I-TCP: Indirect TCP for Mobile Hosts

Ajay Bakre B.R. Badrinath

bakre @paul.rutgers.edu badri@rags.rutgers.edu

Department of Computer Science
Rutgers University, Piscataway, NJ 08855.
DCS-TR-314
October, 1994

Abstract — IP-based solutions to accommodate mobile hosts within existing internetworks do
not address the distinctive features of wireless mobile computing. IP-based transport protocols thus
suffer from poor performance when a mobile host communicates with a host on the fixed network.
This is caused by frequent disruptions in network layer connectivity due to — i) mobility and ii)
unreliable nature of the wireless link. We describe the design and implementation of I-TCP, which
is an indirect transport layer protocol for mobile hosts. I-TCP utilizes the resources of Mobility
Support Routers (MSRs) to provide transport layer communication between mobile hosts and hosts
on the fixed network. With I-TCP, the problems related to mobility and the unreliability of wireless
link are handled entirely within the wireless link; the TCP/IP software on the fixed hosts is not
modified. Using I-TCP on our testbed, the throughput between a fixed host and a mobile host

improved substantially in comparison to regular TCP.

1 Introduction

Integration of mobile hosts into the existing internetwork consisting mostly of stationary hosts gives
rise to some peculiar problems because of the special requirements of the small low power mobile hosts
and also because of the special characteristics of the wireless link. Several Mobile-IP proposals[20, 8,
17] have addressed the problem of delivering IP packets to mobile hosts regardless of their location.

In theory one can use existing fixed network transport protocols such as UDP and TCP on the mobile

! This work was made possible in part by NSF equipment grant CDA 93-20300-EQT.



hosts to communicate with the fixed network. This naive approach however, gives rise to performance
problems, especially when a mobile host switches cells or is temporarily disconnected. More seriously,
all such proposals attempt to keep mobility, disconnection and other features of mobile hosts transparent
above the network layer which does not allow any application specific handling of wireless features.
On the other hand, use of a new protocol stack for mobile hosts causes interoperability problems. An
Indirect model for mobile hosts[4] allows the development and use of specialized transport protocols
that address the performance issues on the comparatively low bandwidth and unreliable wireless link.
Protocols developed based on this model can also mitigate the effects of disconnections and moves while

maintaining interoperability with existing protocols.

This paper presents the design and implementation of I-TCP which allows a mobile host to
communicate over a transport layer connection with the fixed network via its current Mobile Support
Router (MSR). The TCP connection with the fixed host is actually established by the MSR on behalf of
the mobile host (MH). If the MH moves to another cell during the lifetime of the TCP connection, the
new MSR takes over the connection from the old MSR. Experiments with I-TCP on our testbed show

substantial throughput improvement over regular TCP when one of the end points is mobile.

2 Related Work

Previous research work in the areas related to network protocols for mobility and low speed links

can be broadly classified as follows.

2.1 Solutions for Slow and Lossy Links

Problems related to the unreliable nature of wireless media are somewhat similar to the ones
which surfaced in the early eighties when telephone and serial lines were used to connect personal
computers to the Internet. Thinwire protocols[7] attempted to alleviate some of those problems. Header
compression[11] for TCP connections was suggested for improving the response time of interactive
applications such as telnet on low speed links. Although these solutions are applicable to some extent
to wireless links, they do not deal with host mobility. In addition, such solutions cannot adapt to the
changes in the wireless link characteristics such as available bandwidth, which may change from one

wireless cell to another. Link layer retransmissions can be used on error-prone wireless links to bring



their error rate on par with that on the wired networks but such an approach interferes with the end-to-end

retransmissions of TCP and does not always result in improved performance[6].

2.2 TCP/IP in Mobile Environment

Mobility can give rise to severe performance problems in TCP throughput[5]. The main reasons for
throughput degradation is the loss of TCP segments during cell crossovers especially with non-overlapped
cells. Lost segments trigger exponential back off and congestion control at the transmitting host and
the congestion recovery phase may last for several seconds even after network layer communication is
reestablished in the new wireless cell. Fast retransmission coupled with modification of the TCP software
on the mobile hosts[5] solves only part of the problem because the transmitting host still performs a slow
start if more than one segment is lost per window, thus limiting the effective throughput[12]. Other
proxy-based approaches have been suggested[2] for mobile hosts but they do not pertain to the transport

layer.

3 Indirect TCP Overview

This section gives an overview of indirect TCP and describes the benefits of using indirection at the
transport layer. We begin with a brief description of the Indirect Protocol model [4] on which indirect

TCP is based.

3.1 Indirect Model for Mobile Hosts

The indirect protocol model for mobile hosts suggests that any interaction from a mobile host (MH)
to a machine on the fixed network (FH) should be split into two separate interactions — one between the
MH and its mobile support router (MSR) over the wireless medium and another between the MSR and the
FH over the fixed network. This provides an elegant method for accommodating the special requirements
of mobile hosts in a way that is backward compatible with the existing fixed network. All the specialized
support that is needed for mobile applications and for the low speed and unreliable wireless medium can

be built into the wireless side of the interaction while the fixed side is left unchanged.

At the transport layer, use of indirection results in the following benefits:

1. It separates the flow control and congestion control functionality on the wireless link from that on the

fixed network. This separation is desirable because of the vastly different characteristics of the two



kinds of links — the fixed links (ethernet or long-haul links and ATM in the future) are becoming
faster and more reliable every day whereas the wireless links (especially the outdoor links) are still
very slow and are extremely vulnerable to noise and loss of signal due to fading which result in
higher bit error rates.

2. A separate transport protocol for the wireless link can support notification of events such as
disconnections, moves and other features of the wireless link such as the available bandwidth etc. to
the higher layers which can be used by link aware and location aware mobile applications.

3. Indirection allows the base station (mobile support router or MSR) to manage much of the commu-
nication overhead for a mobile host. Thus, a mobile host (e.g. a small palmtop) which only runs a
very simple wireless protocol to communicate with the MSR can still access fixed network services

such as WWW which may otherwise require a full TCP/IP stack running on the mobile.

3.2 I-TCP Basics

I-TCP is a transport layer protocol for mobile hosts which is based on the Indirect Protocol model.
I-TCP is fully compatible with TCP/IP on the fixed network and is built around the following simple

concepts:

1. A transport layer connection between an MH and an FH is established as two separate connections
— one over the wireless medium and another over the fixed network with the current MSR being
the center point.

2. If the MH switches cells during the lifetime of an I-TCP connection, the center point of the connection
moves to the new MSR.

3. The FH is completely unaware of the indirection and is not affected even when the MH switches

cells i.e. when the center point of the I-TCP connection moves from one MSR to another.

When a mobile host (MH) wishes to communicate with some fixed host (FH) using I-TCP, a request
is sent to the current MSR (which is also attached to the fixed network) to open a TCP connection with
the FH on behalf of the MH. The MH communicates with its MSR on a separate connection using a
variation of TCP that is tuned for wireless links and is also aware of mobility. The FH only sees an
image of its peer MH that in fact resides on the MSR. It is this image which is handed over to the new

MSR in case the MH moves to another cell.



Figure 1 I-TCP Connection Setup

MH socket MH socket
<mhaddr, mhport, msriaddr, msriport> <mhaddr, mhport, msriaddr, msriport>
Move

MH.f I fMH

Wireless Wireless
TCP TCP
MSR1-mhsocket MSR2-mhsocket
<msriaddr, msriport, <msriaddr, msriport,
mhaddr, mhport> mhaddr, mhport>

N y
. o [-TCP Handoff o o
—l
MSR-1 f/'. .‘J MSR-2
4> 4 \
/ N

MSR1-fthsocket MSR2-fhsocket

Regular
<mhaddr, mhport, <mhaddr, mhport,
fhaddr, fhport> 4 TCP —a fhaddr, fhport>
FH socket
1 '// <fhaddr, fhport, mhaddr, mhport>
o
FH

As an example, figure 1 shows the setup for an I-TCP connection. The mobile host (MH) first
establishes a connection with a fixed host (FH) through MSR-1 and then moves to another cell under
MSR-2. When the MH requests an I-TCP connection with the FH inside the cell of MSR-1, MSR-1
establishes a socket with the MH address and MH port number to handle the connection with the fixed
host. It also opens another socket with its own address and some suitable port number for the wireless

side of the I-TCP connection to communicate with the MH.

When the MH switches cells, the state associated with the two sockets for the I-TCP connection at
MSR-1 is handed over to the new MSR (MSR-2). MSR-2 then creates the two sockets corresponding

to the I-TCP connection with the same endpoint parameters that the sockets at MSR-1 had associated



with them. Since the connection endpoints for both wireless and the fixed parts of the I-TCP connection
do not change after a move, there is no need to reestablish the connection at the new MSR. This also

ensures that the indirection in the TCP connection is completely hidden from the FH.

I-TCP Semantics One consequence of using [-TCP is that the TCP acknowledgments are not end-to-end
but instead we have separate acknowledgments for the wireless and the wired parts of the connection.
Most applications that use TCP for bulk data transfer such as ftp however, also have some kind of
support built-in for application layer acknowledgment and error recovery. Such acknowledgments are
often required because TCP does not provide any notification to the sending application when the data is
actually received by the peer application. One can therefore argue that using I-TCP does not yield weaker
end-to-end semantics in comparison to regular TCP, provided that there are no MSR failures and that the
MH does not stay disconnected from the fixed network for too long. It is important to note however that
the wireless link between the MSR and the MH is highly fragile and so it is desirable that applications

using I-TCP provide some mechanism for error recovery to deal with failures on the wireless link.

3.3 I-TCP Interface at the MH

To establish an I-TCP (indirect) connection with a remote host, MH applications must use special
I-TCP calls instead of the regular socket system calls. I-TCP calls are provided to replace connect,
listen, accept and close socket system calls and have the same interface as their corresponding socket
system calls. The I-TCP calls only provide a wrapper around the regular socket system calls to perform
the necessary handshake with the MSR to open or close an I-TCP connection. Once an I-TCP connection

is established, normal socket system calls can be used to send or receive data on the connection.

4 Performance Results

We present performance figures for experiments conducted using the ttcp benchmark which measures
TCP throughput between two hosts. The throughput experiments were conducted on our wireless testbed

which is described below.

4.1 Experimental Wireless Testbed

The wireless testbed had three MSRs, all of them 33 MHz 386 PC-ATs with 16 MB memory and
400 MB disk drives. The mobile host was a 66 MHz 486 PC-AT. All the machines use 2Mbps NCR



Wavelan cards for wireless communication. The MSRs are also connected to 10 Mbps ethernet segments
which are part of a single administrative domain. The MSRs run Mach microkernel with Unix server
(MK84/UX40)[1] and use Columbia Mobile-IP protocol to support wireless cells. The MH has similar
configuration but without Columbia Mobile-IP. I-TCP daemon processes running on the MSRs provide
support for I-TCP connections. Modified versions of msrmicp and mhmicp programs run at the MSRs
and the MH respectively which constitute the user level part of Mobile-IP. The fixed hosts used were

Sparc machines running SunOS.

Two MSRs in the setup described above were used for supporting the wireless cells for the MH
while the third one merely acted as a gateway to our mobile subnet which routed packets destined for
the MH to one of the other two MSRs. Thus, all the packets arriving at the MH had to go through 1 hop
of IPIP encapsulation (from the gateway to the current MSR) in a steady state and possibly two hops
for a brief interval immediately following a move. We experimented with two distinct cases to study the
performance of I-TCP for connections spanning over local area and wide area networks i.e. — i) when
the FH to MH communication involves only a few hops within our campus and ii) when the FH to MH

communication involves a long-haul link over the Internet.

Our experiments were inspired by similar experiments reported by Caceres and Iftode[5] to study
the effect of mobility on reliable transport protocols. Tables 1 and 2 compare the end-to-end throughput
of an I-TCP connection between an MH and a fixed host (FH) with that of a direct TCP connection for
local area and wide area connections respectively. In all our experiments, the FH sent a few megabytes
of data (4 MB in case of local area and 2 MB in case of wide area) to the MH using a window size of 16
KB. We chose to make the MH to be the receiving host which we expect to be a typical situation with
most mobile applications that will download more data from the fixed network rather than sending data
over the uplink. Cell switching was implemented in software to allow precise control over the instant
when the MH crosses cells. The end-to-end throughput was measured at the MH under four different

cell configurations —

i) No Moves — The MH stays in one wireless cell during the lifetime of a connection.

ii) Moves between overlapped cells — MH switching between overlapped cells every 8 seconds such

that the MH stays in contact with the previous MSR during handoff. For a brief period after



iii)

iv)

switching cells, the MH continues to receive packets from the previous MSR before the Mobile-IP
routing adjustments take effect.

Moves between non-overlapped cells with 0 second between cells — In case of non-overlapped
cells, the cell boundaries are sharply defined and therefore no communication is possible with the
previous MSR after a move to another MSR. The MH starts looking for a beacon from the new
MSR immediately after a move and thus in the worst case the link layer connectivity may be lost for
one full interval between successive beacons which was 1 second in our testbed. The cell switching
again occurs every 8 seconds.

Moves between non-overlapped cells with 1 second between cells — Same as in iii) above but
now the MH starts looking for a beacon 1 second after moving out of the previous cell. As in the
previous case, an additional 1 second may elapse before a beacon is received by the MH and the

link layer connectivity is reestablished.

The wireless cells were completely overlapped in our setup and non-overlapped cells were simulated

with the two MSRs transmitting using different Wavelan (MAC layer) network IDs. Cell switching was

implemented in software to allow better control on the timing of cell crossovers.

Table 1 I-TCP Throughput Performance over Local Area

Connection No moves Overlapped Non- Non-

type cells overlapped overlapped
cells with 0 cells with 1
sec between sec between
cells cells

Regular TCP 65.49 KB/s 62.59 KB/s 38.66 KB/s 23.73 KB/s

I-TCP 70.06 KB/s 65.37 KB/s 44.83 KB/s 36.31 KB/s

4.2 Performance over Local Area

In case of local-area experiments, we observed that I-TCP performed slightly better compared to

regular TCP when the MH stayed within one cell. This is remarkable considering the copying overhead

incurred by I-TCP at the MSR. In the second case when the MH switches between two completely

overlapped cells, the link-layer connectivity is maintained at all times since the MH is in contact with both



the new MSR and its previous MSR during handoff. There is still some degradation in throughput since
the TCP segments that are in transit during handoff are delayed because of IP layer routing adjustments
by the MSRs. I-TCP performance suffers only marginally in this case despite the additional overhead
of I-TCP state handoff between the two MSRs on every move. We believe that the main reason for
improved performance with I-TCP in the first two test cases is that the sending host (FH) sees more
uniform round-trip delays for TCP segments as compared to the regular TCP. Loss of TCP segments
over the wireless link, although infrequent, was also responsible for the difference in performance since

I-TCP seemed to recover faster from a lost packet than regular TCP.

The two cases of non-overlapped cells where the MH lost contact with the fixed network (for 0 and
1 second respectively) before such contact was reestablished at the new MSR, affected the end-to-end
throughput more severely. With regular TCP, congestion control kicked in at the FH on every handoff
because of packet loss and it took some time after a cell crossover before the FH was able to send data
again at full speed. In addition, the exponential back off policy of TCP resulted in the FH going into
long pauses that continued even after the MH was ready to communicate in its new cell. In case of
I-TCP however, a cell crossover by the MH manifested itself in the form of shrinking receive window
size at the MSR which forced the FH to stop sending data when the MSR buffers were full. After a
handoff, the new MSR could accept more data from the FH and the data rate on the connection quickly
came back to normal. Congestion control did kick-in on the wireless link between the MSR and the
MH however and so did exponential back off. We found that a simple reset of the TCP retransmission
timer at the new MSR immediately after an I-TCP handoff forced the MSR to initiate a slow-start on the
wireless link, and was enough to quickly get the wireless part of I-TCP out of congestion. In the worst
case when the MH lost connectivity with the fixed network for 1 second, I-TCP showed an improvement

by a factor of about 1.5 over regular TCP.

4.3 Performance over Wide Area

Our wide area experiments highlight the benefits of I-TCP even more clearly. Because of relatively
long round-trip delays over wide area connections, any packet losses over the wireless link severely
limit the end-to-end throughput of regular TCP. This is because the time needed to recover from falsely
triggered congestion control increases with the round-trip delay. Similarly any perturbations (such as cell

crossovers or transient changes in the observed round-trip delay) have a more drastic effect over wide



Table 2 I-TCP Throughput Performance over Wide Area

Connection No moves Overlapped Non- Non-

type cells overlapped overlapped
cells with 0 cells with 1
sec between sec between
cells cells

Regular TCP 13.35 KB/s 13.26 KB/s 8.89 KB/s 5.19 KB/s

I-TCP 26.78 KB/s 27.97 KB/s 19.12 KB/s 16.01 KB/s

area connections than over local area connections. For the first two test cases i.e. when the MH stayed
within once cell and when it switched between overlapped cells, the observed performance of I-TCP
was about 2 times better than that of regular TCP. We did not observe any significant degradation in
performance with the MH switching between overlapped cells either with I-TCP or with regular TCP
which suggests that the effect of variation in round trip delay because of IP level routing changes was

negligible for wide area connections.

In case of moves between non-overlapped cells, the throughput with regular TCP dropped to almost
a third (61% degradation) of the no-moves throughput in the worst case when the MH lost contact with
the fixed network for 1 second. With I-TCP, the corresponding degradation in throughput was only 40%.
The net effect was that I-TCP throughput in the worst case was 3 times better than that of regular TCP.
The main reason for this improved performance with I-TCP is that the retransmissions due to packets
lost on the wireless link were confined only to the wireless part of I-TCP which can recover much faster
from the congestion control phase because of the following two factors — i) much shorter round-trip
delay between the MH and the MSR as compared to the delay between the MH and the FH and ii) we

reset the retransmission timer at the MSR immediately after a handoff.

5 I-TCP Implementation

This section describes the implementation of various software components that constitute the I-TCP
system. These include modifications to the TCP and Mobile-IP code on the MSRs. No modifications

are needed in the Unix kernel at the MH for I-TCP to work.

10



Figure 2 I-TCP Implementation on Mach 3/Unix

MH MSR

Mobile Application

I-TCP Daemon
I-TCP Library

Socket Socket
Calls Calls
Vmunix ! Vmunix '
Socket Layer Socket Layer
TCP/IP Layer TCP/IP Layer
A A A
P NN S N NP et NI N e W NN S e
Mach 3.0 Mach 3.0
y i / \ i Y
Wavelan Driver Wavelan Driver Ethernet Driver

L—»
To Fixed
Network

5.1 MSR Kernel Support

First we describe the changes required in the network management module of the Unix kernel at
the MSRs followed by a description of other user level programs at the MSR which manage the I-TCP

connections.

TCP/IP layer support At any MSR, we allow binding sockets to the addresses and port numbers of
MHs that are currently local to the MSR. This is essential to grab the TCP packets originating from
fixed hosts which are addressed to the MH on a per connection basis. This also allows us to move an
I-TCP socket to another MSR without changing any connection parameters and therefore no cooperation
from the fixed peer is needed to move the TCP endpoint from one MSR to the other. The port numbers

used for the I-TCP sockets on behalf of one MH cannot conflict with the same port numbers used by

11



the MSR or by other MHs having indirect sockets through the same MSR because the corresponding

addresses are different.

A small change is needed to the IP input routine which sends the IP packets that are addressed to
I-TCP port numbers at the MH, upwards to the TCP layer instead of forwarding them to the MH. A list

of such I-TCP port numbers is maintained at the MSR on a per MH basis.

Mobility Support As an MH moves from one cell (say, under MSR-1) to another (under MSR-2),
all the I-TCP sockets active at MSR-1 on behalf of the MH must be moved to MSR-2. Moving a
connected socket from one machine to another is a fairly complex task. In addition to transferring
the state maintained by the socket and TCP layers from MSR-1 to MSR-2, it involves restarting the
connection at MSR-2. Also, this migration of sockets needs to be completely transparent to the fixed

host at the other end of the connection.

The I-TCP state handoff was carefully implemented with kernel support to be efficient even with
relatively frequent moves. We also buffer the TCP segments that are in transit during a handoff at the
new MSR even though they cannot be immediately processed. This is necessary to avoid congestion
on either side (fixed or wireless) of the I-TCP connection. After an I-TCP handoff, we reset the TCP
retransmission timer on the wireless side so that the MSR immediately begins a slow start. Complete
details of handoff are described in a later section. Here we restrict ourselves to describing the primitives
needed to achieve an I-TCP socket handoff. In particular, we implemented basic primitives for I-TCP

sockets to do the following:

1. Freeze a connected socket and capture its state.

2. Create a connected socket without any cooperation from the peer.
3. Establish the state of a socket and restart the connection.
4

Delete (not close) a socket which has been moved to another MSR.

5.2 MSR I-TCP Daemon

An I-TCP daemon process running on every MSR is responsible for managing all the I-TCP
connections through that MSR for all the MHs that are currently local to the MSR. Managing the I-
TCP connections at the MSR from a process in user space involves additional copying overhead on each

half of the duplex connection. The data sent by the MH on an I-TCP connection has to go up through

12



the TCP and socket layers in the Unix kernel and into the user space and down again on the fixed side
of the connection through the socket and TCP layers of the kernel to the IP output routine. On the other
hand, a regular TCP packet from the MH for a direct connection would be forwarded by the IP layer in

the kernel to the fixed network with nominal processing overhead.

Figure 3 I-TCP MH Modules

MH Application - I-TCP Library -
I-TCP I-TCP requests
socket calls to MSR’s daemon
I-TCP port

registration

requests

MICP messages
to/from MSR-MICP
MH-MICP Process -

Figure 4 I-TCP MSR Modules

MICP messages MICP messages
to/from local MHs to/from other MSRs
-~ MSR-MICP Process I ——
MH Enter &
MH Leave
Notification
< > I-TCP Daemon -~ »
I-TCP requests Handoff requests
from local MHs to/from other MSRs

The I-TCP daemon is a threaded process with different modules to communicate with the local MHs,
the msrmicp process on the MSR and with the I-TCP daemons on other MSRs. In its current form the

daemon performs the following functions:

1. Handle requests from locally registered MHs for opening I-TCP connections. Such requests can be
either passive (listening for connections) or active (initiating a connection with a remote host).

2. Copy data from wireless side of I-TCP connections to the fixed network side and vice versa.

13



3. Perform I-TCP handoffs in coordination with similar daemons at other MSRs and the local msrmicp

process.

5.3 MH I-TCP Library

The I-TCP library on the MH provides the Application Programmer’s Interface (API) for the I-TCP
functions. This library provides a familiar interface similar to the socket related system calls in Unix. This
library manages the indirect connections on a per process basis in coordination with the I-TCP daemon
of the current MSR and the local mhmicp process. MH applications that wish to avail of I-TCP instead
of using regular TCP simply need to replace the regular socket system calls for connection initiation and

termination by their equivalent I-TCP calls.

5.4 Handoff Management

Figure 5 shows the handoff sequence for I-TCP connections when an MH that has open I-TCP
connections moves from one cell (under MSR-1) to another (under MSR-2). The handoff procedure is
closely integrated with the MH registration procedure of Columbia Mobile-IP for the sake of efficiency
and thus the user level modules, namely the msrmicp and the mhmicp processes running at the MSR and
the MH respectively, also participate in an I-TCP handoff. In the following description the item numbers

correspond to the step numbers shown in figure 5.

1. A beacon is received by the MH from the new MSR (MSR-2).

2. The mhmicp process sets the new MSR to be the default router and sends a greeting message to the
MSR containing the connection endpoints of all the active I-TCP connections at the MH and also
the address of its previous MSR (MSR-1).

3. The msrmicp process at MSR-2 sends an acknowledgment for the greeting to the MH.

4. The msrmicp process at MSR-2 sends an MHIn message to the local I-TCP daemon containing the
list of I-TCP connection endpoints received from the MH.

5. The I-TCP daemon establishes sockets for both the wireless and the fixed network parts of the I-TCP
connections for the newly registered MH and prepares itself for an I-TCP handoff request from
MSR-1. The daemon then sends an ACK to the local msrmicp process.

6. The msrmicp process sends a forwarding pointer to MSR-1.

7. The msrmicp process at MSR-1 sends a forwarding ACK to MSR-2.

14



10.

Figure 5 I-TCP Handoff Sequence

Cell Boundary
MH MH
MHMICP MHMICP i
Application
Beacon Grack
(2
Greet
MSR-1 FwdPtr MSR-2
y
-« /@\
MSRMICP MSRMICP
()
FwdAck Ack
MHOut MHState MHIn
/@\\
I-TCP Daemon I-TCP Daemon
‘\

The msrmicp process at MSR-1 sends an MHOut message to its local I-TCP daemon with the
address of the MH that moved out.

On receiving and MHOut message, the I-TCP daemon freezes all the I-TCP connections for the
indicated MH. It then makes a handoff request to the I-TCP daemon of MSR-2 to make sure it is
ready and then sends the state of each I-TCP connection to MSR-2.

The I-TCP daemon at MSR-2 receives the state of each I-TCP connection for the newly registered
MH and restarts each connection. It then sends an ACK to MSR-1 signalling the completion of

I-TCP handoff.

15



The handoff procedure described above assumes that the wireless cells are non-overlapping i.e. no
direct communication is possible between the MH and its previous MSR after switching cells. In case
of overlapped cells, the MH can continue to receive IP packets during steps 1 through 6 of the above
handoff procedure while it sends the outgoing IP packets through the new MSR. The I-TCP handoff thus
does not interfere with other IP traffic to and from the MH. For the I-TCP connections, there is a brief
interruption in the traffic between steps 6 through 10 of the handoff procedure. The TCP segments in
transit during this short period are buffered (without processing) at the new MSR and are acknowledged

as soon as complete state information is available for I-TCP connections at the new MSR.

With non-overlapped cells, the MH can start sending out IP packets immediately after step 1, but
it cannot receive any IP packets until step 6 because the rest of the network does not know about its
new location. This disruption in the network layer is inevitable with non-overlapped cells. For I-TCP
connections, the I-TCP handoff has to be completed in step 10 before data can flow in both directions

normally which causes a brief delay as in the case with overlapped cells.

6 Conclusion and Future Work

We have described I-TCP as a robust approach to improve transport layer performance in a mobile
wireless environment. Our approach first confines the mobility related performance problems to the
wireless link and then attempts to alleviate such problems by adapting the TCP/IP software on the wireless
link in a way that requires no modifications to the hosts on the fixed network. I-TCP is particularly suited
for applications which are throughput intensive. Experiments with I-TCP on our testbed showed greatly
improved throughput in comparison to regular TCP under simulated mobility conditions. The performance

improvement for wide-area connections was higher than for local-area connections.

We would like to study I-TCP performance in different wireless environments especially those with
high error rates. We are also planning to build a flexible and lightweight transport protocol for the
wireless side of I-TCP which can adapt to changes in the wireless environment and can support planned
disconnections. Presentation layer services can also be built on top of I-TCP which will allow mobile
applications to dynamically choose a format for data transmitted over the wireless medium. Other work

includes testing throughput intensive applications such as ftp and mosaic with I-TCP.

16



7 Acknowledgments

We are thankful to Darrell Long (UC, Santa Cruz) for allowing us to use one of their machines

for conducting experiments for wide area connections. We would also like to thank John Ioannidis for

providing us with the source code of Columbia’s Mobile-IP implementation. The Wavelan driver for

Mach used in our experiments was originally written by Anders Klemets and adapted for our network

configuration by Girish Welling. Arup Acharya provided valuable comments in the preparation of this

paper.

References

[1]

(2]

(3]

[9]

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: a new kernel
foundation for UNIX development. In Proc. of the USENIX 1986 Summer Conference, July 1986.

A. Athan and D. Duchamp. Agent-mediated message passing for constrained environments. In USENIX
Symposium on Mobile and Location-dependent Computing, August 1993.

B.R. Badrinath, A. Acharya, and T. Imielinski. Structuring distributed algorithms for mobile hosts. In Proc. of
the 14th Intl. Conf. on Distributed Computing Systems, pages 21-28, June 1994.

B.R. Badrinath, A. Bakre, T. Imielinski, and R. Marantz. Handling mobile clients: A case for indirect interaction.
In 4th Workshop on Workstation Operating Systems, October 1993.

R. Caceres and L. Iftode. The effects of mobility on reliable transport protocols. In Proc. of the 14th Intl. Conf.
on Distributed Computing Systems, pages 12-20, June 1994.

A. DeSimone, M.C. Chuah, and O.C. Yue. Throughput performance of transport-layer protocols over wireless
LANSs. In Proc. of Globecom 93, December 1993.

D.J. Farber, G.S. Delp, and T.M. Conte. A thinwire protocol for connecting personal computers to the Internet.
Request for comments 914, September 1984.

J. Ioannidis, D. Duchamp, and G.Q. Maguire. IP-based protocols for mobile internetworking. In Proc. of ACM
SIGCOMM, pages 235-245, September 1991.

J. Toannidis and G.Q. Maguire. The design and implementation of a mobile internetworking architecture. In

Proc. of USENIX Winter Technical Conference, January 1993.

[10] V. Jacobson. Congestion avoidance and control. In Proc. of ACM SIGCOMM, pages 314-329, August 1988.

[11] V. Jacobson. Compressing TCP/IP headers for low-speed serial links. Request for Comments 1144, February

1990.

17



[12] V. Jacobson, R. Braden, and D. Borman. TCP extensions for high performance. Request for Comments 1323,
May 1992.

[13] S.J. Leffler, M.K. McKusick, M.J. Karels, and J.S. Quarterman. The design and implementation of the 4.3BSD
UNIX Operating System. Addison Wesley, 1989.

[14] A. Myles and D. Skellern. Comparison of mobile host protocols for IP. Journal of Internetworking Research
and Experience, 4(4), December 1993.

[15] J. Nagle. Congestion control in IP/TCP Internetworks. Request for Comments 896, January 1984.
[16] J. Postel. Transmission control protocol. Request for Comments 793, September 1981.

[17] Y. Rekhter and C. Perkins. Optimal routing for mobile hosts using IP’s loose source route option. Internet

Draft, October 1992.

[18] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end arguments in system design. ACM Transactions on
Computer Systems, 2(4), November 1984.

[19] C.K. Siew and D.J. Goodman. Packet data transmission over radio mobile radio channels. IEEE Transactions

on Vehicular Technology, 32(8):95-101, May 1989.

[20] H. Wada, T. Yozawa, T. Ohnishi, and Y. Tanaka. Mobile computing environment based on internet packet

forwarding. In Proc. of the USENIX Winter Technical Conference, January 1993.

18



