 0.04038

aEnergies are in Hartree units.
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ELECTRONIC ENERGIES AND WAVE FUNCTION PARAMETERS FOR 

ONE-ELECTRON-TWELVE-MOLECULE CAVITY

Rc a 8 Y 5 AEPS
v0 = 1.00 eV
5.00 1.87 -0.141 0.39766 -0.17973 0.40234 -0.10583 0.07389
5.25 1.83 -0.133 0.38047 -0.16914 0.38828 -0.10053 0.06861
5.50 1.84 -0.129 0.36641 -0.15954 0.37578 -0.09558 0.06395
5.75 1.83 -0.124 0.35234 -0.15078 0.36484 -0.09096 0.05981
6.00 1.80 -0.118 0.33984 -0.14277 0.35391 -0.08665 0.05612
6.25 1.74 -0.111 0.32734 -0.13544 0.34453 -0.08262 0.05281
6.50 1.75 -0.108 0.31797 -0.12872 0.33516 -0.07888 0.04984
6.75 1.71 -0.103 0.30703 -0.12251 0.32578 -0.07536 0.04714
7.00 1.73 -0.101 0.29922 -0.11680 0.31797 -0.07210 0.04470
V0 = 2.00 eV
5.00 1.85 -0.149 0.42422 -0.16825 0.42734 -0.08435 0.08390
5.25 1.85 -0.144 0.40703 -0.15795 0.41484 -0.07956 0.07839
5.50 1.82 -0.137 0.39297 -0.14866 0.40234 -0.07512 0.07354
5.75 1.78 -0.130 0.37891 -0.14021 0.39141 -0.07099 0.06922
6.00 1.75 -0.124 0.36641 -0.13250 0.38203 -0.06714 0.06536
6.25 1.74 -0.120 0.35547 -0.12548 0.37266 -0.06358 0.06190
6.50 1.68 -0.113 0.34453 -0.11898 0.36328 -0.06023 0.05875
6.75 1.65 -0.108 0.33516 -0.11314 0.35391 -0.05720 0.05594
7.00 1.61 -0.103 0.32578 -0.10771 0.34766 -0.05434 0.05336

aEnergies are In Hartree units.
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TABLE IV
ELECTRONIC ENERGIES AND WAVE FUNCTION PARAMETERS FOR 

ONE-ELECTRON-TWELVE-MOLECULE CAVITY

Rc a 3 Y a
Els § E2P ae____EE._____

Vo = 0.00 eV
7.50 2.50 -0.134 0.27656 -0.15704 0.30234 -0.11763 0.03940
7.75 2.50 -0.131 0.26406 -0.15130 0.29453 -0.11404 0.03726
8.00 2.50 -0.128 0.25469 -0.14604 0.28672 -0.11071 0.03533
8.25 2.49 -0.124 0.24844 -0.14130 0.28047 -0.10767 0.03363
8.50 2.49 -0.121 0.24219 -0.13690 • 0.27422 -0.10482 0.03208
8.75 2.49 -0. 118 0.23594 -0.13268 0.26797 -0.10203 0.03065
9.00 2.50 -0.116 0.22969 -0.12916 0.26172 -0.09972 0.02944
9.25 2.49 -0.113 0.22656 -0.12581 0.25703 -0.09749 0.02832
9.50 2.50 -0.110 0.22656 -0.12301 0.25391 -0.09566 0.02735
VQ = 0.50 eV
7.50 2.43 -0.137 0.28906 -0.15216 0.31641 -0.10899 0.04317
7.75 2.44 -0.134 0.27969 -0.14656 0.30859 -0.10560 0.04096
8.00 2.37 -0.127 0.27031 -0.14139 0.30078 -0.10242 0.03897
8.25 2.49 -0.130 0.26406 -0.13671 0.29453 -0.09952 0.03719
8.50 2.49 -0.127 0.25781 -0.13242 0.28828 -0.09683 0.03559
8.75 2.49 -0.124 0.25156 -0.12832 0.28203 -0.09421 0.03410
9.00 2.50 -0.122 0.24531 -0.12484 0.27734 -0.09201 0.03283
9.25 2.50 -0.120 0.23906 -0.12154 0.27266 -0.08989 0.03165
9.50 2.49 -0.117 0.23594 -0.11872 0.26797 -0.08809 0.03063

aEnergies are in Hartree units.
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TABLE V
ELECTRONIC ENERGIES AND WAVE FUNCTION PARAMETERS FOR 

ONE-ELE CTRON-EIGHTEEN-MOLECULE CAVITY

a e Y Els 5 ___ fgE„ _
vo = 1.00 eV
7.50 2.19 -0.129 0.30156 -0.14791 0.32891 -0.10094 0.04697
7.75 2.16 -0.124 0.29219 -0.14237 0.32109 -0.09770 0.04468
S.00 2.12 -0.119 0.28281 -0.13729 0.31484 -0.09468 0.04260
8.25 2.14 -0.117 0.27656 -0.13268 0.30703 -0.09193 0.04075
8.50 2.21 -0.118 0.27031 -0.12846 0.30078 -0.08939 0.03907
8.75 2.22 -0.116 0.26406 -0.12459 0.29609 -0.08704 0.03755
9.00 2.22 -0.114 0.25781 -0.12111 0.28984 -0.08492 0.03619
9.25 2.16 -0.109 0.25156 -0.11791 0.28516 -0.08296 0.03495
9.50 2.28 -0.113 0.24844 -0.11518 0.28203 -0.08132 0.03387

v0 » 2.00 eV
7.50 2.14 -0.135 0.32656 -0.14080 0.35391 -0.08642 0.0543 8
7.75 1.97 -0.122 0.31406 -0.13540 0.34609 -0.08349 0.05192
8.00 1.88 -0.114 0.30469 -0.13050 0.33984 -0.08082 0.0496 8
8.25 1.91 -0.113 0.29844 -0.12607 0.33203 -0.07841 0.04766
8.50 1.97 -0.114 0.29219 -0.12203 0.32578 -0.076 20 0.04582
8.75 1.96 -0.Ill 0.28594 -0.11835 0.32109 -0.07420 0.04415
9.00 1.94 -0.108 0.27969 -0.11506 0.31484 -0.07243 0.04263
9.25 2.06 -0.112 0.27656 -0.11214 0.31016 -0.07088 0.04126
9.50 1.98 -0.106 0.27031 -0.10957 0.30547 -0.06955 0.04002

aEnergies are in Hartree units.
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with respect to the parameters y and | where E.. and E1 are the
S P

corresponding energies. This procedure was used so that some

comparison could be made with the other wavefunctions and so that

an enormous amount of computer time would not be required. The

energy contributions arising from the repulsive Coulomb potential

given in equation (53) were evaluated by converting the integrals to
52 53the F and G integrals that are common to atomic calculations. ’ 

Coulomb integrals in the off-diagonal elements of the Cl calculation 

were also evaluated with the F and G integrals (See Appendix I for 

the basic ideas concerning Cl calculations).

two-electron polarization interactions given in equations (57) and 

(58). We shall therefore give the specific result. For the 

diagonal elements of the Cl matrix obtained with the basis set

General relations have not been obtained for the

} we have found that

(78)
m

and

(fsCF lV9nn 0 H’SCF^
4m  p'oHd__

SCF ’ 2poj£ ' ̂ SCF

for the polarization contributions to and

m
(80)
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and

N i T̂TCtf p j ,
^*1 - l S 1V 2poJel'|ll <, > * 8 tt - , r TS-2pB 1=1 S-2pB ( V „ f d> d

fJV E H l*2p ( * > | V d i fo
‘d TIi , , x .2 2, ,2

R,-l
^ V U ‘;d 'EH|t2p125RJ B

(81)

for the polarization contributions to H00 where is the normalized.
22 2pB

radial wavefunction for 2pB^m which is obtained from minimizing the 
1 1P energy, E1 , and iL is the 2p - S part of equation (66)

p ^-2pB
(i*je., the part of equation (66) which is multiplied times C^)*

The polarization contributions to the off-diagonal elements H ^  

and H^were found to be

N N2of R , 9
^SCFli^ 2 p o X ^ l s_2  ̂= ”/3R6^o l),lsB(r)'1,2pB<“r)r dr  ̂ (82)

B m

and

/. u.c I 4 m oPd 2 rf.Rd"RH |* , . , . 3, ,2
^SCF‘ 2poft^l  ̂ ” 8tt - 3 J ^ls ^ ^ P p  r ^so* zpoz is_2p^ (l-iy^oPd) ^ d  B B

(83)

We have omitted all of the integrals that are zero because of the 

orthogonality of Legendre polynomials.
1A Cl procedure was not carried out for the P excited 

state since correlation is not expected to be large for this state 

(See Appendix I). The polarization contribution of the two-electron 

potentials for the ^P state were found to be given by



(85)

where ^  is given in equation (67).
P
We have considered the same values of V for the two-o

electron species that were used for the one-electron species. The 

results for the 12 molecule calculations are given in Tables VI 

through VIII and the results for the 18 molecule calculations are given 

in Tables IX through XI. Oscillator strengths have also been 

calculated for the two-electron species by using Is and 2p,, iniS JL>
1 1equation (77) with the uncorrelated S and P transition energy.

Several of these values will be given in the next section.
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TABLE VI

ELECTRONIC ENERGIES AND WAVE FUNCTION PARAMETERS FOR 

TWO-ELECTRON-TWELVE-MOLECULE CAVITY

Rc a P Y
a

E^s § _ f k _ . ____ -6e2

Vo = 
4 . 5 0

0 . 0 0
2 . 0 9

eV
- 0 . 1 2 6 0 . 4 2 5 7 8 - 0 . 4 3 5 3 7 0 . 4 5 0 0 0 - 0 . 3 1 2 2 6 0 . 1 2 3 1 1 0 . 0 1 7 6 0

4 . 7 5 2 . 0 9 - 0 . 1 2 6 0 . 3 9 4 5 3 - 0 . 4 0 4 0 8 0 . 4 1 8 7 5 - 0 . 2 9 1 8 7 0 . 1 1 2 2 1 0 . 0 1 7 3 6
5 . 0 0 2 . 0 9 - 0 . 1 2 6 0 . 3 6 6 4 1 - 0 . 3 7 6 2 9 0 . 3 9 0 6 3 - 0 . 2 7 3 3 6 0 . 1 0 2 9 2 0 . 0 1 6 9 8
5 . 2 5 2 . 0 9 - 0 . 1 2 6 0 . 3 3 9 8 4 - 0 . 3 5 1 0 6 0 . 3 6 2 5 0 - 0 . 2 5 6 8 6 0 . 0 9 4 2 0 0 . 0 1 6 1 8
5 . 5 0 2 . 0 9 - 0 . 1 2 6 0 . 3 1 7 9 7 - 0 . 3 2 8 7 7 0 . 3 4 0 6 2 - 0 . 2 4 1 3 1 0 . 0 8 7 4 5 0 . 0 1 5 6 6
5 . 7 5 2 . 0 9 - 0 . 1 2 6 0 . 2 9 9 2 2 - 0 . 3 0 8 6 9 0 . 3 2 1 8 7 - 0 . 2 2 7 0 5 0 . 0 8 1 6 4 0 . 0 1 5 2 2
6 . 0 0 2 . 0 9 - 0 . 1 2 6 0 . 2 8 2 0 3 - 0 . 2 9 0 4 5 0 . 3 0 6 2 5 - 0 . 2 1 3 8 4 0 . 0 7 6 6 2 0 . 0 1 4 8 9
6 . 2 5 2 . 0 9 - 0 . 1 2 6 0 . 2 6 7 9 7 - 0 . 2 7 3 4 6 0 . 2 9 0 6 2 - 0 . 2 0 1 9 3 0 . 0 7 1 5 2 0 . 0 1 4 3 5
6 . 5 0 2 . 0 9 - 0 . 1 2 6 0 . 2 5 7 0 3 - 0 . 2 5 8 4 3 0 . 2 3 1 2 5 - 0 . 1 9 0 5 7 0 . 0 6 7 8 6 0 . 0 1 4 5 7

X> 3
4 . 5 0

0 . 5 0
1 . 8 9

eV
- 0 . 1 1 5 0 . 4 2 4 2 2 - 0 . 4 3 2 8 3 0 . 4 4 6 8 7 - 0 . 3 0 1 2 8 0 . 1 3 1 5 4 0 . 0 1 5 6 4

4 . 7 5 1 . 8 9 - 0 . 1 1 5 0 . 3 9 2 9 7 - 0 . 4 0 1 2 3 0 . 4 1 5 6 2 - 0 . 2 8 0 4 9 0 . 1 2 0 7 4 0 . 0 1 5 1 9
5 . 0 0 1 . 8 9 - 0 . 1 1 5 0 . 3 6 4 8 4 - 0 . 3 7 3 1 4 0 . 3 8 7 5 0 - 0 . 2 6 1 5 8 0 . 1 1 1 5 5 0 . 0 1 4 6 2
5 . 2 5 1 . 8 9 - 0 . 1 1 5 0 . 3 3 9 8 4 - 0 . 3 4 8 0 4 0 . 3 6 2 5 0 - 0 . 2 4 4 3 1 0 . 1 0 3 7 3 0 . 0 1 4 0 0
5 . 5 0 1 . 8 9 - 0 . 1 1 5 0 . 3 1 7 9 7 - 0 . 3 2 5 5 1 0 . 3 4 0 6 2 - 0 . 2 2 8 5 0 0 . 0 9 7 0 1 0 . 0 1 3 3 8
5 . 7 5 1 . 8 9 - 0 . 1 1 5 0 . 2 9 9 2 2 - 0 . 3 0 5 2 0 0 . 3 2 1 8 7 - 0 . 2 1 4 0 1 0 . 0 9 1 1 9 0 . 0 1 2 8 4
6 . 0 0 1 . 8 9 - 0 . 1 1 5 0 . 2 8 3 5 9 - 0 . 2 8 6 8 0 0 . 3 0 6 2 5 - 0 . 2 0 0 7 3 0 . 0 8 6 0 7 0 . 0 1 2 4 5
6 . 2 5 1 . 8 9 - 0 . 1 1 5 0 . 2 6 9 5 3 - 0 . 2 6 9 9 7 0 . 2 9 3 7 5 - 0 . 1 8 8 4 1 0 . 0 8 1 5 6 0 . 0 1 2 2 6
6 . 5 0 1 . 8 9 - 0 . 1 1 5 0 . 2 6 0 1 6 - 0 . 2 5 4 6 7 0 . 2 8 4 3 7 - 0 . 1 7 7 0 6 0 . 0 7 7 6 1 0 . 0 1 2 4 2

aEnergies are in Hartree units.
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TABLE VII

ELECTRONIC ENERGIES AND WAVE FUNCTION PARAMETERS FOR 
TWO-ELECTRON-TWELVE-MOLECULE CAVITY

a P Y 5 Ei P
AESps -6E2

Vo = 1 . 0 0 eV
5 . 0 0 1 . 8 3 - 0 . 1 2 9 0 . 3 4 7 6 6 - 0 . 3 7 0 6 4 0 . 3 7 1 8 7 - 0 . 2 5 1 7 2 0 . 1 1 8 9 2 0 . 0 1 1 4 0
5 . 2 5 1 . 8 3 - 0 . 1 2 9 0 . 3 2 5 7 8 - 0 . 3 4 4 9 4 0 . 3 5 0 0 0 - 0 . 2 3 3 6 4 0 . 1 1 1 3 0 0 . 0 1 0 8 7
5 . 5 0 1 . 8 3 - 0 . 1 2 9 0 . 3 1 0 1 6 - 0 . 3 2 1 8 5 0 . 3 3 4 3 7 - 0 . 2 1 7 1 1 0 . 1 0 4 7 3 0 . 0 1 0 7 8
5 . 7 5 1 . 8 3 - 0 . 1 2 9 0 . 2 9 6 0 9 - 0 . 3 0 0 1 1 0.  3187 5 - 0 . 2 0 1 9 2 0 . 0 9 8 1 9 0 . 0 1 0 5 1
6 . 0 0 1 . 8 3 - 0 . 1 2 9 0 . 2 8 5 1 6 - 0 . 2 8 0 2 9 0 . 3 0 9 3 7 - 0 . 1 8 7 6 7 0 . 0 9 2 6 2 0 . 0 1 0 8 4
6 . 2 5 1 . 8 3 - 0 . 1 2 9 0 . 2 7 7 3 4 - 0 . 2 6 1 5 7 0 . 3 0 0 0 0 - 0 . 1 7 4 5 2 0 . 0 8 7 0 5 0 . 0 1 1 1 4
6 . 5 0 1 . 8 3 - 0 . 1 2 9 0 . 2 6 9 5 3 - 0 . 2 4 4 0 8 0 . 2 9 3 7 5 - 0 . 1 6 1 9 1 0 . 0 8 2 1 8 0 . 0 1 1 7 7

Vo = 2 . 0 0 eV
5 . 2 5 1 . 7 8 - 0 . 1 3 0 0 . 3 2 8 9 1 - 0 . 3 4 1 6 2 0 . 3 5 6 2 5 - 0 . 2 0 8 1 3 0 . 1 3 3 4 9 0 . 0 0 9 1 5
5 . 5 0 1 . 7 8 - 0 . 1 3 0 0 . 3 1 3 2 8 - 0 . 3 1 7 5 8 0 . 3 4 0 6 2 - 0 . 1 9 1 2 7 0 . 1 2 6 3 1 0 . 0 0 9 0 2
5 . 7 5 1 . 7 8 - 0 . 1 3 0 0 . 3 0 2 3 4 - 0 . 2 9 5 1 1 0 . 3 2 6  56 - 0 . 1 7 5 8 2 0 . 1 1 9 2 9 0 . 0 0 8 9 3
6 . 0 0 1 . 7 8 - 0 . 1 3 0 0 . 2 9 2 9 7 - 0 . 2 7 4 0 2 0 . 3 1 5 6 2 - 0 . 1 6 1 4 3 0 . 1 1 2 5 9 0 . 0 0 9 0 5
6 . 2 5 1 . 7 8 - 0 . 1 3 0 0 . 2 8 5 1 6 - 0 . 2 5 4 4 3 0 . 3 0 9 3 7 - 0 . 1 4 7 9 0 0 . 1 0 6 5 3 0 . 0 0 9 6 3
6 . 5 0 1 . 7 8 - 0 . 1 3 0 0 . 2 7 8 9 1 - 0 . 2 3 5 8 1 0 . 3 0 3 1 2 - 0 . 1 3 5 1 9 0 . 1 0 0 6 2 0 . 0 1 0 2 0

aEnergies are in Hartree units.
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TABLE VIII

RESULTS OF CONFIGURATION INTERACTION FOR 
TWO-ELECTRON-TWELVE-MOLECULE CAVITY

Rc s
-6E2 c i c 2

II o • o o
1

eV
A . 50 - 0 . 4 3 5 3 7 0 . 0 1 7 6 0 - 0 . 9 5 4 3 1 0 . 2 9 8 8 3
4 .  75 - 0 . 4 0 4 0 8 0 . 0 1 7 3 6 - 0 . 9 5 0 2 2 0 . 3 1 1 5 8
5 . 0 0 - 0 . 3 7 6 2 9 0 . 0 1 6 9 8 - 0 . 9 4 6 6 9 0 . 3 2 2 1 4
5 . 2 5 - 0 . 3 5 1 0 6 0 . 0 1 6 1 8 - 0 . 9 4 4 5 8 0 . 3 2 8 2 7
5 . 5 0 - 0 . 3 2 8 7 7 0 . 0 1 5 6 6 - 0 . 9 4 2 2 3 0 . 3 3 4 9 5
5 .  75 - 0 . 3 0 8 6 9 0 . 0 1 5 2 2 - 0 . 9 3 9 9 7 0 .  3 41 2 6
6 . 0 0 - 0 . 2 9 0 4 5 0 . 0 1 4 8 9 - 0 . 9 3 7 4 4 0 . 3 4 8 1 6
6 . 2 5 - 0 . 2 7 3 4 6 0 . 0 1 4 3 5 - 0 . 9 3 5 7 4 0 . 3 5 2 7 0
6 . 5 0 - 0 . 2 5 8 4 3 0 . 0 1 4 5 7 - 0 . 9 3 0 9 5 0 . 3 6 5 1 4

V0 = 0 . 5 0 eV
4 . 5 0 - 0 . 4 3 2 8 3 0 . 0 1 5 6 4 - 0 . 9 6 2 8 9 0 . 2 6 9 9 1
4 .  75 - 0 . 4 0 1 2 3 0 . 0 1 5 1 9 - 0 . 9 6 0 6 0 0 . 2 7 7 9 4
5 . 0 0 - 0 . 3 7 3 1 4 0 . 0 1 4 6 2 - 0 . 9 5 8 9 2 0 . 2 8 3 6 7
5 .  25 - 0 . 3 4 8 0 4 0 . 0 1 4 0 0 - 0 . 9 5 7 7 8 0 . 2 8 7 5 0
5 . 5 0 - 0 . 3 2 5 5 1 0 . 0 1 3 3 8 - 0 . 9 5 6 9 8 0 . 2 9 0 1 4
5 .  75 - 0 . 3 0 5 2 0 0 . 0 1 2 8 4 - 0 . 9 5 6 2 4 0 . 2 9 2 5 8
6 . 0 0 - 0 . 2 8 6 8 0 0 . 0 1 2 4 5 - 0 . 9 5 5 1 7 0 . 2 9 6 0 4
6 .  25 - 0 . 2 6 9 9 7 0 . 0 1 2 2 6 - 0 . 9 5 3 4 4 0 . 3 0 1 5 7
6 . 5 0 - 0 . 2 5 4 6 7 0 . 0 1 2 4 2 - 0 . 9 5 0 3 7 0 . 3 1 1 1 3oo.*■4n>c eV
5 . 0 0 - 0 . 3 7 0 6 4 0 . 0 1 1 4 0 - 0 . 9 7 1 2 6 0 . 2 3 8 0 1
5 . 2 5 - 0 . 3 4 4 9 4 0 . 0 1 0 8 7 - 0 . 9 7 0 8 7 0 . 2 3 9 6 2
5 . 5 0 - 0 . 3 2 1 8 5 0 . 0 1 0 7 8 - 0 . 9 6 9 3 0 0 . 2 4 5 8 7
5 .  75 - 0 . 3 0 0 1 1 0 . 0 1 0 5 1 - 0 . 9 6 8 2 3 0 . 2 5 0 0 5
6 . 0 0 - 0 . 2 8 0 2 9 0 . 0 1 0 8 4 - 0 . 9 6 5 1 0 0 . 2 6 1 8 8
6 . 2 5 - 0 . 2 6 1 5 7 0 . 0 1 1 1 4 - 0 . 9 6 1 8 0 0 . 2 7 3 7 6
6 . 5 0 - 0 . 2 4 4 0 8 0 . 0 1 1 7 7 - 0 . 9 5 6 9 2 0 . 2 9 0 3 6oo.(V

I

II

>C eV
5 . 2 5 - 0 . 3 4 1 6 2 0 . 0 0 9 1 5 - 0 . 9 8 0 1 5 0 . 1 9 8 2 7
5 . 5 0 - 0 . 3 1 7 5 8 0 . 0 0 9 0 2 - 0 . 9 7 9 3 6 0 . 2 0 2 1 2
5 . 7 5 - 0 . 2 9 5 1 1 0 . 0 0 8 9 3 - 0 . 9 7 8 4 3 0 . 2 0 6 5 9
6 . 0 0 - 0 . 2 7 4 0 2 0 . 0 0 9 0 5 - 0 . 9 7 6 8 6 0 . 2 1 3 8 6
6 . 2 5 - 0 . 2 5 4 4 3 0 . 0 0 9 6 3 - 0 . 9 7 3 8 2 0 . 2 2 7 3 2
6 . 5 0 - 0 . 2 3 5 8 1 0 . 0 1 0 2 0 - 0 . 9 7 0 4 8 0 . 2 4 1 1 9

aEnergies are in Hartree units*,



TABLE IX

ELECTRONIC ENERGIES AND WAVE FUNCTION PARAMETERS FOR 
TWO-MOLECULE-EIGHTEEN-MOLECULE CAVITY

Rc a e Y

M> = 0 . 0 0 eV
7 . 0 0 2 . 5 0 - 0 . 1 2 8 0 . 2 6 1 7 2 - 0
7 . 2 5 2 . 5 0 - 0 . 1 2 8 0 . 2 5 0 7 8 - 0 ,
7 . 5 0 2 . 5 0 - 0 . 1 2 8 0 . 2 3 9 8 4 - 0
7 . 7 5 2 . 5 0 - 0 . 1 2 8 0 . 2 3 2 0 3 - 0
8 . 0 0 2 . 5 0 - 0 . 1 2 8 0 . 2 2 5 7 8 -0 ,
8 . 2 5 2 . 5 0 - 0 . 1 2 8 0 . 2 1 7 9 7 - 0
8 . 5 0 2 . 5 0 - 0 . 1 2 8 0 . 2 1 3 2 8 - 0
8 . 7 5 ' 2 . 5 0 - 0 . 1 2 8 0 . 2 0 8 5 9 - 0
9 . 0 0 2 . 5 0 - 0 . 1 2 8 0 . 2 0 3 9 1 - 0

v0 = 0 . 5 0 eV
7 . 0 0 2 . 4 3 - 0 . 1 3 7 0 . 2 6 6 4 1 - 0
7 . 2 5 2 . 4 3 - 0 . 1 3 7 0 . 2 5 5 4 7 - 0
7 . 5 0 2 . 4 3 - 0 . 1 3 7 0 . 2 4 7 6 6 - 0
7 . 7 5 2 . 4 3 - 0 . 1 3 7 0 . 2 3 9 8 4 - 0
8 . 0 0 2 . 4 3 - 0 . 1 3 7 0 . 2 3 3 5 9 - 0
8 . 2 5 2 . 4 3 - 0 . 1 3 7 0 . 2 2 8 9 1 - 0
8 . 5 0 2 . 4 3 - 0 . 1 3 7 0 . 2 2 5 7 8 - 0
8 . 7 5 2 . 4 3 - 0 . 1 3 7 0 . 2 2 1 0 9 - 0 ,
9 . 0 0 2 . 4 3 - 0 . 1 3 7 0 . 2 1 7 9 7 -0 .

5 AE2ps -6E2

0 . 2 7 7 3 4 - 0 . 2 4 0 6 2 0 . 0 6 8 5 7 0 . 0 1 0 5 4
0 . 2 6 7 9 7 - 0 . 2 2 9 8 1 0 . 0 6 6 2 3 0 . 0 1 0 6 7
0 . 2 5 8 5 9 - 0 . 2 1 9 7 4 0 . 0 6 3 9 4 0 . 0 1 0 6 6
0 . 2 5 0 7 8 - 0 . 2 1 0 5 6 0 . 0 6 1 8 4 0 . 0 1 0 7 9
0 . 2 4 1 4 1 - 0 . 2 0 2 0 4 0 . 0 5 9 4 6 0 . 0 1 0 6 1
0 . 2 3 5 1 6 - 0 . 1 9 3 8 6 0 . 0 5 7 5 3 0 . 0 1 0 7 5
0 . 2 2 7 3 4 - 0 . 1 8 6 4 1 0 . 0 5 5 2 8 0 . 0 1 0 6 1
0 . 2 2 1 0 9 - 0 . 1 7 9 3 8 0 . 0 5 3 2 6 0 . 0 1 0 6 2
0 . 2 1 3 2 8 - 0 . 1 7 2 7 5 0 . 0 5 0 9 0 0 . 0 1 0 2 3

0 . 2 8 3 5 9 - 0 . 2 2 3 0 2 0 . 0 7 1 9 8 0 . 0 1 0 6 3
0 . 2 7 4 2 2 - 0 . 2 1 2 2 0 0 . 0 6 9 3 5 0 . 0 1 0 7 3
0 . 2 6 4 8 4 - 0 . 2 0 2 3 0 0 . 0 6 6 6 8 0 . 0 1 0 7 6
0 . 2 5 7 0 3 - 0 . 1 9 2 9 7 0 . 0 6 4 2 1 0 . 0 1 0 8 8
0 . 2 4 9 2 2 - 0 . 1 8 4 3 1 0 . 0 6 1 6 9 0 . 0 1 0 9 1
0 . 2 4 1 4 1 - 0 . 1 7 6 2 7 0 . 0 5 9 1 1 0 . 0 1 0 8 6
0 . 2 3 3 5 9 - 0 . 1 6 8 8 5 0 . 0 5 6 4 7 0 . 0 1 0 7 1
0 . 2 2 7 3 4 - 0 . 1 6 1 7 1 0 . 0 5 4 1 3 0 . 0 1 0 6 9
0 . 2 2 1 0 9 - 0 . 1 5 5 1 5 0 . 0 5 1 7 7 0 . 0 1 0 6 0

30 9 2 0
29 60  $
2 8 3 6 8
2 7 2 3 9
2 6 1 5 0
2 5 1 3 9
2 4 1 7 0
2 3 2 6 4
2 2 3 6 4

29 5 0 0
2 8 1 5 5
26 8 9 8
2 5 7 1 8
2 4 6 0 0
2 3 5 3 9
2 2 5 3 2
2 1 5 8 4
2 06 9 2

aEnergies are in Hartree units.



TABLE X

ELECTRONIC ENERGIES AND WAVE FUNCTION PARAMETERS FOR 

TWO- ELECTRON- EIGHTEEN- MOLECULE CAVITY

Rc O' P Y

vo = 1 . 0 0 e V
7 . 0 0 2 . 1 9 - 0 . 1 2 9 0 . 2 7 5 7 8 - 0
7 . 2 5 2 . 1 9 - 0 . 1 2 9 0 . 2 6 3 2 8 - 0
7 . 5 0 2 . 1 9 - 0 . 1 2 9 0 . 2 5 5 4 7 - 0 ,
7.  75 2 . 1 9 - 0 . 1 2 9 0 . 2 4 9 2 2 - 0 ,
H. 00 2 . 1 9 - 0 . 1 2 9 0 . 2 4 2 9 7 -0 ,
H.25 2 . 1 9 - 0 . 1 2 9 0 . 2 3 3 2 8 - 0
8 . 5 0 2 . 1 9 - 0 . 1 2 9 0 . 2 3 3 5 9 - 0

^  = 2 . 0 0 eV
7 . 0 0 1 . 8 8 - 0 . 1 1 4 0 . 2 9 1 4 1 - 0
7 . 2 5 1 . 8 8 - 0 . 1 1 4 0 . 2 8 0 4 7 - 0
7 . 5 0 1 . 8 8 - 0 . 1 1 4 0 . 2 7 1 0 9 - 0
7 . 7 5 1 . 8 8 - 0 . 1 1 4 0 . 2 6 3 2 8 - 0
8 . 0 0 1 . 8 8 - 0 . 1 1 4 0 . 2 5 7 0 3 - 0
8 . 2 5 1 . 8 8 - 0 . 1 1 4 0 . 2 5 2 3 4 - 0
8 . 5 0 1 . 8 8 - 0 . 1 1 4 0 . 2 4 7 6 6 - 0

5 ____EJl>___ ae!ps -6E2

0 . 2 9 1 4 1 - C . 2 0 5 8 6 0 . 0 7 5 8 1 0 . O i l  11
0 . 2 8 2 0 3 - 0 . 1 9 5 0 8 0 . 0 7 3 1 8 0 . 0 1 1 1 8
0 . 2 7 2 6 6 - C . 1852 5 0 . 0 7 0 4 2 0 . 0 1 1 2 1
0 . 2 6 4 8 4 - 0 .  17 6 1 4 0 . 0 6 7 8 5 0 . 0 1 1 3 8
0 . 2 5 7 0 3 - 0 . 1 6 7 5 7 0 . 0 6 5 2 8 0 . 0 1 1 4 2
0 . 2 5 0 7 8 - 0 . 1 5 9 6 4 0 . 0 6 2 9 3 0 . 0 1 1 6 4
0 . 2 4 2 9 7 - 0 . 1 5 2 1 8 0 . 0 6 0 2 8 0 . 0 1 1 4 5

0 . 3 0 8 5 9 - 0 . 1 7 3 4 8 0 . 0 8 4 9 0 0 . 0 1 2 3 2
0 . 2 9 9 2 2 - 0 . 1 6 3 1 9 0 . 0 8 2 3 6 0 . 0 1 2 4 8
0 . 2 9 1 4 1 - 0 . 1 5 3 6 8 0 . 0 8 0 0 6 0 . 0 1 2 7 6
0 . 2 8 3 5 9 - 0 . 1 4 4 9 4 0 . 0 7 7 7 7 0 . 0 1 2 9 4
0 . 2 7 7 3 4 - 0 . 1 3 6 9 0 0 . 0 7 5 7 2 0 . 0 1 3 3 0
0 . 2 6 9 5 3 - 0 . 1 2 9 5 4 0 . 0 7 3 3 6 0 . 0 1 3 2 9
0 . 2 6 3 2 8 - 0 . 1 2 2 6 8 0 . 0 7 1 2 7 0 . 0 1 3 4 3

xs
2 8 1 67
2 6 8 2 6
2 5 5 6 724400
2 3 2 84
2 2 2 5 7
2 1 2 4 6

2 5 8 38
2 4 5 5 4
2 3 3 7 4
2 2 2 7 0
2 1 2 6 2
2 0 2 9 0
193 95

aEnergies are in Hartree units.
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TABLE XI

RESULTS OF CONFIGURATION INTERACTION FOR 
TWO-ELECTRON-EIGKTEEN-MOLECULE CAVITY

Rc E*s -6E2 C2

< o II o • o o eV
7.00 -0.30920 0.01054 -0.95289 0.30333
7.25 -0.29604 0.01067 -0.95037 0.311 14
7.50 -0.28363 0.01066 -0.94845 0.31694
7.75 -0.27239 0.01079 -0.94580 0.32476
8.00 -0.26150 0.01061 -0.94472 0.32787
8.25 -0.25139 0.01075 -0.94177 0.33625
8.50 -0.24170 0.01061 -0.94037 0.34015
8. 75 -0.23264 0.01062 -0.93798 C.34670
9.00 -0.22364 0.01023 -0.93785 0.34704

< 0 n o o U) o eV
7.00 -0.29500 0.01063 -0.95537 0.29542
7.25 -0.28155 0.01073 -0.95302 0.30292
7.50 -0.26898 0.01076 -0.95100 0.30920
7.75 -0.25718 0.01088 -0.94838 0.31712
8.00 -0.24600 0.01091 -0.94609 0.32391
8. 25 -0.23539 0.01086 -0.94416 0.32949
8.50 -0.22532 0.01071 -0.94265 0.33378
8. 75 -0.21584 0.01069 -0.94032 0.34028
9.00 -0.20692 0.01060 -0.93835 C.34569

< o ii • o o eV
7.00 -0.28167 0.01111 -C.95603 0.29326
7.25 -0.26826 0.01118 -0.95390 0.30014
7. 50 -0.25567 0.01121 -0.95196 0.30623
7.75 -0.24400 0.01138 -0.94933 0.31429
8.00 -0.23284 0.01142 -0.94716 0.32076
8.25 -0.22257 0.01164 -0.94397 0.33002
8. 50 -0.21246 0.01145 -0.94272 0.33358

VQ = 2.00 eV
7.00 -0.25838 0.01232 -0.95638 0.29213
7.25 -0.24554 0.01248 -0.95426 0.29897
7.50 -0.23374 0.01276 -0.95163 0.30724
7.75 -0.22270 0.01294 -0.94935 0.31423
8.00 -0.21262 0.01330 -0.94629 0.32332
8.25 -0.20290 0.01329 -0.94471 0.32792
8.50 -0.19395 0.01343 -0.94239 0.33453

QEnergies are in Hartree units.
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D. STABILITY OF CAVITIES

The primary reason the cavity exists is because the

molecules oriented on the surface of the cavity by the enclosed 

charge repel one another. Two factors must be taken into account 

in addition to the electronic energy in order to determine the most 

stable cavity. As was mentioned in the Introduction, E is

negligible and E is not adequately handled by scaled particleS L
theory. Most of the surface energy can be determined by considering 

the short-range interactions between the molecules of the first 

coordination shell. Of prime importance are the dipole-dipole 

and hydrogen-hydrogen repulsions. With the dipoles on the surface 

of the cavity centrally oriented, every dipole will repel the other 

dipoles. This orientation will also place the three hydrogen atoms 

of the ammonia molecule on the inner surface of the cavity. Because 

of their orientation, a hydrogen atom of one surface molecule could 

be as much as 3.5 aQ closer to a hydrogen atom of another surface 

molecule than the centers of the two molecules. This situation 

renders the normal molecular pair potentials considered in terms 

of a distance between centers of the molecules invalid.

With the point dipole approximation the dipole-dipole 

repulsion between two molecules can be written in the form

pv

(86)
3 5r r
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where p,̂ and p^ are the dipole moment vectors and r is the interdipole 

vector of magnitude r. Since the dipoles are symmetrically distributed 

on the surface of the cavity and the angles obtained from the dot 

products of the vectors do not change as the size of the cavity is 

increased, the dipole-dipole interaction for a given configuration 

of molecules can be written in the form

2eu,
R3 W >m

where e is a constant that is determined by the molecular configuration.

For the twelve dipole ccp structure e is equal to 41.04 and for the

eighteen dipole structure e is 906.6. The value of the dipole moment

y, might be taken as Uie££ of equation (20) but this assumes that the
46dipoles are not polarizable. Since they are, p, is replaced by

zot

^ = l*eff + (88)
m

This factor is extremely important for cavities with larger z 

values.

Since the exact hydrogen-hydrogen distances axie difficult

to determine and the magnitude of the repulsion between these atoms

is not accurately known, some assumptions will have to be made.

We shall assumei that the hydrogen-hydrogen potential for water

molecules is adequate for ammonia molecules and shall use the one
53obtained by Eisenberg and Kauzman

jL, „ = {15.94e 2* ^ rh  ̂ (Hartrees) (89)H-H. o
h
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which has a minimum at the hydrogen-hydrogen distances, r^, of

4.69 a . An estimate is now needed for the interatomic distance o
as a function Rc (or R^). By using the charge densities of Bader 

49and Jones as a model it is easily seen that a circle drawn in

the plane of the three hydrogen atoms that passes through the

atomic nuclei would have a radius of about 1.76 a . Witho
Rjj = 1.85 aQ and using the charge densities we find that the

distance from the center of the cavity to the center of one of

the circles is approximately R£ + 1.11 aQ. By using several

trigonometric relations, the distance between the centers of the

circles for the nearest neighbor molecules is R + 1.11 a for° c o
the twelve molecule cavities and [0.765(Rc + 1.11 aQ)] fo* the 

eighteen molecule cavities. From these relations we can approximate 

the hydrogen-hydrogen separations as a function of Rc and the 

radius of the circle in the hydrogen plane R^ by

R + 1.11 a - 2R (90)c o p

for the twelve molecule model and

0.765(R + 1.11 a ) - 2R (91)c o p  x

for the eighteen molecule model. The most important part of 

equation (89) is the repulsive interaction since the attractive 

part is cancelled, in part at least, by the dipole-quadrupole 

repulsions between the molecules. From the calculations of
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Buckingham'*'* for an octahedral configuration of molecules, the

dipole-quadrupole repulsions for the models that we have considered

are estimated to be about fifteen percent of the dipole-dipole

result without polarization. From the size and dependence of the

dipole-quadrupole repulsion (which goes as 1/R^) and of the attractive

part of equation (89), it seems reasonable to neglect both of these

contributions. Before such a calculation was carried out, we had to

decide on a reasonable value for since the hydrogen atoms are not

always along the intermolecular axis. Since the molecules are

relatively free to rotate around the dipole axis, we have estimated

that a smaller value for R than the maximum 1.76 a would representP o
some average effect. The value should not be very much smaller than

the maximum since the number of hydrogen-hydrogen interactions that

are important would increase as the separation distance increases

on rotating the molecules. As an example let us consider two ammonia

molecules with their hydrogen atoms in a plane. If we now place the

molecules so that two hydrogen atoms are very close we would have a

strong repulsive interaction. If we now hold one of the molecules

fixed but rotate the other molecule to a position where a hydrogen

atom bisects a hydrogen-hydrogen bond angle, we have to consider

two interactions which are not very much different from the one

interaction considered above. With these relations in mind we have

assumed that R can have a value in the range 1.25 to 1.50 a .p o
Because of the rapid decrease in the repulsive potential as Rc is
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increased, only nearest neighbor interactions have been considered.

A value of R equal to 1.35 a was used to determine Em. The values p ^ o T
for the minimum of E^ for the species considered are given in

Table XEI and X U  • The choice of used is probably not optimal for

obtaining agreement with experimental results (Table I), but it

illustrates one of the most important features which must be present

in the actual species. These features will be elaborated on in the

Discussion (Section E).

The heat of solution must be evaluated by using equation

(24), but the proper calculation of £ is difficult. From simple

structural considerations, £ should include the loss of total

interactions of only one molecule. This energy lost from the

decrease of molecule-molecule interactions was estimated to be

about the energy needed to evaporate one molecule from the surface

of the liquid, _i*_e«s the heat of evaporation of one molecule,

AHyap ( = 0.00889 Hartrees). We have neglected the surface energy

in minimizing the cavity energy since this energy is not the

determining factor as regards cavity size. We have therefore

included the surface energy in the energy £. By using the surface

energy we will compensate for the neglect of long-range interactions

of the surface molecules and their kinetic energy changes. We

obtained the surface energy from equation (22) using the surface

tension of equatLon..(23) • The experimental planar surface tension"^

of 40 dynes/cm was used with a 8 equal to 2.46 aQ, obtained from heat
31 57of evaporation data. * The decrease in the number of hydrogen



bonds that a surface molecule could form might be included in £, but

this energy would have a great uncertainty. We have tried to account

for some of this energy in the calculation of n.

To calculate n we have used a relation similar to the one 
23 26givep. by Land and O'Reilly * (equation (29)). The relation used is

n = r ^ r  V r> His l2r2dr + Go(Rc)p(Rc):i (92)R AQ
where we have included the first coordination shell of molecules

in the determination of TI. This seems to be a reasonable procedure

for obtaining the energy required to polarize all of the permanent

dipoles in the solvent. The energy II for the two electron species

was obtained by using i|r.. instead of iL in equation (92) and
B A

multiplying the result by four. This procedure accounts for the

additional electron in the cavity.

In Table XII are the combined results obtained for the

solvation energies,, transition energies, and oscillator strengths

of the most stable cavity for the one-electron species using the

values of V considered. The results for the two-electron species o r
are given in Table XIII. The interpretation of these results will 

be given in the next section.



TABLE XII

RESULTS FOR MOST STABLE ONE-ELECTRON CAVITIES OF 
THE TWELVE- AND EIGHTEEN-MOLECULE MODELS®

V (eV) R (a ) o ' c o EiIs 0ps AEps Est n *1 -AHl

12 Molecule Model 

0.0 6.25 -0.1479 0.39 0.044 0.0101 0.0296 -0.1136 0.0650

0.5 6.30 -0.1400 0.38 0.048 0.0103 0.0298 -0.1052 0.0562

1.0 6.35 -0.1327 0.38 0.051 0.0104 0.0294 -0.0976 0.0489

2.0 6.40 -0.1203 0.38 0.059 0.0105 0.0287 -0.0853 0.0372

18 Molecule Model 

0.0 8.75 -0.1326 0.42 0.031 0.0189 0.0264 -0.0987 0.0445

0.5 8.75 -0.1283 0.41 0.034 0.0189 0.0271 -0.0921 0.0372

1.0 9.25 -0.1179 0.42 0.035 0.0211 0.0262 -0.0868 0.0306

2.0 9.50 -0.1026 0.42 0.040 0.0223 0.0262 -0.0795 0.0221

clV is the parameter which defines the energy of a quasi-free electron. The cavity size is R and 
tSe total energy, E^, is the sum of the electronic energy, Els> and the surface molecule-molecule 
interactions. The energy to orient the permanent dipoles is given by n« The Franck-Condon 
transition energy is AEpS with oscillator:.strength OpS. The heat of solution is All energies
are in Hartrees.



TABLE XIII
RESULTS FOR MOST STABLE TWO-ELECTRON CAVITIES OF 

THE TWELVE- AND EIGHTEEN-MOLECULE MODELS3

V (eV) R (a ) 0 ' c 0' h s
0ps AE2ps Est n et -ah2 AH21

12 Molecule Model 
0.0 5.75 -0.3087 1.11 0.082 0.0088 0.1261 -0.2320 0.0882 0.0209
0.5 5.75 -0.3052 1.29 0.091 0.0088 0.1261 -0.2276 0.0838 0.0143
1.0 5.75 -0.3001 1.12 0.098 0.0088 0.1267 -0.2160 0.0716 0.0131
2.0 5.75 -0.2951 1.34 0.119 0.0088 0.1270 -0.2081 0.0634 0.0055

18 Molecule Model 
0.0 8.25 -0.2514 1.12 0.056 0.0168 0.1064 -0.1812 0.0491 0.0200
0.5 8.25 -0.2354 0.90 0.059 0.0168 0.1096 -0.1612 0.0250 0.0243
1.0 8.25 -0.2257 0.88 0.063 0.0168 0.1120 -0.1547 0.0170 0.0221
2.0 8.50 -0.1940 0.96 0.071 0.0178 0.1120 -0.1229 -0.0158 0.0300

V is the parameter which defines the energy of a quasi-free electron. The cavity size is Rc and 
tfie total energy,, Ejs is the sum of the electronic energy E-̂  , and the surface molecule-molecule 
interactions. The energy to orient the permanent dipoles issgiven by n. The Franck-Condon 
transition energy AEpS with oscillator strength 0 .  The heat of solution is AH2 while the enthalpy 
par electron relative to two one electron cavities is AH^]/ energies are in Hartrees.

00
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E. DISCUSSION AND CONCLUSIONS

Although exact agreement with experimental results

(Table I-B) has not been obtained with this calculation, many

questions concerning the cavity species have been answered. For

all of the values of V considered, the twelve-molecule cavityo ’
is found to be more stable than the eighteen-molecule cavity

(Tables XII and XIII). This was found for both the one- and two-

electron species. Preliminary calculations with a six-molecule

cavity indicate that the twelve-molecule cavity is still the most

stable species. Since similar calculations could be carried out for

an eight- and a fourteen-molecule cavity, no firm conclusions can

be made as to the actual number of molecules on the surface of the

most stable cavity. Nevertheless, most of the results point to a

number around twelve.

The most revealing aspects of these calculations are the

factors which determine the size of the cavity. These factors indicate

that an ad hoc choice for the radius of the cavity is not justified.

Hydrogen-hydrogen repulsions force the molecules on the surface

of the cavity apart to a greater extent than might be expected from

using an average molecule-molecule interaction. This indicates that

the bulk molecular density for the first layer as assumed by Land 
23 26and O'Reilly ’ is incorrect. This repulsion is the most important 

single factor in determining the cavity sizes for the one- and



two-electron twelve-molecule cavities and the two-electron eighteen- 

molecule cavities. These cavities are approximately the same sizes 

that would be expected if the structures were held fixed but the 

electronic energies neglected. The most important factor involved 

in the one-electron eighteen-molecule cavities is the induced 

dipole-induced dipole repulsions. Because of the greater number of 

first layer molecules and the larger size of the cavities, a larger 

percent (approximately 80 percent) of the charge is in the void 

region (0 to R£). The Coulomb repulsion between the electrons in 

the two-electron species causes the electrons to have a lower 

charge density in the void region and thereby reduces the induced 

dipole repulsions.

The major stabilization of the cavity species is the 

electron-dipole interaction. This stabilization and the repulsions 

between the molecules on the surface of the cavity are the primary 

reasons for the existence of a cavity. The greatest destabilizing 

factor for the two-electron species is the energy required to 

polarize the permanent dipoles in the liquid. The question of relative 

stability must be related to the heats of solution of the.one- and 

two-electron species. By comparing the energies AH^ and Af^ 

given in Tables XII and XIII, the results mentioned in the first 

paragraph of this section are confirmed.

Because the transition energies of the one-electron species 

calculations are higher for the most stable cavities than the
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experimental ones, a negative value for the energy of the quasi-free 

electron, V , would give better agreement as is indicated by the 

trend to lower transition energies as VQ is decreased. The p states 

are affected by Vq to a greater extent than the ground state since the 

p states have a higher charge density outside the cavities. With a 

negative Vo of the size that is suggested by the other transition 

energies, the p states would be totally delocalized. However, this 

would also give an unrealistic concentration of the quasi-free 

electrons. Thus it appears that the twelve-molecule cavities 

do not have the correct number of molecules on the surface. Because 

of the apparent agreement between the calculated heats of solution 

and the experimental ones for the twelve-molecule cavities and 

because the ground state is affected only slightly by V , the ground 

state energies are probably very accurate. A thorough treatment of 

Vq might bring the excited state energy down and thus give transition 

energies in accord with experimental ones.

Although the transition energies are somewhat higher 

than the experimental values, several general features of the 

transitions seem to be common for the species considered. The 

total energy E^ is very flat at the minimum energies (Figure V) 

which is in accord with the broad experimental band. If the 

allowed s to p transitions are determined by the thermal energy 

of the system, the extent that the energy can deviate from the 

minimum of the total energy E^ might be estimated by the energy kT.
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Figure V. Energy diagrams for ET versus R in the vicinity of theX Ci
minima for the one-electron twelve-molecule model with
VQ = 0.0, 0.5, and 1.0 eV where Vq is the energy of the
quasi-free electron. The upper curve in each of the
three plots is E„, for the excited p state and the 1
lower curve is E^ for the ground state.
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With this assumption band widths can be predicted. For the one-

electron twelve-molecule cavity (V = 0.0 eV)s a band width of

0.0057 Hartrees (0.16 ev) is predicted at 240°K and is found to be

asymmetric toward higher energies (Figure V). In the energy diagrams

given in Figure V, several features should be noted. These are also

characteristic of thei other species considered. As the energy Vq

is increased from 0.0 to 1.0 ev the position of the minimum moves to

higher values of Rc because the increased amount of charge in the

void region increases the induced dipole-induced dipole repulsions.

This is found to be true for the ground and excited p states. The

energy E- also flattens out with increasing value of V . It should X o
also be noted that the minimum values of Ê , for the excited states 

are at largerRc than in the ground state. This would predict an 

emission band at a lower energy than the absorption band. Such an 

experiment has not been conducted.

Since the most important temperature dependence is in the 

calculation of |Jie££j the effect of temperature on the absorption 

band can be noted. Since the charge-dipole interaction is greater 

for the ground states which have a greater charge density inside the 

void region, the ground state energies will increase to a greater 

extent than the excited state energies and thus give lower transition 

energies with increased temperatures. A similar trend is predicted 

based simply on the asymmetry of the energy plots. This trend agrees 

with experimental observations.
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Because the density of the molecules on the surface of the 

cavity is lower than the density of the molecules in the bulk liquid, 

several factors must be taken into account before the cavity sizes 

can be compared with experimental estimates. Since the experimental 

values are obtained from volume expansion data, we must determine the 

actual volume of the cavity plus the increased volume arising from 

the lower molecular density of the surface molecules. The cavity 

radius R^ ( = R£ - 1.81 aQ = R^ - R ^  ) must be used in determining 

the volume of the actual cavity since this radius takes into account 

the average volume of the surface molecules when the cavity is not 

present, i.e., this takes into account the volume of the liquid 

before the metal is added to the ammonia. By considering the volume 

change for the one-electron twelve-molecule cavity (V = 0.0 e-¥), 

a cavity with an effective Rq = 7.2 a^ would be predicted by these 

calculations. Such a value is not very different from the 

experimental estimates of 5.67 to 6.50 aQ. A larger value for Vq 

would predict even larger values for the effective Ro. The 

predicted cavity sizes for the eighteen-molecule species are 

extremely large and therefore unrealistic.

Extending the one-electron calculation to the two-electron

species has yielded several interesting results. Several investigators

have speculated that the two-electron cavities would be larger than
13 24 26the one-electron cavities. 3 3 We have not found this prediction

to be true. All of the two-electron cavities that we have considered



were found to be smaller than their one-electron counterpart. The

two-electron transition energy given in Table I-B is based on the

assumed larger cavity. If the cavities were larger for the two-

electron species, the transition energies would be smaller since

both the ground state and P energies are converging as the cavity

size is increased. The larger cavities are not justified by the

results of this calculation. If at all, a two-electron transition

energy larger than the one-electron one should be expected. The

main factors which result in a smaller two-electron cavity are the

decrease in the charge-dipole interaction energy as the size of the

cavity increases and the increase in the electron-electron

interaction. As the size of the cavity increases, the effective
2dipole moment |i .-.g decreases by a factor proportional to and

the charge-dipole interaction decreases as 1/Rm * A larger cavity

also puts a greater electron density inside the void region where

the Coulomb repulsion of the electrons is increased. Thus the

Coulomb repulsion can be lowered at the expense of increased

kinetic energy by reducing the size of the cavity. Greater

stabilization is thus obtained by reducing the cavity size.

The lack of any major concentration dependence of the

observed spectra as well as the lack of any major pressure shifts

of many properties of metal-ammonia solutions as a function of

concentration as found in the recent unpublished work of 
58Schinderwolf also suggest that the two-electron species is not
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stable. Possibly a species consisting of a metal ion bound to a 

two-electron cavity is stable, but its properties would have to be 

investigated before it can be justified. The models reported here 

should be extendable to such species.

Because of the two-electron polarizations and the screened 

Coulomb interactions for the case where one or both of the electrons 

are outside the void region, the two-electron electronic energies are 

not extremely different from .twice the one-electron energies. This is 

not the case for the total energy Ê , since the induced dipole-induced 

dipole repulsions between the surface molecules is almost doubled 

(not doubled since the percent charge in the void region is decreased 

by the effect of the Coulomb repulsions). On combining the energy 

II with the total energy E and the surface energy E , we haveX S l

obtained the.heats of solution for the species considered (Tables XII

and XIII). The energy AH2  ̂(Table XIII) indicates that the two-electron

cavities are not stable relative to two one-electron cavities. The
23 26calculations of Land and O'Reilly 3 also found positive 

values but their results were biased in favor of such an answer 

because of their arbitrary choice of a large cavity and the method 

employed to calculate H.

Since the molecules on the surface of the cavities are 

loosely packed, a conduction mechanism which involves cavities that 

are easily deformed would be possible. This could involve a cavity 

that elongates in an electric field and then forms another cavity.
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This mechanism would involve very little energy in forming the "new" 

cavity. The loose packing also predicts a decrease in the viscosity 

of metal-ammonia solutions with increasing concentrations of the
59electrons. This is consistent with experimental viscosity data.

The short "lifetime" measured by NMR and ESR methods also is nicely

consistent with our model.

The large dipole moment and the high polarizability of

the ammonia molecules are the most important factors that lead to

the stability of the one-electron cavities while the hydrogen-

hydrogen repulsions are the most important factor for determining

the sizes of the cavities. Additional calculations should be

carried out for cavities with fewer molecules on the surface to see

if better agreement with volume expansion and spectroscopic data

can be found. In such calculations an accurate hydrogen-hydrogen

repulsion potential for the ammonia molecules is one very important

factor that must be included.

The short-range electron-molecule exchange interactions

have indicated that NH^ is not stable9 but the calculations reported

here indicate that there is a high charge density very close to the

surface layer. This result indicates that a species of the form

(NHg)n might be stable because of the electron-multipole and other

strong interactions. We expect n to be an integer from four to

fourteen. Experiments are currently underway to check such a 
, 60proposal. In some calculations not reported here continuum effects
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were eliminated and a stable species was found. Thus we suspect

that at reasonable gas densities the ammonia molecules cluster around

an electron. Evidence is available for a cavity model in super

heated water at temperatures above the critical point and densities
61as low as one-third the critical density.

A calculation similar to the one reported here might be

carried out for other media. Water is the obvious medium for such

a calculation, but hydrogen bonding is one factor that would be

difficult to take into account. On comparing the characteristics

of ammonia and water several analogies can be made. Because the

water molecule has only two hydrogens as compared to three for

ammonia, the hydrogen-hydrogen repulsions would not be as important

and would give a smaller cavity. A smaller cavity would also be

favored since the optical polarizability is smaller than ammonia's

which makes the induced dipole-induced dipole repulsions of less

importance.^ Since water has a larger dipole moment and a smaller
46quadrupole moment, a greater charge density would be in the 

void region if Vo for water is zero or somewhat positive. These 

comparisons indicate that a cavity in water would probably have four 

or six molecules on the surface of a cavity. Alcohols and other 

hydrocarbons could also be considered, but only the smaller molecules 

could be considered using a spherical molecule approximation. Methanol 

is one alcohol for which these methods could yield reasonable results.
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II. ACCURATE "EFFECTIVE" INTERMOLECULAR PAIR POTENTIALS
IN GASEOUS ARGON

A. DISCUSSION

Statistical mechanical calculations for the macroscopic

properties of media require an accurate knowledge of the inter-

molecular forces between the atoms (or molecules) in the media.

At low densities pair potentials are adequate, but for higher

densities of gases and liquids many-body interactions must be

considered. Many-body interactions arise because the electrons

in each atom or molecule readjust their motions in response to
62every new atom or molecule entering within its force range.

We have examined in detail one specific case, namely 

the argon-argon interaction. Using presently proposed two-body 

potentials we have evaluated effective two-body potentials as a 

function of temperature and density where the nonadditive correction 

to the two-body potentials is taken as the induced dipole effects 

of three-body interactions. The results and details of this 

calculation are given in Appendix IV.
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APPENDIX I

THE ONE- AND TWO-ELECTRON SPHERICAL 
BOX PROBLEM

The spherical box problem with one electron in an infinite
63™ 66well has been used extensively as a pedagogic example, but the

two-electron problem has been investigated almost exclusively within
67the Hartree-Fock approximation. To aid in our understanding of 

the cavity species discussed in the Introduction and to help in 

the formula tion of the model that we have considered, we undertook 

an extensive investigation oftthe two-electrons-in-a-spherical-box 

problem with an infinite potential outside the box.

Before we consider the two-electron problem we shall 

review some of the results of the one-electron case. The acceptable 

solutions to the Schroedinger equation,

r + a e ^ H s i b  + - 4  = E+ (3>1)Br r s m 0  r s m  0 Bp

for the one-electron, problem are found (in unnormalized form) to be

K z .  = V Kr> (I-2>
where Y. (9,^) is a spherical harmonic, j (Kr) is a sphericalXj

Bessel function, and (r, 0, (4) are the spherical coordinates of 

the electron relative to the center of the cavity. The value of K
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is found from the boundary condition

j / K i y  = o  d-3)

In solving equation (X-1) the substitution K = /2F was made;
K2therefore, we have E = — . Thus we can obtain the energy levels of

this one-electron system from a table of the zeros of the spherical 
68Bessel function. Because of the infinite number of roots that can 

be found for equation (1-1), the quantum number n is introduced to 

denote which root is being considered for a given j0(e , n = 1 

denotes the smallest root for a given &). The quantum numbers & 

and m are apparent from equation (1-2). The radial part of the 

wavefunctions for the three lowest energy levels with their 

respective energies are given in Table 1-1. The nomenclature used 

in Table 1-1 to denote the energy states is used because of the 

similarity of the angular dependence of this problem to the hydrogen

Table 1-1. The (unnormalized) radial wavefunctions and energies
of the three lowest energy levels of the one-electron- 
in-a-spherical-box problem with an infinite well.

JI State 2
E1 M  ' ®b

0 (Is) .5rr2 sin(nr)
nr

1 <2p) 1.023tt2 sin(Kr) cos(Kr) 
(Kr)2 Kr

2 (3d) 1.683tt2 [ - ]sm(Kr) - cos(Kr) 
(Kr) Kr (Kr)

a _ n = 1
i 2Energy m  Hartrees*aQ.
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atom problem. Unlike the situation in atoms, the radial nodes in 

the wavefunctions increase the energy more than angular nodes.

If the energy of the helium atom is calculated by assuming

that the two electrons occupy a Is orbital with opposite spins, an

error of approximately 0.056 a.u. is obtained in the resulting 
69energy. The essential weakness of such a calculation is in the 

assumption that each electron sees only the average field of the 

other electron. In fact, the electronic motions are correlated 

in some detailed fashion. This error in the Hartree-Fock energy 

has thus become known as the correlation energy. Since the total 

electron correlation problem has not been investigated for the 

two-electrons-in-a-spherical-box problem, we have carried out 

such an investigation.

Since the method of Hylleraas gives the non-relativistic 

ground state energy in almost exact agreement with experiment for 

the helium atom,^ we have carried out a similar calculation for the 

two-electron-box problem. The explicit inclusion of the inter

electron distance r ^  in the variational function in the Hylleraas 

method would make this method of obtaining the energy of a cavity 

system most unwieldy if extended to include the various medium 

interactions. We have thus repeated our calculations with a 

configuration interaction method that could easily be extended to 

include the medium interactions. With the Hylleraas type calculation



assumed to give the exact correlation 6E2 for the system, we can 

judge the accuracy obtained from the configuration interaction.

The Hamiltonian for the two-electron-box problem can be 

written (in atomic units) as

^  _ 1 2 . U  + L _  (1-4)
*2 - i^l V2 - r12

For the Hylleraas type calculation we have assumed the wavefunction

% = * U (1) * U (2H1  + V l2>  (I' 5)

where ^ g(f) fs a normalized Is wavefunction (unnormalized is given

in Table (1-1)) and o' is a variational parameter to be used inJ1
minimizing the energy. We obtain the energy of the system from the 

integral relation

<^1*21 V  ^H^T2+r7o^H^ . .
=  — n r n r r ~  = — 7TTa. \ —  (x~6)H ^ h ' V

where T2 is the kinetic energy operator of the Hamiltonian. The 

problems encountered by using the Laplacian operator as the kinetic 

energy operator are easily eliminated by using the vcp 0 Vcp form of 
the operator which yields the integral relation^9^



After taking the partial derivatives and simplifying the expressions, 

we left with several integrals of the form

with p,q,s taking integer values. Since iL (1) and (2) are bothJL S IS

spherically symmetric, these integrals can be evaluated by using

The first two integrations in each of the triple integrals can be 

performed with relative ease, but the third integration is very 

involved. Consequently, the third integration was carried out 

numerically with a Gaussian quadrature. The resulting energy of 

the system was found to be given as a function cf by

(1-8)

72the integral identity

(1-9)'P 2
B1 + aEB2 * aHB3

where
19.7392 3.3721- T "

A = + 4.0000
2 ^b

A3 = 13.1595 + (1.3986)1^



B^ = 2.0000 

B2 = (2.7974)^ 

and B3 = (1.1307)R^

Upon differentiating ETT with respect to o' and setting the result equalII J1
to zero, in accordance with the variational method, we obtained the 

minimum energy. Since the minimum energy is a function of R^, it is 

tabulated in Table 1-2 and illustrated in Figure I-l. The values of 

cv and the correlation energy for the minimum energy are also 

tabulated in Table 1-2.
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RESULTS FOR HYLLERAAS 

OF A TWO-

TABLE 1 - 2

TYPE CALCULATION OF 

ELECTRON SPHERICAL,

THE GROUND STATE 

INFINITE WELL

ENERGY

V ao > eh “6E2 *H E100

C. 5 4 2 . 9 8 9 5 3 C . 0 6 1 0 2 0 . 2 6 7 4 3 1 9 . 7 3 9 0 7
1.0 1 1 . 5 9 6 0 6 0 . 0 5 9 6 1 0 . 2 8 7 0 8 4 . 9 3 4 7 7
1 . 5 5 . 5 1 8 9 9 0 . 0 5 8 2 2 0 . 3 0 9  31 2 .  1 9 3 2 3
2.0 3 . 3 0 3 6 5 0 . 0 5 6 7 9 0 . 3  3 4 4 9 1.  2 3 3 6 9
2 . 5 2 . 2 3 8 2 1 0 . 0 5 5 3 6 0 . 3 6 3 2 5 0 . 7 8 9 5 6
3 . 0 1 . 6 3 8 0 5 0 . 0 5 3 9 3 0 . 3 9 6 4 5 0 . 5 4 8 3 1
3 . 5 1 . 2 6 3 4 8 0 . 0 5 2 5 1 0 . 4 3 5 2 7 0 . 4 0  2 34
4 . 0 1 . 0 1 2 2 6 0 . 0 5 1 1 1 0 . 4 3 1 3 3 0 . 3 0  8 42
4 . 5 0 . 8 3 4 5 6 0 . 0 4 9 7 4 0 .  5 3 7 0 1 0 . 2 4 3 6 9
5 . 0 0 . 7 0 3 6 0 0 . 0 4 8 4 0 0 . 6 0 5 7 3 0 . 1 9 7 3 9
5 . 5 0 . 6 0  39 1 0 . 0 4 7 1 0 0 . 6  928  8 0 . 1 6 3 1 3
6.0 0 . 526C0 0 . 0 4 5 8 4 0 . 8 0 7 2 1 0 .  1 3 7 0 8
6 . 5 0 . 4 6 3 7 6 0 . 0 4 4 6 2 0 . 9 6 3 9 8 0 . 1 1 6 3 0
7 . 0 0 . 4 1 3 1 3 0 . 0 4 3 4 5 1.  1 9 2 5 3 0 .  1 0 0 7 1
7 . 5 0 . 3 7 1 2 9 0 . 0 4 2 3 1 1 . 5 5 7 4 0 0 . 0 8 7 7 3
8.0 0 . 3 3 6 2 4 0 . 0 4 1 2 3 2 . 2 3 3 4 7 0 . 0 7 7 1 1
8 . 5 0 . 3 0 6 5 5 0 . 0 4 0 1 8 3 . 9 1 7 2 9 0 . 0 6 8 3 0
9 . 0 0 . 2 8 1 1 2 0 . 0 3 9 1 8 1 5 . 4 8 4 9 9 0 . 0 6 0 9 2
9 . 5 0 . 2 5 9 1 5 0 . 0 3 8 2 1 - 8 . 0 2 7 8 0 0 . 0 5 4 6 8

10.0 0 . 2 4 0 0 2 0 . 0 3 7 2 9 - 3 . 2 0 1 8 5 0 . 0 4 9 3 5
1 0 . 5 0 . 2 2 3 2 3 0 . 0 3 6 4 0 - 2 . 0 0 4 9 7 0 . 0 4 4 7 6

3Energies are in Hartree units.
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Figure 1-1. Energies as a function of the radius of an infinite 
well cavity for two-electrons.

A ^P energy from 2 term GI calculation 
3o P energy from 2 term Cl calculation

x energy from 3 term GX calculation
1+ S energy from Hylleraas type calculation 
1 1— S -♦ P transition energy

1--- Correlation energy for S Hylleraas type calculation
1... Correlation energy for S 3 term Cl calculation
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The similarity between the angular dependence of the

wavefunctions of the one-electron-box and the hydrogen atom implies 

that the techniques used in configuration interaction (Cl) calculations 

for atomic systems are appropriate for the two-electron-box

wavefunction of a given symmetry can be formed as a linear super

position of state functions that have been combined to be of the 

same symmetry. Thus we have

and c^ is a coefficient to be determined by minimizing the energy.

The energy of a given symmetry of the two-electron-box system is 

found by using the Hamiltonian given in equation (1-4) in conjunction 

with a wavefunction similar to the one given in equation (1-10).

The coefficients for the minimum energy satisfy the equations

and the corresponding minimum energy is the lowest root of the 

secular equation

52-53calculations. 9 From the LS coupling scheme we have that the

(sy) ? °i ^i(sy)5
1 1 ; sy = s9 p,

where Y is the wavefunction to be determined by minimizing

is an appropriate combination of state functions

(1-11)
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where

Hij = K ( s y ) 3C2+j(3y)dT and Sij - J*i(sy)1'j<Sy)dT « ‘13>

Since the wavefunctions that we have used satisfy the relation

6iJ - J'*l(sy)*j<Sy)dT - Sij « - 14>

where is the Kronecker symbol defined by

6.. = 1 if i = jij
= 0  if i ^ j (1-15)

we are left with the secular equation

|Hij - 6±jE ] = 0 (1-16)

which is equivalent to an eigenvalue problem. Thus we can determine 

the minimum energy by diagonalizing the matrix

IlH.jU (1-17)

and extracting the smallest diagonal element.

We have carried out the above procedure to determine the
1 1  3correlation energies of the three two-electron states S, P, and P. 

Approximate radial wavefunctions were used in the Cl calculation to 

alleviate the very tedious integrations encountered when the radial 

wavefunctions given in Table I-l are used. The one-electron wave

functions that were used in this GI calculation are given in Table 1-3
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Table 1-3. The radial one-electron wavefunctions used in the Cl 
calculations for the two-electron-box problem. The 
angular dependence is the same as for the wavefunctions 
given in Table III.a

I
1.

State V r)°

0 (Is) 5.0000 ✓“su1

1 (2p) 10.5000
i W  r(Rb - r)

l7:i25/2 r2(R^-1.9R^r2+.9r4)2 (3d) 16.8950

^Energy is in Hartrees»a2.

formalized

and the two-electron state functions are given in Table 1-4. All of

the integrals involving l/r^^ were evaluated by converting the integrals to
52 53the F and G integrals that are common to atomic calculations. 3

1The ground state energy was obtained by mixing the three S states of
2 2 2 (Is) , (2p) and (3d) where the term within the brackets denotes the

one-electron wavefunction (or functions) used and the superscript denotes

that both of the electrons are in similar spatial orbitals. We obtained



Table 1-4

The normalized antisymmetrized spin wavefunctions for the various 
configurations used in the Cl calculations

Symmetry Configuration ^i(sy)

xs (Is)2 iso(l)iso(2)-^[a(l)0(2) - a(2)3(l)]

(2p)2 ■^{2p1(l)2p_1(2)+2p_1(l)2p1(2)-2po(l)2po(2)}̂ [;«.(l);B(2)-(«(2);s(l)]
(3d)2 ^ { 3 d 2(l)3d_2(2)+3d_2(l)3d2(2)-3d1(l)3d_1(2)-3d_1(l)3d1(2) 

+ 3do(l)3do(2)} ^[a(l)p(2) - a(2)3(l)]

XP (ls2p) ■^{lso(l)2po(2)+lso(2)2po(l)}^[a(l)3(2)-a(2)3(l)]

(2P3d) ^Q{3[2p1(l)3d_1(2)+2p_1(l)3d1(2)+2p1(2)3d_1(l)+2p_1(2)3d1(l)]

- 2/3[2po(l)3do(2>+2po(2)3do(l)]}i2[a(l)B(2)-a(2)3(l)]

3P (ls2p) ^2{l^o(l)2po(2)-lso(2)2po(l)}i2[a(l)B(2)+a(2)6(l)]

(2p3d) ~Q{3[2p1(l)3d_1(2)+2p_1(l)3d1(2)-2p1(2)3d_1(l)-2p_1(2)3d1(l)]

-2/3[2po(l)3do(l)r2po(2)3do(l)]}i2[a(l)B(2)+a(2)3(l)]

l s 0 ( 1 ) -  ^ o ^ l ^ o o ^ 0 ! * 8*!^ ’ 2 p m ^  "  R 2 1 ^ r P Y l m ^ 0 l , ^ P  ’ 3 d m ^  "  R 1 2 ^ r 2 ^Y2nSQ2’̂ 2* *



the following matrix elements for the ‘'"S ground state:

10.0000 . 1.7857u = +
11 "2 ' h

_ 21.0000 1.7908
22 = R2 *b*b

33.7900 1.9649
33 = R,2 \

0.5694
12 " Rĵ

0.5136
13 “ Rb

0.8092
23 ' Rb (1-18)

where we have taken to be given by
s

= ^(l^)2 + C2(lp)2 + C3(3d)2 (1-19)
s s s s

and we have only given the diagonal elements and the elements to the

right of the main diagonal since the matrix is Hermitian. The

coefficients for equation (1*19) and the correlation energy are given
1in Table 1-5 for several values of R^. A S mixing was also carried

out with given by 
s

V = C^ls)2 + C2(2p)2 (1-20)
s s s

to determine the additional correlation energy obtained by the

mixing represented in equation (1-19). The results obtained by the 
1two term S mixing are given in Table 1-6,
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TABLE X - 5

RESULTS OF A THREE TERM CONFIGURATION INTERACTION FOR THE
GROUND STATE ENERGY OF A TWO-■ELECTRON SPHERICAL, INFINITE WELL

V ao) E3
ls

-6E2 C3 C2 ci

0 . 5 4 3 . 5 3 1 7 9 0 . 0 3 9 6 1 0 . 0 1 0 3 1 - 0 . 0 2 5 4 6 - 0 . 9 9 9 6 2
1.0 1 1 . 7 4 7 0 4 0 . 0 3 8 6 6 0 . 0 1 9 6 8 - 0 . C8004 - C . 9 9 ^ 5 5
1 . 5 5 . 5 9 7 7 0 0 . 0 3 7 7 1 0 . C 2 8 1 1 - 0 . 0 7 3 6 8 - 0 . 9 9 6 8  9
?.o 3 . 3 5 6 0 7 0 . 0 3 6 7 8 0 . 0 3 5 6 4 - 0 . 0 9 6 3 6 — 0 • 9 9  4 7 1
7 . 5 7 . 2 7 8 4 1 0 . 0 3 5 8 7 0 . 0 4 2 3 1 - 0 . 1 1 8 0 6 - 0 . 9 9 2 1 0
3 . 0 1 . 6 7 1 3 7 0 . 0 3 4 9 7 0 . 0 4 8 1 7 - 0 .  13881 - 0 . 9 8 9 1 5
3 . 5 1 . 2 9 2 4 2 0 . 0 3 4 1 0 0 . 0 5 3 2 7 - 0 .  15862 - C . 9 8 5 90
4 . 0 1 . 0 3 8 1 7 0 .C 3326 0 . 0 5 7 6 6 - 0 . 1 7 7 5 3 - 0 . 9 8 2 4 2
4 . 5 0 . 8 5 8 2 1 0 . C 3 2 4 4 0 . 0 6 1 3 7 - 0 . 1 9 5 5 8 - 0 . 9 7 8 7 6
5 . 0 0 .  72549 0 . 0 3 1 6 5 C . 0 6 4 4 7 - 0 . 2 1 2 8 2 - 0 . 9 7 4 9 6
5 . 5 0 . 6 2 4 3 6 0 . 0 3 0 8 9 0 . 0 6 7 0 0 - 0 . 2 2 9 2 9 - 0 . 9 7 1 0 5
6 . 0 0 . 5 4 5 2 4 0 . 0 3 0 1 5 0 . C 6 8 9 9 - 0 . 2 4 5 0 4 - 0 . 9 6 7 0 6
6 . 5 0 . 4 8 1 9 6 0 . 0 2 9 4 4 0 . 0 7 0 4 9 - 0 . 2 6 0 1 1 - C . 9 63 00
7 . 0 0 . 4 3 0 4 2 0 . 0 2 8 7 6 0 . 0 7 1 5 3 - 0 . 2 7 4 5 5 - 0 . 9 5 8 9 1
7 . 5 0 . 3 8 7 7 6 0 . 0 2 8 1 1 0 . 0 7 2 1 5 - 0 . 2 8 8 4 1 - 0 . 9 5 4 7 8
8 . 0 0 . 3 5 1 9 8 0 . 0 2 7 4 8 0 . 0 7 2 3 7 - 0 . 3 0 1 7 7 - 0 . 9 5 0 6 4
8 . 5 0 . 3 2 1 6 2 0 . 0 2 6 8 7 0 . 0 7 2 2 3 - 0 . 3 1 4 5 3 - 0 . 9 4 6 5 0
9 . 0 0 . 2 9 5 5 8 0 . 0 2 6 2 9 0 . 0 7 1 7 5 - 0 . 3 2 6 8 7 - 0 . 9 4 7 3 4
9 . 5 0 . 2 7 3 0 4 0 . 0 2 5 7 3 0 . 0 7 0 9 4 - 0 . 3 3 8 7 7 - 0 . 9 3 8 1 9

1 0 . 0 C . ?5 3 3 8 0 . 0 2 5 1 9 0 . 0 6 9 8 5 - 0 . 3 5 0 2 7 - 0 . 9 3 4 0 4

aEnergies are in Hartree units.



911-

table 1 - 6

RESULTS OF A TWO TERMS CONFIGURATION INTERACTION FOR 

GROUND STATE ENERGY OF A SPHERICAL TWO-ELECTRON INFINITE WELL

V ao) Ei1s
-6ES C2 Cx

0 . 5 4 3 . 5 4 1 9 5 0 . 0 2 9 4 5 0 . 0 2 5 8 5 - 0 . 9 9 9 6 7
1 . 0 1 1 . 7 5 6 3 2 0 . 0 2 9 3 8 0 . 0 5 1 5 3 - 0 . 9 9 8 6 7
1 . 5 5 . 6 0 5 6 3 0 . 0 2 9 2 8 0 . 0 7 6 9 0 - 0 . 9 9 7 0 4
2 . 0 3 . 3 6 3 7 1 0 . 0 2 9 1 4 0 .  1 0 1 8 2 - 0 . 9 9 4 8 0
2 . 5 2 . 2 8 5 3 2 0 . 0 2 8 9 6 0 .  1 2 6 1 5 - 0 .  9 9 2 0 1
3 . 0 1 . 6 7 7 5 9 0 . 0 2 8 7 6 0 . 1 4 9 8 1 - 0 . 9 8 8 7 2
3 . 5 1 . 2 9 8 0 0 0 . 0 2 8 5 2 0 . 1 7 2 6 9 - 0 . 9 9 4 9 8
4 . 0 1 . 0 4 3 1 6 0 . 0 2 8 2 6 0 .  1 9 4 7 3 - 0 . 9 8 0 8 6
4 . 5 0 . 8 6 2 6 7 0 . 0 2 7 9 8 0 . 2 1 5 8 8 - 0 .  9 7 6 4 2
5 . 0 0 . 7 2 9 4 7 0 . 0 2 7 6 7 0 . 2 3 6 1 1 - 0 . 9 7 1 7 3
5 . 5 0 . 6 2 7 9 0 0 . 0 2 7 3 5 0 . 2  5 5 4 0 - 0 . 9 6 6 8 4
6 . 0 0 . 5 4 8 3 8 0 . 0 2 7 0 1 0 . 2 7 3 7 6 - 0 . 9 6 1 8 0
6 . 5 0 . 4 8 4 7 5 0 . 0 2 6 6 6 0 . 2 9 1 1 9 - 0 . 9 5 6 6 7
7 . 0 0 . 4 3 2 8 8 0 . 0 2 6 3 1 0 . 3 0 7 7 1 - 0 . 9 5 1 4 8
7 . 5 0 . 3 8 9 9 3 0 . 0 2 5 9 4 C . 3 2 3 3 5 - 0 . 9 4 6 2 8
8 . 0 0 . 3 5 3 8 9 0 . 0 2 5 5 7 0 . 3 3 8  15 - 0 .  9 4 1 0 9
8 . 5 0 . 3 2 3 2 9 0 . 0 2 5 2 0 0 . 3 5 2 1 3 - 0 . 9 3 5 9 5
9 . 0 0 . 2 9 7 0 4 0 . 0 2 4 8 3 0 . 3 6 5 3 4 - 0 . 9 3 0 8 7
9 . 5 0 . 2 7 4 3 1 0 . 0 2 4 4 6 0 . 3 7 7 8 2 - 0 . 9 2 5 8 8

1 0 . 0 0 . 2 5 4 4 8 0 . 0 2 4 0 9 0 . 3 8 9 6 1 - 0 . 9 2 0 9 8

aEnergies are in Hartree units.



1 1 The P energy was obtained by mixing the P states of
3(ls2p) and (2p3d), and the P energy was obtained by mixing the 

3P states of (ls2p) and (2p3d), We have taken to be given by
P

Yx = C1(ls2p)1 + C2(2p3d)1 (I
P P P

and we have taken Ŷ . t0 be given by
P

Y3 = C1(ls2p)3 + C2(2p3d)3 (I
P P P

1The results of the P calculation are given in Table 1-7 and the
3results of the P calculation are given in Table 1-8 > The matrix

1elements used in the P calculation are as follows:

15.5000 . 1.8861Hn  = ~

u _ 37.3950 4.6189
22 = rJ «b

_ _ 0-3732 ,
12 ~ \  C

3The matrix elements used in the P calculation are as follows:

u 15.5000 1.2295
H11 ~ „2 + ^

*b

- 21)

- 22 )

-23)
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TABLE 1 - 7
RESULTS OF A TWO TERM CONFIGURATION INTERACTION FOR THE 

xp ENERGY OF A SPHERICAL TWO-ELECTRON INFINITE WELL

\ ( * o ) *4
-6E2 c2 Ci

0.5 65.76621 0.00599 0.00802 -0.99997
1.0 17.38045 0.00565 0.C1515 -0.99989
2.0 4.81296 0.00509 0.C2725 -0.99963
2.5 3.22960 0.00484 0.03242 -0.99947
3.0 2.34630 0.00462 0.03712 -0.99931
3.5 I.79977 0.00442 0.04141 -0.99914
4.0 1.43 604 0.00423 0.04533 -0.99897
4.5 I.18050 0.00406 0.04894 -0.99880
5.0 0.99331 0.00391 0.05226 -0.99863
5.5 0.85156 0.00376 0.05533 -0.99847
6.0 0.74128 0.00362 0.05818 -0.99831
6.5 0.65353 0.00350 0.06082 -0.99815
7.0 0.58239 0.00338 0.06329 -0.99800
7.5 0.52376 0.00327 0.06560 -0.99785
8.0 0.47478 0.00317 0.06775 -0.99770
8.5 0.43336 0.00307 0.06978 -0.99756
9.0 0.39794 0.00298 0.07168 -0.99743
9.5 0.36739 0.00289 0.07348 -0.99730
10.0 0.34080 0.00281 0.07517 -0.99717

aEnergies are in Hartree units.
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TABLE 1 - 8
RESULTS OF A TWO TERM CONFIGURATION INTERACTION FOR THE 
3p ENERGY OF A SPHERICAL TWO-ELECTRON INFINITE WELL

\ < 8o> E3p -6E2 Ca Ci

C.5 64.45456 0.00444 0.00690 -0.99998
1.0 16.72531 0.00419 0.01300 -0.99992
1.5 7.70460 0.00396 0.01843 -0.99983
2.0 4.48600 0.00375 0.02329 -0.99973
2.5 2.96 824 0.00356 0.02767 -0.99962
3.0 2.12866 0.00340 0.03163 -0.99950
3.5 1.61335 0.00324 0.03524 -0.99938
4.0 1.27302 0.00310 0.03853 -0.99926
4.5 1.03568 0.00297 0.04155 -0.99914
5.0 0.86 304 0.00286 0.04432 -0.99902
5.5 0.73319 0.00275 0.04688 -0.99890
6.0 0.63283 0.00265 0.04925 -0.99879
6.5 0.55347 0.00255 0.05146 -0.99868
7.0 0.48951 0.00246 0.05351 -0.99857
7.5 0.43711 0.00238 0.05542 -0.99846
8.0 0.39357 0.00231 0.05721 -0.99836
8.5 0.35695 0.00223 0.05888 -0.99826
9.0 0.32580 0.00217 0.06046 -0.99817
9.5 0.29906 0.00210 0.06194 -0.99808
10.0 0.27591 0.00204 0.06333 -0.99799

aEnergies are in Hartree units.
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The energies of the three states considered and the correlation 

energy (of the three term mixing) of the ground state are.illustrated 

in Figure 1-1.
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APPENDIX II

TWO-ELECTRON MOLECULAR POLARIZATION POTENTIAL

From equation (56) of Chapter I, Section B we have that the 

two-electron polarization interaction with a molecule is

a cose,
V* = - ~ ~2P°A 2 2

P1P2

where the coordinates are defined as given in Figure II. Using 

the law of cosines to remove the 0^ angular dependence of equation 

(II-l) yields
201 i i t-i

v2po,e - - + 4 ------ 3 ^ 1
P1P2 plp2 P1P2

The law of cosines is again used to put the p^ and coordinates 

of the electrons in terms of the coordinate s of the center of the 

cavity. Thus we have

P? = Rf + rf ~ 2riRm cos0i (II-3)rl m 1 1 m i

and

4  = Em + r2 ' 2r2Em cose2 (I1’4)

where these coordinates are as given in Figure II. By expanding
3 731/p^ and 1/p^ in terms of Legendre polynomials we obtain the relations

n

t = z - S i  *rf°°s6l> <H>5)¥1 n=o R m
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and

 ̂ oo r”(2m+l)
3 = s > i --2 - r  F„(c°s9i> (II-6>p_ m=o R (R -r.)K1 m ' m 1

Similar relations are also obtained for p S u b s t i t u t i n g  these relations 

into equation (II-2) yields the desired result

a co co r”r™ /0 r^_(2m+l) (2n+l)
vx _ _2 v v 1 2 f(2m+l) (2n+l) _ 12s %
2po£ ~ 2 n+m+2'-, 2 2. fry2 2N (X)2 2W w 2 2. Jr n=o m=o R (R. -r9) (R -*\) (R -r )(R -r )m m 2  m l  m l m 2

Pn(cos01)Plit(cos92) (II-7)
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APPENDIX III 

TWO-ELECTRON CONTINUUM POLARIZATION POTENTIAL

The two-electron polarization potential for the continuum 

region with the electrons not in the continuum can be expressed in 

the form

g(r)L(r) cos0,
V i  = -“o P j — 2— 2----  ^

S1 2

where g(r) and L(r) are taken as defined in equations (46) and (47) 

of Chapter I, Section B. The coordinates and S2 are similar to 

and p2, but are the distances from the electrons to a point in 

the continuum (e.£., the coordinate s in Figure II). The angle 

9^ is the angle between and S2 at the point in the medium (see 

Figure II). Substituting the relations for g(r) and L(r) into 

equation (III-l) yields

qa, cose,
v9 a = " — H—

-

 “ 5— I dt (III-2)2P°4 eu3SL, ~ \ o2 c2(1+T aoPd) d S1 2

where the integration is taken over the region R^ to infinity. By 

analogy with the two-electron molecule polarization potential, this 

equation can be written as follows:
n m

V C _ *0 2? f>co pTT ft2ir rl r2
2p°* " “ (nftf0Bd) n=o m=o jRd Jo Jo rn+m+2

r(2m+l) (2n+l) r12(2n+l)(2m+l) . , 2 .
✓ 2 2, . 2 2 " , 2 2, . 2 2, }Pn(cos0i)Pnj(cos02>r Sin9(r -r2) (r -r^ (r -r1)(r -r2)

drd0d«4 (III-3)
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which is to be integrated. For a spherical cavity in a uniform 

continuum medium, the two-electron polarization potential of the
I

continuum is only dependent on the relative positions of the two 

electrons to each other. Thus we can choose arbitrary axes for 

measuring the angular dependence of 0 and & of the potential.

For simplicity we have assumed that the angular dependence can be 

expressed in terms of 0^ and the angular coordinates of electron 

one. The angular dependence of can be expressed in terms of

0^, ^  and 0 ^  by the addition theorem of Legendre polynomials which
. 73rs

P (cos0o) = P (cOS0-)P (cOS0- -) m Z m l m iz

+\ |  oSkft ̂ C “ »01)^co.e12)co.(W1) (III-4)

where P^(cos0) is an associated Legendre function. The angle 

which usually appears in equation (III-4) was taken as zero to 

yield an expression which is only dependent on the angle ©.^ This 

does not affect the final results and gives an expression that is 

easily handled. After making this substitution in equation (III-3), 

the final result is

„c _ _ 4lTVd ® '(n+l-V -rl r2 ( . tTTT q\
Or\c\ 0 ™ ^ / o-il ̂ ' 9n4-T ^n(cOS0- o) (III-5)
P 1̂+f ^ 0Pd̂  n=°

which is the two-electron polarization potential of the continuum 

arising from an additional electron being in the cavity. It should 

be noted that if 0 ^  is zero and r^ = i , , both charges are at



the same position in the cavity, the resulting potential is twice the 

one-electron potential. This result is what would be expected since 

the factor of two arises from the cross terms as shown in equation 

(55) of Chapter I, Section B.
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Accurate “Effective” Intermolecular Pair Potentials in Gaseous Argon*
D avid A. Copeland and N eil R. KESTNERf 

Department of Chemistry, Louisiana Stale University, Baton Rouge, Louisiana 

(Received 24 June 1968)

The “effective” intermolecular potential in  gaseous argon has been determined, accurate through first 
order in density, for various assumed argon-argon potentials and the triple-dipole interaction. This potential 
should lead to the correct radial-distribution function. The calculations do not agree with the 1965 analysis 
of experimental data b y  M ikolaj and Pings [P hys. R ev. Letters 15, 849 (1965)]. Our results suggest a  
density dependence of the minimum of the effective potential of only about 17 p  (in degrees K elv in ), where 
p  is the density in grams per cubic centimeter. This constant has a sizeable temperature dependence but 
only a small variation proportional to density. The contribution of other nonadditive effects is briefly 
examined as is the small contribution of nonadditive effects to the x-ray structure factor of the liquid.

I. INTRODUCTION

In recent years there have been many calculations 
of the effect of many-body interactions on the proper
ties of gases and liquids.1-16 ,In all cases, approximations 
had to  be made in order to arrive at a result, and in no 
case is it  proven that the many-body interaction is 
important. Its presence is always inferred by comparing 
calculated and observed quantities, or often simply two 
calculated quantities.

Recently we have seen two developments, one experi
mental and one theoretical, which could lead to a direct 
observation of the many-body contribution. First has 
been the experimental work by Mikolaj and Pings16 
which, if increased in accuracy, should enable one to 
determine accurate “effective” two-body interactions 
between atoms in low-density gases. Second has been 
the work of Rushbrooke and Silbert17 and Rowlinson18 
who have been able to show in a straightforward way

* Work supported in part by the National Science Foundation 
(G P-6773). Computer time supported in part by N.S.F. Grant 
GP-2812 to Louisiana State University.

t  Alfred P . Sloan Fellow.
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(1963).
2 O. Sinanoglu, Advan. Chem. Phys. 12, 283 (1967); Chem. 

Phys. Letters 1, 340 (1967).
3 L. Jansen, Advan. Quant. Chem. 2, 119 (1965).
* R . D . Present, J. Chem. Phys. 47, 1793 (1967).
5 A. E . Sherwood and J. M . Prausnitz, J. Chem. Phys. 41, 413, 

429 (1964).
6 A. E . Sherwood, A. G. DeRocco, and E . A. Mason, J. Chem. 

Phys. 44, 2984 (1966).
7 A. D . M cLachlan, Discussions Faraday Soc. 40, 239 (1965); 

Proc. Roy. Soc. (London) A274, 80 (1963).
8 H. W . Graben, Phys. Rev. Letters 20, 529 (1968).
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1050 (1956).
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how the three-body potential should affect the two-body 
radial-distribution function, or conversely, what effec
tive two-body interaction would yield the correct 
radial-distribution function.

M any-body interactions arise because the electrons 
in each molecule readjust their motions in response to  
every new molecule entering within its force range.19 This 
force range in quantum-mechanical calculations can be 
broken into two parts, obviously coupled with one 
another in general. There are Coulombic interactions, 
and there are exchange interactions. If the molecules 
are far apart, the latter has little influence on the system, 
and one can use ordinary perturbation theory to derive 
the nonadditive effects. I t  is found19 that only in third 
order do such effects occur. They are of two major 
types: The interaction of three induced dipoles9 and the 
interaction of two induced dipoles and one induced 
quadrupole.15 At low densities the latter is unimportant 
and will be neglected until later.

The triple-dipole effect, as it is usually called, can be 
written as

<j>(123) = ^ (1 + 3  cosfli cos02 cos03) /r i23r233ri33, (1)

where 0< are the interior angles of a triangle of sides ri2, 
ru ,  and r2a. v  is a coefficient which is found to be given 
accurately20 (to  within a few percent) by

v = f  aC6, (2)

where a  is the polarizability and C3 is the theoretical 
coefficient of the London interaction between two atoms 
(—C e/R 6) .  Using any other source for Ca introduces 
large errors.

Using the formulas of Rushbrooke and Silbert17 and 
the triple-dipole potential we can, in fact, accurately 
predict the density dependence of the effective inter
molecular pair potential found by the procedure of 
Mikolaj and Pings.16 We can then compare the results 
with more approximate calculational methods and 
judge their accuracy and limitations. Since the original

19 H . Margenau and N . R. Kestner, Theory of Intermolecular 
Forces (Perg&mon Press, Inc., N ew  York, 1968), Chap. 5.

20 A.IDalgarno and W . D . Davison, Advan. At. Mol. Phys. 2, 
1 (1966).
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experimental work was on argon gas, we shall restrict 
our calculations to this one species and then evaluate 
only the low-order density corrections.

II. EFFECTIVE PAIR POTENTIAL 

A. Definition and Density Expansion

The total energy of a system can be written as the 
sum of two- and many-body interactions

e = E 2 X * 7 ) +  E E 2 X * # )i>j t>j>k

+  • • •, (3)
i>i>k>l

where 4>(ij) is the actual two-body interaction, <p{ijk) 
the three-body interaction, etc.

We could also write this as

i>j
(4)

In a pure liquid or solid we would find therefore that 

y o u ( i j )  -j-f -I------ (5)
k

would yield the correct total energy. However, in deriving 
the density expansion for a radial-distribution function, 
it is found that the effective potential which yields the 
correct first-order density correction is not Eq. (5). 
The reasons are related to the discussion by Sinanoglu2 
concerning solvent effects on the interaction of two 
unlike molecules placed in a medium. In considering 
the radial distribution, g ( l  2) , molecules 1 and 2 are 
considered different and unique from the rest of the 
liquid.

To first order in density the effective potential which 
yields the correct radial-distribution function  is17
0°« (12)

=  0(12) ~ Pk T  J  |^exp(~ ^ 23))  -1

0°»(12) =  0 (1 2 )+ p  J  <j>( 123)e(13)e(23)dr%. (8)

W e cannot emphasize strongly enough, however, that 
using Eq. (8) to determine the energy of the gas will 
lead to a gross overestimate of the nonpairwise additive 
effects. T o find an effective potential which when 
summed yields the correct energy, we would have to 
divide the second term by three. This emphasizes a fact 
discussed in our earlier work,1 and recently carefully 
elaborated by Sinanoglu,2 that an effective potential 
is not only density dependent but can, in fact, be 
different in different applications. The problems of 
thermodynamics when density-dependent potentials 
are used is also elaborated in Sinanoglu’s work.2 The 
effect of these triple-dipole contributions and effective 
potentials on the law of corresponding states is discussed 
b y D onth.21

B. Numerical Evaluation

Using, at low densities, the triple-dipole formula for 
the three-body potential we can rewrite the effective 
potential as

0°“ (12) = 0 (1 2 ) + f  ap (Ce/r126) Kab, (9)
where

K ab-/ ri23(l+30m)
(HZrny

«(13)e(2 3)dr3 (10)

and 0i23= cos0i cos02 cos03.
Following Sinanoglu2 we evaluate Kab  using “bi- 

centric” coordinates:

2r f  r
j 0 J \ R - rs*

e (s )e (r )d rds ,  (11)

with

e(13)e(23)dr3, 

(6)
where p is the number density and e.g.,

e (1 3 )=  ex p [—0 (1 3 )A T ] . (7)

Numerical computations (our calculations as well as 
others; see, for example, Ref. 12) confirm that the 
integral is given with an error of less than three percent 
if the exponential in Eq. (6) is expanded and only the 
first term retained. Thus in this work we shall use

This is in accord with our belief that 0(123) is a small 
perturbation. In the remainder of the paper “effective” 
potential will mean 0off, Eq. (8) ,  unless statements are 
made to the contrary.

e i23= [ ( j2- ^ + 2?2) (r2- s 2+ R 2) (r2+ J2- R 2) ] /8r!.y2ff2,
(12)

using R —rn  for simplicity. Measuring all distances in 
units of R  we can evaluate the integrals numerically. 
As upper limits for the integrals we have used 5R ,  which 
has proved adequate. The double integral was evaluated 
by Gaussian integration on our IB M  7040 computer. 
This procedure was arrived at after encountering m any  
problems in obtaining the necessary accuracy.

Four different pair potentials were used: a hard-sphere 
potential, a Lennard-Jones 6-12 potential, a Kihara 
potential, and Kingston’s composite potential. The  
results will be analyzed in Sec. VI.

1. Hard-Sphere Potential 

The hard-sphere potential is

0( y )  =  00, if r i j < a

=  0, if r y >  tr, (13)

2‘ E. Donth, Physica 32, 913 (1966).
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Table I. Constants and predicted change in the potential for argon interactions represented by a Lennard-Jones potential.

R

4t /k T

2 .6 3 .0 3 .4

R /a R ( L ) K ab fa /C is K ab \ciK ab K ab I&Kab

0 .9 0 3 .064 2.237 2 .754 2.525 3 .108 2.863 3.525
1 .00 3.405 3 .169 3.901 3.561 4.383 4.019 4.948
1.10 3.745 4 .303 5 .296 4 .815 5.927 5.415 6.665
1.14 3.882 4 .8 0 4 5 .914 5.369 6.609 6.030 7.423
1.17 3 .9 8 4 5 .200 6.401 5.803 7.144 6.510 8.013
1.20 4 .0 8 6 5 .616 6 .914 6.260 7.706 7.017 8.637
1.23 4.188 6 .048 7 .446 6.736 8.291 7.537 9 .278
1.28 4.358 6.787 8.355 7.550 9 .294 8.438 10.388
1.32 4 .495 7.392 9 .1 0 0 8.210 10.107 9.165 11.282
1.37 4.665 8.173 10.060 9.059 11.152 10.091 12.422
1 .40 4.767 8.652 10.651 9.581 11.794 10.658 13.120
1.42 4.835 8.973 11.046 9.931 12.225 11.043 13.594
1.48 5 .039 9.912 12.202 10.955 13.486 12.164 14.974
1.60 5 .448 11.657 14.350 12.824 15.786 14.170 17.443

where <r is the hard-sphere radius. W ith this potential

e { i j ) =  0, if r , j O

=  1, if r{j>  a, (14)

analytic solutions for K a b  can be obtained easily. They  
are a special case of the more general results of Sinan
oglu,2 and they are given by (see Fig. 1)

K ab=8tt/3, R'>2<r

=  ( j R y i 2 < T * ) i { 6 a y R 2) - \ 1 ,  R < 2 c r .  (15)

2. Lennard-Jones 6 - 1 2  Potential

The integral was also evaluated using a Lennard- 
Jones 6-12 potential:

4>{ij) =  4e[ (a/fij) 12~  (<r/r.y) «], (16)

with e the depth of the potential well and a  the zero. 
Various attem pts to fit this potential to argon data 
yield values of e /k  from 115° to 120°K. In this work we 
will use the latest values determined from virial data 
by Weir, Jones, Rowlinson, and Saville22: e /£ =  116°K  
and (r=3.41 A. The values of K a b  for values of 4e / k T =

e

o
tCD

2

0 3 4I 2
R

Fig. 1. The constant K ab for a hard-sphere interaction.

2.6, 3.0, and 3.4 are given in Table I and Fig. 2. These 
values were chosen since they correspond to the range 
in which some of the experimental work of Pings and 
others is being done. In Table I  we also list the contri
bution of these nonadditive effects to the potential at 
various distances.

3. K ihara  Potential

The hard-core pair potential of Kihara can be written 
in the form

4,(i?)=4e -  L  V 7  Yl (i7>

where e is the depth of the potential, <r the zero, and y  
an effective hard-core parameter. The parameters we 
shall use are those determined by Weir et al.w : e / k =
163.7 and cr=3.15 A, and 7= 0.164 . It  can easily be 
shown that if the second term in Eq. (12) is expanded 
in powers of u f 1, the coefficient of r,-/-6 is very close to

t
m<

22 R . D . Weir, I. W. Jones, J.r S. Rowlinson, and G. Saville, 
Trans. Faraday Soc. 63, 1320 (1967).

Fig. 2. The constant K ab as a function of R/a for a Lennard-
Jones potential between argon atoms. ------ , 4e/£2r' = 3 . 4 , --------,
ie/kT= 3.0.
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T a b l e  II . Constants and predicted change in the potential for argon interactions represented by a  Kihara potential.

4t/KT

R  3 .4  4 .0  4 .8

R /a R {  A) K a b \<xK a b K a b \<hK a b K a b \<xK a b

0 .9 0 0 2.835 2 .589 3 .188 3.117 3.837 4 .040 4.973
1.000 3 .150 3 .636 4 .4 7 6 4.347 5.351 5 .584 6 .874
1.100 3.465 4 .9 0 0 6 .032 5.821 7.166 7.418 9.131
1.140 3.591 5.460 6.721 6.473 7.969 8 .226 10.126
1.170 3.685 5.898 7.260 6.980 8.592 8.850 10.894
1.200 3 .780 6 .356 7 .824 7.509 9.243 9.499 11.693
1.230 3.875 6.829 8.407 8.056 9.917 10.171 12.521
1.280 4.032 7.636 9 .400 8.983 11.059 11.303 13.915
1.320 4.158 8.312 10.232 9 .750 12.002 12.218 15.041
1.370 4 .316 9.174 11.294 10.748 13.231 13.439 16.543
1.400 4 .410 9 .666 11.899 11.308 13.920 14.124 17.386
1.420 4.473 9 .996 12.305 11.671 14.368 14.545 17.905
1.480 4.662 11.033 13.582 12.827 15.790 15.876 19.544
1.600 5.040 12.857 15.827 14.841 18.269 18.198 22.401

the correct theoretical value. This therefore lends some 
validity to this potential. The depth is in part under
stood for, whenever the correct J?-6 interactions are 
introduced and allowance made for higher-order effects 
(jR~8, R ~10) , the potential usually deepens signi
ficantly.23-26 For reasonable comparisons with the 
Lennard-Jones and experimental results we have used 
4 e / k T = 3 A ,  4.0, 4.8. These results are listed in Table II 
and illustrated in Fig. 3. Also in Table II we list the 
contribution of these nonadditive effects to the poten
tial at various distances.

4. Kingston Potential

Kingston24 has attempted to derive the best com
posite potential consistent with theory as far as possible.

20
18

16

14

12
I 10

6

4

2

0
0 0.5 1.0 1.5 2 .0 2 .5 3.0 3.5 4.0

R / a  — ►
Fig. 3. The constant K a b  as a function of R /a  for a Kihara 

potential between argon atoms. , 4 e /£ r = 4 .8 ; -------, 4t /k T =

28 R. J. Munn, J. Chem. Phys. 40, 1439 (1964).
24 A. E. Kingston, J. Chem. Phys. 42, 719 (1965).
26 L. W. Bruch and I. T. McGee, J. Chem. Phys. 46, 2959 

(1967).

His potential is shown in Fig. 4. It has the correct jR-6 
behavior at large R  and fits virial data very well. It is 
similar to potentials constructed by M unn.23 The results 
from this potential are intermediate between the 
Lennard-Jones and the Kihara results. They will be 
tabulated later and compared in Sec. VI.

III. OTHER CONTRIBUTIONS TO THE  
NONADDITIVE POTENTIAL

Thus far we have assumed that the only nonpairwise 
additive contribution to the intermolecular interaction 
was the triple-dipole effect. We shall now consider other 
contributions and show that at low densities the triple
dipole effect is the only major contribution. A t higher 
densities, especially in the liquid or solid, we shall show  
that while that effect is still dominant, there are many 
other interactions which cannot be neglected. Our 
calculations are only semiquantitative, and thus some 
of the contributions either alone or in concert with one 
another could be even larger. We shall consider 
dispersion-overlap, triple-overlap, many-body disper
sion, and dipole-dipole-quadrupole contributions.

20
Fig. 4. Argon-argon 0

interactions. Curve 1, t  . 20
Lennard-Jones 6-12 poten- _  
tial. " Curve 2, Kingston /  
composite potential. Among ^  „6o 
its other features it  contains = 
the correct R interaction. |  
Curve 3, Kihara potential. £ - 1 0 0

• <2

5̂
R(A) -
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T a b l e  III. Various three-body interactions relative to the two-body interaction calculated for 

the equilateral-triangle configuration of the three particles.

R
A

Two body“-b • 
Es 

—Cj/R8

Three-body effects (relative to 25s)b

Triple
overlap

Dispersion
overlap

Triple
dipole

D ipole-dipole-
quadrupole

2 .6 5 E  00 —4 .1 6 E —03 3 .9 5 E —01 —6.2525—02 —9.1725—02 —2.6025—02
3 .1 8 E  00 - 1 .3 9 2 5 - 0 3 3 .4 6 E - 0 2 —8.2725—03 —5 .3 1 E —02 — 1.0525—02
3 .7 0 E  00 —5 .5 2 E —04 2 .6 3 E - 0 3 — 1.0225—03 —3.3425—02 —4 .8 4 E —03
4 .2 3 E  00 —2 .4 8 E —04 1.8015—04 — 1.1525—04 —2.2425—02 —2 .4 8 E —03
4 .7 6 E  00 — 1 .2 2 E —04 1 .1 4 E - 0 5 — 1 .2 4 E —05 — 1.5725—02 — 1.3825—03
5 .29E  00 —6 .5 0 E —05 6 .7 7 E - 0 7 — 1 .3 4 E —06 — 1 .15E —02 —8.1325—04
5 .82E  00 —3 .6 7 E —05 3 .8 3 E —08 — 1 .4 8 E —07 —8.6125—03 —5 .0 5 E —04
6.3525 00 —2.1825—05 2 .0 8 E - 0 9 — 1.6925—08 —6 .6 3 E —03 —3.2725—04
7.41E  00 - 8 .6 3 2 5 - 0 6 5 .5 5 E —12 —2.3825—10 —4 .1 8 E —03 — 1.5125—04
8.4725 00 —3.8725—06 1.3325—14 —3.4725—12 —2.8025—03 - 7 . 7 6 E - 0 5

11 In  a tom ic u nits. b 1 .0 B - 0 1  m eans l.O X lO -i.

A. Dispersion-Overlap Contributions

McGinnies and Jansen26-27 have shown that there are 
overlap corrections to the simple perturbation results. 
The lowest-order effects involve three molecules and 
are overlap corrections to the simple two-body disper
sion interaction. In Table III we compare these effects 
with the triple-dipole contribution for an equilateral 
triangle of atoms for various internuclear separations. 
These were evaluated by taking McGinnies and Jan
sen’s helium result and considering that the only im
portant electron exchanges for two adjacent argon 
atoms would be between the 3pz orbitals, where we 
have taken the z axis as the axis connecting the centers 
of the adjacent atoms. The final result is easily obtained 
by a rotation and a transformation to elliptic coordinates. 
For overlap integrals at separations greater than 6ao 
(3.17 1 )  , we have found that the overlap of 3 p z orbitals 
accounts for most of the total overlap as listed in Table 
IV. The effective nuclear charge of our 3pz orbitals is 
taken as Z — 6.75 from Clementi tables. It should be 
noted that these overlap values are much smaller than 
those of McGinnies and Jansen,27 who used Gaussian 
type wavefunctions.

B. Triple-Overlap Contributions

Jansen26 has discussed the role of three-body con
tributions involving the overlap of three atoms. Since 
overlap is small for the separations of interest to us 
here, we use the approximate form suggested by Sher
wood, DeRocco, and M ason.6 Using overlap integrals 
calculated from Hartree-Fock orbitals for argon (Table 
IV) we find the energy contributions for an equilateral 
triangle configuration as listed in Table III. The con
tribution is quite small, although not negligible even at 
the potential minimum. Similar conclusions have been 
reached by Williams, Schaad, and Murrell.28

28 R. T. McGinnies and L. Jansen, Phys. Rev. 101, 1301 
(1956).

27 L. Jansen and R . T . McQinnies, Phys. Rev. 104, 961 (1956).
18 D . R . Williams, L. J. Schaad, and J. N . Murrell, J. Chem.

Phys. 47, 4916 (1967).

C. Higher-Order Perturbation Contributions

The convergence of the perturbation expansion of 
dispersion forces is well documented. The early work of 
Bade10 showed that four-body effects contributed little 
to crystal stability even at normal solid densities for 
most substances. We also know that the higher-order 
interactions (in terms of perturbation theory) are 
mainly three-body effects.10 Doniach29 and, more 
recently, Lucas30 have evaluated the higher-order effects 
in closed form. Lucas also presents a perturbation 
analysis of his result. For the argon solid, the fourth- 
order contribution is about a fourth of the third-order 
result (and opposite in sign), the fifth is about a fourth 
of the fourth-order result, etc. Thus it  appears that, as 
regards both perturbational order and number of mole
cules involved, there are no convergence problems even 
in the argon solid with the induced dipole contribution.

D. Dipole-Dipole-Quadrupole Interactions

Recently we have begun to appreciate again that 
induced dipole-quadrupole interactions can be a signi
ficant part of long-range two-body interactions (see 
Ref. 19 for a typical discussion). I t  is therefore of

T a b l e  IV. Overlap of two argon atoms.*

R
Overlap

SuSo A

4 .0 0 2.116 0.5353

5 .0 0 2.646 0.2521

$ .0 0 3.175 0.1009

7 .00 3 .704 0.0357

8 .00 4 .233 0.0115

10.00 5.292 0.00095

* C alcu lated  u sin g  H a rtree-F ock  a tom ic orb itals.

“ S. Doniach, Phil. Mag. 8 , 129 (1963). 
» A . Lucas, Physica 35, 353 (1967).

st. î -ir'.vii it -?



interest to consider three-body effects involving induced 
quadrupoles. The most important term is the induced 
dipole-dipole-quadrupole contribution. This was de
rived by Ayres and Tredgold.16 Using their formulas 
and matrix elements appropriate to the argon system, 
one finds the results presented in Table III. It is 
obvious that this effect is not completely negligible at 
ordinary liquid densities.

E. Contributions to the Effective Pair Potential

In Table III we have represented the major con
tributions to the three-body potential. All are signi
ficantly less than the triple-dipole term evaluated in 
this and other papers. Considering these contributions, 
as well as the higher-order many-body effects discussed 
in Sec. C above and noting the signs of the terms, we 
discover that the total of all contributions at small 
separations such as the solid separation of about 7cto 
(3.7 A) is only 5% -10%  of the triple-dipole contribu
tion. At larger separations the cancellations would 
involve the dipole-dipole-quadrupole and the higher- 
order three-body contributions, both of which should die 
off slowly but with comparable magnitudes and 
opposite signs.

Although these estimates are based on consideration 
of only one configuration of the three particles, the 
general ideas should extend to the effective potential 
as well. All three-body effects appear to have rather 
similar angular dependences. The more complex the 
term, the more reason there is to expect and to find a 
reduction in these contributions when they are averaged 
over all angles. This was found by Bade,10 for example, 
in evaluating fourth-order four-body induced dipole 
contributions.

Thus we believe that the use of the triple-dipole term 
alone is a very accurate representation of the many-body 
effects for two atom separations near and beyond the 
minimum of the two-body potential, at least in the gas 
and low-density liquid phases.

IV. EFFECT OF NONADDITIVE  
POTENTIALS ON g(R)

In this section we shall briefly discuss the contribu
tions of the triple-dipole potential to the radial-dis
tribution function. We shall not explore this in detail 
since Rowlinson and co-workers plan to examine this 
more fully in some of their papers.

If we expand the radial-distribution function in 
powers of the density

g(R) = e(R)Cl+pgir(R)+pVW-r - • 0,
we find that giT(R )  has two components, an additive 
giA, and a nonadditive part. The latter is (with /3= 1 /k T )

gyNA(rn ) =  ~ P  j  0 (1 , 2, 3 M 1 3 )e(2 3 )d r3,

30

F i g . 5. Typical first- 20
order density corrections 
to g(JR), based on an 
assumed Lennard-Jones
potential. giA ( ) con- f  io
tains only pairwise additive ~  
contributions, while giNA 
(• • •) is the first correction e
due to the triple-dipole “  0
interaction. giT (------ ) is 01
the sum of the two con
tributions. 4 c /& r=  3.4.

0 1 2  3 4

(pgiNA is referred to as di by  Rowlinson18 and as x\ by  
Rushbrooke and Silbert17) . Thus we can easily obtain 
giNA( R ) .  W e find that it is small compared with 
giA (R )  when R / a <  1 for all three potentials and all 
temperatures considered in Sec. II. In the region 
i< I? /cr< 3 , both contributions are important with  
giNA decreasing the value of gi. Typical results are 
illustrated in Fig. 5. A decrease in gi due to giNA at 
about R / a — 1.3 is found to be quite general; a greater 
decrease is found at the lower temperatures. In the 
region R / a >  3, giA is the dominant contribution to gi. 
Thus the nonadditive effects imply a slightly more 
decreased density in the immediate vicinity of one 
molecule than a strictly pairwise additive potential 
would predict.

Using giNA we have evaluated its contribution to the 
x-ray structure factor for the liquid. In Fig. 6 we 
compare S ( K )  using the additive parts of g (R )  correct 
through first order in density and the first-order non
additive part. I t  is seen that even at p = 0 .5 4 g /c c , a 
density at which our results concerning linear density 
corrections are probably barely adequate, the non
additive corrections to S ( K )  are minor. Furthermore, 
their K  dependence is inadequate to explain the dis
crepancy recently noted by Levesque and Verlet31: 
Pings’ data16 do not agree with the g (R )  calculated by  
molecular dynamics for several potentials. I t  is difficult 
to understand why Pings’ S ( K ) is higher for K a  less 
than about 12 and smaller beyond this. Based on our 
calculations the evidence suggests that nonadditive 
effects are not the reason.

V. SECOND-ORDER DENSITY CORRECTIONS TO 
THE EFFECTIVE INTERACTION

Rowlinson18 has pointed out that the Percus-Yevick  
equation actually not only predicts linear terms in 
density for the effective potential but also higher-order 
terms. The structure of the higher terms, at least the p2 
term, is relatively simple. Following Eq. (20) in

which except for a constant, is the same as our K ab 31 D . Levesque and L. Verlet, Phys. Rev. Letters 20, 905 (1968).
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T able V. Predicted change in  the effective potential due to triple-dipole contributions for various assumed argon interactions.

R
A

C [Predicted decrease (°K ) for p = l ] “

Lennard-Jones Kihara Kingston

<r=3.15 A 178°K 155°K 136°K 193°K 164°K 136°K 178°K 136°K

3 .1 8 10.95 19 .5 23 .2 26 .5 3 0 .5 36 .5 4 6 .8
3 .4 4 9 .0 8 16 .5 18 .6 2 1 .0 24 .3 2 8 .9 3 6 .8
3 .7 1 b 7.42 13 .5 15.1 17 .0 19 .4 23 .0 29.1 16.5 22 .7
3 .9 7 6 .2 4 10 .9 12.15 13.63 15 .6 18 .4 23 .2
4 .2 4 5 .2 0 9 .1 10.1 11.3 12.7 15.7 19 .8 1 1 .0 14 .8
4 .5 0 4 .3 4 7 .5 0 8 .3 4 9.31 10 .2 12 .0 14.9
4 .7 7 3 .6 6 6 .17 6.83 7.60 8.35 9 .6 6 11 .9 7 .3 9 .7
5 .03 3 .02 5 .6 0 5 .6 0 6 .22 6.57 7 .59 9 .3 0

a A ctu a l decrease =*pC, w here p  is th e  d en sity  in  gram s per cu b ic ce n ti-  b A pp roxim ately  th e p oten tia l m inim um . (E xp erim en ts su ggest a  va lu e  
m eter. o f  ab ou t 54 a t  th is  p o in t.)

Rowlinson’s paper we find

(f>a !!— <j)— k T p g i N A  - \ - k T p 2g iN A Q g i A M + +  • • •

=  4>— k T p g i N A ( 1 — i p g i N A — p g iA ) d---- •

We have evaluated the correction terms. Although they 
appear large, the number density of argon atoms is 
sufficiently small that coupled with the cancellations 
between giA and giNA the p2 contributions amount to 
only something of the order of 10% of the p contribu
tions for p = l  g /cc  at the potential minimum. Using 
the Lennard-Jones potential, the change is —8% for 
137°K, - 3 %  for 155°K, and + 5 %  for 179°K at the 
potential minimum. A t larger separations the correc
tions are somewhat larger and positive.

I t  thus appears that one can include many-body 
effects to first order and account for most of their 
importance at moderate densities. At a density of 
p =  1 g /cc , the expansion in density is probably poor, 
and one expects large higher-order corrections. Some 
very sketchy evidence suggests that the linear density 
correction m ay over estimate the effects at very high 
densities.

3

2

T
S(K) |

0
I

F ig . 6. X -ray structure factor calculated using g(R )  correct 
to first order in density. S (K )  is the total pairwise additive
contribution with SiA(K )  (-------) being the first-order density
contribution. [ ------ , S (K )  with SiA (K )  included.] S iNA(K )
( • • • )  is the first correction to S (K )  due to the triple-dipole 
interaction. A Lennard-Jones potential was used. 4 f /k T = 3 .0; 
p = 0 .5 4  g /cc .

VI. SUMMARY; COMPARISON WITH  
EXPERIMENT; PREDICTIONS

This work was begun in order to make detailed 
comparisons with experiments, in particular, the x-ray 
diffraction studies at low densities. Pings and co
workers have now published some data at low densities. 
This early data is compared with our predictions in Fig.
7. In that figure we plot the depth of the potential 
needed to make the observed x-ray data agree with the 
Percus-Yevick equation as a function of density.16 A t 
low density this should be a very accurate procedure. 
It is apparent that the potentials used in our treatment 
and the experimental results as interpreted above are 
not consistent. The experimental potentials are too 
shallow. Also some of the dependence of depth on 
density must be a temperature dependence and higher 
order in density (see Sec. V ). These effects, however, 
are small at low density. The Kihara results do not 
even approximate the experimental data. The slope is 
closer to the experimental data but this depends in

L - J

•-e- -i2o
Kingston'

I36*K 

„I93*K 'Q. “140

K ihara

o 0.2 0 .4 0.6
p  (qm/cc)

o.e i.o

F i g .  7. Predictions for the density dependence of the depth 
of the minimum of the effective intermolecular potential using 
the Kihara, Kingston, and Lennard-Jones potentials for argon. 
The points with error bars are based on the analysis of x-ray 
data by Mikolaj and Pings [R ef. 16(a) in text], O , 130°C; 
□  , 12S°C; O, 120°C; V ,  11S°C; A , 110°C. The dotted line is 
an attem pt to find a Lennard-Jones potential which agrees with 
the experimental data.
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large part also on depth; the deeper the potential, the 
larger the slope. The Kingston potential, one of the 
best potentials available, is also in conflict with the 
experimental data.

A deeper minimum for the Lennard-Jones potential 
gives slightly better agreement with the work of Pings 
as shown by the dashed line in Fig. 7, but this depth 
is not in accord with virial data of Weir et al.22

In Table V we have presented the changes predicted 
in the potential for various values of R .  This result is 
actually better known than values previously presented 
since the minimum of the potential and a  are not known 
exactly. They are not needed to obtain Table V; so 
numbers in Table V are precise. They should be directly 
compared with experiments carried out at low densities. 
A t small separations (3.1-3.6 A) these values are but 
one of the many contributions to the effective inter- 
molecular potential (see Sec. I l l ) ,  but beyond about
3.7 A all other contributions should be no more than 
about 10% of these. Hence the listed values should 
accurately reflect experimental data on the cuange in 
the potential as a function of density for low densities. 
Experimentalists should compare the potentials at these 
points rather than simply at the potential minimum. 
For comparison Pings’ data16a yields a constant of 14.7 
at 5 A and 28 at 4.5 A, both much larger than predicted. 
A t the minimum his value is closer to 54.

The other aspect of Table V is the temperature de
pendence: a 30% variation in temperature can lead to a 
20% change in the potential. Consider a typical case of 
density 0.25 g /cc  and assume that the Lennard-Jones 
potential is reasonable. A t 178°K we would expect the 
potential to change by 2.7°K; at 136°K the change 
should be 3.4°K. Near the potential minimum such 
differences are much larger so that such temperature 
dependences might be experimentally verified. Ob
viously such effects are greater at greater densities, but 
at high densities one fights the problem of the validity of 
our first-order density expansion, and thus we can 
make no exact predictions. The magnitude of the experi
mental temperature dependence at any separation 
should also verify the best values for the depth of the 
potential. However, the experimental problems involved  
in such accurate determinations are immense and may 
not be soluble.

At higher densities such as those characteristic of 
liquids at low temperatures, it is suspected that our 
results are subject to sizeable errors. In that case the 
first-order expansion in density is not sufficient. 
Higher-density dependence in the effective potential 
can come from two sources, statistical and the other 
many-body potentials. As to the potential, we have 
seen that four- and higher-body effects are even smaller. 
Thus we have reason to suppose that the major density 
dependence of the effective potential will be given by  
statistical effects. Sinanoglu2 has. proposed that we can 
get a good estimate for these effects by using the super

position approximation on the three-body radial- 
distribution function which means replacing e ( R ) in the 
effective potential [E q . (8 ) ]  by g ( R ) . This g ( R )  should 
be the true distribution function if no nonpairwise 
additive effects were present. However, it should be a 
good approximation to simply use the experimental 
g (R )  if the corrections are small in the regions around 
the potential minimum. Otherwise iterative schemes 
can be developed.

We have evaluated these integrals for the Lennard- 
Jones liquid using g ( R )  from the molecular dynamics 
results of Verlet.32 The predicted density dependence of 
the potential is then about 30% less than Table V 
suggests near the potential minimum.

The effect of the density dependence of g ( R )  on the 
effective potential can be understood in a qualitative 
way. The major contribution to the necessary integrals 
are the large portions of g ( R )  near the potential 
minimum. These peaks decrease at a given temperature 
with density, and thus we should expect the earlier 
predictions to be high in the region of higher densities.

A t high densities there is also evidence that the 
effective potential is density dependent. Johnson and 
March33 have used the YB G equation to analyze several 
x-ray and neutron diffraction results and to find a 
significant variation in the effective potential with 
temperature and density. The two effects cannot be 
separated in their data. Rice and Gray34 have used the 
PY  equation on the same data and again find similar 
changes in the effective potential. I t  is interesting that 
their data for the density dependence of the potential 
is in reasonable agreement with all of the above state
ments and calculations.

In this paper we have examined in detail one specific 
case, namely the argon-argon interaction. Using 
presently proposed two-body potentials we have 
evaluated effective two-body potentials as a function 
of density and temperature. Should accurate effective 
potentials become available soon, using the techniques 
of Mikolaj and Pings16 these predictions can be com
pletely tested. At present our results yield very accurate 
predictions for the results expected. They do not, 
however, agree with the experimental facts. M any  
problems remain. The large density dependence of the 
effective potential found by Pings and Mikolaj cannot 
be explained by three-body interactions. The Kihara 
potential is in some ways the simplest representation 
of molecular interactions, and yet in this case it  seems 
to yield predictions for the depth and density depend
ence at variance with known facts. The same is true for 
the even more accurate Kingston potential, which

32 L. Verlet, Phys. Rev. 159, 98 (1967); 165, 201 (1968).
33 M . D . Johnson and N . H. March, Phys. Letters 3, 313 (1963).
34 S. A. Rice and P. Gray, The Statistical Mechanics o f Sim ple  

Liquids (Interscience Publishers, Inc., N ew  York, 1965), pp. 
125-128. N ote, however, that in the important Fig. 2.7.7 the 
84° and 149°K curves are interchanged.
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should be very close to the true potential. Further ACKNOWLEDGMENTS
cooperation between theory and experiment is needed
before all of our results can be understood. Apparently We are grateful for discussions and an exchange of 
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difficulty is not due to three-body interactions. Z. W. Salsburg, and especially Professor L. K . Runnels.
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